Please cite as J. R. Movellan (2011) Tutorial on Stochastic Differential Equations,
MPLab Tutorials Version 06.1.

Tutorial on Stochastic Differential
Equations

Javier R. Movellan

Copyright (©) 2003, 2004, 2005, 2006, Javier R. Movellan



This document is being reorganized. Expect redundancy, inconsistencies, disorga-
nized presentation ...

1 Motivation

There is a wide range of interesting processes in robotics, control, economics, that
can be described as a differential equations with non-deterministic dynamics. Sup-
pose the original processes is described by the following differential equation

dX;

dt
with initial condition X, which could be random. We wish to construct a math-
ematical model of how the may behave in the presence of noise. We wish for this

noise source to be stationary and independent of the current state of the system.
We also want for the resulting paths to be continuous.

= a(Xy) (1)

As it turns out building such a model is tricky. An elegant mathematical solution
to this problem may be found by considering a discrete time versions of the process
and then taking limits in some meaningful way. Let 1 = {0 =t; < t;--- < ¢, =t}
be a partition of the interval [0,¢]. Let A™t; = tj41 — tx. For each partition = we
can construct a continuous time process X™ defined as follows

X = Xo (2)
Xpo= X[+ a(X]) A + o X ) (N, — Ny, (3)

where N is a noise process whose properties remain to be determined and b is a
function that allows us to have the amount of noise be a function of time and of the
state. To make the process be continuous in time, we make it piecewise constant
between the intervals defined by the partition, i.e.

X7 = XZ; for t € [tr,trt1) (4)

We want for the noise N; to be continuous and for the increments Ny, , — Ny, to
have zero mean, and to be independently and identically distributed. It turns out
that the only noise source that satisfies these requirements is Brownian motion.
Thus we get

n—1 n—1
X7 =Xo+ Y a(XT)At+ Y c(X])AB; (5)
k=0 k=0
where Aty =ty — ty, and ABy = By, — By, where B is Brownian Motion. Let
||| = max{Atx} be the norm of the partition 7. It can be shown that as 7 — 0
the X™ processes converge in probability to a stochastic process X. It follows that
n—1 t
lim a(X5 ) A = / a(Xs)ds (6)
Il =0+ =5 0
and that
n—1
(X[ )ABy (7)
k=0
converges to a process [y
n—1
I, = | hHm0 c(X{,)ABy (8)



Note I; looks like an integral where the integrand is a random variable ¢(X) and
the integrator ABj is also a random variable. As we will see later, I; turns out to
be an Ito Stochastic Integral. We can now express the limit process X as a process
satisfying the following equation

t
Xt = XO +/ a(XS)ds + It (9)
0

Sketch of Proof of Convergence: Construct a sequence of partitions 7y, s, - each
one being a refinement of the previous one. Show that the corresponding X7 *
form a Cauchy sequence in Ly and therefore converge to a limit. Call that process
X.

O

In order to get a better understanding of the limit process X there are two things
we need to do: (1) To study the properties of Brownian motion and (2) to study
the properties of the Ito stochastic integral.

2 Standard Brownian motion

By Brownian motion we refer to a mathematical model of the random movement
of particles suspended in a fluid. This type of motion was named after Robert
Brown that observed it in pollens of grains in water. The processes was described
mathematically by Norbert Wiener, and is is thus also called a Wiener Processes.
Mathematically a standard Brownian motion (or Wiener Process) is defined by the
following properties:

1. The process starts at zero with probability 1, i.e., P(By =0) =1

2. The probability that a randomly generated Brownian path be continuous
is 1.

3. The path increments are independent Gaussian, zero mean, with variance
equal to the temporal extension of the increment. Specifically for 0 < s; <
11 < s2,< 1y

Bt1 — le ~ N(O, S1 — tl) (10)
Bt2 — BS2 ~ N(O, S92 — tg) (11)

and By, — Bs, is independent of B;, — By, .

Wiener showed that such a process exists, i.e., there is a stochastic process that does
not violate the axioms of probability theory and that satisfies the 3 aforementioned
properties.



2.1 Properties of Brownian Motion

2.1.1 Statistics

From the properties of Gaussian random variables,
E(B; — Bs) =0 (12)
Var(By — Bs) = E[(B; — Bs)*] =t — s (13)
E((B; — B;)"] = 3(t — ) (14)
Var[(B, — B)?] = E[(B; — B,)"] = E[(B, — B,)*]* = 2(t — 5)? (15)
Cov(Bs,By) = s, fort > s (16)

Corr(Bs, Bt) = \/f, for t > s. (17)

Proof: For the variance of (B; — BS)2 we used the that for a standard random
variable Z

E(Z*) =3 (18)
Note
Var(Br) = Var(By — By) =T (19)
since P(By = 0) and for all A; >0
Var(Biia, — B) = Ay (20)
Moreover,
Cov(Bs, By) = Cov(Bs, Bs + (B; — Bs)) = Cov(Bs, Bs) + Cov(Bs, (B: — Bs))
= Var(B;) = s (21)

since By and B; — B, are uncorrelated.

2.1.2 Distributional Properties
Let B represent a standard Brownian motion (SBM) process.

e Self-similarity:
For any ¢ # 0, X; = \f B, is SBM.

We can use this property to simulate SBM in any given interval [0,T] if we
know how to simulate in the interval [0, 1]:

If Bis SBM in [0,1], ¢ = 7 then X; =T By, is SBM in [0,T].

e Time Inversion: X; = tB% is SBM
e Time Reversal: X; = By — By_; is SBM in the interval [0, T]
e Symmetry: X; = —B; is SBM

2.1.3 Pathwise Properties

e Brownian motion sample paths are non-differentiable with probability 1

This is the basic why we need to develop a generalization of ordinary calculus to
handle stochastic differential equations. If we were to define such equations simply
as

dX: dB;

— = a(Xy) + o(Xy) —— = (22)



we would have the obvious problem that the derivative of Brownian motion does
not exist.

Proof: Let X be a real valued stochastic process. For a fixed t let # = {0 =ty <
t1, -+ < t, = t} be a partition of the interval [0,¢]. Let ||| be the norm of the
partition. The quadratic variation of X at ¢ is a random variable represented as
< X, X >? and defined as follows

<X X = 1i”m02 [ Xtpor — X |? (23)
k=1

We will show that the quadratic variation of SBM is larger than zero with probability
one, and therefore the quadratic paths are not differentiable with probability 1.

Let B be a Standard Brownian Motion. For a partition 7 = {0 = ¢ < t1,--- <
t, =t} let B be defined as follows

Bj = By, (24)
Let .
57 =3 (AB])? (25)
k=1
Note
n—1
=) by —te =t (26)
k=0
and
0 < Var(S7) Z [(ABf)?
k=0
Z e — tr)?
k=0
n—1
<2l D (thr — tr) = 27t (27)
k=0
Thus

n—1 2
lim Var(S™) = lim E (Z(AB;;P-t) =0 (28)

0 0
Il — Irll— ot

This shows mean square convergence, which implies convergence in probability, of
S™ to t. (I think) almost sure convergence can also be shown.

Comments:

o If we were to define the stochastic integral fot(st)2

/0 t(st)2: lim S7 (29)

[l —0

/Ot(stV - /01t dy =t (30)

Then



e If a path X;(w) were differentiable almost everywhere in the interval [0, T

then
n—1
<X, X >} (w) < 11302(Atxgk (W))? (31)
k=0
— / 2 li 2
(max Xj(@)?) lim > A (32)
= (max X/(w)?) lim (n)(T/n)*> =0 (33)
t€[0,T] n—00

where X’ = dX/dt. Since Brownian paths have non-zero quadratic varia-
tion with probability one, they are also non-differentiable with probability
one.

2.2 Simulating Brownian Motion

Let m = {0 = tg < t1--- < t, = t} be a partition of the interval [0,¢]. Let
{Z1, -+ ,Zy}; be i.i.d Gaussian random variables E(Z;) = 0; Var(Z;) = 1. Let
the stochastic process B™ as follows,

Bf =0 (34)
Bf = B, +t —toZ (35)
(36)

Bf, =B, | +\/tk —tr-1Zk (37)

Moreover,
Btﬂ— = Bgﬁ_il for t € [tk—la tk) (38)

For each partition 7 this defines a continuous time process. It can be shown that as
||| — O the process B™ converges in distribution to Standard Brownian Motion.

2.2.1 Exercise

Simulate Brownian motion and verify numerically the following properties

E(B,) =0 (39)
Var(B;) =t (40)

t t
/dBﬁ:/ ds =t (41)
0 0

3 The Ito Stochastic Integral

We want to give meaning to the expression

t
/ Y.dB, (42)
0

where B is standard Brownian Motion and Y is a process that does not anticipate
the future of Brownian motion. For example, Y; = B;is would not be a valid



integrand. A random process Y is simply a set of functions f(¢,-) from an outcome
space () to the real numbers, i.e for each w € Q)

Yi(w) = ft,w) (43)

We will first study the case in which f is piece-wise constant. In such case there is
a partition m = {0 =tg <ty --- <t, =t} of the interval [0, .t] such that

Fult) = 3 Culw)én(t) (44)
k=0
where
€u(t) = {(1) Zstee [trs tht1) (45)

where C} is a non-anticipatory random variable, i.e., a function of Xy and the
Brownian noise up to time ;. For such a piece-wise constant process Yi(w) =
fn(t,w) we define the stochastic integral as follows. For each outcome w €

/Ot Yy (w)dBy(w) = nf Cr(w) (Bt,w (w) — Btk(w)> (46)
k=0

More succinctly

t n—1
/O YidB, = " Ci(Bi,., ~ B.,) (47)
k=0

This leads us to the more general definition of the Ito integral

Definition of the Ito Integral Let f(¢,-) be a non-anticipatory function from an
outcome space € to the real numbers. Let {f1, f2,- -} be a sequence of elementary
non-anticipatory functions such that

lim E[ t fls,w) = fn(s,w) st] =0 (48)
0

n—oo

Let the random process Y be defined as follows: Y;(w) = f(¢t,w) Then the Ito
integral

t
/ Y.dB, (49)
0

is a random variable defined as follows. For each outcome w € €

t t

/ f(s,w)dBs(w) = lim fn(t,w)dBs(w) (50)
0 n—oo O

where the limit is in Lo(P). It can be shown that an approximating sequence

f1, fo - satisfying (48) exists. Moreover the limit in (50) also exists and is inde-

pendent of the choice of the approximating sequence.

Comment Strictly speaking we need for f to be measurable, i.e., induce a proper
random variable. We also need for f(¢,-) to be F; adapted. This basically means
that Y; must be a function of Yy and the Brownian motion up to time ¢ It cannot

be a function of future values of B. Moreover we need E[f(f f(t,)2dt] < cc.



3.1 Properties of the Ito Integral

E(;) =0 (51)
[ ]
t
Var(I;) = E(I?) = / E(X2?)ds (52)
0
[ ]
t t t
/ (X, +Y,) dB, = / X, dB, + / Y, dB, (53)
0 0 0
[ ]
T t T
/ X, dB, = / X, dBs + / X, dB, for t € (0,T) (54)
0 0 t

e The Ito integral is a Martingale process
E(I; | Fs) = Llfor all t > s (55)

where IE(I; | Fs) is the least squares prediction of I; based on all the infor-
mation available up to time s.

4 Stochastic Differential Equations

In the introduction we defined a limit process X which was the limit process of
a dynamical system expressed as a differential equation plus Brownian noise per-
turbation in the system dynamics. The process was a solution to the following
equation

t
Xt = Xo + / a(Xs)ds + It (56)
0
where
I, = HliHrnOc(XZ;)ABk (57)

It should now be clear that I; is in fact an Ito Stochastic Integral

I = /0 o(X,)dB, (58)

and thus X can be expressed as the solution of the following stochastic integral
equation

X:=Xo+ /Ot a(X)ds + /Ot c(Xs)dBs (59)

It is convenient to express the integral equation above using differential notation
dXt = a(Xt)dt + C(Xt)dBt (60)

with given initial condition Xy. We call this an Ito Stochastic Differential Equation
(SDE). The differential notation is simply a pointer, and thus acquires its meaning
from, the corresponding integral equation.



4.1 Second order differentials

The following rules are useful
t
/ X (dt)* =0 (61)
0
t
/ X:dBydt =0 (62)

/ X;dB;dW; = 0 if B,W are independent Brownian Motions (63)

/ X, (dBy)? / X, dt (64)

Symbolically this is commonly expressed as follows

dt* =0 (66)
dBydt = 0 (67)
dBdW; = 0 (68)
(dB;)? = dt (69)

Sketch of proof:
Let m = {0 =tg < t1--- <t, =t} a partition of the [0,¢] with equal intervals, i.e.
topr — tr = AL

e Regarding dt? = 0 note

n—1
dim thkm = lim At/ X.ds=0 (70)
e Regarding dB;d; = 0 note
n—1

i ZthAtABk = Jim A, / X.dB, =0 (71)

e Regarding dB? = dt note

n—1 n—1 n—1 2
E[(ZthAB,% thkm) } [(thk(ABg —At)) ]
k=0 k=0
n—1n—1
=Y Y E[X;, Xy (AB} — At)(AB} — At)] (72)
k=0 k'=0
If & > k' then (AB} — At) is independent of Xy, X, ,(AB}, — At), and
therefore

= E[X;, Xy, (AB}, — AY)]E[AB; — At)] =0 (73)

Equivalently, if ¥’ > k then (AB}, — At) is independent of Xy, X, , (AB} —
At) and therefore

E[X;, X¢,, (AB; — At)(AB}, — At)]
= E[X:, X, (AB; — At)|E[AB}, — At)] =0 (74)



Thus

n—1n-—1 n—1
>N BIXy, Xy, (AB} — At)(AB}, — At)] = Y E[XZ (AB} — At)?]
k=0 k’=0 k=0
(75)
Note since ABy, is independent of X, then
E[X7 (AB; — At)? = E[X] |E[(AB; — At)?] (76)
= E[X} |Var(AB}) = 2E[X} |]At® (77)
Thus
n—1 n—1 2 n—1
]E[( S X, AB - Y thAt) } =S E[x2]A? (78)
k=0 k=0 k=0
which goes to zero as At — 0. Thus, in the limit as At — 0
n—1 n—1
. 2 9.
Hm, 2 Xu AT = Jim, ), Xi At 79

where the limit is taken in the mean square sense. Thus

t t
/ X,dB? = / X,ds (80)
0 0
Regarding dB;dW; = 0 note

n—1 n—1n-—1
E K - thABkAWk)z} =3 3 E[X,, X, ABLAWLABy, AWy
k=0 k=0 k’=0

(81)

If k > k' then ABy,, AW}, are independent of X, Xt,, ABj AW} and there-
fore

E[X;, X:,, ABLAW,ABy AWy| = E[X;, X;,, ABw AW JE[ABLE[AW,] = 0
(82)

Equivalently, if k' > k then ABy,AWj are independent of
X4, Xt,, ABr AW}, and therefore

E[X,, X, AByAW,ABy AWy ] = E[X,, X; , ABL, AW, E[AB|E[AW;] = 0
(83)

Finally, for k = k', ABy, AW}, and X, are independent, thus
E[X? AB;AWE] = E[X? [E[ABIE[AWE] = E[X7]At*  (84)
Thus
n—1 9 n—1
E [( 3 thABkAWk> ] = S EXZ]AL (85)
k=0 k=0

which converges to 0 as At — 0. Thus

t
/ X,dBydW, =0 (86)
0



4.2 Vector Stochastic Differential Equations

The form
dXt = (I(Xt)dt + C(Xt)dBt (87)

is also used to represent multivariate equations. In this case X; represents an n-
dimensional random vector, B; an m-dimensional vector of m independent standard
Brownian motions, and ¢(X; is an n X m matrix. a is commonly known as the drift
vector and b the dispersion matriz.

5 TIto’s Rule

The main thing with Ito’s calculus is that for the general case a differential carries
quadratic and linear components. For example suppose that X; is an Ito process.
Let

Yy = f(t, X¢) (88)
then

dY; = Vf(t, X)TdX; + LaXxTV2f(t, X,)dX, (89)

where V, V2 are the gradient and Hessian with respect to (t,z). Note basically this
is the second order Taylor series expansion. In ordinary calculus the second order
terms are zero, but in Stochastic calculus, due to the fact that these processes have
non-zero quadratic variation, the quadratic terms do not go away. This is really all
you need to remember about Stochastic calculus, everything else derives from this
basic fact.

The most important consequence of this fact is Ito’s rule. Let X; be governed by
an SDE

dXt = G(Xt, t)dt + C(Xt, t)dBt (90)
Let Y; = f(X¢,t). Tto’s rule tells us that Y; is governed by the following SDE
dY, €V, f(t, Xo)dt + Ve f(t2)TdX, + 5dXTV2 (¢, X,)d X, (91)
where
dB;.dB;, < (i, 5) dt (92)
dXdt £ 0 (93)
> £ o (94)
Equivalently

dY, = Vi f (Xy, t)dy + Vo f (X, )T a( Xy, t)dy + Vi f (Xp, 0)T (X4, t)dB,

+Strace (e(Xo, 1)e(X, ) V2 F(Xo ) ) dt (95)




where

VoS (@t ale,) = of a(j D i) (96)

trace(c(x,t) (z,t)TV2 f( ) ZZ c(z,t)e(z,t) )zgaaf(;xj) (97)

Note b is a matrix. Sketch of Proof: To Second order
AY; = f(XtJrAtat + At) - f(Xtvt) = vtf(Xtvt)At + vmf(Xtat)TAXt

1 1
+ 5At2v§f(Xt, t) + §AXtTV?Ef(Xt, HAX, + AtV Vi f (X, 1) T AX At
(98)

where V, V, are the gradients with respect to time and state, and V7 is the second
derivative with respect to time, V2 the Hessian with respect to time and V,V, the
gradient with respect to state of the gradient with respect to time. Integrating over
time

n—1

Y=Y+ ) AY, (99)
k=0
and taking limits

t t t
Y, =Y + / dY, =Yy + / Vi (Xo,)da + / V. (X, 5)TdX,

/v2 X, s)(ds)? /dXTV2 5, 8)dX,

/ (Vo Vif(X,, ) dXods (100)
0

In differential form
dY; =V f(Xe, t)de + Vo f (X, t)TdXt
1 1
+ 5 Vif (X, )(dt)? + SdXVE (X, t)dX,
+ (Vo Vi f( Xy, 1) dX dt (101)

Expanding d.X;
(Vo Vif (X, )T dXdt = (Vo Vi f( Xy, 1) a( Xy, t)(dt)?

+ (Vo Ve f(Xe, ) e(Xy, t)dBydt = 0 (102)
where we used the standard rules for second order differentials
(dt)* =0 (103)
(dBy)dt =0 (104)
(105)

Moreover
dXTV2 f( Xy, t)dX,
= (a( Xy, t)dt + o( Xy, t)dBy) T V2 f( Xy, 1) (a( Xy, t)dt + (X, t)dBy)
= a(Xq, t)Tvif(Xm t)a(Xt, t)(dt)2
+ 2a( X4, ) TV2 f( Xy, t)e( Xy, 1) (dBy)dt
+ dBT e(X:, t)TV2 f( Xy, t)e( Xy, ) (dBy) (106)



Using the rules for second order differentials

(dt)? =0
(dBy)dt =0

dBI'K(X,,t)dB, = ZZK] X, t)dB; dB;; = ZKZ Jdt

where

K(Xi,t) = (X4, )T V2F( Xy, t)e( Xy, t)

Thus
dYy =V f (Xp, t)dy + Vo f( X, )T

a(Xp, t)dt + Vo f (X, 1) e

+ %trace (C(Xt, )e( Xy, )T V2 (X, t)) dt

where we used the fact that

> Kii(Xy,t)dt = trace(K)dt

= trace (c(Xt, )T

= trace (c(Xt, t)c

5.1 Product Rule

Let X,Y be Ito processes then

Vif(Xt’t)C(Xut))
(Xe,t) V2 F(X1,1))

Ad(X,Y;) = X, dY,; + YdX, + dX,dY,

(X, t)dBy

Proof: Consider X,Y as a joint Ito process and take f(z,y,t) = zy. Then

of
ot

of
%—y
of
dy
0% f

0xdy -

of_F _
ox2 0y

Applying Ito’s rule, the Product Rule follows.

Exercise: Solve fOT B.dB; symbolically

Let a(X;,t) = 0,¢(Xy,t) = 1, f(z,t) = 22. Thus
dX; = dB;
X, = B,

(107)
(108)

(109)

(110)

(111)

(112)

(113)

(114)
(115)

(116)
(117)

(118)

(119)
(120)



and

of(t,x)
= 121
ot 0 (121)
of(t,x) _
9 2z (122)
0% f(t,x)
= 1
92 2 (123)
Applying Ito’s rule
7af(Xtat) af(Xtat) af(Xtat)
df(Xt, t) = ot dt + Oz Cl(Xt, t)dt + Oz C(Xt7 t)dBt
1 T 32f(x, t)
+ 5trace (C(Xt, )e(Xe,t) W) (124)
we get
dB? = 2B,dB; + dt (125)
Equivalently
t t t
/ dB? = 2/ B,dB, + / ds (126)
0 0 0
t
B? = 2/ BydBg +t (127)
0
Therefore
/t B.dB, = B2~ L4 (128)
o T 2Tt 2

NOTE: dB? is different from (dB;)?.

Exercise: Get E[e’By]

Let Let a(X¢,t) = 0,¢(X¢,t) = 1, ie., dX; = dB;. Let V; = f(X;,t) = e8¢ and
dX; = dBy. Using Ito’s rule

1
dY, = Be’PedB, + EﬂQeﬁdet (129)
t /82 t
Y, =Yy + ﬁ/ e?PdB, + 7/ ePBeds (130)
0 0
Taking expected values
52 t
EW] = El%] + 5 [ E[i)ds (131)
0
where we used the fact that E[ fot ePB:dB,] = 0 because for any non anticipatory
random variable Y;, we know that E| fg YsdBs] = 0. Thus
dE[Y,] _ 5
= —E[Y, 132
] _ Py (132)
and since E[Yp] =1
52

E[e?B ) =e=! (133)



Exercise: Solve the following SDE

dXt = CkXtdt + ﬂXtdBt (134)
In this case a(Xy,t) = aXi, ¢(Xy, t) = 8X;. Using Ito’s formula for f(z,t) = log(z)
of(t,x)
——= =0 135
5t (135)
of(t,xz) 1
== 136
Ox x (136)
0% f(t,x) 1
= __ 1
ox? 2 (137)
Thus
1 1 2 x2 52
Integrating over time
,32
log(X;) = log(Xo) + (o — —)t + 6B, (139)
,32
X; = Xoexp((a — 7)15) exp(8By) (140)
Note
2
E[X,] = E[Xo]e®™ T Efexp(aB;)] = E[X,]e (141)
6 Moment Equations
Consider an SDE of the form
dXt = a(Xt)dt + C(Xt)dBt (142)
Taking expected values we get the differential equation for first order moments
dE[X
L pja(x) (143)

seems weird that ¢ has no effect. Double check with generator of ito diffusion result
With respect to second order moments, let
Y= f(Xe) = XXyt (144)
using Ito’s product rule
dY, = d(Xi 1 X;4) =X 0d X0 + X 1dX, ¢ +dX; :d X4
=X;1(a;(Xe)dt + (c(Xi)dBy);) + Xji(ai(Xe)dt + (c(Xi)dBy);)

+ (ai(X¢)dt + (c(X¢)dBy)i)(a; (Xt)dt + (e(X1)dBy);)

= Xit(a;(Xp)dt + (e(Xe)dBe) ;) + Xji(ai(Xe)dt + (c(Xi)dBy)i)

+ Ci(Xt)Cj (Xt>dt (145)

Taking expected values



dE[X; 1 X 4]

5 = E[Xia;(Xt)] + E[X;1ai(Xy)] + Ele;i (X )e; (Xy)] (146)
In matrix form
XX Bxa(X)] + Bla(X) X)) + Ble(X)e(X)]  (147)

dt

The moment formulas are particularly useful when a, ¢ are constant with respect to
X¢, in such case

dE[X/]

i~ eElXd (148)
li
dlE[A:;tXt] — E[XtXﬂa' 4 aIE[XtX,{] + cc (149)
X,
V%[tt] =E[X:X/]d + dE[X;X/] — aE[X{]E[X;]'d" + ¢ (150)
(151)

Example Calculate the equilibrium mean and variance of the following process

dX: = —X; + cdB; (152)
The first and second moment equations are
X pix (153)
%fﬂ = 2E[X;]* + ¢ (154)
Thus
tlggo E[X:] =0 (155)
Jim E[X?] = Jim Var[X,] = ? (156)

7 Generator of an Ito Diffusion

The generator G; of the Ito diffusion
dXt = G(Xt,t)dt+C(Xt,t>dBt (157)

is a second order partial differential operator. For any function f it provides the
directional derivative of f averaged across the paths generated by the diffusion. In
particular given the function f, the function G¢[f] is defined as follows

dE[f(X) [ Xe=2] _ . Elf(Xera) | Xe = 2] ~ f(2)
dt At—0 At
Eldf (Xy) | Xi = a]

- y (158)

Note using Ito’s rule

d f(Xy) =V f(Xe, ) a(Xy, t)dt + Vee( X, t) T dB;

Gi[fl(z) =

+ %trace(c(Xt,t)c(Xt,t)TVif(Xt,t))dt (159)



Taking expected values
E[df (X¢) | X¢ = ]

1
Gilf)(x) = > = Vo f (@) alw,t) + strace(c(z, De(a, ) VA f () )
(160)
In other words
82
=2 il EZXIaw @) gl (6
8 Adjoints
Every linear operator G on a Hilbert space H with inner product < -,- > has a
corresponding adjoint operator G* such that
< G,y >=<xz,G*'y >forall x,y € H (162)

In our case the elements of the Hilbert space are functions f, g and the inner product
will be of the form

<ﬁg>=/f@%ﬂ@dw (163)

Using partial integrations it can be shown that if

alfl) = M(Li(x,t) n %traee(c(x,t)c(x,t)TV§ f(x)) (164)

(165)
then

_Xi: f’i F@)as(a, 2 Z axzax] z,)c(@, )i f(@)]  (166)

9 The Feynman-Kac Formula (Terminal Condition Version)

Let X be an Ito diffusion
dXt = G(Xt,t)dt+C(Xt,t>dBt (167)
with generator G

Gi[v](z) = Zai(%

%

ZZ (z,t)c(z,t) )’jaax(axj) (168)

Let v be the solution to the following pde

ov(z,t)
— g = Gell(z,t) —v(z, 1) f(2,1) (169)

with a known terminal condition v(z,T'), and function f. It can be shown that the
solution to the pde (169) is as follows

o(e.s) = B[o(Xr, T) exp (- /ST F(Xo)dt) | X, = 2] (170)



We can think of v(Xp,T) as a terminal reward and of fST f(Xp)dt as a discount
factor.

Informal Proof:

Let s <t < T let V; = v(Xy,t), Zt = exp(— fgt f(X.)dr), Uy = Y;Z;. Tt can be
shown (see Lemma below) that

dZy = —Z, f(Xy)dt (171)
Using Ito’s product rule
dU, = d(Y1 Zy) = ZydYy + YidZ, + dY,dZ, (172)
Since dZ; has a dt term, it follows that dY;dZ; = 0. Thus
AUy = Zpdo( Xy, t) — v( Xy, 6) Zy f (Xy)dt (173)

Using Ito’s rule on dv we get
dvo(Xy, 1) =Vio(Xy, )dt + (Vov(Xy, 1) a(Xy, )dt + (Vov(Xy, 1)) e(Xs, 1)dBy

1
+ Qtrace (c(Xt7 (X, )T V20(Xy, t))dt (174)
Thus
dU, =2, [wmxt, £) + (Vou(Xs, ) a( Xy, 1)
+ %trace(c(Xt,t)c(Xht)TViv(Xt,t)) — (X, ) f(Xy) | at
+ Zi(Vov( X, 1) e( Xy, t)dBy (175)
and since v is the solution to (169) then
dU, = (Veu(Xy, 1) e(X,, t)dB, (176)
Integrating
T
Ur — U, = / Yy (Vou( Xy, 1) e( Xy, t)dB, (177)

taking expected values

E[Ur | X, =z] -E[Us | Xs=2]=0 (178)
where we used the fact that the expected values of integrals with respect to Brownian
motion is zero. Thus, since Uy = Y Zy = v(Xs, s)

ElUr | Xs =2] =E[Us | Xs = z] = v(z,s) (179)
Using the definition of Ur we get
v(z, ) = E[o(Xp, T)e™ Jo TX0d | x 4] (180)
We end the proof by showing that
dZ, = —Z,f(X;)dt (181)
First let V; = f: f(X,)dr and note
t+A,
AY, = / FX)dr ~ f(X,)At (182)
t
dY; = f(Xy)dt (183)

Let Z; = exp(—Y;). Using Ito’s rule
1
dZ; = Ve Y1dY; + 5v%*yf(dyt)2 = —e V' f(X,)dt = —Z,f(X;)dt (184)

where we used the fact that
(dY;)* = Z2f(Xy)?(dt)* =0 (185)
O



10 Kolmogorov Backward equation

The Kolmogorov backward equation tells us at time s whether at a future time ¢
the system will be in the target set A. We let £ be the indicator function of A, i.e,
&(x) =1if x € A, otherwise it is zero. We want to know for every state x at time
s < T what is the probability of ending up in the target set A at time 7. This is
call the the hit probability.

Let X be an Ito diffusion

dXt = a(Xt,t)dt+C(Xt,t)dBt (186)
The hit probability p(x,t) satisfies the Kolmogorov backward pde
Ip(x,t
Y Gulplw, ) (189
ie.,
— D) = 5 i, ) 2D 1+ LS (el ez, )Ty L (189)

subject to the final condition p(z,T) = £(z). The equation can be derived from
the Feynman-Kac formula, noting that the hit probability is an expected value over
paths that originate at x at time s < T, and setting f(z) = 0, ¢(x) = &(z) for all =

pla,t) = p(Xr € A| X, = 2) = E[¢(X1) | X; = 2] = E[q(Xr)el /%] (190)

11 The Kolmogorov Forward equation

Let X be an Ito diffusion
dXt = G(Xt,t)dt+C(Xt,t)dBt (191)
XO =X (192)

with generator G. Let p(z,t) represent the probability density of X; evaluated at
z given the initial state zg. Then

LD _ iyl 1 (193)
where G* is the adjoint of G, i.e.,
Pl — =5, s [pla, ai(x, 0] + 3 3, e [(ela, e, )T )igp(a, 1)) | (194)

It is sometimes useful to express the equation in terms of the negative divergence
(inflow) of a probability current J, caused by a probability velocity V'

Ip(z,t) _ 0J;(x,t)

o - =2 o (195)
J(x,t) = p(x, t)V(x,t) (196)
Vo) = aie.t) = 5 SO bw s g loa(ple Ok (@) (197)

k(x) = c(z, t)c(z, t)T (198)



From this point of view the Kolmogorov forward equation is just a law of conserva-
tion of probability (the rate of accumulation of probability in a state x equals the
inflow of probability due to the probability field V).

11.1 Example: Discretizing an SDE in state/time

Consider the following SDE
dXy = a(X) Xpdt + c(Xy)d By (199)
The Kolmogorov Forward equation looks as follows
op(z,t) da(z)p(z,t)  10%(z)?p(z,1)

ot~ or 2 o2 (200)
Discretizing in time and space, to first order
D) — Lot + D) = pla— 1) (201)
and
aa(xg];(x, ) _ QZI (a(z + A)p(x + Ay, t) — a(z — AL)p(z — Ay, t))
= ox (a0 + 8,28 e+ 80, ) = (ale) - 8,28 gt — A, 1)
= ol B (o) + ) o — Ay (G - S (202)
and
2C2 X X
% = Ai% <02(x + An)p(z + A, t) + 02(Z —Ay)plx — Ay, t) — QCQ(x)p(:c, t))
(203)
— 35 (1€20) + 280 20 oo+ 80.0) 4 (0 — 28u0) 20D oo — 011
— 202(1‘)])(3:, t))
= ple+ A ((S2)" 25224,
e (22
+p(x—A£,t)(<C§i)>2—2%%;)) (204)

Putting it together, the Kolmogorov Forward Equation can be approximated as
follows

MR B e, - )
— pla + A, t)(‘z‘fj 5;8(16))
+p(z + Am,t)(%<cg;))2 N CX? ag(;;))

(42

(205)



Rearranging terms

p(x,t+ Ay) =p(z,t) (1 B Atigc(x))

A, /P (x) Oc(x) Oa(x)
+p(x—Az,t)E( A —2¢(z) o +a(z) — A, 5 )
A, /P (x) Oc(x) Oa(x)
(A t)5 3 ( A+ 2e(@) 75 —ale) — A ) (206)
Considering in a discrete time, discrete state system
P(Xira, =2) =Y p(Xy =2 )p(Xiya, =z | Xi =) (207)

we make the following discrete time/discrete state approximation

QAA: CZ(:) — a(x) + 2¢(x) ag(;) Ay 0%(5) if 2ppn, =20 — Ay
A (@) o a(x) — 2c(x) 22 — A, 2B g 0 =g + A

P(Tign, | @) = 28\ 4= Oz ¥ oz o @

1— Atzz(w)

if Tt+A, = Tt

x

0 else
(208)

Note if the derivative of the drift function is zero, i.e., da(x)/dz = 0 the conditional
probabilities add up to one. Not sure how to deal with the case in which the
derivative is not zero.

11.2  Girsanov’s Theorem (Version I)

Let (92, F,P) be a probability space. Let B be a standard m-dimensional Brownian
motion adapted to the filtration F;. Let X,Y be defined by the following SDEs

dXt = a(Xt)dt + C(Xt)dBt (209)
dY; = (c(Y)Uy + a(Y;))dt + c(Y;)dB, (210)
XO = YO =T (211)

where X; € R", B, € R™ and a, c satisfy the necessary conditions for the SDEs to
be well defined and U; is an F; adapted process such that IP(fOt lle(Xs)Us||?ds <
o0) = 1. Let

t t
Zy = / UldBs + 1/ UlUds (212)
0 2 Jo
A =e % (213)
and
dQy = AydP (214)
ie., forall Ae F;
Qi(A) = E¥[A¢l4] (215)

Then

t
0



is a standard Brownian motion with respect to Q;.

Informal Proof: We'll provide a heuristic argument for the discrete time case. In

discrete time the equation for W = (W7, --- ,W,,) would look as follows
AWy = U At + VALGy, (217)
where G1,Go, - - - are independent standard Gaussian vectors under IP. Thus, under
P the log-likelihodd of W is as follows
n—1
1
log p(W) = h(n, At) — o ;(Awk — UpAt) (AW, — U At) (218)

where h(n, At) is constant with respect to W,U. For W to behave as Brownian
motion under @ we need the probability density of W under @ to be as follows

n—1
1 /
log q(W) = h(n, At) — o ; AWLAW, (219)
Let the random variable Z be defined as follows
p(W)
Z = log ——= 220
& ) (220)

where g, p represent the probability densities of W under @ and under P respec-
tively. Thus

I
-

n n—1

1
Z =) Up(AWi — UpAD) + 5 > ULUAt (221)
k=1 k=1
n—1 1 n—1
= _UVAIG + 5 > ULULAt (222)
k=1 k=1
(223)
Note as At — 0
t 1 t
7 — / U.dB, + —/ UlU,ds (224)
0 2 0
aW) | -z (225)
p(W)
O
Remark 11.1.
dY; = (Hy + a(Xy))dt + c(Yy)dBy (226)
= a(X,)dt + co(Yy)dW, (228)

Therefore the distribution of Y under @; is the same as the distribution of X under
P, i.e., for all A € F;.

P(XeA)=Q:«Y €A (229)
or more generally

EP[f(Xo:t)] = BV [f(You)] = E¥ [ (You) Ad] (230)



Remark 11.2. Radon Nykodim derivative A; is the Radon Nykodim derivative
of Q; with respect to P. This is typically represented as follows

—Zt:@

A = 231
te dP (231)
We can get the derivative of P with respect to Q; by inverting Ay, i.e.,

dP z

—— = 232

a0, 252

Remark 11.3. Likelihood Ratio This tells us that A; is the likelihood ratio
between the process X.; and the process Yy, i.e., the equivalent of px (X)/py (Y)
where px, py are the probability densities of X and Y.

Remark 11.4. Importance Sampling A; can be used in importance sampling
schemes. Suppose (yl1, \), ... (y[™ A"} are iid samples from (Y., A;), then we
can estimate E¥[f(Xo.¢)] as follows

B (f(Xo)] = 3 fgHAL (233)

11.2.1 Girsanov Version 11

Let

dXt = C(Xt)dBt (234)

dY; = b(Y;)dt + c(YV;)dB, (235)

Xo=Yy=2z (236)
Let

_ i ! c —1\/

Zi = / b(Y) (c(Y,) ") dB,
s / b(Y.) k(Y )b(Ys)ds (237)
0

dlP

LA (238)
where

B(Y) = (e(Ya) e(Y)) ! (239)

Then under Q); the process Y has the same distribution as the process X under IP.

Proof. We apply Girsanov’s version I with a(X;) =0, Uy = ¢(Y;) ~*b(X;). Thus

t 1 t
th/ U;st—i—f/ U'U,ds
0 2 0

+s /0 b(Ya) B(Y)b(Ya)ds (240)
dPP
L _ (241)

And under Q; the process Y looks like the process X, i.e., a process with zero
drift. O



11.2.2 Girsanov Version II1

Let

dXt = C(Xt)dBt (242)

dY, = b(Y,)dt + c(Y;)dB, (243)

Xo=Yy==zx (244)
Let

Z - /0 b(Y,) K(Y:)Ys
1/t ,

-3 / bV K(Y2)b(Y2)ds (245)

dP

o e? (246)
where

E(Ys) = (e(Ys) e(Ys)) ™" (247)

Then under Q); the process Y has the same distribution as the process X under P.

Proof. We apply Girsanov’s version II
t
Zy= [ b(Ys) (c(Ys)™)dBs
0

= DY) (V)Y e(Ye) (Y (248)
0

0

+ % / b(Y)' (e(Ye) ™) e(Ys) T b(Ys)ds (249)
= [rroa

0

1/ ,
- /0 b(Y,) k(Y,)b(Y,)ds (250)
dIP
0, — 2 (251)

]

Informal Discrete Time Based Proof: For a given path x the ratio of the probability

density of x under P and @) can be approximated as follows
dIP(x) ~ H p(mtk+1 — Ty, | xtk)
th({E) 2 Q(xtk+1 — Tty | ‘rtk)

(252)

were m = {0 =1ty < t;--- <t, =T} is a partition of [0, 7] and

p(xtk+1 I xtk) = g(Amtk | a(‘rtk)Atk’ Atkk(xt)_1> (253)
q(xtk+1 | xtk) = g(AItk | 0, Atkk(xt)il) (254)



where G(-, u,0) is the multivariate Gaussian distribution with mean p and covari-
ance matrix c¢. Thus

Plr) 5~ 1 (A, — ale,) Ate) ko) (A, — alry)Aty)

lo —
®dQi(x) T & 2Ak,
- Ax;kk:(xt)Axtk)
n—1 1
= a(zy, ) k(xy) Azy, — ia(xtk)’k(xtk)a(xtk)Atk (255)
k=0
taking limits as |7| — 0
dP(x) T 17
1 = X)) k(X)) dX, — = X)) k(X)a(X, 2
o8 Sy = [ AR axi =5 [y kXey @ (250
O
Theorem 11.1. The dA; differential
Let X, be an Ito process of the form
dXt = a(t, Xt)dt + C(t, Xt)dBt (257)
Let
Ay = et (258)
t 1 t
Z - / als, X.)'k(t, X,)dX, - 5/ a(s, X,)k(s, X.)a(s, X)ds  (259)
0 0
where k(t,z) = (c(t,z)c(t,x))~L. Then
dAt = Ata(t, Xt)/k(t, Xt)dXt (260)
Proof. From Ito’s product rule
d(Ae f(Xt)) = f(Xe)dAy + Ay f(Xe) + (dA)(df (Xy) (261)
Note
dX k(t, X)a(t, X)a' (t,k(t, X;)dX, (262)
1
=dA; = (V.\) dZ; + §dzg(v§At)dZt (263)
1
= A, (dZt + idZ{dZt) (264)

Moreover, from the definition of Z;

1
dZt = a(t, Xt)/k(t, Xt)dXt — Ea(h Xt)/k(t, Xt)a(t, Xt)dt (265)



Thus
dZldZ, = dX)k(t, X)a(t, X,)d' (t, X, )k(t, X, )d X, (266)
:dBf{C(t Xt)/k(ta X)(I(t, Xt)a’/(t7 Xt)k(ta Xt)c(tv Xt)dBt (267)

:traee(c(t,Xt)'k(t,xt)a(t,Xt)a'(t,xt)k(t,Xt)c(t,xt))dt (268)

- trace(c (t, Xp)e(t, Xp) k(t, Xp)a(t, Xt)a’(t,Xt)k(t,Xt))dt (269)
- trace(a (t, X, )a' (t, X )k(t, X, )dt (270)
- trace(a (t, X,)a' (t, X )k(t, X, )dt (271)
- trace( (t, X)k(t, Xp)a(t, X;) )dt (272)
= d'(t, X)k(t, X )a(t, X, )dt (273)
Thus
dAt = Ata(t, Xt)/k(t, Xt)dXt (274)
L]
12 Zakai’s Equation
Let
dXt = U,(Xt)dt + C(Xt)dBt (275)
A = eZt (277)
t , 1 t ,
Zi= [ ariykav; + 5 [ gviyigviyde (275)
k(Y:) = (h(Y)h(Y;)) ™! (279)
Using Ito’s product rule
d(f(Xe)Ar) = Aedf (Xt) + f(Xe)dAs + df (Xo)dAy (280)
where
(X)) = Vo f(X,)dX, + %trace(c(Xt)c’(Xt)Vi 70X )i
dAy = Aeg(Ye)k(Y1)dYy (282)

Following the rules of Ito’s calculus we note dX;dY/ is an n x m matrix of zeros.
Thus

d(F(X)A) = Ae(Gulf)(x) + Vaf (X)e(X)dB, + g(Y)k(YDdY:)  (283)

13 Solving Stochastic Differential Equations
Let dXt = a(t, Xt)dt + C(t, Xt)dBt (284)

Conceptually, thizgs related to dj? = a(t, Xy) + c(t, Xt)dBf where dgf is white
t

noise. However, “t does not exist in the usual sense, since Brownian motion is
nowhere dlfferentlable with probability one.




We interpret solving for (284), as finding a process X; that satisfies

t t

X = M—i—/a(&Xs) ds—i—/c(s,Xs)st.

0 0

(285)

for a given standard Brownian process B. Here X; is an Ito process with a(s, X;) =

K, and ¢(s, Xs) = H,.
a(t, X¢) is called the drift function.

c(t, Xy) is called the dispersion function (also called diffusion or volatility function).

Setting b = 0 gives an ordinary differential equation.

Example 1: Geometric Brownian Motion

dXt = aXtdt + bXtdBt
Xg=£>0

Using Ito’s rule on log X; we get

1 1/ 1)°
legXt = ZdXt + 5 (—){2) (dXt)Q
t
X, 1,
= 2
X 2

1
— (aXt - 2b2> dt + adB;
Thus
1
log X; = log X, + (a — 2b2> t 4+ bB;
and
X = Xoe(afébQ)HbBt

Processes of the form

}/t — Yoeat-‘rﬁBt

(286)
(287)

(288)
(289)

(290)

(291)

(292)

(293)

where o and (8 are constant, are called Geometric Brownian Motions. Geometric
Brownian motion X; is characterized by the fact that the log of the process is
Brownian motion. Thus, at each point in time, the distribution of the process is

log-normal.

Let’s study the dynamics of the average path. First let

Y; = B

(294)



Using Ito’s rule

dY, = be®PrdB, + %b%wf (dB;)? (295)
t
Y=Y+ b/ Y.dB, + %b2/+Otsts (296)
0
1 t
E(Y) = B(Yo) + 5¥* [ E(¥)ds (297)
0
dE(Y;) 1
00 _ Lim) (298)
E(Y;) = B(Yp)es"t = 3t (299)
Thus . .
E(X;) = B(Xo)ele 3N E(Y;) = B(Xg)elo—20) (300)

Thus the average path has the same dynamics as the noiseless system. Note the
result above is somewhat trivial considering

E(dX:) = dE(X;) = E(a(Xy))dt + E(c(X¢)dBy) = E(a(Xy))dt + E(c(X,))E(dB)

(301)

(302)

dBE(X;) = E(a(X,))dt (303)
and in the linear case

E(a(Xy))dt = E(a: Xt + ug)dt = aJB(Xe) + uy)dt (304)

These symbolic operations on differentials trace back to the corresponding integral
operations they refer to.

14 Linear SDEs

14.1 The Deterministic Case (Linear ODEs)

Constant Coefficients Let 2; € R” be defined by the following ode
dl’t

E =axry+u (305)
The solution takes the following form:
zy = e xg +a (e — DNu (306)
To see why note
d
% = aezy + e*tu (307)
and
az; +u = ae®xy + e®u — u + u = dz,dt (308)
Example: Let x; be a scalar such that
d
% = o (u—x4) (309)
Thus
1
v =e rg— —(e " — 1)au

=e Mzog+(1—e ) (310)



Time variant coefficients Let z; € R™ be defined by the following ode

dx
LS (311)
To =& (312)

where u; is known as the driving, or input, signal. The solution takes the following
form:

t
= P, (xo —|—/ (I>S_1usds> (313)
0

where ®; is an n X n matrix, known as the fundamental solution, defined by the
following ODE

dd
th = a; P, (314)
by =1, (315)
14.2 The Stochastic Case
Linear SDEs have the following form
dXt = (atXt + Ut)dt -+ Z (Ci,tXt -+ vi,t) dBi,t (316)
i=1
m
= (CltXt + ut)dt + ’UtdBt + Z Ci,tXtdBiﬂg (317)
i=1
Xo=¢ (318)
where X; is an n dimensional random vector, B; = (By,---,Bm), bit are n. X n

matrices, and v; ; are the n-dimensional column vectors of the n x m matrix v;. If
b; st = 0 for all ¢,¢ we say that the SDE is linear in the narrow sense. If v, = 0 for
all ¢ we say that the SDE is homogeneous. The solution has the following form

t m t m
X, =9, (XO +/ o (u - va> ds +/ o1 Zvi,sdBl,s> (319)
0 i=1 0 i=1

where ®, is an n x n matrix satisfying the following matrix differential equation

A0, = a;®ydt + Y b; «P.dB; (320)
i=1

®p =1, (321)

One property of the linear Ito SDEs is that the trajectory of the expected value
equals the trajectory of the associated deterministic system with zero noise. This is
due to the fact that in the Ito integral the integrand is independent of the integrator
dBtZ
322
(323)
dE(X;) = E(a(Xy))dt (324)
and in the linear case
E(G(Xt))dt = ]E(atXt + Ut)dt = at(E(Xt) + Ut)dt (325)



14.3 Solution to the Linear-in-Narrow-Sense SDEs

In this case

dXt = (atXt + Ut) dt + UtdBt (326)
Xo=¢ (327)
where vy, - - - , v, are the columns of the n xm matrix v, and dB; is an m-dimensional
Brownian motion. In this case the solution has the following form
t t
X, =®, (XO + / O ugds + / (I>S_1vsst> (328)
0 0
where @ is defined as in the ODE case
dd
th = (329)
by =1, (330)

White Noise Interpretation This solution can be interpreted using a “sym-
bolic” view of white noise as
dBy

dy
and thinking of the SDE as an ordinary ODFE with a driving term given by u;+v, W4.
We will see later that this interpretation breaks down for the more general linear
case with b; # 0.

W, = (331)

Moment Equations Let
def

Pr,s = E ((Xr - mr)(Xs - ms)) (332)
p? € p, 1 = Var(Xy) (333)
Then
dE(X,
c(it t) = a;dE(X;) + uy (334)
t
E(X,) = & (E(Xo) + <I>31usds> (335)
0
t
pi = d; (pg —|—/ R (@slvs)Tds) o7 (336)
0
d 2
% = aip? + plal +v? (337)
TAS
Pr,s = (I)r (p(2) +/ (b;lvt ((I);lvt)T dt) (I)z (338)
0

where r A s = min{r, s}. Note the mean evolves according to the equivalent ODE
with no driving noise.

Constant Coefficients:

dXt = ClXt +u—+ ’UdBt (339)
In this case
o, = (340)
t
B(X,) = e (B(X,) + / e uds) (341)
0

¢
Var(X;) = p? = e {p% +/ e poT (e_aS)T ds} (e‘“)T (342)
0



Example: Linear Boltzmann Machines (Multidimensional OU Process)

where 6 is symmetric and 7 > 0. Thus in this case
a=—0, (344)
u = 0, (345)
Py =e " (346)
and
t t
X, =e " <X0 + / e*0dshy + V21 / eS‘)dBS> (347)
0 0
t
=e 10 <Xo + 671 [659]2 Oy + V2t /O esest) (348)
t
=e <X0 + (e — Dy + v 27'/ e“Sst> (349)
0
Thus
E(X;) = e E(Xo) + (I —e )y (350)
tlim E(X;) =~ (351)
t
Var(X,;) = p? =e % {pg + 27’/ eQSGds} et (352)
0
__—2t0 2 2 6_1 250 t 353
=e Po T 2T [e**], (353)
= 25 {pg +767! (the — I)} (354)
=e 2002 4 7971 (I - e_Qte) (355)
=707 e (05 —767) (356)
Jim Var(X,) = 9! (357)

where we used the fact that a,e? are symmetric matrices, and [ e®dt = a~te®. If

the distribution of Xy is Gaussian, the distribution continues being Gaussian at all
times.

Example: Harmonic Oscillator Let X; = (X7, X2)T represent the location
and velocity of an oscillator

dXt:aXH—(g)dBt:(_Oa _15>dXt+<2>dBt (358)

t
X, = et (XO + / 0 ( ) )dBS) (359)
0

14.4 Solution to the General Scalar Linear Case

thus

Here we will sketch the proof for the general solution to the scalar linear case. We
have X; € R defined by the following SDE

dXi = (ar Xy +ur) dt + (b Xy + vr) dBy (360)



In this case the solution takes the following form

t t
X, =d, (Xo —|—/ O (us — vybs)ds —|—/ @S_lvsst) (361)
0 0
dq)t = atq)tdt + btq)tdBt (362)
Dy =1 (363)

Sketch of the proof

e Use Ito’s rule to show

do; ! = (b — a;)®; tdt — b, @, ' dB; (364)
e Use Ito’s rule to show that if Y7 +, Y5 ; are scalar processes defined as follows
dY1: =a1(t,Y1,)dt + b1(¢,Y1,)dB;, fori=1,2 (365)
(366)

then
d(Y1:Ys1) =Y1,dYo s + Yo dY ¢ + b1 (t, Y1,0)ba(t, Yo, )dt (367)

Use the property above to show that
d( X @) = &, ((ug — viby)dt + v dBy) (368)

Integrate above to get (361)

Use Ito’s rule to get

1
dlog®; ! = <2b§ - at> dy — byd By (369)
t 1 t
log®; = —log®; ! = / (as — ibs)ds —|—/ bsdBs. (370)
0 0

White Noise Interpretation Does not Work The white noise interpretation
of the general linear case would be

dXt = (atXt + ut)dt + (tht + ’Ut)Wtdt (371)
= (at + btWt)Xtdt + (Ut + ’UtWt)dt (372)

If we interpret this as an ODE with noisy driving terms and coefficients, we would
have a solution of the form

t
Xt = ‘I)t <X0 +/ @;1(’&3 + UtWt)> dt (373)
0
t t
=, (Xo +/ D (us —vsbs)ds—&—/ CDS_lvsst) (374)
0 0
(375)
with
d®; = (ay + bWy)®ydt = ayPydt + by Pd By (376)
Dy =1 (377)
The ODE solution to ® would be of the form
t t t
log ®; :/ (as + bsWy)ds :/ asds—l—/ bsdB, (378)
0 0 0

which differs from the Ito SDE solution in (370) by the term — [ byds/2.



14.5 Solution to the General Vectorial Linear Case

Linear SDEs have the following form

m

dXt = (atXt —+ ’U,t)dt =+ Z (bi,tXt =+ ’U7j7t) dBi,t (379)
i=1
m
= (atXt + Ut)dt + ’UdBt + Z biﬂgXtdBi,t (380)
i=1
Xo=¢ (381)
where X; is an n dimensional random vector, B; = (By, -+ ,Bm), bit are n. X n

matrices, and v; ; are the n-dimensional column vectors of the n x m matrix v;. The
solution has the following form

t m t m
X, = &, <X0+/ ot <u —Zbi,sv,,8> ds+/ @slzvi,sdBm) (382)
0 i=1 0 i=1

where ®, is an n x n matrix satisfying the following matrix differential equation

A0, = a;®ydt + Y b; «P.dB; 0y = I, (383)

i=1

An explicit solution for ® cannot be found in general even when a, b; are constant.
However if in addition of being constant they pairwise commute, ag; = g;a, g:9; =
g;g; for all 4, j then

1 m m
B, = exp { <a -5 2 b?) t+ Z:l biBl,t} (384)

Moment Equations Let m; = E(X;), s; = E(X;X/), then

dm
d—tt = aymy + Uy, (385)
dsy i
ditf = a8y + statT + ; bi,tmtbft + utmtT + mtutT (386)
+ Z (bi,tmtvij:t + Ui7tm?bzt + vittvgt) , (387)
i=1

The first moment equation can be obtained by taking expected values on (379). Note
it is equivalent to the differential equation one would obtain for the deterministic
part of the original system.

For the second moment equation apply Ito’s product rule
dX; X" = Xpd X + (dXo) XT + (dXy)dX]
= XodX] + (dX) X+ 37 (010X + vie) (X7 0T, +vi)] dt (388)
i=1

substitute the dX; for its value in (379) and take expected values.



Example: Multidimensional Geometric Brownian Motion

dXip = a; X pdt + Xy Y b jdBj (389)
j=1
for i =1,--- ,n. Using Ito’s rule
dX;; 1( 12 2
dlog Xip = =22 + = dX; ) = 390
ox i = it 5 (5 ) @X0 (390)
1 2
a; —Zibi’j +Zbi7jd3i,j (391)
J J
Thus
1 n n
Xit = Xio0exp a; — B} Z b?,j t+ Z bi,ij,t (392)
Jj=1 j=1
1 n n
log Xip =log(Xi0) + | ai — 5 ;bij t + log ; bi jBj. (393)

and thus X;; has a log-normal distribution.

15

Important SDE Models

e Stock Prices: Exponential Brownian Motion with Drift

dX; = aXdt + bXdBy (394)
Vasiceck( 1977) Interest rate model: OU Process
dX; = o0 — Xy)dt + bd B, (395)
Cox-ingersol-Ross (1985) Interest rate model
dX, = a(0 — X;)dt + b\/X.dB, (396)
Constant Elasticity of Variance process
dX_uXi+oX,/dB;, v>0 (397)

Generalized Cox Ingersoll Ross Model for short term interest rate, proposed
by Chan et al (1992).

dX; = (Ao — 01 Xy)dt +yXYdBy,for ¥,y > 0 (398)
Let
N Xl—‘ll
X, = s 399)
- ) (
Thus - N
dX, = a(X,)ds + dB (400)
where

(90 + (91.15)33_‘1] _ Bft‘ll_l

. 5 (401)

a(z) =



where .
&= (7(1 — W)= (402)

A special case is when U = 0.5. In this case the process increments are

known to have a non-central chi-squared distribution (Cox, Ingersoll, Ross,
1985)

Logistic Growth

— Model I
dX; = aXe(1 — Xi/k)dy + bXdB; (403)

The solution is

Xoexp{(a— b2/2)t+bBt}

Xy = 7 (404)
1+ 22a [y exp{(a—b?/2)s+ bB,}ds
— Model II
dX; = aXe(1 — Xi/k)dy + bXe (1 — X;/k)dB; (405)
— Model III
dX; =rX;(1 — X;/k)d; — srX?dB; (406)

In all the models r is the Maltusian growth constant and k the car-
rying capacity of the environment. In model II, k is unattainable. In
the other models X; can have arbitrarily large values with nonzero
probability.

Gompertz Growth
k
dXt = ogXtdtrXt 10g (X) dt + bXtdBt (407)
t

where r is the Maltusian growth constant and k the carrying capacity. For
a = 0 we get the Skiadas version of the model, for r = 0 we get the log-
normal model. Using Ito’s rule on Y; = e log X, we can get expected value
follows the following equation

—Tr ,7/ el b2 —aTr
E(X;) =exp {log(xo)e t} exp {;(1 —e t)} exp {M(l —e? t} (408)
where
b2
yEa - (409)

Something fishy in expected value formula. Try o = b = 0!

16 Stratonovitch and Ito SDEs

Stochastic differential equations are convenient pointers to their corresponding
stochastic integral equations. The two most popular stochastic integrals are the
Ito and the Stratonovitch versions. The advantage of the Ito integral is that the
integrand is independent of the integrator and thus the integral is a Martingale.
The advantage of the Stratonovitch definition is that it does not require changing
the rules of standard calculus. The Ito interpretation of

dX; = f(t, X;)dt + Y g;(t, X;)dB;, (410)

j=1



is equivalent to the Stratonovitch equation

1 9ij -
dX, = | f(t, X)dt — 5221 [ J ] t,X,) dt—f—z:lgj(tXt)dBjj
? J J=

and the Stratonovitch interpreation of

dX, = f(t, Xp)dt + Y g;(t, X;)dB;,
j=1
is equivalent to the Ito equation

1 m m i m
Xy = | (6 X)dt+ 5D 0 [89 2 ] t,X0) | dt+ Y g;(t, X;)dBj,
z:l j=1 j=1

17 SDEs and Diffusions

(411)

(412)

(413)

e Diffusions are rocesses governed by the Fokker-Planck-Kolmogorov equa-

tion.
e All Ito SDEs are diffusions, i.e., they follow the FPK equation.

e There are diffusions that are not Ito diffusions, i.e., they cannot be described

by an Ito SDE. Example: diffusions with reflection boundaries.

18 Appendix I: Numerical methods

18.1 Simulating Brownian Motion
18.1.1 Infinitesimal “piecewise linear” path segments

Get n independent standard Gaussian variables {Z1,--- , Z,};
E(Z;) =0; Var(Z;) = 1. Define the stochastic process B as follows,

Bto =0
Btl = Bto + Vit —toZy

By, =By, _, + Vie —tk-1Zk

B, =By, _, forte[tp_1,tx)

Moreover,

(414)
(415)

(416)
(417)

(418)

This defines a continuous time process that converges in distribution to Brownian

motion as n — oo.

18.1.2 Linear Interpolation

Same as above but linearly interpolating the starting points of path segments.

B, =By, ,+ (t—tx)( By, , — B,)/(ty —tr_1) fort € [tp_1,tz)

(419)

Note this approach is non-causal, in that it looks into the future. I believe it is
inconsistent with Ito’s interpretation and converges to Stratonovitch solutions



18.1.3 Fourier sine synthesis

Bi(w) = Y52 Zu(w)ou(t)

where Zj(w) are same random variables as in previous approach, and ¢ (t) =

. ( (2k+1)Rt
(221@@13 sm(( QT) )

As n — oo B converges to BM in distribution. Note this approach is non-causal,
in that it looks into the future. I believe it is inconsistent with Ito’s interpretation
and converges to Stratonovitch solutions

18.2 Simulating SDEs

Our goal is to simulate

dXt = G,(Xt)dt + C(Xt)ch 0 S t S TX(] = f (420)

Order of Convergencce Let 0 =t; <to--- <t =T

A method is said to have strong oder of convergence « if there is aconstant K such
that

S@EX%%M<KQMQ (421)
tr

A method is said to have week oder of convergence « if there is a constant K such
that
?pH&J—H&”<K@MQ (422)
k

Euler-Maruyama Method

Xk = Xk—l + a(kal)(tk —tg—1) + C(kal)(Bk — Bk-1) (423)
By = Bi—1+ \/tk — thi—1Zs (424)
where Z1,--- , Z, are independent standard Gaussian random variables.

The Euler-Maruyama method has strong convergence of order o« = 1/2, which is
poorer of the convergence for the Euler method in the deterministic case, which is
order a = 1. The Euler-Maruyama method has week convergence of order oo = 1.

Milstein’s Higher Order Method: It is based on a higher order truncation of
the Ito-Taylor expansion

Xie = X1+ a(Xp—1) (tk — tr—1) + e(X5—1)(Br, — Bi—1) (425)
1
+ 5e(Xi)VaelXnmt) (B = Biot)? = (e —ter)) (426)
By = Bi—1 + \/tr — tk—172x (427)
where Z1,---,Z, are independent standard Gaussian random variables. This

method has strong convergence of order o = 1.
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