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nized presentation ...

1 Motivation

There is a wide range of interesting processes in robotics, control, economics, that
can be described as a differential equations with non-deterministic dynamics. Sup-
pose the original processes is described by the following differential equation

dXt

dt
= a(Xt) (1)

with initial condition X0, which could be random. We wish to construct a math-
ematical model of how the may behave in the presence of noise. We wish for this
noise source to be stationary and independent of the current state of the system.
We also want for the resulting paths to be continuous.

As it turns out building such a model is tricky. An elegant mathematical solution
to this problem may be found by considering a discrete time versions of the process
and then taking limits in some meaningful way. Let π = {0 = t0 ≤ t1 · · · ≤ tn = t}
be a partition of the interval [0, t]. Let ∆πtk = tk+1 − tk. For each partition π we
can construct a continuous time process Xπ defined as follows

Xπ
t0 = X0 (2)

Xπ
tk+1

= Xπ
tk

+ a(Xπ
tk

)∆πtk + c(Xπ
tk

)(Ntk+1 −Ntk) (3)

where N is a noise process whose properties remain to be determined and b is a
function that allows us to have the amount of noise be a function of time and of the
state. To make the process be continuous in time, we make it piecewise constant
between the intervals defined by the partition, i.e.

Xπ
t = Xπ

tk
for t ∈ [tk, tk+1) (4)

We want for the noise Nt to be continuous and for the increments Ntk+1 −Ntk to
have zero mean, and to be independently and identically distributed. It turns out
that the only noise source that satisfies these requirements is Brownian motion.
Thus we get

Xπ
t = X0 +

n−1∑
k=0

a(Xπ
tk

)∆tk +
n−1∑
k=0

c(Xπ
tk

)∆Bk (5)

where ∆tk = tk+1 − tk, and ∆Bk = Btk+1 −Btk where B is Brownian Motion. Let
‖π‖ = max{∆tk} be the norm of the partition π. It can be shown that as π → 0
the Xπ processes converge in probability to a stochastic process X. It follows that

lim
‖π‖→0

n−1∑
k=0

a(Xπ
tk

)∆k =
∫ t

0

a(Xs)ds (6)

and that
n−1∑
k=0

c(Xπ
tk

)∆Bk (7)

converges to a process It

It = lim
‖π‖→0

n−1∑
k=0

c(Xπ
tk

)∆Bk (8)



Note It looks like an integral where the integrand is a random variable c(Xs) and
the integrator ∆Bk is also a random variable. As we will see later, It turns out to
be an Ito Stochastic Integral. We can now express the limit process X as a process
satisfying the following equation

Xt = X0 +
∫ t

0

a(Xs)ds+ It (9)

Sketch of Proof of Convergence: Construct a sequence of partitions π1, π2, · · · each
one being a refinement of the previous one. Show that the corresponding Xπ−i

t
form a Cauchy sequence in L2 and therefore converge to a limit. Call that process
X.

In order to get a better understanding of the limit process X there are two things
we need to do: (1) To study the properties of Brownian motion and (2) to study
the properties of the Ito stochastic integral.

2 Standard Brownian motion

By Brownian motion we refer to a mathematical model of the random movement
of particles suspended in a fluid. This type of motion was named after Robert
Brown that observed it in pollens of grains in water. The processes was described
mathematically by Norbert Wiener, and is is thus also called a Wiener Processes.
Mathematically a standard Brownian motion (or Wiener Process) is defined by the
following properties:

1. The process starts at zero with probability 1, i.e., P (B0 = 0) = 1

2. The probability that a randomly generated Brownian path be continuous
is 1.

3. The path increments are independent Gaussian, zero mean, with variance
equal to the temporal extension of the increment. Specifically for 0 ≤ s1 ≤
t1 ≤ s2,≤ t2

Bt1 −Bs1 ∼ N (0, s1 − t1) (10)
Bt2 −Bs2 ∼ N (0, s2 − t2) (11)

and Bt2 −Bs2 is independent of Bt1 −Bs1 .

Wiener showed that such a process exists, i.e., there is a stochastic process that does
not violate the axioms of probability theory and that satisfies the 3 aforementioned
properties.



2.1 Properties of Brownian Motion

2.1.1 Statistics

From the properties of Gaussian random variables,
E(Bt −Bs) = 0 (12)

Var(Bt −Bs) = E[(Bt −Bs)2] = t− s (13)

E((Bt −Bs)4] = 3(t− s) (14)

Var[(Bt −Bs)2] = E[(Bt −Bs)4]−E[(Bt −Bs)2]2 = 2(t− s)2 (15)
Cov(Bs, Bt) = s, for t > s (16)

Corr(Bs, Bt) =
√
s

t
, for t > s. (17)

Proof: For the variance of (Bt − Bs)2 we used the that for a standard random
variable Z

E(Z4) = 3 (18)
Note

Var(BT ) = Var(BT −B0) = T (19)
since P (B0 = 0) and for all ∆t ≥ 0

Var(Bt+∆t −Bt) = ∆t (20)
Moreover,

Cov(Bs, Bt) = Cov(Bs, Bs + (Bt −Bs)) = Cov(Bs, Bs) + Cov(Bs, (Bt −Bs))
= Var(Bs) = s (21)

since Bs and Bt −Bs are uncorrelated.

2.1.2 Distributional Properties

Let B represent a standard Brownian motion (SBM) process.

• Self-similarity:
For any c 6= 0, Xt = 1√

c
Bct is SBM.

We can use this property to simulate SBM in any given interval [0,T] if we
know how to simulate in the interval [0, 1]:
If B is SBM in [0,1], c = 1

T then Xt =
√
T B 1

T t
is SBM in [0,T].

• Time Inversion: Xt = tB 1
t

is SBM

• Time Reversal: Xt = BT −BT−t is SBM in the interval [0, T ]
• Symmetry: Xt = −Bt is SBM

2.1.3 Pathwise Properties

• Brownian motion sample paths are non-differentiable with probability 1

This is the basic why we need to develop a generalization of ordinary calculus to
handle stochastic differential equations. If we were to define such equations simply
as

dXt

dt
= a(Xt) + c(Xt)

dBt
dt

(22)



we would have the obvious problem that the derivative of Brownian motion does
not exist.

Proof: Let X be a real valued stochastic process. For a fixed t let π = {0 = t0 ≤
t1, · · · ≤ tn = t} be a partition of the interval [0, t]. Let ‖π‖ be the norm of the
partition. The quadratic variation of X at t is a random variable represented as
< X,X >2

t and defined as follows

< X,X >2
t= lim
‖π‖→0

n∑
k=1

|Xtk+1 −Xtk |2 (23)

We will show that the quadratic variation of SBM is larger than zero with probability
one, and therefore the quadratic paths are not differentiable with probability 1.

Let B be a Standard Brownian Motion. For a partition π = {0 = t0 ≤ t1, · · · ≤
tn = t} let Bπk be defined as follows

Bπk = Btk (24)

Let

Sπ =
n∑
k=1

(∆Bπk )2 (25)

Note

E(Sπ) =
n−1∑
k=0

tk+1 − tk = t (26)

and

0 ≤ Var(Sπ) =
n−1∑
k=0

Var
[
(∆Bπk )2

]
= 2

n−1∑
k=0

(tk+1 − tk)2

≤ 2‖π‖
n−1∑
k=0

(tk+1 − tk) = 2‖π‖t (27)

Thus

lim
‖π‖→0

Var(Sπ) = lim
‖π‖→0

E

(n−1∑
k=0

(∆Bπk )2 − t

)2
 = 0 (28)

This shows mean square convergence, which implies convergence in probability, of
Sπ to t. (I think) almost sure convergence can also be shown.

Comments:

• If we were to define the stochastic integral
∫ t

0
(dBs)2 as∫ t

0

(dBs)2 = lim
‖π‖→0

Sπ (29)

Then ∫ t

0

(dBs)2 =
∫ t

0

ds = t (30)



• If a path Xt(ω) were differentiable almost everywhere in the interval [0, T ]
then

< X,X >2
t (ω)) ≤ lim

∆t→0

n−1∑
k=0

(∆tX
′
tk

(ω))2 (31)

= ( max
t∈[0,T ]

X ′t(ω)2) lim
n→∞

∑
∆2
t (32)

= ( max
t∈[0,T ]

X ′t(ω)2) lim
n→∞

(n)(T/n)2 = 0 (33)

where X ′ = dX/dt. Since Brownian paths have non-zero quadratic varia-
tion with probability one, they are also non-differentiable with probability
one.

2.2 Simulating Brownian Motion

Let π = {0 = t0 ≤ t1 · · · ≤ tn = t} be a partition of the interval [0, t]. Let
{Z1, · · · , Zn}; be i.i.d Gaussian random variables E(Zi) = 0; Var(Zi) = 1. Let
the stochastic process Bπ as follows,

Bπt0 = 0 (34)

Bπt1 = Bπt0 +
√
t1 − t0Z1 (35)

... (36)

Bπtk = Bπtk−1
+
√
tk − tk−1Zk (37)

Moreover,
Bπt = Bπtk−1

for t ∈ [tk−1, tk) (38)

For each partition π this defines a continuous time process. It can be shown that as
‖π‖ → 0 the process Bπ converges in distribution to Standard Brownian Motion.

2.2.1 Exercise

Simulate Brownian motion and verify numerically the following properties

E(Bt) = 0 (39)
Var(Bt) = t (40)∫ t

0

dB2
s =

∫ t

0

ds = t (41)

3 The Ito Stochastic Integral

We want to give meaning to the expression∫ t

0

YsdBs (42)

where B is standard Brownian Motion and Y is a process that does not anticipate
the future of Brownian motion. For example, Yt = Bt+2 would not be a valid



integrand. A random process Y is simply a set of functions f(t, ·) from an outcome
space Ω to the real numbers, i.e for each ω ∈ Ω

Yt(ω) = f(t, ω) (43)

We will first study the case in which f is piece-wise constant. In such case there is
a partition π = {0 = t0 ≤ t1 · · · ≤ tn = t} of the interval [0, .t] such that

fn(t, ω) =
n−1∑
k=0

Ck(ω)ξk(t) (44)

where

ξk(t) =
{

1 if t ∈ [tk, tk+1)
0 else

(45)

where Ck is a non-anticipatory random variable, i.e., a function of X0 and the
Brownian noise up to time tk. For such a piece-wise constant process Yt(ω) =
fn(t, ω) we define the stochastic integral as follows. For each outcome ω ∈ Ω∫ t

0

Ys(ω)dBs(ω) =
n−1∑
k=0

Ck(ω)
(
Btk+1(ω)−Btk(ω)

)
(46)

More succinctly ∫ t

0

YsdBs =
n−1∑
k=0

Ck

(
Btk+1 −Btk

)
(47)

This leads us to the more general definition of the Ito integral

Definition of the Ito Integral Let f(t, ·) be a non-anticipatory function from an
outcome space Ω to the real numbers. Let {f1, f2, · · · } be a sequence of elementary
non-anticipatory functions such that

lim
n→∞

E[
∫ t

0

(
f(s, ω)− fn(s, ω)

)2

ds] = 0 (48)

Let the random process Y be defined as follows: Yt(ω) = f(t, ω) Then the Ito
integral ∫ t

0

YsdBs (49)

is a random variable defined as follows. For each outcome ω ∈ Ω∫ t

0

f(s, ω)dBs(ω) = lim
n→∞

∫ t

0

fn(t, ω)dBs(ω) (50)

where the limit is in L2(P ). It can be shown that an approximating sequence
f1, f2 · · · satisfying (48) exists. Moreover the limit in (50) also exists and is inde-
pendent of the choice of the approximating sequence.

Comment Strictly speaking we need for f to be measurable, i.e., induce a proper
random variable. We also need for f(t, ·) to be Ft adapted. This basically means
that Yt must be a function of Y0 and the Brownian motion up to time t It cannot
be a function of future values of B. Moreover we need E[

∫ t
0
f(t, ·)2dt] ≤ ∞.



3.1 Properties of the Ito Integral

•
E(It) = 0 (51)

•

Var(It) = E(I2
t ) =

∫ t

0

E(X2
s )ds (52)

• ∫ t

0

(Xs + Ys) dBs =
∫ t

0

Xs dBs +
∫ t

0

Ys dBs (53)

• ∫ T

0

Xs dBs =
∫ t

0

Xs dBs +
∫ T

t

Xs dBs for t ∈ (0, T ) (54)

• The Ito integral is a Martingale process

E(It | Fs) = Islfor all t > s (55)

where E(It | Fs) is the least squares prediction of It based on all the infor-
mation available up to time s.

4 Stochastic Differential Equations

In the introduction we defined a limit process X which was the limit process of
a dynamical system expressed as a differential equation plus Brownian noise per-
turbation in the system dynamics. The process was a solution to the following
equation

Xt = X0 +
∫ t

0

a(Xs)ds+ It (56)

where

It = lim
‖π‖→0

c(Xπ
tk

)∆Bk (57)

It should now be clear that It is in fact an Ito Stochastic Integral

It =
∫ t

0

c(Xs)dBs (58)

and thus X can be expressed as the solution of the following stochastic integral
equation

Xt = X0 +
∫ t

0

a(Xs)ds+
∫ t

0

c(Xs)dBs (59)

It is convenient to express the integral equation above using differential notation

dXt = a(Xt)dt+ c(Xt)dBt (60)

with given initial condition X0. We call this an Ito Stochastic Differential Equation
(SDE). The differential notation is simply a pointer, and thus acquires its meaning
from, the corresponding integral equation.



4.1 Second order differentials

The following rules are useful∫ t

0

Xt(dt)2 = 0 (61)∫ t

0

XtdBtdt = 0 (62)∫ t

0

XtdBtdWt = 0 if B,W are independent Brownian Motions (63)∫ t

0

Xt(dBt)2 =
∫ t

0

Xtdt (64)

(65)

Symbolically this is commonly expressed as follows

dt2 = 0 (66)
dBtdt = 0 (67)
dBtdWt = 0 (68)

(dBt)2 = dt (69)

Sketch of proof:
Let π = {0 = t0 ≤ t1 · · · ≤ tn = t} a partition of the [0, t] with equal intervals, i.e.
tk+1 − tk = ∆t.

• Regarding dt2 = 0 note

lim
∆t→0

n−1∑
k=0

Xtk∆t2 = lim
∆t→0

∆t

∫ t

0

Xsds = 0 (70)

• Regarding dBtdt = 0 note

lim
∆t→0

n−1∑
k=0

Xtk∆t∆Bk = lim
∆t→0

∆t

∫ t

0

XsdBs = 0 (71)

• Regarding dB2
t = dt note

E
[( n−1∑

k=0

Xtk∆B2
k −

n−1∑
k=0

Xtk∆t
)2]

= E
[( n−1∑

k=0

Xtk(∆B2
k −∆t)

)2

]

=
n−1∑
k=0

n−1∑
k′=0

E[XtkXt′k
(∆B2

k −∆t)(∆B2
k′ −∆t)] (72)

If k > k′ then (∆B2
k − ∆t) is independent of XtkXtk′ (∆B

2
k′ − ∆t), and

therefore

E[XtkXtk′ (∆B
2
k −∆t)(∆B2

k′ −∆t)]

= E[XtkXtk′ (∆B
2
k′ −∆t)]E[∆B2

k −∆t)] = 0 (73)

Equivalently, if k′ > k then (∆B2
k′ −∆t) is independent of XtkXtk′ (∆B

2
k −

∆t) and therefore

E[XtkXtk′ (∆B
2
k −∆t)(∆B2

k′ −∆t)]

= E[XtkXtk′ (∆B
2
k −∆t)]E[∆B2

k′ −∆t)] = 0 (74)



Thus
n−1∑
k=0

n−1∑
k′=0

E[XtkXtk′ (∆B
2
k −∆t)(∆B2

k′ −∆t)] =
n−1∑
k=0

E[X2
tk

(∆B2
k −∆t)2]

(75)

Note since ∆Bk is independent of Xtk then

E[X2
tk

(∆B2
k −∆t)2 = E[X2

tk
]E[(∆B2

k −∆t)2] (76)

= E[X2
tk

]Var(∆B2
k) = 2E[X2

tk
]∆t2 (77)

Thus

E
[( n−1∑

k=0

Xtk∆B2
k −

n−1∑
k=0

Xtk∆t
)2]

=
n−1∑
k=0

E[X2
tk

]∆2
t (78)

which goes to zero as ∆t→ 0. Thus, in the limit as ∆t→ 0

lim
∆t→0

n−1∑
k=0

Xtk∆B2
k = lim

∆t→0

n−1∑
k=0

Xtk∆t (79)

where the limit is taken in the mean square sense. Thus∫ t

0

XsdB
2
s =

∫ t

0

Xsds (80)

• Regarding dBtdWt = 0 note

E
[( n−1∑

k=0

Xtk∆Bk∆Wk

)2]
=
n−1∑
k=0

n−1∑
k′=0

E[XtkXtk′∆Bk∆Wk∆Bk′∆Wk′ ]

(81)

If k > k′ then ∆Bk,∆Wk are independent of XtkXtk′∆Bk′∆Wk′ and there-
fore

E[XtkXtk′∆Bk∆Wk∆Bk′∆Wk′ ] = E[XtkXtk′∆Bk′∆Wk′ ]E[∆Bk]E[∆Wk] = 0
(82)

Equivalently, if k′ > k then ∆Bk′ ,∆Wk′ are independent of
XtkXtk′∆Bk∆Wk and therefore

E[XtkXtk′∆Bk∆Wk∆Bk′∆Wk′ ] = E[XtkXtk′∆Bk∆Wk]E[∆Bk′ ]E[∆Wk′ ] = 0
(83)

Finally, for k = k′, ∆Bk,∆Wk and Xtk are independent, thus

E[X2
tk

∆B2
k∆W 2

k ] = E[X2
tk

]E[∆B2
k]E[∆W 2

k ] = E[X2
tk

]∆t2 (84)

Thus

E
[( n−1∑

k=0

Xtk∆Bk∆Wk

)2]
=
n−1∑
k=0

E[X2
tk

]∆t2 (85)

which converges to 0 as ∆t→ 0. Thus

∫ t

0

XsdBsdWs = 0 (86)



4.2 Vector Stochastic Differential Equations

The form

dXt = a(Xt)dt+ c(Xt)dBt (87)

is also used to represent multivariate equations. In this case Xt represents an n-
dimensional random vector, Bt an m-dimensional vector of m independent standard
Brownian motions, and c(Xt is an n×m matrix. a is commonly known as the drift
vector and b the dispersion matrix.

5 Ito’s Rule

The main thing with Ito’s calculus is that for the general case a differential carries
quadratic and linear components. For example suppose that Xt is an Ito process.
Let

Yt = f(t,Xt) (88)

then

dYt = ∇f(t,Xt)T dXt + 1
2dX

T
t ∇2f(t,Xt)dXt (89)

where ∇,∇2 are the gradient and Hessian with respect to (t, x). Note basically this
is the second order Taylor series expansion. In ordinary calculus the second order
terms are zero, but in Stochastic calculus, due to the fact that these processes have
non-zero quadratic variation, the quadratic terms do not go away. This is really all
you need to remember about Stochastic calculus, everything else derives from this
basic fact.

The most important consequence of this fact is Ito’s rule. Let Xt be governed by
an SDE

dXt = a(Xt, t)dt+ c(Xt, t)dBt (90)

Let Yt = f(Xt, t). Ito’s rule tells us that Yt is governed by the following SDE

dYt
def= ∇tf(t,Xt)dt+∇xf(t, x)T dXt + 1

2dX
T
t ∇2

xf(t,Xt)dXt (91)

where

dBi,tdBj,t
def= δ(i, j) dt (92)

dXdt
def= 0 (93)

dt2
def= 0 (94)

Equivalently

dYt = ∇tf(Xt, t)dt +∇xf(Xt, t)Ta(Xt, t)dt +∇xf(Xt, t)T c(Xt, t)dBt
+ 1

2 trace
(
c(Xt, t)c(Xt, t)T∇2

xf(Xt, t)
)
dt

(95)



where

∇xf(x, t)Ta(x, t) =
∑
i

∂f(x, t)
∂xi

ai(x, t) (96)

trace
(
c(x, t)c(x, t)T∇2

xf(x, t)
)

=
∑
i

∑
j

(c(x, t)c(x, t)T )ij
∂2f(x, t)
∂xi∂xj

(97)

Note b is a matrix. Sketch of Proof: To second order
∆Yt = f(Xt+∆t

, t+ ∆t)− f(Xt, t) = ∇tf(Xt, t)∆t+∇xf(Xt, t)T∆Xt

+
1
2

∆t2∇2
tf(Xt, t) +

1
2

∆XT
t ∇2

xf(Xt, t)∆Xt + ∆t(∇x∇tf(Xt, t))T∆Xt∆t

(98)

where ∇t,∇x are the gradients with respect to time and state, and ∇2
t is the second

derivative with respect to time, ∇2
x the Hessian with respect to time and ∇x∇t the

gradient with respect to state of the gradient with respect to time. Integrating over
time

Yt = Y0 +
n−1∑
k=0′

∆Ytk (99)

and taking limits

Yt =Y0 +
∫ t

0

dYs = Y0 +
∫ t

0

∇tf(Xs, s)ds +
∫ t

0

∇xf(Xs, s)T dXs

+
1
2

∫ t

0

∇2
tf(Xs, s)(ds)2 +

1
2

∫ t

0

dXT
s ∇2

xf(Xs, s)dXs

+
∫ t

0

(∇x∇tf(Xs, s))T dXsds (100)

In differential form
dYt =∇tf(Xt, t)dt +∇xf(Xt, t)T dXt

+
1
2
∇2
tf(Xt, t)(dt)2 +

1
2
dXT

t ∇2
xf(Xt, t)dXt

+ (∇x∇tf(Xt, t))T dXtdt (101)
Expanding dXt

(∇x∇tf(Xt, t))T dXtdt = (∇x∇tf(Xt, t))Ta(Xt, t)(dt)2

+ (∇x∇tf(Xt, t))T c(Xt, t)dBtdt = 0 (102)
where we used the standard rules for second order differentials

(dt)2 = 0 (103)
(dBt)dt = 0 (104)

(105)
Moreover

dXT
t ∇2

xf(Xt, t)dXt

= (a(Xt, t)dt+ c(Xt, t)dBt)T∇2
xf(Xt, t)(a(Xt, t)dt+ c(Xt, t)dBt)

= a(Xt, t)T∇2
xf(Xt, t)a(Xt, t)(dt)2

+ 2a(Xt, t)T∇2
xf(Xt, t)c(Xt, t)(dBt)dt

+ dBTt c(Xt, t)T∇2
xf(Xt, t)c(Xt, t)(dBt) (106)



Using the rules for second order differentials

(dt)2 = 0 (107)
(dBt)dt = 0 (108)

dBTt K(Xt, t)dBt =
∑
i

∑
j

Ki,j(Xt, t)dBi,tdBj,t =
∑
i

Ki,idt (109)

where

K(Xt, t) = c(Xt, t)T∇2
xf(Xt, t)c(Xt, t) (110)

Thus

dYt =∇tf(Xt, t)dt +∇xf(Xt, t)Ta(Xt, t)dt+∇xf(Xt, t)T c(Xt, t)dBt

+
1
2

trace
(
c(Xt, t)c(Xt, t)T∇2

xf(Xt, t)
)
dt (111)

where we used the fact that∑
i

Kii(Xt, t)dt = trace(K)dt

= trace
(
c(Xt, t)T∇2

xf(Xt, t)c(Xt, t)
)

= trace
(
c(Xt, t)c(Xt, t)T∇2

xf(Xt, t)
)

(112)

5.1 Product Rule

Let X,Y be Ito processes then

d(XtYt) = XtdYt + YtdXt + dXtdYt (113)

Proof: Consider X,Y as a joint Ito process and take f(x, y, t) = xy. Then

∂f

∂t
= 0 (114)

∂f

∂x
= y (115)

∂f

∂y
= x (116)

∂2f

∂x∂y
= 1 (117)

∂2f

∂x2
=
∂2f

∂y2
= 0 (118)

Applying Ito’s rule, the Product Rule follows.

Exercise: Solve
∫ T

0
BtdBt symbolically.

Let a(Xt, t) = 0, c(Xt, t) = 1, f(x, t) = x2. Thus

dXt = dBt (119)
Xt = Bt (120)



and
∂f(t, x)
∂t

= 0 (121)

∂f(t, x)
∂x

= 2x (122)

∂2f(t, x)
∂x2

= 2 (123)

Applying Ito’s rule

df(Xt, t) =
∂f(Xt, t)

∂t
dt+

∂f(Xt, t)
∂x

a(Xt, t)dt+
∂f(Xt, t)

∂x
c(Xt, t)dBt

+
1
2

trace
(
c(Xt, t)c(Xt, t)T

∂2f(x, t)
∂x2

)
(124)

we get

dB2
t = 2BtdBt + dt (125)

Equivalently ∫ t

0

dB2
s = 2

∫ t

0

BsdBs +
∫ t

0

ds (126)

B2
t = 2

∫ t

0

BsdBs + t (127)

Therefore ∫ t

0

BsdBs =
1
2
B2
t −

1
2
t (128)

NOTE: dB2
t is different from (dBt)2.

Exercise: Get E[eβBt]

Let Let a(Xt, t) = 0, c(Xt, t) = 1, i.e., dXt = dBt. Let Yt = f(Xt, t) = eβBt , and
dXt = dBt. Using Ito’s rule

dYt = βeβBtdBt +
1
2
β2eβBtdt (129)

Yt = Y0 + β

∫ t

0

eβBsdBs +
β2

2

∫ t

0

eβBsds (130)

Taking expected values

E[Yt] = E[Y0] +
β2

2

∫ t

0

E[Ys]ds (131)

where we used the fact that E[
∫ t

0
eβBsdBs] = 0 because for any non anticipatory

random variable Yt, we know that E[
∫ t

0
YsdBs] = 0. Thus

dE[Yt]
dt

=
β2

2
E[Yt] (132)

and since E[Y0] = 1

E[eβBt ] = e
β2

2 t (133)



Exercise: Solve the following SDE

dXt = αXtdt+ βXtdBt (134)

In this case a(Xt, t) = αXt, c(Xt, t) = βXt. Using Ito’s formula for f(x, t) = log(x)

∂f(t, x)
∂t

= 0 (135)

∂f(t, x)
∂x

=
1
x

(136)

∂2f(t, x)
∂x2

= − 1
x2

(137)

Thus

d log(Xt) =
1
Xt
αXtdt+

1
Xt
βXtdBt −

1
2X2

t

β2X2
t dt = (α− β2

2
)dt+ βdBt (138)

Integrating over time

log(Xt) = log(X0) + (α− β2

2
)t+ βBt (139)

Xt = X0 exp((α− β2

2
)t) exp(βBt) (140)

Note

E[Xt] = E[X0]e(α− β
2

2 )tE[exp(αBt)] = E[X0]eαt (141)

6 Moment Equations

Consider an SDE of the form

dXt = a(Xt)dt+ c(Xt)dBt (142)

Taking expected values we get the differential equation for first order moments

dE[Xt]
dt

= E[a(Xt)] (143)

seems weird that c has no effect. Double check with generator of ito diffusion result

With respect to second order moments, let

Yt = f(Xt) = Xi,tXj,t (144)

using Ito’s product rule

dYt = d(Xi,tXj,t) =Xi,tdXj,t +Xj,tdXi,t + dXi,tdXj,t

=Xi,t(aj(Xt)dt+ (c(Xt)dBt)j) +Xj,t(ai(Xt)dt+ (c(Xt)dBt)i)
+ (ai(Xt)dt+ (c(Xt)dBt)i)(aj(Xt)dt+ (c(Xt)dBt)j)
= Xi,t(aj(Xt)dt+ (c(Xt)dBt)j) +Xj,t(ai(Xt)dt+ (c(Xt)dBt)i)
+ ci(Xt)cj(Xt)dt (145)

Taking expected values



dE[Xi,tXj,t]
dt

= E[Xi,taj(Xt)] +E[Xj,tai(Xt)] +E[ci(Xt)cj(Xt)] (146)

In matrix form
dE[XtX

′
t]

dt
= E[Xta(Xt)′] +E[a(Xt)X ′t] +E[c(Xt)c(Xt)′] (147)

The moment formulas are particularly useful when a, c are constant with respect to
Xt, in such case

dE[Xt]
dt

= aE[Xt] (148)

dE[XtX
′
t]

dt
= E[XtX

′
t]a
′ + aE[XtX

′
t] + cc′ (149)

Var[Xt]
dt

= E[XtX
′
t]a
′ + aE[XtX

′
t]− aE[Xt]E[Xt]′a′ + cc′ (150)

(151)

Example Calculate the equilibrium mean and variance of the following process

dXt = −Xt + cdBt (152)

The first and second moment equations are

dE[Xt]
dt

= −E[Xt] (153)

dE[X2
t ]

dt
= −2E[Xt]2 + c2 (154)

Thus

lim
t→∞

E[Xt] = 0 (155)

lim
t→∞

E[X2
t ] = lim

t→∞
Var[Xt] =

c2

2
(156)

7 Generator of an Ito Diffusion

The generator Gt of the Ito diffusion

dXt = a(Xt, t)dt+ c(Xt, t)dBt (157)

is a second order partial differential operator. For any function f it provides the
directional derivative of f averaged across the paths generated by the diffusion. In
particular given the function f , the function Gt[f ] is defined as follows

Gt[f ](x) =
dE[f(Xt) |Xt = x]

dt
= lim

∆t→0

E[f(Xt+∆t
) |Xt = x]− f(x)

∆t

=
E[df(Xt) |Xt = x]

dt
(158)

Note using Ito’s rule

d f(Xt) =∇xf(Xt, t)Ta(Xt, t)dt+∇xc(Xt, t)T dBt

+
1
2

trace
(
c(Xt, t)c(Xt, t)T∇2

xf(Xt, t)
)
dt (159)



Taking expected values

Gt[f ](x) =
E[df(Xt) |Xt = x]

dt
= ∇xf(x)Ta(x, t) +

1
2

trace
(
c(x, t)c(x, t)T∇2

xf(x)
)

(160)

In other words

Gt[·] =
∑
i

ai(x, t)
∂

∂xi
[·] +

1
2

∑
i

∑
j

(c(x, t)c(x, t)T )i,j
∂2

∂xi∂xj
[·] (161)

8 Adjoints

Every linear operator G on a Hilbert space H with inner product < ·, · > has a
corresponding adjoint operator G∗ such that

< Gx, y >=< x,G∗y > for all x, y ∈ H (162)

In our case the elements of the Hilbert space are functions f, g and the inner product
will be of the form

< f, g >=
∫
f(x) · g(x) dx (163)

Using partial integrations it can be shown that if

G[f ](x) =
∑
i

∂f(x)
∂xi

ai(x, t) +
1
2

trace
(
c(x, t)c(x, t)T∇2

xf(x)
)

(164)

(165)

then

G∗[f ](x) = −
∑
i

∂

∂xi
[f(x)ai(x, t)] +

1
2

∑
i,j

∂2

∂xi∂xj
[(c(x, t)c(x, t)T )ijf(x)] (166)

9 The Feynman-Kac Formula (Terminal Condition Version)

Let X be an Ito diffusion

dXt = a(Xt, t)dt+ c(Xt, t)dBt (167)

with generator Gt

Gt[v](x) =
∑
i

ai(x, t)
∂v(x, t)
∂xi

+
1
2

∑
i

∑
j

(c(x, t)c(x, t)T )i,j
∂2v(x, t)
∂xi∂xj

(168)

Let v be the solution to the following pde

− ∂v(x, t)
∂t

= Gt[v](x, t)− v(x, t)f(x, t) (169)

with a known terminal condition v(x, T ), and function f . It can be shown that the
solution to the pde (169) is as follows

v(x, s) = E
[
v(XT , T ) exp

(
−
∫ T

s

f(Xt)dt
)
|Xs = x

]
(170)



We can think of v(XT , T ) as a terminal reward and of
∫ T
s
f(Xt)dt as a discount

factor.

Informal Proof:
Let s ≤ t ≤ T let Yt = v(Xt, t), Zt = exp(−

∫ t
s
f(Xτ )dτ), Ut = YtZt. It can be

shown (see Lemma below) that
dZt = −Ztf(Xt)dt (171)

Using Ito’s product rule
dUt = d(YtZt) = ZtdYt + YtdZt + dYtdZt (172)

Since dZt has a dt term, it follows that dYtdZt = 0. Thus
dUt = Ztdv(Xt, t)− v(Xt, t)Ztf(Xt)dt (173)

Using Ito’s rule on dv we get
dv(Xt, t) =∇tv(Xt, t)dt+ (∇xv(Xt, t))Ta(Xt, t)dt+ (∇xv(Xt, t))T c(Xt, t)dBt

+
1
2

trace
(
c(Xt, t)c(Xt, t)T∇2

xv(Xt, t)
)
dt (174)

Thus

dUt =Zt
[
∇tv(Xt, t) + (∇xv(Xt, t))Ta(Xt, t)

+
1
2

trace
(
c(Xt, t)c(Xt, t)T∇2

xv(Xt, t)
)
− v(Xt, t)f(Xt)

]
dt

+ Zt(∇xv(Xt, t))T c(Xt, t)dBt (175)
and since v is the solution to (169) then

dUt = (∇xv(Xt, t))T c(Xt, t)dBt (176)
Integrating

UT − Us =
∫ T

s

Yt(∇xv(Xt, t))T c(Xt, t)dBt (177)

taking expected values
E[UT |Xs = x]−E[Us |Xs = x] = 0 (178)

where we used the fact that the expected values of integrals with respect to Brownian
motion is zero. Thus, since Us = Y0Z0 = v(Xs, s)

E[UT |Xs = x] = E[Us |Xs = x] = v(x, s) (179)
Using the definition of UT we get

v(x, s) = E[v(XT , T )e−
R T
s
f(Xt)dt |Xs = x] (180)

We end the proof by showing that
dZt = −Ztf(Xt)dt (181)

First let Yt =
∫ t
s
f(Xτ )dτ and note

∆Yt =
∫ t+∆t

t

f(Xτ )dτ ≈ f(Xt)∆t (182)

dYt = f(Xt)dt (183)
Let Zt = exp(−Yt). Using Ito’s rule

dZt = ∇e−YtdYt +
1
2
∇2e−Yt(dYt)2 = −e−Ytf(Xt)dt = −Ztf(Xt)dt (184)

where we used the fact that
(dYt)2 = Z2

t f(Xt)2(dt)2 = 0 (185)



10 Kolmogorov Backward equation

The Kolmogorov backward equation tells us at time s whether at a future time t
the system will be in the target set A. We let ξ be the indicator function of A, i.e,
ξ(x) = 1 if x ∈ A, otherwise it is zero. We want to know for every state x at time
s < T what is the probability of ending up in the target set A at time T . This is
call the the hit probability.

Let X be an Ito diffusion
dXt = a(Xt, t)dt+ c(Xt, t)dBt (186)
X0 = x (187)

The hit probability p(x, t) satisfies the Kolmogorov backward pde

−∂p(x, t)
∂t

= Gt[p](x, t) (188)

i.e.,

−∂p(x,t)∂t =
∑
i ai(x, t)

∂p(x,t)
∂xi

+ 1
2

∑
i,j(c(x, t)c(x, t)

T )ij
∂2p(x,t)
∂xi∂xj

(189)

subject to the final condition p(x, T ) = ξ(x). The equation can be derived from
the Feynman-Kac formula, noting that the hit probability is an expected value over
paths that originate at x at time s ≤ T , and setting f(x) = 0, q(x) = ξ(x) for all x

p(x, t) = p(XT ∈ A |Xt = x) = E[ξ(XT ) |Xt = x] = E[q(XT )e
R T
t
f(Xs)ds] (190)

11 The Kolmogorov Forward equation

Let X be an Ito diffusion
dXt = a(Xt, t)dt+ c(Xt, t)dBt (191)
X0 = x0 (192)

with generator G. Let p(x, t) represent the probability density of Xt evaluated at
x given the initial state x0. Then

∂p(x, t)
∂t

= G∗[p](x, t) (193)

where G∗ is the adjoint of G, i.e.,

∂p(x,t)
∂t = −

∑
i
∂
∂xi

[p(x, t)ai(x, t)] + 1
2

∑
i,j

∂2

∂xi∂xj
[(c(x, t)c(x, t)T )ijp(x, t)] (194)

It is sometimes useful to express the equation in terms of the negative divergence
(inflow) of a probability current J , caused by a probability velocity V

∂p(x, t)
∂t

= −∇ · J(x, t) = −
∑
i

∂Ji(x, t)
∂xi

(195)

J(x, t) = p(x, t)V (x, t) (196)

Vi(x, t) = ai(x, t)−
1
2

∑
i

k(x, t)i,j
∂

∂xj
log(p(x, t)ki,j(x)) (197)

k(x) = c(x, t)c(x, t)T (198)



From this point of view the Kolmogorov forward equation is just a law of conserva-
tion of probability (the rate of accumulation of probability in a state x equals the
inflow of probability due to the probability field V ).

11.1 Example: Discretizing an SDE in state/time

Consider the following SDE
dXt = a(Xt)Xtdt+ c(Xt)dBt (199)

The Kolmogorov Forward equation looks as follows
∂p(x, t)
∂t

= −∂a(x)p(x, t)
∂x

+
1
2
∂2c(x)2p(x, t)

∂x2
(200)

Discretizing in time and space, to first order
∂p(x, t)
∂t

=
1

∆t
(p(x, t+ ∆t)− p(x−, t)) (201)

and
∂a(x)p(x, t)

∂x
=

1
2∆x

(a(x+ ∆x)p(x+ ∆x, t)− a(x−∆x)p(x−∆x, t))

=
1

2∆x

(
(a(x) + ∆x

∂a(x)
∂x

)p(x+ ∆x, t)− (a(x)−∆x
∂a(x)
∂x

)p(x−∆x, t)
)

= p(x+ ∆x, t)(
a(x)
2∆x

+
∂a(x)
2∂x

)− p(x−∆x, t)(
a(x)
2∆x

− ∂a(x)
2∂x

) (202)

and
∂2c2(x)p(x, t)

∂x2
=

1
∆2
x

(
c2(x+ ∆x)p(x+ ∆x, t) + c2(x−∆x)p(x−∆x, t)− 2c2(x)p(x, t)

)
(203)

=
1

∆2
x

(
(c2(x) + 2∆xc(x)

∂c(x)
∂x

)p(x+ ∆x, t) + (c2(x)− 2∆xc(x)
∂c(x)
∂x

)p(x−∆x, t)

− 2c2(x)p(x, t)
)

= p(x+ ∆x, t)(
(c(x)

∆x

)2

+ 2
c(x)
∆x

∂c(x)
∂x

)

− 2p(x, t)
(c(x)

∆x

)2

+ p(x−∆x, t)(
(c(x)

∆x

)2

− 2
c(x)
∆x

∂c(x)
∂x

) (204)

Putting it together, the Kolmogorov Forward Equation can be approximated as
follows

p(x, t+ ∆t)− p(x, t)
∆t

=p(x−∆x, t)(
a(x)
2∆x

− ∂a(x)
2∂x

)

− p(x+ ∆x, t)(
a(x)
2∆x

+
∂a(x)
2∂x

)

+ p(x+ ∆x, t)(
1
2

(c(x)
∆x

)2

+
c(x)
∆x

∂c(x)
∂x

)

− p(x, t)
(c(x)

∆x

)2

+ p(x−∆x, t)(
1
2

(c(x)
∆x

)2

− c(x)
∆x

∂c(x)
∂x

) (205)



Rearranging terms

p(x, t+ ∆t) =p(x, t)
(

1− ∆tc
2(x)

∆2
x

)
+ p(x−∆x, t)

∆t

2∆x

(c2(x)
∆x

− 2c(x)
∂c(x)
∂x

+ a(x)−∆x
∂a(x)
∂x

)
+ p(x+ ∆x, t)

∆t

2∆x

(c2(x)
∆x

+ 2c(x)
∂c(x)
∂x

− a(x)−∆x
∂a(x)
∂x

)
(206)

Considering in a discrete time, discrete state system

p(Xt+∆t
= x) =

∑
x′

p(Xt = x′)p(Xt+∆t
= x |Xt = x′) (207)

we make the following discrete time/discrete state approximation

p(xt+∆t
| xt) =



∆t

2∆x

(
c2(x)
∆x
− a(x) + 2c(x)∂c(x)

∂x −∆x
∂a(x)
∂x

)
if xt+∆t

= xt −∆x

∆t

2∆x

(
c2(x)
∆x

+ a(x)− 2c(x)∂c(x)
∂x −∆x

∂a(x)
∂x

)
if xt+∆t

= xt + ∆x

1− ∆tc
2(x)

∆2
x

if xt+∆t = xt

0 else
(208)

Note if the derivative of the drift function is zero, i.e., ∂a(x)/∂x = 0 the conditional
probabilities add up to one. Not sure how to deal with the case in which the
derivative is not zero.

11.2 Girsanov’s Theorem (Version I)

Let (Ω,F ,P) be a probability space. Let B be a standard m-dimensional Brownian
motion adapted to the filtration Ft. Let X,Y be defined by the following SDEs

dXt = a(Xt)dt+ c(Xt)dBt (209)
dYt = (c(Yt)Ut + a(Yt))dt+ c(Yt)dBt (210)
X0 = Y0 = x (211)

where Xt ∈ Rn, Bt ∈ Rm and a, c satisfy the necessary conditions for the SDEs to
be well defined and Ut is an Ft adapted process such that P(

∫ t
0
‖c(Xs)Us‖2ds <

∞) = 1. Let

Zt =
∫ t

0

U ′sdBs +
1
2

∫ t

0

U ′sUsds (212)

Λt = e−Zt (213)

and

dQt = ΛtdP (214)

i.e., for all A ∈ Ft
Qt(A) = EP[ΛtIA] (215)

Then

Wt =
∫ t

0

Usds+Bt (216)



is a standard Brownian motion with respect to Qt.

Informal Proof: We’ll provide a heuristic argument for the discrete time case. In
discrete time the equation for W = (W1, · · · ,Wn) would look as follows

∆Wk = Uk∆t+
√

∆tGk (217)

where G1, G2, · · · are independent standard Gaussian vectors under P. Thus, under
P the log-likelihodd of W is as follows

log p(W ) = h(n,∆t)− 1
2∆t

n−1∑
k=1

(∆Wk − Uk∆t)′(∆Wk − Uk∆t) (218)

where h(n,∆t) is constant with respect to W,U . For W to behave as Brownian
motion under Q we need the probability density of W under Q to be as follows

log q(W ) = h(n,∆t)− 1
2∆t

n−1∑
k=1

∆W ′k∆Wk (219)

Let the random variable Z be defined as follows

Z = log
p(W )
q(W )

(220)

where q, p represent the probability densities of W under Q and under P respec-
tively. Thus

Z =
n−1∑
k=1

U ′k(∆Wk − Uk∆t) +
1
2

n−1∑
k=1

U ′kUk∆t (221)

=
n−1∑
k=1

U ′k
√

∆tGt +
1
2

n−1∑
k=1

U ′kUk∆t (222)

(223)

Note as ∆t→ 0

Z →
∫ t

0

UsdBs +
1
2

∫ t

0

U ′sUsds (224)

q(W )
p(W )

→ e−Z (225)

Remark 11.1.

dYt = (Ht + a(Xt))dt+ c(Yt)dBt (226)
= a(Xt)dt+ c(Yt)(Ut + dBt) (227)
= a(Xt)dt+ c(Yt)dWt (228)

Therefore the distribution of Y under Qt is the same as the distribution of X under
P, i.e., for all A ∈ Ft.

P(X ∈ A) = Qt(Y ∈ A) (229)

or more generally

EP[f(X0:t)] = EQt [f(Y0:t)] = EP[f(Y0:t)Λt] (230)



Remark 11.2. Radon Nykodim derivative Λt is the Radon Nykodim derivative
of Qt with respect to P. This is typically represented as follows

Λt = e−Zt =
dQt

dP
(231)

We can get the derivative of P with respect to Qt by inverting Λt, i.e.,
dP

dQt
= eZt (232)

Remark 11.3. Likelihood Ratio This tells us that Λt is the likelihood ratio
between the process X0:t and the process Y0:t, i.e., the equivalent of pX(X)/pY (Y )
where pX , pY are the probability densities of X and Y .
Remark 11.4. Importance Sampling Λt can be used in importance sampling
schemes. Suppose (y[1], λ[1]), · · · , (y[n], λ[n]) are iid samples from (Y0:t,Λt), then we
can estimate EP[f(X0:t)] as follows

EP[f(X0:t)] ≈
1
n

n∑
i=1

f(y[i])λ[i] (233)

11.2.1 Girsanov Version II

Let

dXt = c(Xt)dBt (234)
dYt = b(Yt)dt+ c(Yt)dBt (235)
X0 = Y0 = x (236)

Let

Zt =
∫ t

0

b(Ys)′(c(Ys)−1)′dBs

+
1
2

∫ t

0

b(Ys)′k(Ys)b(Ys)ds (237)

dP

dQt
= eZt (238)

where

k(Ys) = (c(Ys)′c(Ys))−1 (239)

Then under Qt the process Y has the same distribution as the process X under P.

Proof. We apply Girsanov’s version I with a(Xt) = 0, Ut = c(Yt)−1b(Xt). Thus

Zt =
∫ t

0

U ′sdBs +
1
2

∫ t

0

U ′sUsds

=
∫ t

0

b(Ys)′(c(Ys)−1)′dBs

+
1
2

∫ t

0

b(Ys)′k(Ys)b(Ys)ds (240)

dP

dQt
= eZt (241)

And under Qt the process Y looks like the process X, i.e., a process with zero
drift.



11.2.2 Girsanov Version III

Let

dXt = c(Xt)dBt (242)
dYt = b(Yt)dt+ c(Yt)dBt (243)
X0 = Y0 = x (244)

Let

Zt =
∫ t

0

b(Ys)′k(Ys)dYt

− 1
2

∫ t

0

b(Ys)′k(Ys)b(Ys)ds (245)

dP

dQt
= eZt (246)

where

k(Ys) = (c(Ys)′c(Ys))−1 (247)

Then under Qt the process Y has the same distribution as the process X under P.

Proof. We apply Girsanov’s version II

Zt =
∫ t

0

b(Ys)′(c(Ys)−1)′dBs

+
1
2

∫ t

0

b(Ys)′(c(Ys)−1)′c(Ys)−1b(Ys)ds (248)

=
∫ t

0

b(Ys)′(c(Ys)−1)′c(Ys)−1(dYt − b(Ys)ds)

+
1
2

∫ t

0

b(Ys)′(c(Ys)−1)′c(Ys)−1b(Ys)ds (249)

=
∫ t

0

b(Ys)′k(Ys)dYt

− 1
2

∫ t

0

b(Ys)′k(Ys)b(Ys)ds (250)

dP

dQt
= eZt (251)

Informal Discrete Time Based Proof: For a given path x the ratio of the probability
density of x under P and Q can be approximated as follows

dP(x)
dQt(x)

≈
∏
k

p(xtk+1 − xtk | xtk)
q(xtk+1 − xtk | xtk)

(252)

were π = {0 = t0 < t1 · · · < tn = T} is a partition of [0, T ] and

p(xtk+1 | xtk) = G(∆xtk | a(xtk)∆tk,∆tkk(xt)−1) (253)

q(xtk+1 | xtk) = G(∆xtk | 0,∆tkk(xt)−1) (254)



where G(·, µ, σ) is the multivariate Gaussian distribution with mean µ and covari-
ance matrix c. Thus

log
dP(x)
dQt(x)

≈
n−1∑
k=0

− 1
2∆tk

(
(∆xtk − a(xtk)∆tk)′k(xt)(∆xtk − a(xtk)∆tk)

−∆x′tkk(xt)∆xtk
)

=
n−1∑
k=0

a(xtk)′k(xt)∆xtk −
1
2
a(xtk)′k(xtk)a(xtk)∆tk (255)

taking limits as |π| → 0

log
dP(x)
dQt(x)

=
∫ T

0

a(Xt)′k(Xt) dXt −
1
2

∫ T

0

a(Xt)′k(Xt)a(Xt) dt (256)

Theorem 11.1. The dΛt differential
Let Xt be an Ito process of the form

dXt = a(t,Xt)dt+ c(t,Xt)dBt (257)

Let

Λt = eZt (258)

Zt =
∫ t

0

a(s,Xs)′k(t,Xt)dXs −
1
2

∫ t

0

a(s,Xs)′k(s,Xs)a(s,Xs)ds (259)

where k(t, x) = (c(t, x)c(t, x)′)−1.Then

dΛt = Λta(t,Xt)′k(t,Xt)dXt (260)

Proof. From Ito’s product rule

d(Λtf(Xt)) = f(Xt)dΛt + Λtf(Xt) + (dΛt)(df(Xt) (261)

Note

dX ′tk(t,X)a(t,Xt)a′(t,k(t,Xt)dXt (262)

= dΛt = (∇zΛt)′dZt +
1
2
dZ ′t(∇2

zΛt)dZt (263)

= Λt
(
dZt +

1
2
dZ ′tdZt

)
(264)

Moreover, from the definition of Zt

dZt = a(t,Xt)′k(t,Xt)dXt −
1
2
a(t,Xt)′k(t,Xt)a(t,Xt)dt (265)



Thus

dZ ′tdZt = dX ′tk(t,X)a(t,Xt)a′(t,Xt)k(t,Xt)dXt (266)

=dB′tc(t,Xt)′k(t,X)a(t,Xt)a′(t,Xt)k(t,Xt)c(t,Xt)dBt (267)

= trace
(
c(t,Xt)′k(t,Xt)a(t,Xt)a′(t,Xt)k(t,Xt)c(t,Xt)

)
dt (268)

= trace
(
c(t,Xt)c(t,Xt)′k(t,Xt)a(t,Xt)a′(t,Xt)k(t,Xt)

)
dt (269)

= trace
(
a(t,Xt)a′(t,Xt)k(t,Xt)

)
dt (270)

= trace
(
a(t,Xt)a′(t,Xt)k(t,Xt)

)
dt (271)

= trace
(
a′(t,Xt)k(t,Xt)a(t,Xt)

)
dt (272)

= a′(t,Xt)k(t,Xt)a(t,Xt)dt (273)

Thus

dΛt = Λta(t,Xt)′k(t,Xt)dXt (274)

12 Zakai’s Equation

Let

dXt = a(Xt)dt+ c(Xt)dBt (275)
dYt = g(Xt)dt+ h(Xt)dWt (276)

Λt = eZt (277)

Zt =
∫ t

0

g(Yt)′k(Yt)dYt +
1
2

∫ t

0

g(Yt)′k(Yt)g(Yt)dt (278)

k(Yt) = (h(Yt)h(Yt)′)−1 (279)

Using Ito’s product rule

d(f(Xt)Λt) = Λtdf(Xt) + f(Xt)dΛt + df(Xt)dΛt (280)

where

df(Xt) = ∇xf(Xt)′dXt +
1
2

trace
(
c(Xt)c′(Xt)∇2

xf(Xt)
)
dt

= Gt[f ](x) +∇xf(Xt)c(Xt)dBt (281)
dΛt = Λtg(Yt)k(Yt)dYt (282)

Following the rules of Ito’s calculus we note dXtdY
′
t is an n ×m matrix of zeros.

Thus

d(f(Xt)Λt) = Λt
(
Gt[f ](x) +∇xf(Xt)c(Xt)dBt + g(Yt)k(Yt)dYt

)
(283)

13 Solving Stochastic Differential Equations

Let dXt = a(t,Xt)dt+ c(t,Xt)dBt. (284)

Conceptually, this is related to dXt
dt = a(t,Xt) + c(t,Xt)dBtdt where dBt

dt is white
noise. However, dBt

dt does not exist in the usual sense, since Brownian motion is
nowhere differentiable with probability one.



We interpret solving for (284), as finding a process Xt that satisfies

Xt = M +

t∫
0

a(s,Xs) ds+

t∫
0

c(s,Xs) dBs. (285)

for a given standard Brownian process B. Here Xt is an Ito process with a(s,Xs) =
Ks and c(s,Xs) = Hs.

a(t,Xt) is called the drift function.

c(t,Xt) is called the dispersion function (also called diffusion or volatility function).
Setting b = 0 gives an ordinary differential equation.

Example 1: Geometric Brownian Motion

dXt = aXtdt+ bXtdBt (286)
X0 = ξ > 0 (287)

Using Ito’s rule on logXt we get

d logXt =
1
Xt
dXt +

1
2

(
− 1
X2
t

)2

(dXt)2 (288)

=
dXt

Xt
− 1

2
b2dt (289)

=
(
aXt −

1
2
b2
)
dt+ αdBt (290)

Thus

logXt = logX0 +
(
a− 1

2
b2
)
t+ bBt (291)

and

Xt = X0e
(a− 1

2 b
2)t+bBt (292)

Processes of the form

Yt = Y0e
αt+βBt (293)

where α and β are constant, are called Geometric Brownian Motions. Geometric
Brownian motion Xt is characterized by the fact that the log of the process is
Brownian motion. Thus, at each point in time, the distribution of the process is
log-normal.

Let’s study the dynamics of the average path. First let

Yt = ebBt (294)



Using Ito’s rule

dYt = bebBtdBt +
1
2
b2ebBt(dBt)2 (295)

Yt = Y0 + b

∫ t

0

YsdBs +
1
2
b2
∫

+0tYsds (296)

E(Yt) = E(Y0) +
1
2
b2
∫ t

0

E(Ys)ds (297)

dE(Yt)
dt

=
1
2
b2E(Yt) (298)

E(Yt) = E(Y0)e
1
2 b

2t = e
1
2 b

2t (299)
Thus

E(Xt) = E(X0)e(a−
1
2 b

2)tE(Yt) = E(X0)e(a−
1
2 b

2)t (300)
Thus the average path has the same dynamics as the noiseless system. Note the
result above is somewhat trivial considering
E(dXt) = dE(Xt) = E(a(Xt))dt+E(c(Xt)dBt) = E(a(Xt))dt+E(c(Xt))E(dBt)

(301)
(302)

dE(Xt) = E(a(Xt))dt (303)
and in the linear case

E(a(Xt))dt = E(atXt + ut)dt = atE(Xt) + ut)dt (304)
These symbolic operations on differentials trace back to the corresponding integral
operations they refer to.

14 Linear SDEs

14.1 The Deterministic Case (Linear ODEs)

Constant Coefficients Let xt ∈ <n be defined by the following ode
dxt
dt

= axt + u (305)

The solution takes the following form:
xt = eatx0 + a−1(eat − I)u (306)

To see why note
dxt
dt

= aeatx0 + eatu (307)

and
axt + u = aeatx0 + eatu− u+ u = dxtdt (308)

Example: Let xt be a scalar such that
dxt
dt

= α (u− xt) (309)

Thus

xt = e−αtx0 −
1
α

(e−αt − 1)αu

= e−αtx0 + (1− e−αt)u (310)



Time variant coefficients Let xt ∈ <n be defined by the following ode
dxt
dt

= atxt + ut (311)

xo = ξ (312)

where ut is known as the driving, or input, signal. The solution takes the following
form:

xt = Φt

(
x0 +

∫ t

0

Φ−1
s usds

)
(313)

where Φt is an n × n matrix, known as the fundamental solution, defined by the
following ODE

dΦt
dt

= atΦt (314)

Φ0 = In (315)

14.2 The Stochastic Case

Linear SDEs have the following form

dXt = (atXt + ut)dt+
m∑
i=1

(ci,tXt + vi,t) dBi,t (316)

= (atXt + ut)dt+ vtdBt +
m∑
i=1

ci,tXtdBi,t (317)

X0 = ξ (318)

where Xt is an n dimensional random vector, Bt = (B1, · · · , Bm), bi,t are n × n
matrices, and vi,t are the n-dimensional column vectors of the n×m matrix vt. If
bi,tt = 0 for all i, t we say that the SDE is linear in the narrow sense. If vt = 0 for
all t we say that the SDE is homogeneous. The solution has the following form

Xt = Φt

(
X0 +

∫ t

0

Φ−1
s

(
us −

m∑
i=1

bi,svi,s

)
ds+

∫ t

0

Φ−1
s

m∑
i=1

vi,sdBi,s

)
(319)

where Φt is an n× n matrix satisfying the following matrix differential equation

dΦt = atΦtdt+
m∑
i=1

bi,sΦsdBi,s (320)

Φ0 = In (321)

One property of the linear Ito SDEs is that the trajectory of the expected value
equals the trajectory of the associated deterministic system with zero noise. This is
due to the fact that in the Ito integral the integrand is independent of the integrator
dBt:

E(dXt) = dE(Xt) = E(a(Xt))dt+E(c(Xt)dBt) = E(a(Xt))dt+E(c(Xt))E(dBt)
(322)
(323)

dE(Xt) = E(a(Xt))dt (324)

and in the linear case

E(a(Xt))dt = E(atXt + ut)dt = at(E(Xt) + ut)dt (325)



14.3 Solution to the Linear-in-Narrow-Sense SDEs

In this case
dXt = (atXt + ut) dt+ vtdBt (326)
X0 = ξ (327)

where v1, · · · , vm are the columns of the n×mmatrix v, and dBt is an m-dimensional
Brownian motion. In this case the solution has the following form

Xt = Φt

(
X0 +

∫ t

0

Φ−1
s usds+

∫ t

0

Φ−1
s vsdBs

)
(328)

where Φ is defined as in the ODE case
dΦt
dt

= at (329)

Φ0 = In (330)

White Noise Interpretation This solution can be interpreted using a “sym-
bolic” view of white noise as

Wt =
dBt
dt

(331)

and thinking of the SDE as an ordinary ODE with a driving term given by ut+vtWt.
We will see later that this interpretation breaks down for the more general linear
case with bt 6= 0.

Moment Equations Let

ρr,s
def= E ((Xr −mr)(Xs −ms)) (332)

ρ2
t

def= ρt,t = Var(Xt) (333)
Then

dE(Xt)
dt

= atdE(Xt) + ut (334)

E(Xt) = Φt

(
E(X0) +

∫ t

0

Φ−1
s usds

)
(335)

ρ2
t = Φt

(
ρ2

0 +
∫ t

0

Φ−1
s vs

(
Φ−1
s vs

)T
ds

)
ΦTt (336)

dρ2
t

dt
= atρ

2
t + ρ2

ta
T
t + vtv

T (337)

ρr,s = Φr

(
ρ2

0 +
∫ r∧s

0

Φ−1
t vt

(
Φ−1
t vt

)T
dt

)
ΦTs (338)

where r ∧ s = min{r, s}. Note the mean evolves according to the equivalent ODE
with no driving noise.

Constant Coefficients:
dXt = aXt + u+ vdBt (339)

In this case
Φt = eat (340)

E(Xt) = eat
(
E(X0) +

∫ t

0

e−asuds
)

(341)

Var(Xt) = ρ2
t = eat

{
ρ2

0 +
∫ t

0

e−asvvT
(
e−as

)T
ds

}(
eat
)T (342)



Example: Linear Boltzmann Machines (Multidimensional OU Process)

dXt = θ(γ −Xt)dt+
√

2τdBt (343)

where θ is symmetric and τ > 0. Thus in this case

a = −θ, (344)
u = θγ, (345)

Φt = e−tθ (346)

and

Xt = e−tθ
(
X0 +

∫ t

0

esθdsθγ +
√

2τ
∫ t

0

esθdBs

)
(347)

=e−tθ
(
X0 + θ−1

[
esθ
]t
0
θγ +

√
2τ
∫ t

0

esθdBs

)
(348)

=e−tθ
(
X0 + (etθ − I)γ +

√
2τ
∫ t

0

e−asdBs

)
(349)

Thus

E(Xt) = e−tθE(X0) +
(
I − e−tθ

)
γ (350)

lim
t→∞

E(Xt) = γ (351)

Var(Xt) = ρ2
t = e−tθ

{
ρ2

0 + 2τ
∫ t

0

e2sθds

}
e−tθ (352)

= e−2tθ

{
ρ2

0 + 2τ
θ−1

2
[
e2sθ

]t
0

}
(353)

= e−2ts
{
ρ2

0 + τθ−1
(
e2tθ − I

)}
(354)

= e−2tθρ2
0 + τθ−1

(
I − e−2tθ

)
(355)

= τθ−1 + e−2tθ
(
ρ2

0 − τθ−1
)

(356)

lim
t→∞

Var(Xt) = τθ−1 (357)

where we used the fact that a, eat are symmetric matrices, and
∫
eatdt = a−1eat. If

the distribution of X0 is Gaussian, the distribution continues being Gaussian at all
times.

Example: Harmonic Oscillator Let Xt = (X1,t, X2,t)T represent the location
and velocity of an oscillator

dXt = aXt +
(

0
b

)
dBt =

(
0 1
−α −β

)
dXt +

(
0
b

)
dBt (358)

thus

Xt = eat
(
X0 +

∫ t

0

e−as
(

0
b

)
dBs

)
(359)

14.4 Solution to the General Scalar Linear Case

Here we will sketch the proof for the general solution to the scalar linear case. We
have Xt ∈ R defined by the following SDE

dXt = (atXt + ut) dt+ (btXt + vt) dBt (360)



In this case the solution takes the following form

Xt = Φt

(
X0 +

∫ t

0

Φ−1
s (us − vsbs)ds+

∫ t

0

Φ−1
s vsdBs

)
(361)

dΦt = atΦtdt+ btΦtdBt (362)
Φ0 = 1 (363)

Sketch of the proof

• Use Ito’s rule to show

dΦ−1
t = (b2 − at)Φ−1

t dt− btΦ−1
t dBt (364)

• Use Ito’s rule to show that if Y1,t, Y2,t are scalar processes defined as follows

dY1,t = a1(t, Y1,t)dt+ b1(t, Y1,t)dBt, for i = 1, 2 (365)
(366)

then

d(Y1,tY2,t) = Y1,tdY2,t + Y2,tdY1,t + b1(t, Y1,t)b2(t, Y2,t)dt (367)

• Use the property above to show that

d(XtΦ−1
t ) = Φ−1

t ((ut − vtbt)dt+ vtdBt) (368)

• Integrate above to get (361)
• Use Ito’s rule to get

d log Φ−1
t =

(
1
2
b2t − at

)
dt − btdBt (369)

log Φt = − log Φ−1
t =

∫ t

0

(as −
1
2
bs)ds+

∫ t

0

bsdBs. (370)

White Noise Interpretation Does not Work The white noise interpretation
of the general linear case would be

dXt = (atXt + ut)dt + (btXt + vt)Wtdt (371)
= (at + btWt)Xtdt + (ut + vtWt)dt (372)

If we interpret this as an ODE with noisy driving terms and coefficients, we would
have a solution of the form

Xt = Φt

(
X0 +

∫ t

0

Φ−1
s (us + vtWt)

)
dt (373)

= Φt

(
X0 +

∫ t

0

Φ−1
s (us − vsbs)ds+

∫ t

0

Φ−1
s vsdBs

)
(374)

(375)

with

dΦt = (at + btWt)Φtdt = atΦtdt+ btΦtdBt (376)
Φ0 = 1 (377)

The ODE solution to Φ would be of the form

log Φt =
∫ t

0

(as + bsWs)ds =
∫ t

0

asds+
∫ t

0

bsdBs (378)

which differs from the Ito SDE solution in (370) by the term −
∫ t

0
bsds/2.



14.5 Solution to the General Vectorial Linear Case

Linear SDEs have the following form

dXt = (atXt + ut)dt+
m∑
i=1

(bi,tXt + vi,t) dBi,t (379)

= (atXt + ut)dt+ vdBt +
m∑
i=1

bi,tXtdBi,t (380)

X0 = ξ (381)

where Xt is an n dimensional random vector, Bt = (B1, · · · , Bm), bi,t are n × n
matrices, and vi,t are the n-dimensional column vectors of the n×m matrix vt. The
solution has the following form

Xt = Φt

(
X0 +

∫ t

0

Φ−1
s

(
us −

m∑
i=1

bi,svi,s

)
ds+

∫ t

0

Φ−1
s

m∑
i=1

vi,sdBi,s

)
(382)

where Φt is an n× n matrix satisfying the following matrix differential equation

dΦt = atΦtdt+
m∑
i=1

bi,sΦsdBi,s Φ0 = In (383)

An explicit solution for Φ cannot be found in general even when a, bi are constant.
However if in addition of being constant they pairwise commute, agi = gia, gigj =
gjgi for all i, j then

Φt = exp

{(
a− 1

2

m∑
i=1

b2i

)
t+

m∑
i=1

biBi,t

}
(384)

Moment Equations Let mt = E(Xt), st = E(XtX
T
t ), then

dmt

dt
= atmt + ut, (385)

dst
dt

= atst + sta
T
t +

m∑
i=1

bi,tmtb
T
i,t + utm

T
t +mtu

T
t (386)

+
m∑
i=1

(
bi,tmtv

T
i,t + vi,tm

T
t b

T
i,t + vi,tv

T
i,t

)
, (387)

The first moment equation can be obtained by taking expected values on (379). Note
it is equivalent to the differential equation one would obtain for the deterministic
part of the original system.

For the second moment equation apply Ito’s product rule

dXtX
T = XtdX

T
t + (dXt)XT

t + (dXt)dXT
t

= XtdX
T
t + (dXt)XT

t +
m∑
i=1

[
(bi,tXt + vi,t)

(
XT
t b

T
i,t + vi,t

)]
dt (388)

substitute the dXt for its value in (379) and take expected values.



Example: Multidimensional Geometric Brownian Motion

dXi,t = aiXi,tdt+Xi,t

n∑
j=1

bi,jdBj,t (389)

for i = 1, · · · , n. Using Ito’s rule

d logXi,t =
dXi,t

Xi,t
+

1
2

(
−1
Xi, t

2)
(dXi,t)

2 = (390)ai −∑
j

1
2
b2i,j

+
∑
j

bi,jdBi,j (391)

Thus

Xi,t = Xi,0 exp


ai − 1

2

n∑
j=1

b2i,j

 t+
n∑
j=1

bi,jBj,t

 (392)

logXi,t = log(Xi,0) +

ai − 1
2

n∑
j=1

b2i,j

 t+ log

 n∑
j=1

bi,jBj,t

 (393)

and thus Xi,t has a log-normal distribution.

15 Important SDE Models

• Stock Prices: Exponential Brownian Motion with Drift

dXt = aXtdt+ bXtdBt (394)

• Vasiceck( 1977) Interest rate model: OU Process

dXt = α(θ −Xt)dt+ bdBt (395)

• Cox-ingersol-Ross (1985) Interest rate model

dXt = α(θ −Xt)dt+ b
√
XtdBt (396)

• Constant Elasticity of Variance process

dX=µXt + σXγ
t dBt, γ ≥ 0 (397)

• Generalized Cox Ingersoll Ross Model for short term interest rate, proposed
by Chan et al (1992).

dXt = (θ0 − θ1Xt)dt+ γXΨ
t dBt, for Ψ, γ > 0 (398)

Let

X̃s =
X1−Ψ
s

γ(1−Ψ)
(399)

Thus
dX̃s = a(X̃s)ds+ dBs (400)

where

a(x) =
(θ0 + θ1x̂)x̂−Ψ

γ
− Ψγ

2
x̂Ψ−1 (401)



where
x̂ = (γ(1−Ψ)x)(1−Ψ)−1

(402)
A special case is when Ψ = 0.5. In this case the process increments are
known to have a non-central chi-squared distribution (Cox, Ingersoll, Ross,
1985)
• Logistic Growth

– Model I
dXt = aXt(1−Xt/k)dt + bXtdBt (403)

The solution is

Xt =
X0 exp

{
(a− b2/2)t+ bBt

}
1 + X0

k a
∫ t

0
exp {(a− b2/2)s+ bBs} ds

(404)

– Model II

dXt = aXt(1−Xt/k)dt + bXt(1−Xt/k)dBt (405)

– Model III
dXt = rXt(1−Xt/k)dt − srX2

t dBt (406)
In all the models r is the Maltusian growth constant and k the car-
rying capacity of the environment. In model II, k is unattainable. In
the other models Xt can have arbitrarily large values with nonzero
probability.

• Gompertz Growth

dXt = αXtdtrXt log
(
k

Xt

)
dt + bXtdBt (407)

where r is the Maltusian growth constant and k the carrying capacity. For
α = 0 we get the Skiadas version of the model, for r = 0 we get the log-
normal model. Using Ito’s rule on Yt = eβt logXt we can get expected value
follows the following equation

E(Xt) = exp
{

log(x0)e−rt
}

exp
{γ
r

(1− e−rt)
}

exp
{
b2

4r
(1− e−2rt

}
(408)

where

γ =α− b2

2
(409)

Something fishy in expected value formula. Try α = b = 0!

16 Stratonovitch and Ito SDEs

Stochastic differential equations are convenient pointers to their corresponding
stochastic integral equations. The two most popular stochastic integrals are the
Ito and the Stratonovitch versions. The advantage of the Ito integral is that the
integrand is independent of the integrator and thus the integral is a Martingale.
The advantage of the Stratonovitch definition is that it does not require changing
the rules of standard calculus. The Ito interpretation of

dXt = f(t,Xt)dt+
m∑
j=1

gj(t,Xt)dBj,t (410)



is equivalent to the Stratonovitch equation

dXt =

f(t,Xt)dt−
1
2

m∑
i=1

m∑
j=1

[
∂gi,j
∂xi

gij

]
(t,Xt)

 dt+
m∑
j=1

gj(t,Xt)dBj,t (411)

and the Stratonovitch interpreation of

dXt = f(t,Xt)dt+
m∑
j=1

gj(t,Xt)dBj,t (412)

is equivalent to the Ito equation

dXt =

f(t,Xt)dt+
1
2

m∑
i=1

m∑
j=1

[
∂gi,j
∂xi

gij

]
(t,Xt)

 dt+
m∑
j=1

gj(t,Xt)dBj,t (413)

17 SDEs and Diffusions

• Diffusions are rocesses governed by the Fokker-Planck-Kolmogorov equa-
tion.
• All Ito SDEs are diffusions, i.e., they follow the FPK equation.
• There are diffusions that are not Ito diffusions, i.e., they cannot be described

by an Ito SDE. Example: diffusions with reflection boundaries.

18 Appendix I: Numerical methods

18.1 Simulating Brownian Motion

18.1.1 Infinitesimal “piecewise linear” path segments

Get n independent standard Gaussian variables {Z1, · · · , Zn};
E(Zi) = 0; Var(Zi) = 1. Define the stochastic process B̂ as follows,

B̂t0 = 0 (414)

B̂t1 = B̂t0 +
√
t1 − t0Z1 (415)

... (416)

B̂tk = B̂tk−1 +
√
tk − tk−1Zk (417)

Moreover,
B̂t = B̂tk−1 for t ∈ [tk−1, tk) (418)

This defines a continuous time process that converges in distribution to Brownian
motion as n→∞.

18.1.2 Linear Interpolation

Same as above but linearly interpolating the starting points of path segments.

B̂t = B̂tk−1 + (t− tk)(B̂tk−1 − B̂tk)/(tk − tk−1) for t ∈ [tk−1, tk) (419)

Note this approach is non-causal, in that it looks into the future. I believe it is
inconsistent with Ito’s interpretation and converges to Stratonovitch solutions



18.1.3 Fourier sine synthesis

B̂t(ω) =
∑n−1
k=0 Zk(ω)φk(t)

where Zk(ω) are same random variables as in previous approach, and φk(t) =
2
√

2T
(2k+1)R sin

(
(2k+1)Rt

2T

)
As n → ∞ B converges to BM in distribution. Note this approach is non-causal,
in that it looks into the future. I believe it is inconsistent with Ito’s interpretation
and converges to Stratonovitch solutions

18.2 Simulating SDEs

Our goal is to simulate

dXt = a(Xt)dt+ c(Xt)dBt, 0 ≤ t ≤ TX0 = ξ (420)

Order of Convergencce Let 0 = t1 < t2 · · · < tk = T

A method is said to have strong oder of convergence α if there is aconstant K such
that

sup
tk

E

∣∣∣Xtk − X̂k

∣∣∣ < K(∆tk)α (421)

A method is said to have week oder of convergence α if there is a constant K such
that

sup
tk

∣∣∣E[Xtk ]−E[X̂k]
∣∣∣ < K(∆tk)α (422)

Euler-Maruyama Method

X̂k = X̂k−1 + a(X̂k−1)(tk − tk−1) + c(X̂k−1)(Bk −Bk−1) (423)

Bk = Bk−1 +
√
tk − tk−1Zk (424)

where Z1, · · · , Zn are independent standard Gaussian random variables.

The Euler-Maruyama method has strong convergence of order α = 1/2, which is
poorer of the convergence for the Euler method in the deterministic case, which is
order α = 1. The Euler-Maruyama method has week convergence of order α = 1.

Milstein’s Higher Order Method: It is based on a higher order truncation of
the Ito-Taylor expansion

X̂k = X̂k−1 + a(X̂k−1)(tk − tk−1) + c(X̂k−1)(Bk −Bk−1) (425)

+
1
2
c(Xk−1)∇xc(Xk−1)

(
(Bk −Bk−1)2 − (tk − tk−1)

)
(426)

Bk = Bk−1 +
√
tk − tk−1Zk (427)

where Z1, · · · , Zn are independent standard Gaussian random variables. This
method has strong convergence of order α = 1.
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