

Viscorotational shear instability in astrophysical dense granular flows

Alexander Tevzadze Tbilisi State University, Georgia Abastumani Astrophysical Observatory, Georgia

In collaboration with: Luka Poniatowski (KULeuven, Belgium)

Granular Flows in Astrophysics

- Planetary Rings
- Exo-Planetary Rings
- Debris Discs
- Protoplanetary Discs

Differentially rotating "Keplerian flows":

0

Particles rotate on their gravitational orbits $\,\Omega(r)\propto r^{-3/2}$

Granular pressure comparable with residual gravitational pressure

3rd IMA Conference on Dense Granular Flows

Planet Formation

Sizes of solid particles $1\mu m \rightarrow 10 \text{ km}$ dust \rightarrow planetesimal

Particle collisions: **coagulation, scattering, fragmentation** Core accretion theory: <u>~1 meter barrier</u>

a) Fluid model: nonlinear dynamics of anticycl. vortices;
b) Fluid-Particle model: "streaming instability";

c) Particle-Particle collisions? granular fluid;

Granular Liquids

Granular flow behavior Strongly depends on the Particle restitution coefficient.

Granular liquid of inelastic particles can be observed for a wide range of particle filling factors

Granular Rheology of disc flows

Granular Filling Factor (Φ)

3rd IMA Conference on Dense Granular Flows

Viscous Stability

Turbulent (anomalous) viscosity α -model: $v_{eff} = \alpha hc$ Shakura Syunyaev 1973 $\nu \propto \sigma^{\beta}$

 σ – surface density (opacity)

a) Viscous Instability: $\beta < -1$ (incompressible) Lightman, Eardley 1974, Shakura Syunyaev 1976 Viscous stress is proportional to radiation pressure?

b) Viscous Overstability: $\beta > 2$ (compressible)

Kato 1978, Blumenthal et al. 1984 Increase of viscous stress in compressed d-spiral wave;

3rd IMA Conference on Dense Granular Flows Ca

Dense Granular Flow Model

$$\rho \left\{ \frac{\partial}{\partial t} + V_k \frac{\partial}{\partial x_k} \right\} V_i = -\frac{\partial P}{\partial x_i} + \rho \frac{\partial \Phi_0}{\partial x_i} + \frac{\partial \tau_{ik}}{\partial x_k}$$

- Incompressible flow;
- Constant Gravitational Potential;
- o Granular Viscosity;
- o Tensor formulation; (Jop, Forterre & Pouliquen 2006)

$$\tau_{ij} = \eta \dot{\gamma}_{ik} \qquad \xi \equiv \sqrt{\dot{\gamma}_{ik} \dot{\gamma}_{ik}/2}$$

o Local Constitutive Law

 $\eta = \eta(P,\xi)$

 $\frac{\partial V_k}{\partial x_k} = 0$

Dense Granular Flow Model

Equations of motion in cylindrical co-ordinates

$$\begin{aligned} \frac{\partial v_{\phi}}{\partial t} + \left(v_r \frac{\partial}{\partial r} + \frac{v_{\phi}}{r} \frac{\partial}{\partial \phi} + v_z \frac{\partial}{\partial z}\right) v_{\phi} + \frac{v_r v_{\phi}}{r} &= -\frac{1}{\rho r} \frac{\partial P}{\partial \phi} + \frac{1}{r} \frac{\partial \Phi}{\partial \phi} + \\ &+ \frac{\eta}{\rho} \left(\Delta v_{\phi} - \frac{v_{\phi}}{r^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \phi}\right) + \frac{1}{\rho} \frac{\partial \eta}{\partial r} \left(\frac{1}{r} \frac{\partial v_r}{\partial \phi} + \frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r}\right) + \\ &+ \frac{2}{r} \frac{\partial \eta}{\partial \phi} \left(\frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_r}{r}\right) + \frac{1}{\rho} \frac{\partial \eta}{\partial z} \left(\frac{\partial v_{\phi}}{\partial z} + \frac{1}{r} \frac{\partial v_z}{\partial \phi}\right) + \\ \end{aligned}$$

3rd IMA Conference on Dense Granular Flows Cambri

Linear Perturbations

Viscosity fluctuations:

$$\frac{\eta'}{\rho} = G_P \frac{P'}{\rho} + G_S \left(\frac{\partial V'_x}{\partial y} + \frac{\partial V'_y}{\partial x} \right)$$

Pressure rheology parameter:
$$G_P = \left(\frac{\partial \eta}{\partial P}\right)_{\xi}$$

Shear rheology parameter:

 $G_S = \frac{1}{\rho} \left(\frac{\partial \eta}{\partial \xi} \right)_{I}$

5

3rd IMA Conference on Dense Granular Flows

Cambridge, 01-04 July 2019

Linear Perturbation Analysis

Co-rotating cylindrical frame:

Shearing sheet (Kelvin modes)

Differential rotation \rightarrow Planar shear flow

Shearing sheet modes

 $\psi'(t) \propto \exp\left(\mathrm{i}\mathbf{k}(t)\mathbf{r} - \mathrm{i}\omega t\right)$

$$k_x(t) = k_0 - 2Ak_x t$$

 $\omega(t) = \omega(\mathbf{k}(t))$

3rd IMA Conference on Dense Granular Flows

Linear Stability Analysis

Solutions of the dispersion equation:

$$\omega(\mathbf{k}) = \pm \left(\kappa^2 - W^2\right)^{1/2} + \mathrm{i}(W - \nu k^2)$$

Epicyclic frequency in Newtonian fluids:

$$\kappa_0^2 = \frac{2\Omega_{\rm K}(r)}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \Omega_{\rm K}(r) \right)$$

Rheological modification:

$$\kappa^2 = \kappa_0^2 + \Delta K^2(G_P, G_S)$$

and

$$W = \sigma_A + \sigma_P + \sigma_S$$

3rd IMA Conference on Dense Granular Flows

Linear Stability Analysis

Transient growth:
$$\sigma_A = \frac{Ak_x k_y}{k^2 - 4AG_P k_x k_y}$$

Pressure rheology effects:

$$\sigma_P = 2AG_P \frac{(\Omega k_x^2 + Bk_y^2)}{k^2 - 4AG_P k_x k_y}$$

Shear (strain) effects:

$$\sigma_S = -AG_S \frac{(k_x^2 - k_y^2)^2 + k_\perp^2 k_z^2}{k^2 - 4AG_P k_x k_y}$$

Epicyclic modification:

$$\Delta K^2(G_P, G_S) = -4G_S \frac{A^2 k_x k_y k_z^2}{k^2 - 4AG_P k_x k_y}$$

3rd IMA Conference on Dense Granular Flows

Instability

Linear instabilities:

Case 1: Pressure rheology: $G_P < 0$, $G_S = 0$ "viscous instability" (cf. $\beta < -1$)

0

Case 2: Shear rheology:

$$G_P = 0 , \quad G_S > 0$$

$$W^2 > \kappa^2$$
$$W + \sqrt{W - \kappa^2} > \nu k^2$$

- Keplerian flow: $\xi(r_0) = -2A$ - Power law constitutive eq.: $\left(\frac{\ln\eta}{\ln\xi}\right)_P > 2$

12

3rd IMA Conference on Dense Granular Flows

Visco-rotational Shear Instability

- > Vertically uniform perturbations: $k_z = 0$
- Shear rheology:

1)

2)

> Arbitrary differential rotation:

 $\frac{\tilde{G}_P = 0}{\Omega(r) \propto r^{-q}}, \quad G_S \neq 0$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\ln(\mathrm{curl}\mathbf{v})_{z} \right) = qG_{S}\Omega \frac{(k_{x}(t)^{2} - k_{y}^{2})^{2}}{k(t)^{2}} - \nu k(t)^{2}$$
radial
radial
shear
rotation
rotation
rotation
rotation

q>0, Gs>0; (q_K=3/2) q<0, Gs<0;

3rd IMA Conference on Dense Granular Flows

Instability Spectra

1) Pressure rheology instability: $G_P \neq 0$, $G_S = 0$ Large scale **"Viscous instability"**

2) Shear rheology instability: G_P = 0 , G_S ≠ 0
Small scale ***Visco-rotational instability**

3rd IMA Conference on Dense Granular Flows

Instability Spectra

3) Instability of disk flow with pressure and shear rheologies:

$$G_P \neq 0$$
, $G_S \neq 0$

4) Instability of non-axisymmetric Perturbations: $k_y \neq 0$, $k_x = k_x(t)$

3rd IMA Conference on Dense Granular Flows

Summary

Shear and Pressure rheology effects on linear waves in Keplerian discs.

New type of linear instability: "visco-rotational shear" instability $\left(\frac{\ln\eta}{\ln\xi}\right)_P > 2$

- ✓ Incompressible, shear rheology,
- Epicyclic destabilization of perturbations;
- Exponential growth of the perturbation velocity curl in the shear plane;
- Constitutive law dependence of particle sizes?
 Nonlinear development: numerical simulations?

Thank You

3rd IMA Conference on Dense Granular Flows

Equilibrium Disc Flow

$$r\Omega^{2} = -\frac{\partial \Phi}{\partial r},$$
$$\left(r\frac{\partial^{2}\Omega}{\partial r^{2}} + 3\frac{\partial \Omega}{\partial r}\right)\bar{\eta} + r\frac{\partial \Omega}{\partial r}\frac{\partial \bar{\eta}}{\partial r} = 0,$$

$$\Phi(r,z) = \frac{GM}{(r^2 + z^2)^{1/2}}$$

$$\Omega(r) = \Omega_0 \left(\frac{r}{r_0}\right)^{-q}, \quad \Omega_0 = \left(\frac{GM}{r_0^3}\right)^{1/2}.$$

$$\frac{\partial \,\ln\bar{\eta}}{\partial \,\ln r} = q - 2.$$

3rd IMA Conference on Dense Granular Flows

Cambridge, 01-04 July 2019