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  Introduction 

Flows with velocity inhomogeneity widely occur in nature.  

Shear flow analysis – long standing problem. 

According to the classical Rayleigh’s theory the 
existence of the inflection point in the velocity 
profile is necessary for the spectral instability. 

A wide class of spectrally stable flows: smooth shear flows 

 

Standard eigenmode analysis – modal approach fails to 
explain experimental data on shear flow dynamics. 



  Introduction 

Model non-normal system: 

modal solutions decay, while 
the complete solution of the 
system exhibits the growth in a 
limited time interval.   

Shear flows are non-normal 

Operators are not orthogonal - eigenfunctions interfere 
Eigenmodes does not describe the system dynamics completely 

Additional channels of energy exchange: 

a) Background and perturbations; 

b) Different perturbation modes; 



  Introduction 

Most successful method in shear flow analysis: 

Nonmodal approach  

Shearing sheet transformation and consequent analysis of 
initial value problem in the wave-number space 

 

Nonmodal approach provides us the framework for present study 

Shear flow analysis: alternatives to the modal analysis 

 * Numerical study of the Orr-Sommerfeld equation; 

 * Partial integration of the equation of motion; 

 * Pseudospectrum; 



  General properties of shear flows 

Two basic effects in shear flows: 

Transient growth of vortical perturbations                 
wave number and frequency variation in time. 



  Linear mode conversion 

2D unbounded compressible parallel shear flow: V = (Ay,0) 

Shearless limit: 

Velocity shear 
induced coupling 

Linear non-resonant mode conversion in shear flows: 

Vortices excite acoustic wave modes 



  Linear mode conversion 

Evolution of vortex 
SFH in compressible 
shear flows: 

 

Upper panels: 

 A / cskx = 0.2 

 

Lower panels: 

A / cskx = 0.4 

 



  Linear mode conversion 

Generated wave amplitude 
as the function of the 
velocity shear rate 

Generated waves can have more energy then the source 
vortex: vortical perturbations only trigger the wave excitation 

while the energy is supported by the mean shear flow 



  Linear mode conversion 

DNS 

Dynamics of the localized packet of vortex 
perturbations in shear flows 

 

Initial values of perturbations corresponding to the 
acoustic free perturbations 

 

Two  different geometries of initial packets 

Initial amplitudes are small enough to ensure linear 
character of the process 



  Linear mode conversion 

Localized vortex 
packet with linear 
geometry 

Excited waves 
propagate in the 
opposite directions 

Enhencement of the 
vortex packet 
amplitude is followed 
by the wave excitation 



  Linear mode conversion 

Ring-type vortex 



  Linear mode conversion 

Non-resonant generation of acoustic waves from vortices 

* Necessary condition for wave generation ky(0)/kx > 0 

* Wave excitation occurs when ky(t) = 0 

* Waves are generated with zero density, cross-stream 
velocity and maximal streamwise velocity 

* Excited waves are fed by the mean shear flow energy 

Mode conversion contributes to the linear limit of the 
aerodynamic sound generation. 

It tells the self consistent form of the aerodynamic variable 
and the source term, and shows the spatial correlation of the 
source flow and the excited oscillations (while only time 
correlations are considered in acoustic analogy) 



  Mode conversion in MHD shear flows 

Model 

Horizontal shear flow in 
vertical uniform 
magnetic field: 

V0 = (Ay,0,0) 

B0 = (B0,0,0) 

d/dz Φ = 0 

Compressible 3D ideal unbounded shear flow 



  Mode conversion in MHD shear flows 

Coupling 

Two aperiodic and a 
magnetosonic wave modes 

Wave sources: 

Vortex mode 

Magneto-pressure mode 



  Mode conversion in MHD shear flows 

Both aperiodic modes are able to excite ms. waves 

Ratio of the effiencies of wave generation 

 

Magneto-mechanical mode is a dominant wave 
generator when:   β >> 1, R > 1 

 

Vortex mode dominates when:  β < 1, R <1  

 



  Convectively unstable shear flows 

Model 

Vertical exponential stratification 

Unbounded compressible 3D parallel shear flow in unofrom 
vertical gravity: 

V0 = (Ay,0,0) , g = (0,0,-g) , g = const. 

Convectively unstable flow 



  Convectively unstable shear flows 

Linear spectrum 

1. Acoustic wave mode  (gravity modified) 

2. Convective mode  (exponential growth) 

3. Vortex mode   (algebraic growth) 

Small scale perturbations 

kz >> kH 

Constant vertical gravity, constant velocity shear 



  Convectively unstable shear flows 

Neglecting the effect of acoustic waves and vortices on 
convective mode we study dynamics of unstable buoyancy 
perturbations separately. 

Velocity shear exerts a transient stabilizing effect on the 
spectral instability 



  Convectively unstable shear flows 

Mode coupling 

Convectively unstable 
perturbations of 
buoyancy excite 
acoustic waves and the 
ratio of the vibrational 
to convective energies 
grows. 



  Convectively unstable shear flows 

New channel of energy exchange between the g-modes and 
acoustic waves 

Sound production in solar convection zone: 

Mode conversion: buoyancy perturbations are able to excite 
acoustic waves with similar wave-numbers 

Stochastic mechanism: generated frequencies are similar to the 
life-times of the source perturbations 

 

Arguments for the shear flow wave production: 

Stronger oscillations observed in intergranular dark lanes 

Puzzling wave-number dependence of oscillations at fixed 
frequencies 



  Differentially rotating flows 

Model 

Differentially rotating flow around the central gravitating object 

V0 = (0,rΩ(r),0), Ω(r) = (0,0,Ω(r)),  

cs
2, H, P0(r) = Const. 

Vertical exponential stratification – constant gravity parameter 

Thin Keplerian disk model: ΩKep(r) ~ r -3/2 



  Differentially rotating flows 

Linear perturbations in local frame 

1. High frequency acoustic waves 

2. Low frequency density-spiral waves 

3. Vortex mode  



  Differentially rotating flows 

Coupling 

Excitation of 
density spiral 
waves  

(A=3/4) 

 

 

 

Double 
excitation 

(A = 2) 



  Differentially rotating flows 

Transient amplification 



  Differentially rotating flows 

Turbulence in HD accretion disks 

Turbulence in spectrally stable flows:  

subcritical transition (plane Couette flow) 

 

Rotating flows:  

Coriolis force introduces stabilizing effect 

 

Turbulence in spectrally stable rotating flows? 
Open issue 



  Differentially rotating flows 

Arguments toward the possibility of HD turbulence: 

1. Analytic: 

 Renormalization of pressure perturbations reduces the 
dynamical system to the system that describes the plane 
shear flows 

2. Numerical: 

 Growth rates match when increasing the Reynolds number. 

  

Plane: µ = 2.25 103 

AD:  µ = 4.41 106 

 

Re ~ µ 3/2 



  Differentially rotating flows 

• Vertical gravity is necessary for the existence of vortex 
mode (Turbulence is 3D) 

• Coriolis force increases the critical Reynolds number (in 
accretion disks Re ~ 1010) 

Promising mechanism towards the turbulence in 3D 
compressible HD accretion disks: 

a) Linear drift of wave-numbers 

b) Transient growth 

c) Viscous dissipation 

d) Nonlinear processes that close the feedback loop 

 

High Reynolds number 3D numerical calculations are required 



  Transformation of waves in MHD shear flows 

Horizontal shear flow in the 
uniform magnetic field 
along the streamlines: 

V0=(Ay,0,0) , B0=(B0,0,0) 

Model 

Unbounded 3D ideal compressible MHD shear flow 



  Transformation of waves in MHD shear flows 

Linear spectrum 

Dispersion equation in shearless limit: 

Standard MHD spectrum: Fast, Slow Magnetosonic and Alfven waves 

Introducing eigenfunctions 



  Transformation of waves in MHD shear flows 

MHD wave frequencies vary in time: waves can fall in resonance 

Coupling 

Velocity shear induces coupling between the MHD modes. 

Wave number variation:   k = k(t) : ω = ω(k) = ω(t) 



  Transformation of waves in MHD shear flows 

Cold plasmas:  β = 0 

Coupling of fast magnetosonic and Alfven waves 

ω – modified frequencies 

Φ – normilized eigenfunctions 

Λ – Coupling form 



  Transformation of waves in MHD shear flows 

Mechanical Analogy 

Wave resonance:  

1. Existence of a degeneracy region 

 

 

 

2. Slow pass condition 



  Transformation of waves in MHD shear flows 

Regimes 

 Fast magnetosonic and Alfven waves 

 ωf
2 ≈ ωA

2    (β <1,  kz / kx <<  1) 

 

 Alfven and slow magnetosonic waves 

 ωΑ
2 ≈ ωs

2    (β >1) 

 

 Fast, slow magnetosonic and Alfven waves 

  ωf
2 ≈ ωA

2 ≈ ωs
2   (β =1,  kz / kx << 1) 



  Transformation of waves in MHD shear flows 

Transformation of the Alfven into the fast magnetosonic wave 

ky(0)/kx =2, kz/kx = 0.25,  A/(VAkx) = 0.025 

Numerical Results 



  Transformation of waves in MHD shear flows 

Double transformations 

The case of double transformation: Alfvenic perturbations 
generates fast and slow magnetosonic waves simultaneously. 

β = 1,     ky(0)/kx = 5,       kz/kx = 0.05,     A/(Cskx) = 0.1 



  Transformation of waves in MHD shear flows 

Amplification and transformation of the slow magnetosonic waves: 

Wave transformations + Transient amplification 

Wave period exceeds the shearing time: 



  Transformation of waves in MHD shear flows 

Summary 

Linear resonant interaction of MHD wave modes in shear 
flows:  reciprocal wave transformations.  

 

Intensity of the energy exchange between waves depends on how 
well the resonance conditions are realized. 

 

High shear rates lead to the fast passage of the resonance area 
and rapid decrease in the wave transformation rates. 

 

Well studied phenomenon in different astrophysical situations 



  Summary 

Nonmodal analysis of flows with velocity inhomogeneities 

Linear mode interactions 

 Non-resonant mode conversion 

  vortex - acoustic wave; vortex - ms wave;  

  g-mode – acoustic wave; 

 Resonant wave transformations 

  MHD wave transformations  

Transient amplification 

  plane shear flows, slow ms wave; 

  differentially rotating flows; 

 



  Summary 

Aerodynamic sound generation:  
 constraints in the linear limit 
 verified results of nonmodal analysis by DNS 
 
Acoustic wave generation in solar convection zone 
 Interplay of modal and nonmodal processes 
 properties of waves generated by velocity 
 inhomogeneities 
 
Accretion disk theory:  
 dynamics of vortices, excitation of density-spiral 
 waves, root to the transition to HD turbulence 



 … 

Questions? 

     
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