Swedish-Georgian Conference in Analysis & Dynamical Systems

Natural and Engineering Nonuniform Flows as Dynamical Systems: Issues and Challenges

George Chagelishvili Abastumani Astrophysical Observatory, Georgia

> Alexander Tevzadze Tbilisi State University, Georgia

Outline

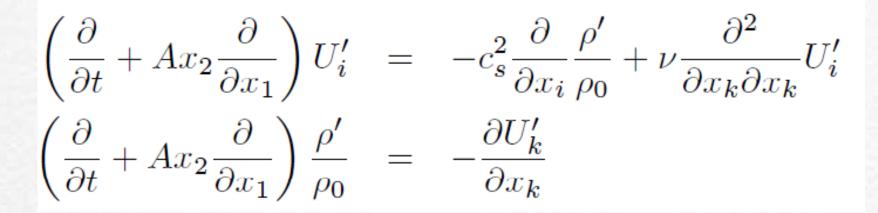
- Nonuniform flows: shear flow non-normality
- Aerodynamic sound generation
- Dynamics of astrophysical flows
 - Stability of Accretion disks
 - Dynamics of Protoplanetary flows
- Shear flow turbulence
- Bypass transition: nonlinear transverse cascade
- Turbulence control

• Summary

Nonuniform Hydrodynamic Flow

Nonuniform flow with constant velocity shear: $\bar{U}_i(\mathbf{x}) = (Ax_2, 0, 0)$

Dynamics of linear compressible perturbations:



Eigenfunction/Eigenvalue analysis: $u_j(\mathbf{x}, t) = \varphi_j(\mathbf{x}, \omega) e^{i\omega_j t}$ Linear modes (stability)

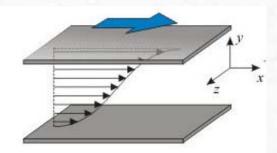
 x_2

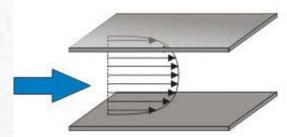
 x_1

Shear Flow Stability

Reynolds number: $Re = UL/\nu$ Problem:

	Theory Recr	Experiment Recr
Couette Flow	8	350
Poiseuille flow	5772	1000

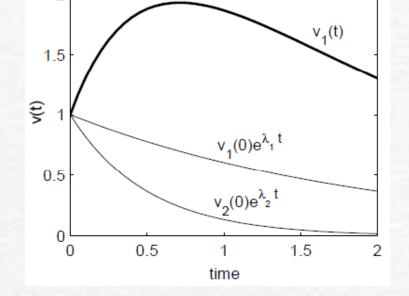




Solution:

Shear flow non-normality (non-Hermitian system) Eigenfunction interference Threfethen et al. Science, 1993 Reddy et al. SIAM J. Appl. Math. 1993

Algebraic growth, "Pseudospectrum"



Kelvin Mode Analysis

"Shearing sheet" transformation

 $x'_1 = x_1 - Ax_2t$, $x'_2 = x_2$, $x'_3 = x_3$, t' = t

"Kelvin modes"

 $\Psi'_j(\mathbf{x},t) \propto \psi_j(\mathbf{k}(\mathbf{t}),t) \exp\left(\mathrm{i}\mathbf{k}(t)\mathbf{x}\right)$

$$k_2(t) = k_2(0) - Ak_1t$$

Eigenmode analysis:Boundary value problemKelvin mode analysis:Initial value problemTime evolution of spatial Fourier harmonics

$$\omega_j = \omega_j(\mathbf{k}(t)) = \omega_j(t)$$

Example: Linear MHD waves

$$\left\{ \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right\} \rho + \rho(\nabla \cdot \mathbf{V}) = 0$$

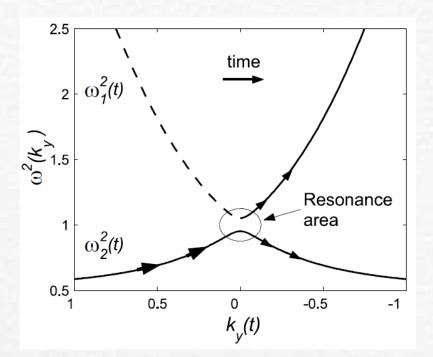
$$\rho \left\{ \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right\} \mathbf{V} = -\nabla P + \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B})$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\left\{ \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right\} P + \gamma P(\nabla \cdot \mathbf{V}) = 0$$

Magneto Hydro Dynamics

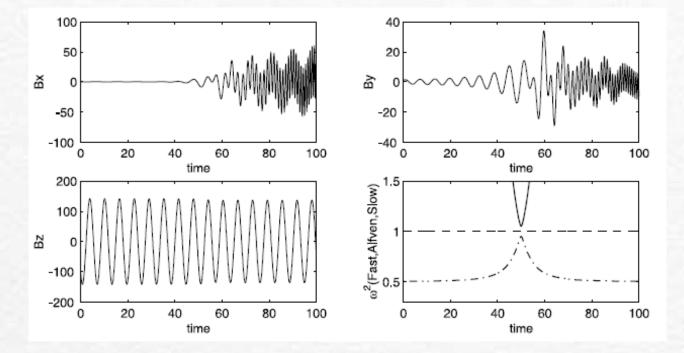


6

Linear coupling of modes: $\frac{\mathrm{d}^2\Phi_1(t)}{\mathrm{d}t^2} + \omega_1^2(t)\Phi_1(t) = -\mathbf{\Lambda}\Phi_2(t),$ $\frac{\mathrm{d}^2\Phi_2(t)}{\mathrm{d}t^2} + \omega_2^2(t)\Phi_2(t) = \mathbf{\Lambda}\Phi_1(t),$

High order systems: multiple modes

Triple resonance: Fast, Slow and Alfven waves;



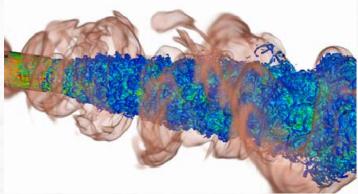
More complex configurations:

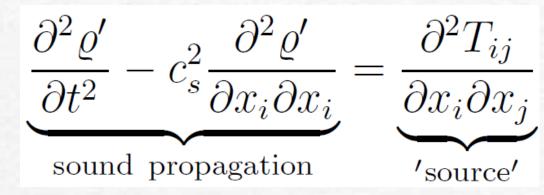
- Effects of gravity (magnetoconvection);
- MHD anisotropy $(P_{\parallel}, P_{\perp}, \text{mirror }\& \text{ fire-hose});$

Aerodynamic Sound

Acoustic wave excitation Wind & Jet noise, Solar & stellar oscillations.

Uniform flow U(**x**,t)=const. Lighthill (1951):





Reynolds stress tensor: $T_{ij} = \varrho U_i U_j + P_{ij} - \delta_{ij} c_s^2 \varrho$

Acoustic Analogy:

"Wave Equation" = "Nonlinear Source"

Aerodynamic Sound in Shear Flows

Constant shear flow: Ux = Ay.

Linear wave modes

Vortex:

Acoustic Wave:

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} v_x^{(\mathrm{w})}(t) + c_s^2 k^2 v_x^{(\mathrm{w})}(t) = 0$$
$$k^2 v_x^{(\mathrm{v})} = k_y I.$$

Shear flow:

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}v_x(t) + c_s^2 k^2(t)v_x(t) = c_s^2 k_y(t)I,$$

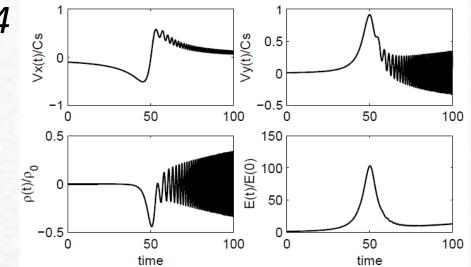
Non-resonant vortex-wave mode conversion Chagelishvili et al. PRL 1997

Aerodynamic Sound in Shear Flows

Moderate shear: $A/c_s k_x = 0.4$

Asymmetric coupling:

- Vortex \rightarrow Wave
- Vortex (PV invariant);



Acoustic excitation in shear flows:

 $\mathcal{L}\Psi = \mathcal{S}(\Psi).$

$$\mathcal{S}_{l}^{(L)} = \frac{\partial^{2}}{\partial x^{2}} \left[\rho' A^{2} y^{2} + 2\rho_{0} v_{x} A y \right] + 2 \frac{\partial^{2}}{\partial x \partial y} \left[\rho_{0} v_{y} A y \right]$$

$$\mathcal{S}_{\mathrm{nl}}^{(\mathrm{L})} = \frac{\partial^2}{\partial x^2} \left[\left(\rho_0 + \rho'\right) v_x'^2 + 2\rho_0 v_x A y \right] + 2 \frac{\partial^2}{\partial x \partial y} \left[\left(\rho_0 + \rho'\right) v_x v_y + \rho' v_y A y \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[\left(\rho_0 + \rho'\right) v_y^2 \right] + \frac{\partial^2}{\partial y^2} \left[$$

Aerodynamic Sound in Shear Flows Direct Numerical Simulations (PLUTO code) "Linear Source" $S = S_1 + S_{n1}$ "Nonlinear Source" (a) (b) x 10 400 $S_{\rm r}^{\rm (L)}({f k})$ 30020 -25²00^{150¹⁰⁰50⁰} 50^{100¹⁵⁰200} 5 20 -200 150 100 50 0 10 k_{τ} k_r

• Intrinsically different type of sources;

- S₁ wave-numbers, S_{n1} frequencies;
- Vital to estimate far field acoustic field (noise);

Astrophysical Disks

Flows around central gravitating object: **Keplerian flow** $\partial \rho = \partial (\partial V) + \frac{1}{2} \partial (\partial V) + \frac{\partial}{\partial (\partial V)} = 0$

$$\frac{1}{\partial t} + \frac{1}{\partial r}(\rho V_r) + \frac{1}{r}\frac{1}{\partial \phi}(\rho V_{\phi}) + \frac{1}{\partial z}(\rho V_z) = 0$$

$$\frac{1}{\partial V_r}\frac{1}{\partial t} + (\mathbf{V}\cdot\nabla)V_r - \frac{V_{\phi}^2}{r} = -\frac{1}{\rho}\frac{1}{\partial r} - \frac{1}{\rho}\frac{\partial \Phi}{\partial r}$$

$$\frac{1}{\partial V_{\phi}}\frac{1}{\partial t} + (\mathbf{V}\cdot\nabla)V_{\phi} + \frac{V_rV_{\phi}}{r} = -\frac{1}{\rho}\frac{1}{\rho r}\frac{\partial P}{\partial \phi}$$

$$\frac{\partial V_z}{\partial t} + (\mathbf{V} \cdot \nabla) V_z = -\frac{1}{\rho} \frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z}$$

Differentially rotating axially symmetric flowCurvature terms;

• Radial shear terms;

 $\Omega^2(\mathbf{r}) = \frac{GM}{(r^2 + z^2)^{3/2}},$

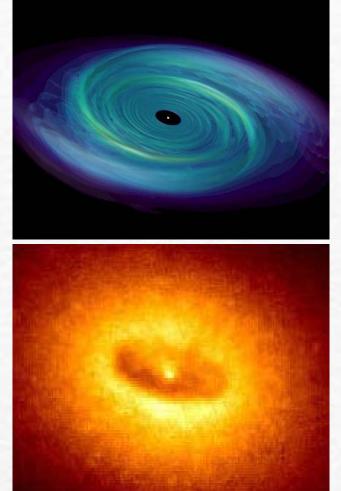
 $\Phi(\mathbf{r}) = -\frac{GM}{\sqrt{r^2 + z^2}}$

Accretion Disk Turbulence

Accretion disks around compact objects Most luminous objects in the Universe

> Luminosity Gravitational energy Accretion Angular momentum transport Anomalous viscosity (α-model) Turbulence

Linear theory: $\text{Re}_{cr}=\infty$ Observations: Re >> 10¹⁰ Turbulence transition?

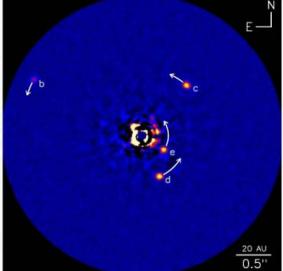


Dynamics of Protoplanetary FlowsRotating flows around young stars:Planet formation areasExoplanets found: 1933 (20.07.15)

Problem: Fast formation of planetesimals

Important Aspects:

- Spiral-Density waves;
- Anticyclonic vortices;
- Spiral shock waves;

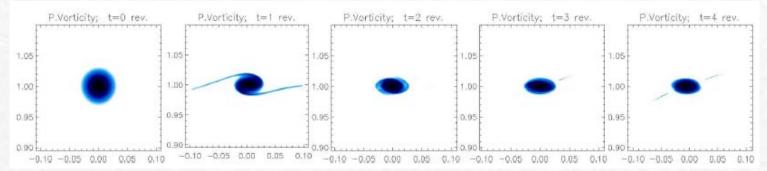


14

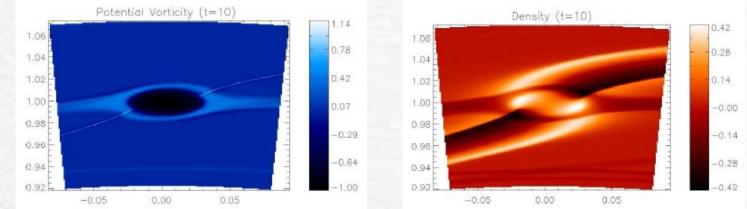
Dynamics of Protoplanetary Flows

Direct Numerical Simulations (Riemann/Godunov)

• Nonlinear adjustment of anticyclonic vortices;



Self-sustained vortex (nonlinear attractor)



Stable vortex solution in Keplerian flow?

Incompressible Turbulence

Incompressible Navier-Stoke equation

$$\frac{\partial V_i}{\partial t} + V_k \frac{\partial}{\partial x_k} V_i = -\frac{1}{\rho_0} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 V_i}{\partial x_k \partial x_k}$$
$$\frac{\partial V_k}{\partial x_k} = 0$$

Spectral energy in shear flows:

$$\frac{\partial E_{\mathbf{k}}}{\partial \tau} - \hat{A} \frac{2k_x k_y}{k^2} E_{\mathbf{k}} + \frac{\partial}{\partial k_x} (-\hat{A}k_y E_{\mathbf{k}}) + R_e^{-1} k^2 E_{\mathbf{k}} = \hat{N}_{\mathbf{k}}$$

Nonlinear terms: $\Sigma_k N_k = 0$

$$\hat{N}_{k} = \sum_{k=k'+k''} (k'_{x}k''_{y} - k''_{x}k'_{y})k'^{2}(\Psi_{k}^{*}\Psi_{k'}\Psi_{k''} + \Psi_{k}\Psi_{k'}^{*}\Psi_{k''})$$

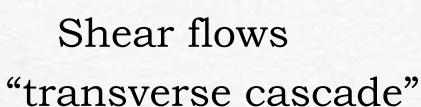
Shear Flow Turbulence

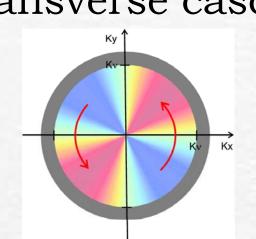
Spectral description:

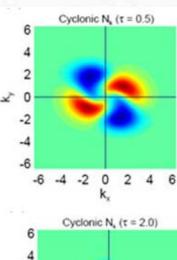
- Linear growth;
- Nonlinear redistribution;

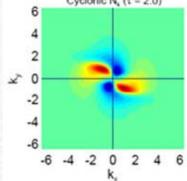
Numerical simulations: nonlinearities

Kolmogorov "direct cascade"







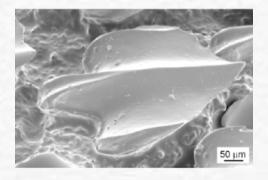


Turbulence Control

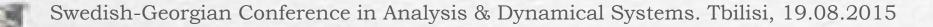
Fluid turbulence described by NS equation including stochastic force:

 $F_i(\mathbf{r},t) = \frac{\partial s_{ij}(\mathbf{r},t)}{\partial x_j}$ Task: reduce turbulent fluctuations.

Examples in nature: shark skin

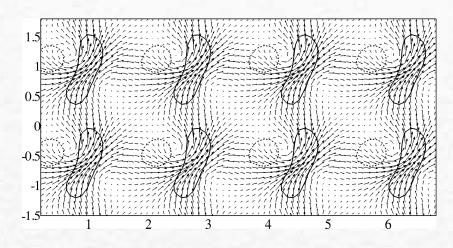


Method: Near wall forcing - create perturbations that rearrange flow and decrease turbulence power.

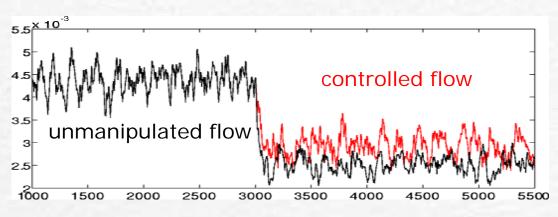


Turbulence Control

Seed velocity field created by forcing



Turbulence power vs time



The new drag reduction scheme:

generation of spanwise subflow to streamwise shear. Khujadze, Oberlack, Chagelishvili PRL 2006

Summary

Examples of shear flows widely occurring in the nature and engineering applications;

Open Issues:

Aerodynamic sound:

Sound sources are tiny, but their result is crucial in far field; Linear analytic theory is crucial even for numerical simulation;

Accretion Disks:

Flows are know to be turbulent. Turbulence transition mechanism at high Reynolds numbers is still unclear.

Summary

Protoplanetary Disks:

Self-sustained anticyclonic vortices at nonlinear stages: No analytic solution;

Shear Flow Turbulence:

Results for incompressible turbulence. Effects of Compressibility needs to be addressed.

Turbulence Control:

Possibility of turbulent drag reduction is shown. A more efficient (realizable) control mechanisms needed to be explored.