Contents

Principles of Numerical Calculations

1.1
1.2

Introduction
Common Ideas and Concepts
1.2.1 Tteration
1.2.2 Linearization and Extrapolation
1.2.3 Finite Difference Approximations

Review Questions oL
Problems and Computer Exercises,

1.3

Numerical Algorithms o 0.

1.3.1 Recurrence Relations
1.3.2 Divide and Conquer Strategy
1.3.3 Approximation of Functions
1.34 Solving Linear System of Equations

Review Questions oL
Problems and Computer Exercises

14

Numerical Solution of Differential Equations

1.4.1 Euler’s Method
1.4.2 An Introductory Example
1.4.3 A Second Order Method

Review Questions
Problems
Computer Exerciseso

1.5 Monte Carlo Methods
1.5.1 Origin of Monte Carlo Methods
1.5.2 Random and Pseudo-Random Numbers
1.5.3 Reduction of Variance..
Review Questions
Problems
1.6 Linear Algebra and Matrix Computations
1.6.1 Linear Vector Spaces
1.6.2 Matrix and Vector Algebra
1.6.3 Partitioning and Block Matrices
1.6.4 Inner Products, Orthogonality and Projections . . .

1.6.5 Linear Least Squares Problems

Contents

1.6.6 Similarity Transformations and Eigenvalues
1.6.7 The Singular Value Decomposition
1.6.8 Norms of Vectors and Matrices
Review Questions
Problems o
How to Obtain and Estimate Accuracy
2.1 Basic Concepts in Error Estimation
2.1.1 Sources of Error,
2.1.2 Absolute and Relative Errors
2.1.3 Rounding and Chopping

Review Questions

2.2 Computer Number Systems,
221 The Position System
2.2.2 Fixed and Floating Point Representation
2.2.3 IEEE Floating Point Standard
2.24 Elementary Functions
2.25 Multiple Precision Arithmetic.
Review Questions
Problems
2.3 Accuracy and Rounding Errors
2.3.1 Floating Point Arithmetic
2.3.2 BasicResults
2.3.3 Compensated Summation
2.34 Standard Error oo oo
2.3.5 Avoiding Overflow,
2.3.6 Cancellation of Terms
2.3.7 Automatic Control of Accuracy
2.3.8 Interval Arithmetic
Review Questions o
Problems
Computer Exercises Lo e
2.4 Error Propagation and Condition Numbers
241 Numerical Problems, Methods and Algorithms . . .
242 Propagation of Exrrors
243 Condition Numbers of Problems
2.4.4 Perturbation Analysis for Linear Systems
2.4.5 Experimental Perturbations
2.4.6 Forward and Backward Error Analysis
2.4.7 Stability of Algorithms

Review Questions
Problems and Computer Exercises

Series, Operators and Continued Fractions
3.1 Some Basic Facts about Series
3.1.1 Introduction. oL

Contents iii

3.1.2 Estimating the Remainder 145
3.1.3 Power Series. oo oo 149
3.14 The Cauchy+FFT Method. 162
3.1.5 A brief introduction to Laurent, Fourier and Cheby-
shev Series. Lo oo 167
3.1.6 Perturbation Expansions 171
3.1.7 Ill-Conditioned Series. 174
3.1.8 Numerical Use of Divergent or Semiconvergent Series 175
Review Questions L 178
Problems and Computer Exercises, 179
3.2 Difference Operators and Operator Expansions 186
3.2.1 Difference Operators and Their Simplest Properties 187
3.2.2 The Calculus of Operators 192
3.2.3 The Peano Theorem 203
3.24 Applications of Operator Techniques for Finding Ap-
proximation Formulas 207
3.2.5 Single Linear Difference Equations 217
Review Questions oL 227
Problems and Computer Exercises, 228
3.3 Acceleration of Convergence 238
3.3.1 Introduction 238
3.3.2 Comparison Series and Aitken Acceleration 240
3.3.3 Alternating Series and Complex Power Series 245
3.34 Euler—Maclaurin’s Formula with Applications 253
3.3.5 Repeated Richardson Extrapolation and Related Al-
gorithms. Lo 264
3.3.6 Complete Monotonicity and Related Concepts. . . . 274
3.3.7 Gustafson’s Chebyshev acceleration (GCA). 282
Review Questions 284
Problems and Computer Exercises 284
34 Continued Fractions and Padé Approximants 301
3.4.1 Continued Fractions 301
3.4.2 The Padé Table. 307
3.4.3 The Epsilon Algorithm. 310
3.44 More about Continued Fractions and the Padé Table. 312
Review Questions o 313
Problems and Computer Exercises 313
4 Interpolation and Related Subjects 319
4.1 The Interpolation Problem 319
4.1.1 Introduction 319
4.1.2 Various basesfor P,, 321
Problems e 324
4.2 Interpolation Formulas and Algorithms 326
4.2.1 Divided Differences and Newton’s Interpolation For-

mula 326

iv Contents
4.2.2 Scaled Divided Differences 332

4.2.3 Lagrange’s Interpolation Formula. 334

4.24 Neville’s and Aitken’s algorithms 335

4.2.5 Miscellaneous Questions about Interpolation 336

4.2.6 The Runge Phenomenon 338
Review Questions L e 340
Problems 340
4.3 Interpolation where values of derivatives are used. 341
4.3.1 Hermite Interpolation 341

4.3.2 The Divided Difference Table in Multiple Points . . 342

4.3.3 Other Interpolation Problems with Derivatives . . . 344

4.3.4 Leibniz Formula for Differences 345
Review Questions L e 346
Problems e 346
4.4 Spline Functions L oo 347
44.1 Introduction 347

4.4.2 Piecewise Affine and Cubic Interpolation 348

4.4.3 Cubic Spline Interpolation 351

444 Error in Cubic Spline Interpolation. 355

4.4.5 Approximation with B-Splines 359
Review Questions o 368
Problems and Computer Exercises 368
4.5 Polynomial Interpolation of Analytic Functions 370
4.5.1 Chebyshev Interpolation 371

4.5.2 Analysis of The Runge Phenomenon 372

4.5.3 The Sampling Theorem 377
Problems 378
Computer Exercises L L 379
4.6 Trigonometric Interpolation and FFT. 380
4.6.1 Multidimensional Interpolation 381

4.6.2 Repeated One-Dimensional Interpolation 381

4.6.3 Rectangular Grids, 381
Review Questions 382
Problems 382
4.7 Examples of Interpolation in Nonlinear Function Spaces 383
5 Approximate Computation of Linear Functionals 385
5.1 Introduction Lo 385
5.2 Classical Quadrature Rules 386
5.2.1 The Trapezoidal and Midpoint Rules. 386

5.2.2 Simpson’s Rule oo 388

5.2.3 Newton-Cotes’ Formulas. 389

5.24 Adaptive Quadrature Methods 391
Review Questions o 392
Problems 392
5.3 Special Transformations 394

Contents v

9.3.1 Integrals with Singularities 394

5.3.2 Infinite Intervals 395
Review Questions oL L 396
Problems 396
5.4 Multiple Integrals Lo oo 397
5.4.1 Introduction 397

5.4.2 Successive One-Dimensional Quadrature 398

5.4.3 Product Rules 399

5.4.4 Irregular Triangular Grids 400

5.4.5 Monte Carlo Methods 404
Review Questions oL 406
Problems e 406
6 Solving Scalar Nonlinear Equations 409
6.1 Introduction L Lo 409
6.1.1 The Bisection Method 410
Review Questions L 414
Problems 414
6.2 Fixed-Point Iteration 415
Problems 419
6.3 Newton’s Method, 420
6.3.1 Introduction 420

6.3.2 Convergence Results 422

6.3.3 Safeguarded Newton Method 425

6.3.4 Higher Order Methods 427
Review Questionso 430
Problems e 430
Computer Exercises L o e 431
6.4 Methods Based on Interpolation 431
6.4.1 The Secant Method 431

6.4.2 Local Convergence of the Secant Method 433

6.4.3 False Position Method 435

6.4.4 Safeguarded Secant Method 437

6.4.5 Higher Order Interpolating Methods 437
Review Questions e 439
Problems e 439
Computer Exercises L oL e 440
6.5 Attainable Accuracy and Multiple Roots 440
6.5.1 Error Estimation 440

6.5.2 Termination Criteria 441

6.5.3 Multiple Roots 443
Review Questions 444
Computer Exercises L e 445
6.6 Zeros of Polynomials o 0oL, 445
6.6.1 Introduction 445

6.6.2 Synthetic Division, 446

0 Contents

6.6.3 Laguerre’s Iteration Method 447

6.6.4 Deflation and Zero Suppression 449

6.6.5 Tll-Conditioned Polynomial Roots 450

6.6.6 Simultaneous Determination of Roots 452
Review Questions 453
Problems 453
6.7 Minimizing a Scalar Function 455
Review Questions o 459
Problems 459
Computer Exerciseso 459
Appendix 462
Computer Exercises oo 467

Index 475

Chapter 1

Principles of Numerical
Calculations

1.1 Introduction

I Although mathematics has been used for centuries in one form or another within
many areas of science and industry, modern scientific computing using electronic
computers has its origin in research and developments during the second world war.
In the late forties and early fifties the foundation of numerical analysis was laid as
a separate discipline of mathematics. The new capabilities of performing millions
of operations led to new classes of algorithms, which needed a careful analysis to
ensure their accuracy and stability.

Recent modern development has increased enormously the scope for using nu-
merical methods. Not only has this been caused by the continuing advent of faster
computers with larger memories. Gain in problem solving capabilities through bet-
ter mathematical algorithms have in many cases played an equally important role!
This has meant that today one can treat much more complex and less simplified
problems through massive amounts of numerical calculations. This development has
caused the always close interaction between mathematics on the one hand and sci-
ence and technology on the other to increase tremendously during the last decades.
Advanced mathematical models and methods are now used more and more also in
areas like medicine, economics and social sciences. It is fair to say that today ex-
periment and theory, the two classical elements of scientific method, in many fields
of science and engineering are supplemented in many areas by computations as an
equally important component.

As a rule, applications lead to mathematical problems which in their complete
form cannot be conveniently solved with exact formulas unless one restricts oneself
to special cases or simplified models which can be exactly analyzed. In many cases,
one thereby reduces the problem to a linear problem—for example, a linear system
of equations or a linear differential equation. Such an approach can be can quite
often lead to concepts and points of view which can, at least qualitatively, be used
even in the unreduced problems.

I This section last revised by Ake Bjorck 030115.

2 Chapter 1. Principles of Numerical Calculations

1.2 Common Ildeas and Concepts

In most numerical methods one applies a small number of general and relatively
simple ideas. These are then combined in an inventive way with one another and
with such knowledge of the given problem as one can obtain in other ways—for
example, with the methods of mathematical analysis. Some knowledge of the back-
ground of the problem is also of value; among other things, one should take into
account the order of magnitude of certain numerical data of the problem.

In this chapter we shall illustrate the use of some general ideas behind nu-
merical methods on some simple problems which may occur as subproblems or
computational details of larger problems, though as a rule they occur in a less pure
form and on a larger scale than they do here. When we present and analyze numer-
ical methods, we use to some degree the same approach which was described first
above: we study in detail special cases and simplified situations, with the aim of
uncovering more generally applicable concepts and points of view which can guide
in more difficult problems.

It is important to have in mind that the success of the methods presented
depends on the smoothness properties of the functions involved. In this first survey
we shall tacitly assume that the functions have as many well-behaved derivatives as
is needed.

1.2.1 Ilteration

One of the most frequently recurring ideas in many contexts is iteration (from
the Latin iteratio, “repetition”) or successive approximation. Taken generally,
iteration means the repetition of a pattern of action or process. Iteration in this
sense occurs, for example, in the repeated application of a numerical process—
perhaps very complicated and itself containing many instances of the use of iteration
in the somewhat narrower sense to be described below—in order to improve previous
results. To illustrate a more specific use of the idea of iteration, we consider the
problem of solving a nonlinear equation of the form

x = F(z), (1.2.1)

where F' is assumed to be a differentiable function whose value can be computed for
any given value of a real variable z, within a certain interval. Using the method of
iteration, one starts with an initial approximation xg, and computes the sequence

I :F(iIJ()), I9 :F(iIil), I3 :F(mz), (122)

Each computation of the type x,+1 = F(z,) is called an iteration. If the sequence
{zn} converges to a limiting value « then we have
a= lim z,4; = lim F(z,) = F(a),
n—o0 n—oo
so x = « satisfies the equation x = F(z). As n grows, we would like the numbers z,,

to be better and better estimates of the desired root. One then stops the iterations
when sufficient accuracy has been attained.

1.2. Common Ideas and Concepts 3

1 1
y=X y=X
08 038
y=FK)
06 y=F(X) 0.6
\ <
0.4 Il 0.4 [[
| I | | |
| (I | | | |
02 | | I 02 | | | |
| | | | | | |
X0 X1 x4 . X0 xx4x3 xi
0 02 04 06 08 1 0 02 04 06 08 1
0<F(x<1 -1<F((x)<0
1 : 1 ‘ ;
y=F() y=x
08 08 N
y=x g
06 06
|
0.4 0.4 [[
L veF) -
02 (| 02 (. | |
. %2 x1x0 . x4 x2x0 Xl x3
0 02 04 06 08 1 0 02 04 06 08 1
Flx)>1 F(x)<-1

Figure 1.2.1. (a)-(d) Geometric interpretation of iteration Tp+1 = F ().

A geometric interpretation is shown in Fig. 1.2.1. A root of Equation (1.2.1) is
given by the abscissa (and ordinate) of an intersecting point of the curve y = F(x)
and the line y = z. Using iteration and starting from zo we have z; = F(zg).
The point z; on the z-axis is obtained by first drawing a horizontal line from the
point (xo, F(z9)) = (xo,z1) until it intersects the line y = z in the point (z1,z;)
and from there drawing a vertical line to (z1, F(x1)) = (x1,22) and so on in a
“staircase” pattern. In Fig. 1.2.1a it is obvious that {z,} converges monotonically
to a. Fig. 1.2.1b shows a case where F' is a decreasing function. There we also
have convergence but not monotone convergence; the successive iterates z,, are
alternately to the right and to the left of the root a.

But there are also divergent cases, exemplified by Figs. 1.2.1c and 1.2.1d. One
can see geometrically that the quantity which determines the rate of convergence
(or divergence) is the slope of the curve y = F(x) in the neighborhood of the root.
Indeed, from the mean value theorem we have

Tny1 =@ _ F(z,) — F(a) ()

Ty —Q Ty —Q

4 Chapter 1. Principles of Numerical Calculations

where &, lies between z,, and a. We see that, if z¢ is chosen sufficiently close to
the root, (yet zo # a), the iteration will diverge if |F'(«)] > 1 and converge if
|F'(a)] < 1. In these cases the root is called, respectively, repulsive and attractive.
We also see that the convergence is faster the smaller |F'(«)] is.

Example 1.2.1. A CLASSICAL FAST METHOD FOR CALCULATING SQUARE ROOTS:
The equation z? = ¢ (¢ > 0) can be written in the form x = F(z), where
F(z) =i (z+c/z). If we set

Tpt1 = % (X +c/xy),
then the a = lim,,_, o z, = /¢ (see Fig. 1.2.2)

251

L \ M,/

L ‘2\ L I}
05 1 15 2 25
Figure 1.2.2. The fiz-point iteration x,, = (z, + ¢/x,)/2, ¢ = 2, zg = 0.75.

For ¢ = 2, and @ = 1.5, we get #1 = $(1.5+ 2/1.5) = 12 = 1.4166666.. . .,
and
xo = 1.414215 686274, x5 = 1.414213 562375,

which can be compared with v/2 = 1.414213562373... (correct to digits shown).
As can be seen from Fig. 1.2.2 a rough value for z suffices. The rapid convergence
is due to the fact that for « = \/c we have

F'(a) = (1—c/a*)/2=0.

One can in fact show that if =, has t correct digits, then z,; will have at least
2t — 1 correct digits; see Example 6.3.3 and the following exercise. The above
iteration method is used quite generally on both pocket calculators and computers
for calculating square roots. The computation converges for any z¢ > 0.

Iteration is one of the most important aids for the practical as well as theoreti-
cal treatment of both linear and nonlinear problems. One very common application

1.2. Common Ideas and Concepts 5

of iteration is to the solution of systems of equations. In this case {z,,} is a sequence
of vectors, and F' is a vector-valued function. When iteration is applied to differen-
tial equations {z, } means a sequence of functions, and F'(z) means an expression
in which integration or other operations of functions may be involved. A number of
other variations on the very general idea of iteration will be given in later chapters.

The form of equation (1.2.1) is frequently called the fixed point form, since
the root « is a fixed point of the mapping F. An equation may not be given
originally in this form. One has a certain amount of choice in the rewriting of
equation f(z) = 0 in fixed point form, and the rate of convergence depends very
much on this choice. The equation 2> = ¢ can also be written, for example, as
x = c¢/x. The iteration formula x,; = c¢/z,, however, gives a sequence which
alternates between zo (for even n) and c¢/zg (for odd n)—the sequence does not
even converge!

Let an equation be given in the form f(z) = 0, and for any k # 0, set

F(x) = o+ kf(2).

Then the equation = = F(z) is equivalent to the equation f(z) = 0. Since F'(a) =
1+ kf'(a), we obtain the fastest convergence for £k = —1/f'(a). Because «a is not
known, this cannot be applied literally. However, if we use z,, as an approximation
this leads to the choice F(x) = x — f(z)/f'(x), or the iteration

Tptl = Tp — f’(ﬂ?)
n

(1.2.3)

This is the celebrated Newton’s method.? (Occasionally this method is referred
to as the Newton—Raphson method.) We shall derive it in another way below.

Example 1.2.2. The equation 22 = ¢ can be written in the form f(z) = 22 —¢ = 0.
Newton’s method for this equation becomes
2

z, —c 1 c
e == E =g)
n n

which is the fast method in Example 1.2.1.

1.2.2 Linearization and Extrapolation

Another often recurring idea is that one locally, that is, in a small neighborhood
of a point, approzimates a more complicated function with a linear function. We
shall first illustrate the use of this idea in the solution of the equation f(z) = 0.
Geometrically, this means that we are seeking the intersection point between the x-
axis and the curve y = f(z), see Fig. 1.2.3. Assume that we have an approximating

?Isac Newton (1642-1727), English mathematician, astronomer and physicist, invented, inde-
pendently of the German mathematician and philosopher Gottfried W. von Leibniz (1646-1716),
the infinitesimal calculus. Newton, the Greek mathematician Archimedes (287-212 B.C. and the

German mathematician Carl Friedrich Gauss (1777-1883) gave pioneering contributions to numer-
ical mathematics and to other sciences.

6 Chapter 1. Principles of Numerical Calculations

Figure 1.2.3. Newton’s method.

value z(to the root. We then approximate the curve with its tangent at the point
(zo0, f(x0))- Let x; be the abscissa of the point of intersection between the z-axis
and the tangent. Since the equation for the tangent reads

y — f(zo) = f’(:co)(x — Zo),

we obtain by setting y = 0, the approximation

T1 = To — f(mo)/fl(fﬂo)-

In many cases x; will have about twice as many correct digits as zo. However, if
xo is a poor approximation and f(z) far from linear, then it is possible that z; will
be a worse approximation than zg.

If we combine the ideas of iteration and local linear approximation, that is,
we substitute x, for xg and x,4+1 for z1, we rediscover Newton’s method mentioned
earlier. If xg is close enough to « the iterations will converge rapidly, see Fig. 1.2.3,
but there are also cases of divergence.

Figure 1.2.4. The secant method.

1.2. Common Ideas and Concepts 7

Another way, instead of drawing the tangent, to approximate a curve locally
with a linear function is to choose two neighboring points on the curve and to ap-
proximate the curve with the secant which joins the two points, see Fig. 1.2.4. The
secant method for the solution of nonlinear equations is based on this approxi-
mation. This method, which preceded Newton’s method, is discussed more closely
in Sec. 6.4.1.

Newton’s method can easily be generalized to solve a system of nonlinear
equations

filx1,29,...,2,) =0, i=1:n.

or f(x) = 0, where f and x now are vectors in R". Then z,; is determined by
the system of linear equations

fl(fcn)('rn-&-l —xp) = f(@n),

where
of1 Of1
ozt Tt Oy
Fay=| - | emm,
Ofn Ofn
Ozt Tt Oy

is the matrix of partial derivatives of f with respect to . This matrix is called the
Jacobian of f and often denoted by J(z). We shall several times, in later chapters,
return to this fundamental method.

The secant approximation is useful in many other contexts. It is, for instance,
generally used when one “reads between the lines” or interpolates in a table of
numerical values. In this case the secant approximation is called linear interpo-
lation. When the secant approximation is used in numerical integration, that
is in the approximate calculation of a definite integral,

b
I:/ y(z) dz, (1.2.4)

(see Fig. 1.2.5) it is called the trapezoidal rule. With this method, the area
between the curve y = y(z) and the z-axis is approximated with the sum 7'(h) of
the areas of a series of parallel trapezoids.

Using the notation of Fig. 1.2.5, we have

T(h) = h% Z(yi +Yit1), h=

=0

b—a
—

(1.2.5)

(In the figure, n = 4.) We shall show in a later chapter that the error is very nearly
proportional to h? when h is small. One can then, in principle, attain arbitrary
high accuracy by choosing h sufficiently small. However, the computational work
involved is roughly proportional to the number of points where y(z) must be com-
puted, and thus inversely proportional to h. Thus the computational work growth
rapidly as one demands higher accuracy (smaller h).

8 Chapter 1. Principles of Numerical Calculations

a b

Figure 1.2.5. Numerical integration by the trapezoidal rule (n = 4).

Numerical integration is a fairly common problem because in fact it is quite
seldom that the “primitive” function can be analytically calculated in a finite ex-
pression containing only elementary functions. It is not possible, for example, for
such simple functions as e or (sinz)/z. In order to obtain higher accuracy with
significant less work than the trapezoidal rule requires, one can use one of the fol-
lowing two important ideas:

(a) Local approximation of the integrand with a polynomial of higher degree,
or with a function of some other class, for which one knows the primitive
function.

(b) Computation with the trapezoidal rule for several values of h and then ex-
trapolation to h = 0, so-called Richardson extrapolation or the deferred
approach to the limit, with the use of general results concerning the de-
pendence of the error on h.

The technical details for the various ways of approximating a function with
a polynomial, among others Taylor expansions, interpolation, and the method of
least squares, are treated in later chapters.

The extrapolation to the limit can easily be applied to numerical integration
with the trapezoidal rule. As was mentioned previously, the trapezoidal approxima-
tion (1.2.5) to the integral has an error approximately proportional to the square
of the step size. Thus, using two step sizes, h and 2h, one has:

T(h) —I~kh? — T(2h)—1 = k(2h)?%
and hence 4(T'(h) — I) ~ T'(2h) — I, from which it follows that

I ~ (4T (h) = T(2h)) = T(h) + 3(T(h) — T(2h)).

Thus, by adding the corrective term £(T'(h) — T(2h)) to T'(h), one should get

an estimate of I which typically is far more accurate than T'(h). In Sec. 3.6 we

1.2. Common Ideas and Concepts 9

shall see that the improvements is in most cases quite striking. The result of the
Richardson extrapolation is in this case equivalent to the classical Simpson’s rule
for numerical integration, which we shall encounter many times in this volume. It
can be derived in several different ways. Sec. 3.6 also contains a further development
of the extrapolation idea, Romberg’s method.

Knowledge of the behavior of the error can, together with the idea of extrap-
olation, lead to a powerful method for improving results. Such a line of reasoning is
useful not only for the common problem of numerical integration, but also in many
other types of problems.

Example 1.2.3. The integral f1102 f(z) dz is computed for f(x) = 23 by the trape-
zoidal method. With h = 1 we obtain

T(h) =2,695, T(2h) =2,728,

and extrapolation gives T' = 2.684, equal to the exact result. Similarly, for f(z) = x4

we obtain
T(h) = 30,0009, T(2h) = 30,736,

and with extrapolation T = 29, 766.7 (exact 29, 766.4).

1.2.3 Finite Difference Approximations

The local approximation of a complicated function by a linear function leads to an-
other frequently encountered idea in the construction of numerical methods, namely
the approximation of a derivative by a difference quotient. Fig. 1.2.6 shows the
graph of a function y(z) in the interval [z,,—1, Z,4+1] where 41 — 2, = T, —Zy—1 =
h; h is called the step size. If we set y; = y(z;), i = n—1,n,n+1, then the derivative
at x,, can be approximated by a forward difference quotient,

Y (zn) ~ w (1.2.6)

or a similar backward difference quotient involving y, and y,—1. The error in the
approximation is called a discretization error.
However, it is conceivable that the centered difference approximation

Np) ag Intl — Yn—d

will usually be more accurate. It is in fact easy to motivate this. By Taylor’s
formula,

y(e+ 1) —y(e) =y @h +y" @K /2 +y" @K 6 +... (128)
—y(a—h) +y(@) =y @h —y" (@K /2 + " @h 6 — ... (L2.9)

Set © = . Then, by the first of these equations,

! _ Ynt1 = Yn ﬁ "
y'(zn) = A +2y (Tn) +...

10 Chapter 1. Principles of Numerical Calculations

(n = 1)h nh (n+ 1)h

Figure 1.2.6. Finite difference quotients.

Next, add the two Taylor expansions and divide by 2h. Then the first error term
cancels and we have
_ Ynt+1 —Yn-1

h2
y'(n) = —F— + —y"

o7 G (xn) + ...

We shall in the sequel call a formula (or a method), where a step size parameter h
is involved, accurate of order p, if its error is approximately proportional to hP.
Since y" (x) vanishes for all x if and only if y is a linear function of z, and similarly,
y""(x) vanishes for all z if and only if y is a quadratic function, we have established
the following important result:

Lemma 1.2.1. The forward difference approzimation (1.2.6) is exact only for a
linear function, and it is only first order accurate in the general case. The centered
difference approximation (1.2.7) is exact also for a quadratic function, and is second
order accurate in the general case.

For the above reason the approximation (1.2.7) is, in most situations, prefer-
able to (1.2.6). However, there are situations when these formulas are applied to the
approximate solution of differential equations where the forward difference approx-
imation suffices, but where the centered difference quotient is entirely unusable, for
reasons which have to do with how errors are propagated to later stages in the cal-
culation. We shall not discuss it more closely here, but mention it only to intimate
some of the surprising and fascinating mathematical questions which can arise in
the study of numerical methods.

Higher derivatives are approximated with higher differences, that is, differ-
ences of differences, another central concept in numerical calculations. We define:

(AY)n = Yn+1 — Yn;
(Azy)n = (A(AY))n = Yn+2 = Yn+1) — Yn+1 — Yn)
= Ynt2 — 2Ynt1 + Yn;
(A%)n = (AA®Y)n = Ynts — 3Ynt2 + 3Ynt1 — Un;

1.2. Common Ideas and Concepts 11

etc. For simplicity one often omits the parentheses and writes, for example, A2ys
instead of (A%y)s. The coefficients that appear here in the expressions for the higher
differences are, by the way, the binomial coefficients. In addition, if we denote the
step length by Az instead of by h, we get the following formulas, which are easily
remembered:) N

dy Ay o Ay A (1.2.10)

dr Az dz? — (Ax)?
etc. Each of these approximations is second order accurate for the value of the
derivative at an x which equals the mean value of the largest and smallest z for
which the corresponding value of y is used in the computation of the difference.
(The formulas are only first order accurate when regarded as approximations to
derivatives at other points between these bounds.) These statements can be estab-
lished by arguments similar to the motivation for the formulas (1.2.6) and (1.2.7).
The following second order accurate formula, which can be derived by taking the
sum of the two Taylor expansions in (1.2.8)—(1.2.9), is an important particular case:

" _ (Azy)n*1 = (623/)71 o Ynt+1 — 2Yn + Yn—1
Y (m") - h2 T OR2 ~ 12)
where § denotes the central difference operator

(0 (on + 21) =y (o + 31)).

The approximation of equation (1.2.7) can be interpreted as an application of
(1.2.10) with Az = 2h, or else as the mean of the estimates which one gets ac-
cording to equation (1.2.10) for y'((n + 1)h) and y'((n — 3)h).

When the values of the function have errors, for example, when they are
rounded numbers, the difference quotients become more and more uncertain the
less h is. Thus if one wishes to compute the derivatives of a function given by a
table, one should as a rule use a step length which is greater than the table step.

(1.2.11)

6yn =

Example 1.2.4. For y = cos z one has, using function values correct to six decimal
digits:

x y Ay A%y

0.59 0.830941
-9605

0.60 0.825336 -83
-5688

0.61 0.819648

This arrangement of the numbers is called a difference scheme. Note that
the differences are expressed in units of 107%. Using (1.2.7) and (1.2.10) one gets

y'(0.60) ~ (0.819648 — 0.830941)/0.02 = —0.56465,
y""(0.60) ~ —83-107%/(0.01)* = —0.83.

12 Chapter 1. Principles of Numerical Calculations

The correct results are, with six decimals, y'(0.60) = —0.564642, 3" (0.60) = —0.825336.
In " we only got two correct decimal digits. This is due to cancellation, which is
an important cause of loss of accuracy, see further Sec. 2.2.3. Better accuracy can
be achieved by increasing the step h, see Problem 5 at the end of this section.

Finite difference approximations are useful for partial derivatives too. Suppose
that the values u; ; = u(z;,y;) of a function u(x,y) are given on a square grid with
grid size h, i.e. x; = o +ih, y; = yo + jh, 0 < i < M, 0 < j < N that covers a
rectangle. By (1.2.11), the Laplace operator

0u . 0%u
0x2 Oy?
can then be approximated by
Uit1,j — 2Wij + Uin1,j | Wiga1 = 2Wij + Uij—1
h? + h?

1

=72 (i1 +wic1g + i1 + i1 — dug).

see the “computational molecule”

Y
Lo

8%u B%u

922 + el = fz,y), (1.2.12)

where f(z,y) is a given function.

Review Questions

1. Make lists of the concepts and ideas which have been introduced. Review their use
in the various types of problems mentioned.

2. Discuss the convergence condition and the rate of convergence of the method of
iteration for solving z = F(xz).

3. What is the trapezoidal rule? What is said about the dependence of its error on the
step length?

Problems and Computer Exercises

1. Calculate v/10 to seven decimal places using the method in Example 1.2.1. Begin
with zo = 2.

2. Consider f(z) = ® — 2z — 5. The cubic equation f(x) = 0 has been a standard test
problem, since Newton used it in 1669 to demonstrate his method. By computing
(say) f(x) for x = 1,2,3, we see that x = 2 probably is a rather good initial guess.
Iterate then by Newton’s method until you trust that the result is correct to six
decimal places.

1.3. Numerical Algorithms 13

3. The equation 2> — 2 = 0 has three roots, —1,0,1. We shall study the behaviour of
Newton’s method on this equation, with the notations used in §1.2.2 and Fig. 1.2.3.
(a) What happens if zo = 1//3 ? Show that z, converges to 1 for any zo > 1//3.
What is the analogous result for convergence to —17
(b) What happens if o = 1/v/5? Show that z, converges to 0 for any z, €
(=1/V5, 1/V5).

Hint: Show first that if zo € (0, 1/+/5) then z1 € (—20,0). What can then be said
about z2?

(¢) Find, by a drawing (with paper and pencil), lim z., if o is a little less than 1/+/3.
Find by computation lim z,, if z¢ = 0.46.

*(d) A complete discussion of the question in (c) is rather complicated, but there is
an implicit recurrence relation that produces a decreasing sequence {a; = 1/\/57 az,
as, ...}, by means of which you can easily find lim,, _, o z,, for any z¢ € (1/\/5, 1/\/5)
Try to find this recurrence.

Answer: a; — f(a;)/f (a;) = —a;—1; limy 00 T, = (—1)i if zo € (as,ai41);

a1 = 0.577, az = 0.462, a3 = 0.450, a4 =~ lim; 00 a; = 1//5 = 0.447.

4. Calculate f01/2 e’ dx

(a) to six decimals using the primitive function.

(b) with the trapezoidal rule, using step length h = 1/4.

(c) using Richardson extrapolation to h = 0 on the results using step length h = 1/2,
and h =1/4.

(d) Compute the ratio between the error in the result in (c) to that of (b).

5. In Example 1.2.4 we computed y"(0.6) for y = cos(z), with step length h = 0.01.
Make similar calculations using h = 0.1, h = 0.05 and h = 0.001. Which value of h
gives the best result, using values of y to six decimal places? Discuss qualitatively
the influences
of both the rounding errors in the table values and the error in the approximation
of a derivative with a difference quotient on the result for various values of h.

1.3 Numerical Algorithms

For a given numerical problem one can consider many different algorithms. These
can differ in efficiency and reliability and give approximate answers sometimes with
widely varying accuracy. In the following we give a few examples of how algorithms
can be developed to solve some typical numerical problems.

1.3.1 Recurrence Relations

One of the most important and interesting parts of the preparation of a problem for
a computer is to find a recursive description of the task. Sometimes an enormous
amount of computation can be described by a small set of recurrence relations.

A common computational task is the evaluation of a polynomial, at a given
point z where, say,

p(2) = apz® + a12® + asz + as
= ((apz + a1)z + a2)z + as.

14 Chapter 1. Principles of Numerical Calculations

We set by = ag, and compute
by =boz+ai, ba=biz+az, p(z)=0bs="0bez+as.
This illustrates, for n = 3, Horner’s rule for evaluating a polynomial of degree n,
p(z) = apx™ + az" 4 an 1T+ an,
at a point z. This algorithm can be described by the recurrence relation:
bo=ag, bi=bi1z+a;, i=1:n, (1.3.1)

where p(z) = b,. Clearly this algorithm requires n additions and multiplications for
evaluating p(z). An algorithm where the powers are calculated recursively by x? =
z-2""! and subsequently multiplied by a,,_; requires twice as many multiplications.

The quantities b; in (1.3.1) are of intrinsic interest because of the following
result, often called synthetic division:

p@) —p(z) _ -
= Z biz" (1.3.2)
1=0
where the b; are defined by (1.3.1). The proof of this result is left as an exercise.
Synthetic division is used, for instance, in the solution of algebraic equations, when
already computed roots are successively eliminated. After each elimination, one can
deal with an equation of lower degree. This process is called deflation. (As shown
in Sec. 6.6.4, some care is necessary in the numerical application of this idea.)
The proof of the following useful relation is left as an exercise to the reader:

Lemma 1.3.1.

Let the b; be defined by (1.3.1) and
co = by, ci=bj+zci_1, i=1:n-—1. (133)

Then p'(z) = ¢p_1.

Recurrence relations are among the most valuable aids in numerical calcula-
tion. Very extensive calculations can specified in relatively short computer programs
with the help of such formulas. However, unless used in the right way errors can
grow exponentially and completely ruin the results.

Example 1.3.1.

xn

T+ 95

1
To compute the integrals I,, = / dr, i = 1 : N one can use the
0

recurrence relation
I, +5I,1 =1/n, (1.3.4)

which follows from

1 .n 5 n—1 1 1
In+5In_1:/ wdmz/ 2" lde = =,
0 T+ 0 n

1.3. Numerical Algorithms 15

Below we use this formula to compute Iz, using six decimals throughout. For n =0
we have

Iy = [In(z + 5)]; =In6 — In5 = 0.182322.

Using the recurrence relation we get

I =1-5I=1-0.911610 = 0.088390,

I, =1/2 - 5I; = 0.500000 — 0.441950 = 0.058050,
Is =1/3 — 51, = 0.333333 — 0.290250 = 0.043083,
I, =1/4—5I3 = 0.250000 — 0.215415 = 0.034585,
Is =1/5— 514 = 0.200000 — 0.172925 = 0.027075,
Is =1/6 — 5I; = 0.166667 — 0.135375 = 0.031292,
I; =1/7—5I; = 0.142857 — 0.156460 = —0.013603.

It is strange that Ig > I5, and obviously absurd that I; < 0! The reason for the
absurd result is that the round-off error € in Iy = 0.18232156. . ., whose magnitude
is about 0.44 - 1075 is multiplied by (—5) in the calculation of I;, which then has an
error of —5e. That error produces an error in Ir of 5%, etc. Thus the magnitude
of the error in Ir is 57¢ = 0.0391, which is larger than the true value of Ir. On top
of this comes the round-off errors committed in the various steps of the calculation.
These can be shown in this case to be relatively unimportant.

If one uses higher precision, the absurd result will show up at a later stage.
For example, a computer that works with a precision corresponding to about 16
decimal places, gave a negative value to Iss although Iy had full accuracy. The
above algorithm is an example of a disagreeable phenomenon, called numerical
instability.

We now show how, in this case, one can avoid numerical instability by choosing
a more suitable algorithm.

Example 1.3.2.
We shall here use the recurrence relation in the other direction,

I, =(01/n-1,)/5. (1.3.5)
Now the errors will be divided by —5 in each step. But we need a starting value.
We can directly see from the definition that I,, decreases as n increases. One can

also surmise that I,, decreases slowly when n is large (the reader is recommended
to motivate this). Thus we try setting I;2 = I11. It then follows that

Iy + 50y ~1/12, Iy ~1/72 ~ 0.013889.
(show that 0 < I35 < 1/72 < I1). Using the recurrence relation we get

Iip = (1/11 —0.013889) /5 = 0.015404, Iy = (1/10 — 0.015404) /5 = 0.016919,

16 Chapter 1. Principles of Numerical Calculations

and further

Is = 0.018838, I; =0.021232, Is = 0.024325, I5 = 0.028468,
I, =0.034306, I3 =0.043139, I, =0.058039, I, =0.088392,

and finally Iy = 0.182322. Correct!

If we instead simply take as starting value I1» = 0, one gets I;; = 0.016667,
Ip = 0.018889, Iy = 0,016222, Iy = 0.018978, I; = 0.021204, Is = 0.024331, and
I5,..., Iy have the same values as above. The difference in the values for I ; is
0.002778. The subsequent values of I, Iy, ..., Iy are quite close because the error
is divided by -5 in each step. The results for I,, obtained above have errors which
are less than 1073 for n < 8.

The reader is warned, however, not to draw erroneous conclusions from the
above example. The use of a recurrence relation “backwards” is not a universal
recipe as will seen later on! Compare also Problems 6 and 7 at the end of this
section.

1.3.2 Divide and Conquer Strategy

A powerful strategy for solving large scale problems is the divide and conquer
strategy. The idea is to split a high dimensional problem into problems of lower
dimension. Each of these are then again split into smaller subproblems, etc., until
a number of sufficiently small problems are obtained. The solution of the initial
problem is then obtained by combining the solution of the subproblems working
backwards in the hierarchy.

We illustrate the idea on the computation of the sum s = Y"1 | a;. The usual
way to proceed is to to use the recursion

so =0, Si=8;i-1+a;, t1=1:n.
Another order of summation is as illustrated below for n = 23 = &:

a; a a3 a4 a3 ag a7 as
51,2 53,4 55,6 57,8
51,4 55,8
51,8

where s; j = a; +---+a;. In this table each new entry is obtained by adding its two
neighbors in the row above. Clearly this can be generalized to compute an arbitrary
sum of n = 2* terms in k steps. In the first step we perform n/2 sums of two terms,
then n/4 partial sums each of 4 terms, etc., until in the kth step we compute the
final sum.

This summation algorithm uses the same number of additions as the first one.
However, it has the advantage that it splits the task in several subtasks that can be

1.3. Numerical Algorithms 17

performed in parallel. For large values of n this summation order can also be much
more accurate than the conventional order (see Problem 2.3.1).

The algorithm can also be described in another way. Consider the following
definition of a summation algorithm for computing the s(i,j) = a; +---+a;, j > i

sum = s(i, j);
if j =i+ 1 then sum = a; + a;;
else k= [(i+7)/2]; sum=s(i,k)+s(k+1,j5);

end

This function defines s(i, j) in a recursive way; if the sum consists of only two terms
then we add them and return with the answer. Otherwise we split the sum in two
and use the function again to evaluate the corresponding two partial sums. This
approach is aptly called the divide and conquer strategy. The function above is
an example of a recursive algorithm—it calls itself. Many computer languages
(e.g., Matlab) allow the definition of such recursive algorithms. The divide and
conquer is a top down description of the algorithm in contrast to the bottom up
description we gave first.

There are many other less trivial examples of the power of the divide and
conquer approach. It underlies the Fast Fourier Transform and leads to efficient
implementations of, for example, matrix multiplication, Cholesky factorization, and
other matrix factorizations. Interest in such implementations have increased lately
since it has be realized that they achieve very efficient automatic parallelization of
many tasks.

1.3.3 Approximation of Functions

One fundamental problem which occurs in many variants, is to approximate a func-
tion f by a member f* of a class of functions which is easy to work with mathemat-
ically (for example, polynomials, rational functions, or trigonometric polynomials),
where each particular function in the class is specified by the numerical values of a
number of parameters.

There are two types of shortcomings to take into account: errors in the input
data, and shortcomings in the particular model (class of functions, form) which one
intends to adopt to the input data. For ease in discussion we shall call these the
measurement error and the error in the model, respectively.

Example 1.3.3. The points in Fig. 1.3.1 show, for n = 1,2,3,4,5, the time ¢
for the nth passage of a swinging pendulum through its point of equilibrium. The
condition of the experiment were such that a relation of the form ¢ = a + bn can be
assumed to be valid to very high accuracy. Random errors in measurement are the
dominant cause of the deviation from linearity shown in Figure 1.3.1. This deviation
causes the values of the parameters ¢ and b to be uncertain. We have five points
and only two parameters to determine; the problem is said to be overdetermined.
Such overdetermined problems can be treated by the method of least squares, i.e.
by minimizing the sum of squares of the deviations; see Section 1.6.5.

18 Chapter 1. Principles of Numerical Calculations

Figure 1.3.1. Fitting a linear relation to observations.

Example 1.3.4. The Error function erf(x) is defined by the integral of the Gaus-
sian distribution function from 0 to x

erf(z) = %/0 et dt.

In order to compute erf(z) for arbitrary z € [0, 1] with a relative error less than 103
with a small number of arithmetic operations, one can approximate the function
by a polynomial. Setting x = —t2 in the well known Maclaurin series for eZ,
truncating after seven terms and integrating term by term we obtain the polynomial
approximation of degree 2n + 1

oy 2 [t 2 s (1)
f(x)_ﬁ/o ;(VT dt_ﬁg‘”m] YT+

This series converges for all x, but is suitable for numerical computations only
for values of which are not too large. To evaluate the series we note that the
coeflicients a; satisfies the recursion.

0= —a;, 2D
TR+
This recursion shows that for = € [0, 1] the absolute values of the terms ¢; = a;z?/*!
decrease monotonically. This implies that the absolute error in a partial sum is
bounded by the absolute value of the first neglected term. (Why? For an answer
see Theorem 3.1.5.) A possible algorithm then is:
Set to = x, so = ap; for j =1,2,... compute

(2, -1 , i -8
ti=—tiq1——o— 2 a? s.=s;_1+t;, until [t;]<-107%s;.
J 525+ 1) i= 5 J |t J

1.3. Numerical Algorithms 19

Here we have estimated the error by the last term added in the series. Since we
have to compute this term for the error estimate we might as well use it! Note also
that in this case, where the number of terms is fixed in advance, Horner’s scheme
is not suitable for the evaluation.

10°

-10

10 Tk

11|

10
1072k
13

10

107

1078

Figure 1.3.2. Relative error e(z) = |f*(z) — erf(z)|/er f(z).

Fig. 1.3.2 shows the graph of the relative error in the computed approximation
f*(z). At most twelve terms in the series were needed.

In this example there are no errors in measurement, but the “model” of ap-
proximating the error function with a polynomial is not exact, since the function
demonstrably is not a polynomial. There is a truncation error?® from truncat-
ing the series, which can in this case be made as small as one wants by choosing
the degree of the polynomial sufficiently large (e.g., by taking more terms in the
Maclaurin series).

The use of power series will be studied in depth in Chapter 3, where also other
more efficient methods than the Maclaurin series for approximation by polynomials
will be treated.

The above examples showed two isolated situations. In practice, both the in-
put data and the model are as a rule insufficient. One can consider approximation
as a special case of a more general and quite important problem: to fit a mathemat-
ical model to given data and other known facts. One can also see approximation
problems as analogous to the task of a communication engineer, to filter away noise
from the signal. These questions are connected with both mathematical statis-
tics and the mathematical discipline approximation theory.

31In general the error due to replacing an infinite process by a finite is referred to as a truncation
error.

20 Chapter 1. Principles of Numerical Calculations

1.3.4 Solving Linear System of Equations

A fundamental problem in scientific computing is computing the solution (if any)
of a system of linear equations

a11x1 + a12&2 + -+ a1pTy = by
211 + A20&2 + + -+ + A2pTy = by (1 3 6)
1T, + Q22 + -+ Ty = bn

where a;; and b;, 1 <7 <m, 1 < j < n are the known input data and z;, 1 < j <n,
are the unknowns variables to be determined.
This system can be written

aii 12 -t Qin T b1
a21 G2 - G2p T2 by

= . , (1.3.7)
Am1 Am2 o Amn Tn bm

or much more compact in matrix-vector form as Az = b, where A € R™*™ is a
matrix and x € R™ and b € R™ are column vectors. There are three possibilities,
namely, the system may have no solution, a unique solution, or an infinite set of
solutions.

Linear systems which (possibly after a permutation of rows and columns of
A) are of triangular form are particularly simple to solve. Consider a square upper
triangular linear system (m = n)

U1 .. Ul p—t1 Ulp T b1
Up—1,n—1 Un—-1,n Tn—1 bnfl
Unn Iy bn

The matrix U is nonsingular if and only if
det(U) =U11 " Up—1,n—1Unn 7é 0.

If this is the case the unknowns can be computed by the following recursion

n

Ty, = by [Unn, T; = (bi — Z uikxk)/uii, i=n-—1,...,1. (1.3.8)
k=i+1

Since the unknowns are solved for in backward order, this is called back-substitution.
Similarly, a square linear system of lower triangular form Lx = b,

l11 1 b1
lor o To b

lnl an e lnn Ty bn

1.3. Numerical Algorithms 21

where L is nonsingular, can be solved by forward-substitution
i—1
r1 = bl/lll, Tr; = (bz — Z likﬂik)/l“', 1=2:n. (139)
k=1

(Note that by reversing the order of the rows and columns an upper triangular
system is transformed into a lower triangular and vice versa.)

From the formulas above it easily follows that the solution of a triangular
system of order n can be computed in n divisions and 3n(n — 1) additions and mul-
tiplications. Note that this is almost exactly the same amount of work as required
for multiplying a vector by a triangular matrix.

It is important to know roughly how much work is required by different matrix
algorithms. It should be noted, however, that counting the number of arithmetic
operations is not sufficient for the estimation of running times on a computer, since
subscript computation and the time to retrieve data and store the result must also
be taken into account. However, a count of the number of arithmetic operations
in a matrix algorithm still provides useful information, and can serve as an initial
basis of comparison of different algorithms. The operation count for the solution
of a triangular system tells us that the running time on a computer roughly will
increase quadratically with the dimension n. Thus, doubling n will approximately
increase the work in solving the system by a factor of four.

Usually in matrix computations the number of multiplicative operations (X, /)
is about the same as the number of additive operations (4, —). Therefore we will
here use the concept of a flop to mean roughly the amount of work associated with
the computation

5:= 5+ a;;by;,
i.e., one addition and multiplication and some related subscript computation.*

Flop counts like these are meant only as a rough appraisal of the work and
one should not assign too much meaning to their precise value. On modern com-
puter architectures the rate of transfer of data between different levels of memory
often limits the actual performance. Also ignored here is the fact that on current
computers division usually is 5-10 times slower than a multiply.

If in Gaussian elimination a zero pivotal element is encountered, ag;) =0,
When implementing a matrix algorithm on a computer, the order of operations in
matrix algorithms may be important. One reason for this is the economizing of
storage, since even matrices of moderate dimensions have a large number of ele-
ments. When the initial data is not needed for future use, computed quantities may
overwrite data. To resolve such ambiguities in the description of matrix algorithms
it is important to be able to describe computations like those in equations (1.3.8)
in a more precise form. For this purpose we will use an informal programming
language, which is sufficiently precise for our purpose but allows the suppression
of cumbersome details. We illustrate these concepts on the back-substitution al-
gorithm given above. In the following back-substitution algorithm the solution x
overwrites the data b.

4Not that in some textbooks (e.g., Higham [7, 2002]) a flop is instead defined as an add or
multiply, doubling all the flop counts in this book.

22 Chapter 1. Principles of Numerical Calculations

Algorithm 1.3.1 Back-substitution

Given a nonsingular upper triangular matrix U € R"*"™ and a vector b € R", the
following algorithm computes € R" such that Uz = b:

fori=n:(-1):1

n

5= E Uik br;

j=i+1
bl’ = (bz — s)/u“,

end

Here z := y means that the value of y is evaluated and assigned to . We use the
convention that when the upper limit in a sum is smaller than the lower limit the
sum is set to zero.

Another possible sequencing of the operations in Algorithm 1.3.4:

fork=n:(-1):1

br = br/upi;
fori=k—-1:(-1):1
bi == by — wikb;
end
end

Here the elements in U are accessed column-wise instead of row-wise as in the pre-
vious algorithm. Such differences can influence the efficiency of the implementation
depending on how the elements in the matrix U is stored.

Clearly the following elementary operation can be performed on the system
without changing the set of solutions:

e Interchange two equations
e Multiply an equation by a nonzero scalar a.
e Adding a multiple « of the ith equation to the jth equation.

These operations correspond in an obvious way to row operations carried out
on the augmented matrix (A4,b). By performing a sequence of such elementary
operations one can always transform the system Az = b into a simpler system,
which can be solved in an elementary way. The most important direct method is
Gaussian elimination.® This is still the method of choice when the matrix A is
square and of full rank.

5Named after Carl Friedrich Gauss (1777-1855), but known already in China as early as in the
first century BC.

1.3. Numerical Algorithms 23

In Gaussian elimination the unknowns are eliminated in a systematic way,
so that at the end an equivalent triangular system is produced, which can be solved
by substitution. Consider the square system

11 a2 - Ain Z1 b1
a1 Q22 - Q2p T2 by

= . 5
(2775} Ap2 ot Anpn Tn bn

and assume that a11 # 0. Then we can eliminate z; from the last (n — 1) equations
as follows. Subtracting from the ith equation the multiple

lan =an/an, i=2:n,

of the first equation, the last (n — 1) equations become

af) o)\ [by
: : =1 : |-

o a2) e

where the new elements are given by
2 2)
agj) :aij—lﬂalj, bg) :bi_lz'lbl, t=2:n.

This is a system of (n—1) equations in the (n —1) unknowns s, ..., z,. If ag) #0,
we can proceed and in the next step eliminate x5 from the last (n —2) of these equa-
tions. This gives a system of equations containing only the unknowns zs, ..., z,.

We take
lip = ag)/ag), i=3:n,

and the elements of the new system are given by

o =al) —1pa5), B =0 — 1500, i=3:n.
The diagonal elements a1, ag?, ag?, ..., which appear during the elimination

are called pivotal elements. As long as these are nonzero, the elimination can be
continued. After (n — 1) steps we get the single equation

aMe, =bm.

Collecting the first equation from each step we get

ai)) oA\ by
ay) ooag) | [e by

=17 |, (1.3.10)

an)) \a b

24 Chapter 1. Principles of Numerical Calculations

(1)

where we have introduced the notations a,;” = a;j, bgl) = b; for the coefficients in
the original system. Thus, we have reduced (1.3.7) to an equivalent nonsingular,
upper triangular system (1.3.10), which can be solved by back-substitution.

In passing we remark that since the determinant of a matrix does not change
under row operations we have from (1.3.10) det(A4) = agl)ag? -l Gaussian
elimination is indeed in general the most efficient method for computing deter-
minants!

Algorithm 1.3.2 Gaussian Elimination (without row interchanges)

Given a matrix A = A® € R™" and a vector b = b)) € R", the following
algorithm computes the elements of the reduced system of upper triangular form

(1.3.10). Tt is assumed that a*) £ 0, k=11 n:

fork=1:n-1
fori—k-l-l n

(k+1
Lik —am /akk’ zk ' =0;
for j=k+1:n
k+1 k k
agj) .— ()_l aij);
end
Y = b — 1 b
end
end

We remark that no extra memory space is needed to store the multipliers.
When ;, = agllz)/agz) is computed the element aE:H) becomes equal to zero, so the
multipliers can be stored in the lower triangular part of the matrix. Note also that
if the multipliers l;;, are saved, then the operations on the right hand side b can be
carried out at a later stage. This observation is important in that it shows that

when solving a sequence of linear systems
AiL‘Z’:bi, izltp,

with the same matriz A but different right hand sides the operations on A only have
to be carried out once.
If we form the matrices

(1 @) (1)

1 ajy a122 s a%Qn)
l: 1 o (
=7 . U= 22 2 (1.3.11)
lnl ln2 1 asgl)

then it can be shown that we have A = LU. Hence Gaussian elimination provides
a factorization of the matriz A into a lower triangular matriz L and an upper

1.3. Numerical Algorithms 25

triangular matriz U. This interpretation of Gaussian elimination has turned out to
be extremely fruitful. For example, it immediately follows that the inverse of A (if
it exists) has the factorization

Al=@u)yt=vu"tL
This shows that the solution of linear system Az = b,
r=A"b=UYL "),

can be computed by solving the two triangular systems Ly = b, Uz = y. Indeed
“almost anything you can do with A=% can be done without it” (G. E. Forsythe and
Moler)! Many other important matrix factorizations will be studied at length in
Volume 2.

The Gaussian elimination algorithm consists of three nested loops, which can
be ordered in 3-2-1 = 6 ways. Disregarding the right hand side b, each version

does the operations

(44— o8 oD jafy)
and only the ordering in which they are done differs. The version given above uses
row operations and may be called the “kij” variant, where k refers to step number,
1 to row index, and j to column index. This version is not suitable for Fortran 77,
and other languages in which matrix elements are stored sequentially by columns.
In such a language the form “kj¢” should be preferred, which is the column oriented
backsubsitution rather than Algorithm 1.3.4 might be preferred.

From Algorithm 1.3.4 it follows that (n — k) divisions and (n — k)? multipli-
cations and additions are used in step k to transform the elements of A. A further
(n — k) multiplications and additions are used to transform the elements of b. Sum-
ming over k and neglecting low order terms we find that the total number of flops
required for the reduction of Az = b to a triangular system by Gaussian elimination
is

a

i1 (n—k)? ~n?/3, i1 (n—k) ~n?/2

for A and each right hand side b, respectively. Comparing this with the approxi-
mately %112 flops needed to solve a triangular system we conclude that, except for
very small values of n, the reduction of A to triangular form dominates the work.
If in Gaussian elimination a zero pivotal element is encountered, i.e. agz) for
some k, then one cannot proceed and the method breaks down. A simple example

is obtained by taking € = 0 in the system

G)E)-6)

However, this system is nonsingular for any € # 1 and has a unique solution z; =
—x9 = —1/(1—€). However, when a;; = € = 0 the first step in Gaussian elimination
cannot be carried through. The remedy here is obviously to interchange the two
equations, which directly gives an upper triangular system.

To ensure the numerical stability in Gaussian elimination it will, except for
special classes of linear systems, be necessary to perform row interchanges not only

26 Chapter 1. Principles of Numerical Calculations

when a pivotal element is exactly zero, but also when it is small. Suppose that in
the system above ¢ = 1074, Then the exact solution, rounded to four decimals
equals z = (—1.0001,1.0001)”. However, if Gaussian elimination is carried through
without interchanges we obtain l»; = 10* and the triangular system

0.0001zqy + 22 =1
(1—10%2y = —10%

Suppose that the computation is performed using arithmetic with three decimal
digits. Then in the last equation the coefficient agé) will be rounded to 10* and the
solution computed by back-substitution is

Z2 = 1.000, z1 =0,

which is a catastrophic result! If we instead interchange the two equations before
performing Gaussian elimination then we get lz; = 10~* and the reduced system is

r1+ Ty = 0
(1-10"%)zy = 1.

The coefficient ag) is now rounded to 1, and the computed solution becomes

7y = 1.000, @ = —1.000,

which is correct to the precision carried.

In this simple example it is easy to see what went wrong in the elimination
without interchanges. The problem is that the choice of a small pivotal element
gives rise to large elements in the reduced matriz and the coefficient asy in the
original system is lost through rounding. Rounding errors which are small when
compared to the large elements in the reduced matrix are unacceptable in terms of
the original elements! When the equations are interchanged the multiplier is small
and the elements of the reduced matrix of the same size as in the original matrix.

Now, consider the general case when in step k& we have agz) = 0. (The equa-
tions may have been reordered in previous steps, but we assume that the notations
have been changed accordingly.) If A is nonsingular, then in particular its first k
columns are linearly independent. This must also be true for the first £ columns
of the reduced matrix and hence some element a(:), 1 = k : n must be nonzero,
say a! k # 0. By interchanging rows k and r this element can be taken as pivot
and it is possible to proceed with the elimination. The important conclusion is that
any nonsingular system of equations can be reduced to triangular form by Gaussian
elimination, if appropriate row interchanges are used.

Note that when rows are interchanged in A the same interchanges must be
made in the elements of the right hand side, b. Note also that the determinant
formula (??) must be modified to

det(4) = (=1)*aMal?) ... al®) (1.3.12)

nn?

1.3. Numerical Algorithms 27

where s denotes the total number of row and columns interchanges performed.

It will be shown in Sec. 7.5 that numerical stability can be ensured in Gaussian
elimination by choosing the pivotal element in step k by partial pivoting, i.e., by
taking as pivot the largest element in magnitude in the unreduced part of the kth
column.

We now consider the general case when A € R™*™ and rank (A) < min{m,n}.

Then it is possible that at some step k£ we have al(],z) = 0,7 =k : m. If the entire
(k)

submatrix a;;’, i,j > k, is zero, then rank (A) = k and we stop. Otherwise there

is a nonzero element, say az(j;) # 0, which can be brought into pivoting position
by interchanging rows k and p and columns k and ¢. (Note that when columns
are interchanged in A the same interchanges must be made in the elements of the
solution vector z.)

Proceeding in this way any matrix A and right hand side b can always be
reduced by Gaussian elimination to

ay o al) e}y o all) oY
0 : : : :
: CRG) (r) b\
Al — : ary’ | Qpoyy "0 Grp p(r) = r
y 1)
0 -~ 0] 0 - 0 by
0O -~ 0| 0 - 0 bt

(1.3.13)
where A(") has upper trapezoidal form, and r = rank (4). In the reduced form
(1.3.13) the two rectangular zero blocks have dimensions (m —r) X r and (m —r) x
(n —), respectively. We can now deduce the following;:

1. The system Axz = b has a unique solution if and only if r = m = n.

2. If bgfﬂ) =0,k =7+ 1:m, then the system Az = b is consistent and
has an infinite number of solutions. We can assign arbitrary values to the
last n — r components of (the possibly permuted) solution vector z. The
first » components are then uniquely determined and obtained using back-
substitution with the nonsingular triangular matrix in the upper left corner.

3. If b;f‘H) # 0, for some k > r, the the system Az = b is inconsistent and has
no solution. Then we have to be content with finding x such that the residual
vector 7 = b — Az is small in some sense.

Performing Gaussian elimination in practice is sometimes complicated by the
fact that it may be difficult to decide what rank to assign to A just by inspecting
the elements in the computed upper triangular matrix. To solve ill-conditioned and
rank deficient linear systems reliably requires other tools that will be treated in
Chapter 8.

Disregarding rounding errors Gaussian elimination gives the exact solution of
a linear system after a finite number of arithmetic operations. Iterative methods

28 Chapter 1. Principles of Numerical Calculations

instead compute a sequence of approximate solutions, which in the limit converges
to the exact solution z. Basic iterative methods work directly with the original
matrix A and only need extra storage for a few vectors.

In a classical iterative method due to L. F. Richardson [1910], a sequence of

approximate solutions z(*) is defined by z(9=°,

D =20 b — Az™), kE=0,1,2,..., (1.3.14)

where w > 0 is a parameters to be chosen. It follows easily from (1.3.14) that the
error in z*) satisfies 2(**Y) — gz = (I — wA)(z®) — z), and hence

e — g = (I —wA)* 0 —z).

The convergence of Richardson’s method will be studied in Section ¢10.1.4.
Iterative methods are used most often for the solution of very large linear
systems, which typically arise in the solution of boundary value problems of partial
differential equations by finite difference or finite element methods. The matrices
involved can be huge, sometimes involving several million unknowns. The LU fac-
tors of matrices arising in such applications typically contain order of magnitudes
more nonzero elements than A itself. Hence, because of the storage and number of
arithmetic operations required, Gaussian elimination may be far too costly to use.

0 0
20 20
40 40
60 60
80 80
100 100
0 20 40 60 80 100 0 20 40 60 80 100
nz =478 nz =1918

Figure 1.3.3. Structure of A (left) and L + U (right) for the Poisson
problem, N = 10. (Rowwise ordering of the unknowns)

Example 1.3.5.

In a typical problem for Poisson’s equation (1.2.12) the function is to be de-
termined in a plane domain D, when the values of u are given on the boundary
0D. Such boundary value problems occur in the study of steady states in most
branches of Physics, such as electricity, elasticity, heat flow, fluid mechanics (in-
cluding meteorology). Let D be the a square grid with grid size h, i.e. z; = xo +ih,
yi =yo+jh, 0 <i < N+1,0<j <N +1 Then the difference approximation
yields

i1+ Wimj + i g + w1 — 4wy = P fa,y5),

Review Questions 29

(1<i< M, 1<j<N). Thisis a huge system of linear algebraic equations; one
equation for each interior gridpoint, altogether N? unknown and equations. (Note
that w; 0, Wi N+1, Yo,j, Un+1,; are known boundary values.) To write the equations
in matrix-vector form we order the unknowns in a vector

u = (u171,...,ulyN,uzl,...,u27N_1,uN71,...,uN7N).

If the equations are ordered in the same order we get a system Au = b where A is
symmetric with all nonzero elements located in five diagonals; see Figure 1.3.3..

In principle Gaussian elimination can be used to solve such systems. However,
even taking symmetry and the banded structure into account this would require %-N 4
multiplications, since in the LU factors the zero elements inside the outer diagonals
will fill-in during the elimination as shown in Figure 1.3.3.

The linear system arising from Poisson’s equation has several features common
to boundary value problems for all linear partial differential equations One of these
is that there are at most 5 nonzero elements in each row of A, i.e. only a tiny
fraction of the elements are nonzero. Such matrices are called sparse. Therefore
One iteration in Richardson’s method requires only about 5!-N? multiplications or
equivalently five multiplications per unknown. Using iterative methods which take
advantage of the sparsity and other features does allow the efficient solution of such
systems. This becomes even more essential for three-dimensional problems!

Review Questions

1. Describe Horner’s rule and synthetic division.

2. Give a concise explanation why the algorithm in Example 1.3.1 did not work and
why that in Example 1.3.2 did work.

3. How many operations are needed (approximately) for
(a) The LU factorization of a square matrix?
(b) The solution of Az = b, when the triangular factorization of A is known?

4. Show that if the kth diagonal entry of an upper triangular matrix is zero, then its
first k columns are linearly dependent.

5. What is the LU-decomposition of an n by n matrix A, and how is it related to
Gaussian elimination? Does it always exist? If not, give sufficient conditions for its
existence.

Problems and Computer Exercises
1. (a) Use Horner’s scheme to compute p(2) where
p(z) =2 —32° + 22° + 2*.
(b) Count the number of multiplications and additions required for the evaluation of
a polynomial p(z) of degree n by Horner’s rule. Compare with the work needed when

the powers are calculated recursively by ' = z - '~! and subsequently multiplied
by an—;.

30

Chapter 1. Principles of Numerical Calculations

2. Show how repeated synthetic division can be used to move the origin of a poly-

nomial, i.e., given a1, aa,...,a, and z, find ci1, c2,...,cn so that Z;zl aj:zrjfl =
Z;’Zl ¢j(x —2)" 7. Write a program for synthetic division (with this ordering of the
coefficients), and apply it to this algorithm.

Hint: Set p,(z) = Z;zl ajz’~'. Apply synthetic division to p,(z), p._1(x) =
(pn(2) — pn(2))/(x — 2), etc..

. (a) Show that the transformation made in Problem 2 can also be expressed by means

of the matrix-vector equation,
¢ = diag(z' ") Pdiag(z’ ~)a,

where a = [a1,a2,...ax]", ¢ = [c1,¢2,...cn]", and diag(z’™!) is a diagonal matrix
with the elements ¢/~!, j = 1 : n. The matrix P is of size [n,n]; its elements are
DPij = (]1:}), if j >4, else p; ; = 0. By convention, (8) =1 here.

(b) Note the relation of P to the Pascal triangle, and show how P can be generated
by a simple recursion formula. Also show how each element of P~! can be expressed
in terms of the corresponding element of P. How is the origin of the polynomial

pn () moved, if you replace P by P~ in the matrix-vector equation that defines c?
(c) If you reverse the order of the elements of the vectors a, c—this may sometimes
be a more convenient ordering—how is the matrix P changed?

Comment: With a terminology to be used much in this book, we can look upon a
and c as different coordinate vectors for the same element in the n-dimensional linear
space P, of polynomials of degree less than n. The matrix P gives the coordinate
transformation.

. Derive recurrence relations and write a program for computing the coefficients of the

product r of two polynomials p and g,

m n m+n—1
(e) = ple)a(e) = (Z) (ijxﬂ'—l> =Y et

i=1 k=1

. Let z,y be nonnegative integers, with y # 0. The division z/y yields the quotient ¢

and the remainder r. Show that if z and y have a common factor, then that number
is a divisor of r as well. Use this remark to design an algorithm for the determination
of the greatest common divisor of x and y (Euclid’s algorithm).

. Derive a forward and a backward recurrence relation for calculating the integrals

1 n

T
I, = ——dx.
/0 qr+1 v

Why is in this case the forward recurrence stable and the backward recurrence un-
stable?

. (a) Solve Example 1.3.1, with the following changes: Start the recursion (1.3.4) with

Ip = Inl1.2, and compute and print the sequence {I,} until I, for the first time
becomes negative.

(b) Start the recursion (1.3.5) first with the condition Iig = Iz, then Ig = Isq.
Compare the results you obtain and assess their approximate accuracy. Compare
also with the results of 7 (a).

Problems and Computer Exercises 31

*8.

*9.

10.

11.

12.

(a) Write a program (or study some library program) for finding the quotient Q(x)
and the remainder R(z) of two polynomials A(z), B(z), i.e., A(z) = Q(z)B(z) +
R(z), deg R(z) < deg B(x).

(b) Write a program (or study some library program) for finding the coefficients of
a polynomial with given roots.

(a) Write a program (or study some library program) for finding the greatest com-
mon divisor of two polynomials. Test it on a number of polynomials of your own
choice. Choose also some polynomials of a rather high degree, and do not only
choose polynomials with small integer coefficients. Even if you have constructed
the polynomials so that they should have a common divisor, rounding errors may
disturb this, and some tolerance is needed in the decision whether a remainder is
zero or not. One way of finding a suitable size of the tolerance is to make one or
several runs where the coefficients are subject to some small random perturbations,
and find out how much the results are changed.

(b) Apply the programs mentioned in the last two problems for finding and elimi-
nating multiple roots of a polynomial.

Hint: A multiple root of a polynomial is a common root of the polynomial and its
derivative.

. Determine the solution z to the triangular system U, (a)x = e, where

1 a

a
1 a

Un(a) = e,

= Q 2

and e,, is the nth unit vector.
(a) Compute the LU factorization of A and det(A), where

1 2 3 4

1 4 9 16
A= 1 8 27 64

1 16 81 256

(b) Solve the linear system Az = b, where b = (2,10, 44, 190)7.

Compute the inverse matrix A™!, where

2 1 2
A=(1 2 3],
41 2

by LU factorization and using A~ = U 'L

Show that there cannot exist a factorization

A= (9 1) _ lin 0 Ul U2
BN T O A W TR £V 0wz)’
Hint: Equate the (1,1)-elements and deduce that either the first row or the first
column in LU must be zero.

32 Chapter 1. Principles of Numerical Calculations

1.4 Numerical Solution of Differential Equations
1.4.1 Euler’'s Method

Approximate solution of differential equations is a very important task in scientific
computing. Nearly all the areas of science and technology contain mathematical
models which leads to systems of ordinary (or partial) differential equations. An
initial value problem for an ordinary differential equation is to find y(z) such

that
dy

% = f(tay)a y(O) =c

The differential equation gives, at each point (¢,y), the direction of the tangent to
the solution curve which passes through the point in question. The direction of the
tangent changes continuously from point to point, but the simplest approximation
(which was proposed as early as the 18th century by Euler) is that one studies the
solution for only certain values of t = ¢, = nh,n =0,1,2,... (his called the “step”
or “step length”) and assumes that dy/dt is constant between the points. In this
way the solution is approximated by a polygon segment (Fig. 1.5.1) which joins the
points (t,,yn), 0,1,2,... where

Yo = ¢, w = f(tn,yn)- (1.4.1)
Thus we have a simple recursion formula, Euler’s method:

Yo =26, Yn+1 :yn+hf(tnayn)7 n=0,1,2... (142)
During the computation, each y, occurs first on the left-hand side, then recurs

20
18f
16f
14F
12f

1k
08
06

04f

0.2

Figure 1.4.1. Approzimate solution of dy/dxz =y, yo = 0.25, by Fuler’s
method with h = 0.5.

later on the right-hand side of an equation: hence the name recursion formula.
(One could also call equation (1.4.2) an iteration formula, but one usually reserves
the word “iteration” for the special case where a recursion formula is used solely as
a means of calculating a limiting value.)

1.4. Numerical Solution of Differential Equations 33

1.4.2 An Introductory Example

One of the most important techniques in computer applications to science and tech-
nology is the step by step simulation of a process or the time development of
a system. A mathematical model is first set up, i.e., state variables which
describe the essential features of the state of the system are set up. Then the laws
are formulated, which govern the rate of change of the state variables, and other
mathematical relations between these variables. Finally, these equations are pro-
grammed for a computer to calculate approximately, step by step, the development
in time of the system.

The reliability of the results depends primarily on the goodness of the math-
ematical model and on the size of the time step. The choice of the time step is
partly a question of economics. Small time steps may give you good accuracy, but
also long computing time. More accurate numerical methods are often a good al-
ternative to the use of small time steps. Such questions will be discussed in depth
in Chapter 13.

The construction of a mathematical model is not trivial. Knowledge of nu-
merical methods and programming helps also in that phase of the job, but more
important is a good understanding of the fundamental processes in the system, and
that is beyond the scope of this text. It is, however, important to realize that if
the mathematical model is bad, no sophisticated numerical techniques or powerful
computers can stop the results from being unreliable, or even harmful.

A mathematical model can be studied by analytic or computational tech-
niques. Analytic methods do not belong to this text. We want, though, to empha-
size that the comparison with results obtained by analytic methods, in the special
cases when they can be applied, can be very useful when numerical methods and
computer programs are tested. We shall now illustrate these general comments on
a particular example.

Example 1.4.1. Counsider the motion of a ball (or a shot) under the influence of
gravity and air resistance. It is well known that the trajectory is a parabola, when
the air resistance is neglected and the force of gravity is assumed to be constant.
We shall still neglect the variation of the force of gravity and the curvature and the
rotation of the earth. This means that we forsake serious applications to satellites,
etc. We shall, however, take the air resistance into account. We neglect the rotation
of the shot around its own axis. Therefore we can treat the problem a a motion in
a plane, but we have to forsake the application to, for example, table tennis or a
rotating projectile. Now we have introduced a number of assumptions, which define
our model of reality.

The state of the ball is described by its position (z,y) and velocity (u,v),
each of which has two Cartesian coordinates in the plane of motion. The z-axis is
horizontal, and the y-axis is directed upwards. Assume that the air resistance is
a force P, such that the direction is opposite to the velocity, and the strength is
proportional to the square of the speed and to the square of the radius R of the

34 Chapter 1. Principles of Numerical Calculations

shot. We can then write,

R2
P, = —mzu, P,=-mzv, z= C—\/ u? + v2, (1.4.3)
m

where m is the mass of the ball.

For the sake of simplicity we assume that cis a constant. It actually depends on
the density and the viscosity of the air. Therefore, we have to forsake the application
to cannon shots, where the variation of the density with height is important. If one
has access to a good model of the atmosphere, the variation of ¢ would not make
the numerical simulation much more difficult. This contrasts to analytic methods,
where such a modification is likely to mean a considerable complication. In fact,
even with a constant ¢, a purely analytic treatment offers great difficulties.

Newton’s law of motion tells us that,

mdu/dt = P,, mdv/dt = —mg + Py, (1.4.4)

where the term —myg is the force of gravity. Inserting (1.4.3) into (1.4.4) and dividing
by m we get
du/dt = —zu, dv/dt = —g — 2v, (1.4.5)

By the definition of velocity,
dz/dt = u, dy/dt = v, (1.4.6)

Equations (1.4.5) and (1.4.6) constitute a system of four differential equations for
the four variables z,y,u,v. The initial state zg,yo, and wug,vo at time tg = 0
is assumed to be given. A fundamental proposition in the theory of differential
equations tells that, if initial values of the state variables u, v, x,y are given at some
initial time ¢ = tg, then they will be uniquely determined for all ¢ > t,.

The simulation in Example 1.4.1 means that, at a sequence of times, t,,, n =
0,1,2,..., we determine the approximate values, wy,, Un, Tpn,yn. We first look at the
simplest technique, using Euler’s method with a constant time step h. Set therefore
t, = nh. We replace the derivative du/dt by the forward difference quotient (w11 —
up)/h, and similarly for the other variables. Hence after multiplication by h, the
differential equations are replaced by the following system of difference equations:

Up+1 — Up = —thUn,

Upt1 — Up = —h(g + 2,0n), (1.4.7)

Int1 — Tn = hp, Yn+1 — Yn = hvy,
from which wp41, Unt1, Tnt1, Ynt1, €tc. are solved, step by step, for n =0,1,2,.. .,
using the provided initial values wug, vg, o, yo. Here z, is obtained by insertion of
U = Up, v = vy, into (1.4.3).

We performed these computations until y,,41 became negative for the first
time, with g = 9.81, ¢ = 60°, and the initial values

o = 0, Yo = 0, Ug = 100 cos ¢, Vo = 100 sin ¢

1.4. Numerical Solution of Differential Equations 35

In Fig.1.4.2 are shown curves obtained for h = 0.01, and cR?/m = 0.25i - 103,
1 =0,1,2,3,4. There is, in this graphical representation, also an error due to the
limited resolution of the plotting device.

500 o

300

200

100

-100 - o

0 100 200 300 400 500 600 700 800

Figure 1.4.2. Approzimate trajectories computed with Fuler’s method for
cR?/m =0.25i-1073,i = 0:4, and h = 0.01.

In Euler’s method the state variables are locally approzimated by linear func-
tions of time, one of the often recurrent ideas in numerical computation. We can
use the same idea for computing the coordinate z* of the point, where the shot hits
the ground. Suppose that y,+1 becomes negative for the first time when n = N.
For zny < z < zy4+1 we then approximate y by a linear function of z, represented
by the secant through the points (zn,yn) and(zy+1,Yn+1) , 1€,

N+1 — YN
y=yn + (¢ —oy) LTIV
IN+1 — TN
By setting y = 0 we obtain
z* :xN_yNM_ (1.4.8)
YN+1 — YN

The error from the linear approximation in (1.4.8) used for the computation of z*
is proportional to h2. It is thus approximately equal to the error committed in one
single step with Euler’s method, and hence of less importance than the other error.

The case without air resistance (i = 0) can be solved exactly. In fact it can be
shown that z* = 2ugvo/9.81 = 5000-1/3/9.81 = 882.7986. The computer produced
x* = 883.2985 for h = 0.01, and z* = 883.7984 for h = 0.02. The error for h = 0.01
is therefore 0.4999, and for A = 0.02 it is 0.9998. The approximate proportionality
to h is thus verified, actually more strikingly than could be expected!

It can be shown that the error in the results obtained with Euler’s method is
also proportional to h (not h?). Hence a disadvantage of the above method is that

36 Chapter 1. Principles of Numerical Calculations

the step length A must be chosen quite short if reasonable accuracy is desired. In
order to improve the method we can apply another idea mentioned in the previously,
namely Richardson extrapolation. The application differs a little from the one you
saw there, because now the error is approximately proportional to h, while for the
trapezoidal rule it was approximately proportional to h2. For ¢ = 4, the computer
produced z* = 500.2646 and z* = 500.3845 for, respectively, h = 0.01 and h = 0.02.
Now let z* denote the ezact coordinate of the landing point. Then

x* — 500.2646 ~ 0.01k%, x* — 500.3845 ~ 0.02k.
By elimination of k£ we obtain
z* & 2-500.2646 — 500.3845 = 500.1447,

which should be a more accurate estimate of the landing point. By a more accurate
integration method we obtained 500.1440. So in this case, we gained more than two
decimal digits by the use of Richardson extrapolation.

The simulations shown in Fig. 1.5.2 required about 1500 time steps for each
curve. This may seem satisfactory, but we must not forget that this is a very small
task, compared to most serious applications. So we would like to have a method
that allows much larger time steps than Euler’s method to provide, e.g., an accuracy
that fits well to that of the plotting of the orbit on a screen.

1.4.3 A Second Order Method

In step by step computations we have to distinguish between the local error, i.e.,
the error that is committed at a single step, and the global error, i.e., the error
of the final results. Recall that we say that a method is accurate of order p, if
its global error is approximately proportional to hAP. Euler’s method is only first
order accurate; we shall below present a method that is second order accurate. To
achieve the same accuracy as with Euler’s method the number of steps can then be
reduced to about the square root of the number of steps in Euler’s method, e.g., in
the above ball problem to /1500 = 40 steps. Since the amount of work is closely
proportional to the number of steps this is an enormous saving!

Another question is how the step size h is to be chosen. It can be shown that
even for rather simple examples (see below) it is adequate to use very different step
size in different parts of the computation. Hence the automatic control of the step
size (also called adaptive control) is an important issue.

Both requests can be met by an improvement of the Euler method (due to
Runge) obtained by the applying the Richardson extrapolation in every second
step. This is different from our previous application of the Richardson idea. We
first introduce a better notation by writing a system of differential equations
and the initial conditions in vector form

dy/dt =f£(t,y), y(a)=c, (1.4.9)
where y is a column vector that contains all the state variables.® With this notation

%The boldface notation is temporarily used for vectors in this section, not in the rest of the
book.

1.4. Numerical Solution of Differential Equations 37

methods for large systems of differential equations can be described as easily as
methods for a single equation. The change of a system with time can then be
thought of as a motion of the state vector in a multidimensional space, where the
differential equation defines the velocity field. This is our first example of the
central role of vectors and matrices in modern computing. We temporarily use
superscripts for the vector components, because we need subscripts for the same
purpose as in the above description of Euler’s method.
For the ball example, we have by (1.4.5) and (1.4.6)

y' z y? 0
2 4
N 7 I _ (] 102 0
y = y3 - U ’ f(tay) - —zy3 ’ c=10 COS¢)
yt v —g— zy* sin ¢
where

@ (y3)2 + (y4)2‘

The computations in the step which leads from t,, to t,,41 are then as follows:

z =

i. One Euler step of length h yields the estimate:
yi:H-l =Yn+ hf(tna Yn)-

ii. Two Euler steps of length %h yield another estimate:

1 . 1
Ynti =¥n+ §hf(tn>yn); Ynt1 = Ynpi + 5hf(tn+1/2,yn+1/z),

where t,,11/5 = t, + h/2.

iii. Then y, 1 is obtained by Richardson extrapolation:
Ynt1 = Yot + (V1 — Vo)

It is conceivable that this yields a 2nd order accurate method. It is left as an
exercise (Problem 2) to verify that this scheme is identical to the following somewhat
simpler scheme known as Runge’s 2nd order method:

ki = hnf(tn: Yn)§
Ko = B (tn + T2,y + K1 /2); (1.4.10)
Yn+1 = Yn + k2;

where we have replaced h by h, in order to include the use of variable step size.
Another explanation of the 2nd order accuracy of this method is that the displace-
ment k, equals the product of the step size and a sufficiently accurate estimate
of the velocity at the midstep of the time step. A more detailed analysis of this
method comes in Sec. 13.3.2. Sometimes this method is called the improved Euler

38 Chapter 1. Principles of Numerical Calculations

method or Heun’s method, but these names are also used to denote other 2nd order
accurate methods.

We shall now describe how the step size can be adaptively (or automatically)
controlled by means of a tolerance TOL, by which the user tells the program how
large error he tolerates in values of variables (relative to the values themselves).”
Compute

§ = max|k; — ki|/|3y’],

where J is related to the relative errors of the components of the vector y, see below.
A step size is accepted if 6 < TOL, and the next step should be

hnext = hmin{1-5, \ TOL/(]..Q&)}7

where 1.2 is a safety factor, since the future is never exactly like the past%
A step is rejected, if § > TOL, and recomputed with the step size

hpewt = hmax{0.1,/TOL/(1.26)},

The program needs a suggestion for the size of the first step. This can be be
a very rough guess, because the step size control described above, will improve it
automatically, so that an adequate step size is found after a few steps (or recompu-
tations, if the suggested step was too big). In our experience, a program of this sort
can efficiently handle guesses that are wrong by several powers of 10. If y(a) # 0
and y'(a) = 0, you may try the initial step size

b= W/ i

evaluated at the initial point ¢ = a. When you encounter the cases y(a) = 0 or
y'(a) = 0 for the first time, you are likely to have gained enough experience to
suggest something that the program can handle. More professional programs take
care of this detail automatically.

The request for a certain relative accuracy may cause trouble when some
components of y are close to zero. So, already in the first version of your program,
you had better replace y® in the above definition of § by §' = max{|y?|,0.001}.
A more detailed discussion of such matters follows in Sections 13.1 and 13.2, see
in particular Computer Exercise 13.1.1. (You may sometimes have to replace the
default value 0.001 by something else.)

It is a good habit to make a second run with a predetermined sequence of
times (if your program allows this) instead of adaptive control. Suppose that the
sequence of times used in the first run is tg, ¢1, t2, Divide each subinterval

7"With the terminology that will be introduced in the next chapter, TOL is, with the step size
control described here, related to the global relative errors . At the time of writing, this contrasts
to most codes for the solution of ordinary differential equations, in which the local errors per step
are controlled by the tolerance.

8The square root occurring here is due to the fact that this method is 2nd order accurate,

i.e., the global error is almost proportional to the square of the step size and ¢§ is approximately
proportional to h2.

1.4. Numerical Solution of Differential Equations 39

[tn, tnt1] into two steps of equal length. So, the second run still has variable step
size and twice as many steps as the first run. The errors are therefore expected to
be approximately % of the errors of the first run. The first run can therefore use a
tolerance that is 4 times as large than the error you can tolerate in the final result.
Denote the results of the two runs by y;(t) and y;7(t). You can plot (yrs(t) —y1(t))
versus t; this is an error curve for y;;(t) Alternatively you can add £ (y;(t) —y1(2))
to yys(t). This is another application of the Richardson extrapolation idea. The
cost is only 50% more work than the plain result without an error curve.

If there are no singularities in the differential equation, &(yrr(t) — yr(t))
strongly overestimates the error of the extrapolated values—typically by a factor
like TOL™/2. Tt is, however, a non-trivial matter to find an error curve that strictly
and realistically tells how good the extrapolated results are. There will be more
comments about these matters in Sec. 3.3.4 and Example 13.2.1. The reader is
advised to test experimentally how this works on examples where the exact results
are known.

An easier, though inferior, alternative is to run a problem with two different
tolerances. One reason why it is inferior is that the two runs do not "keep in step”.
For example, Richardson extrapolation cannot be easily applied.

If you request very high accuracy in your results, or if you are going to sim-
ulate a system over a very long time, you will need a method with a higher order
of accuracy than two. The reduction of computing time if you replace this method
by a higher order method can be large, but the improvements are seldom as dras-
tic as when you replace Euler’s method by a second order accurate scheme like
this. Runge’s 2nd order method is, however, no universal recipe. There are spe-
cial classes of problems, notably the problems which are called “stiff”, which need
special methods. These matters are treated in Chapter 13.

One advantage of a second order accurate scheme when requests for accuracy
are modest, is that the quality of the computed results is normally not ruined by
the use of linear interpolation at the graphical output, or at the post-processing
of numerical results. (After you have used a more than second order accurate
integration method, it may be necessary to use a more sophisticated interpolation
at the graphical or numerical treatment of the results.)

Example 1.4.2. The differential equation 3’ = —%y?’, with initial condition y(1) =
1, was treated by a program, essentially constructed as described above, with TOL =
10~* until ¢ = 10*.

In this example we can compare with the exact solution, y(t) = t~'/2. It was
found that the actual relative error stayed a little less than 1.5 TOL all the time
when ¢t > 10. The step size increased almost linearly with ¢ from A = 0.025 to
h = 260. The number of steps increased almost proportionally to logt; the total
number of steps was 374. Ouly one step had to be recomputed (except for the first
step, where the program had to find an appropriate step size).

The computation was repeated with TOL = 4 - 10~%. The experience was the
same, except that the steps were about twice as long all the time. This is what can
be expected, since the step sizes should be approximately proportional to +/TOL,
for a second order accurate method. The total number of steps was 194.

40 Chapter 1. Principles of Numerical Calculations

Example 1.4.3. The example of the motion of a ball was treated by Runge’s 2nd
order method with the constant step size h = 0.9. The coordinate of the landing
point became x* = 500.194, which is more than twice as accurate than the result
obtained by Euler’s method (without Richardson extrapolation) with A = 0.01,
which uses about 90 times as many steps.

We have now seen a variety of ideas and concepts which can be used in the
development of numerical methods. A small warning is perhaps warranted here: it
is not certain that the methods will work as well in practice as one might expect.
This is because approximations and the restriction of numbers to a certain number
of digits introduce errors which are propagated to later stages of a calculation. The
manner in which errors are propagated is decisive for the practical usefulness of a
numerical method. We shall examine such questions in Chapter 2. Later chapters
will treat propagation of errors in connection with various typical problems.

The risk that error propagation may up-stage the desired result of a numerical
process should, however, not dissuade one from the use of numerical methods. It is
often wise, though, to experiment with a proposed method on a simplified problem
before using it in a larger context. The development of hardware as well as software
has created a far better environment for such work than we had a decade ago. In
this area too, the famous phrase of the Belgian-American chemist Baekeland holds:

“Commit your blunders on a small scale and make your profits on a
large scale.”

Review Questions

1. Explain the difference between the local and global error of a numerical method for
solving a differential equation. What is meant by a method the order accuracy for
a method?

2. Describe how Richardson extrapolation can be used to increase the order of accuracy
of Euler’s method.

Problems

1. Integrate numerically using Euler’s method the differential equation dy/dx = y, with
initial conditions y(0) = 1, to z = 0.4:
(a) with step length h = 0.2 and h = 0.1.
(b) Extrapolate to h = 0, using the fact that the error is approximately proportional
to the step length. Compare the result with the exact solution of the differential
equation and determine the ratio of the errors in the results in (a) and (b).
(¢) How many steps would have been needed in order to attain, without using ex-
trapolation, the same accuracy as was obtained in (b)?

Computer Exercises 41

Computer Exercises

1. (a) Write a program for the simulation of the motion of the ball, using Euler’s method
and the same initial values and parameter values as above. Print only z,y at integer
values of ¢ and at the last two points (i.e. for n = N and n = N + 1) as well as the
coordinate of the landing point. Take h = 0.05 and h = 0.1. As post-processing,
improve the estimates of 2* by Richardson extrapolation, and estimate the error by
comparison with the results given in the text above.

(b) In Equation (1.4.8) replace in the equations for zn+1 and yp+1 the right hand
sides u,, and vy, by, respectively, up+1 and vp+1. Then proceed as in (a) and compare
the accuracy obtained with that obtained in (a).

(c) Choose initial values which correspond to what you think is reasonable for shot
put. Make experiments with several values of ug,vo for ¢ = 0. How much is z”
influenced by the parameter cR?/m?

2. Verify that Runge’s 2nd order method, as described by equation (1.4.10), is equiv-
alent to the scheme described a few lines earlier (with Euler steps and Richardson
extrapolation).

3. Write a program for Runge’s 2nd order method with automatic step size control
that can be applied to a system of differential equations, or use the Matlab program
on the diskette. Store the results so that they can be processed afterwards, e.g., for
making table of the results, and/or curves an be drawn showing y(t) versus ¢, or (for
a system) y? versus y', or some other interesting curves.

Apply the program to Examples 1.4.2 and 1.4.3, and to the circle test, i.e.

Yi=—y2, Y2 =y,

with initial conditions y1(0) = 1, y2(0) = 0. Verify that the exact solution is a uni-
form motion along the unit circle in the (y1, y2)-plane. Stop the computations after
10 revolutions (¢t = 207). Make experiments with different tolerances, and determine
how small the tolerance has to be in order that the circle on the screen should not
become “thick”.

1.5 Monte Carlo Methods
1.5.1 Origin of Monte Carlo Methods

In most of the applications of probability theory one makes a mathematical formu-
lation of a stochastic problem (i.e., a problem where chance plays some part), and
then solves the problem by using analytical or numerical methods. In the Monte
Carlo method, one does the opposite; a mathematical or physical problem is
given, and one constructs numerical game of chance, the mathematical analysis
of which leads to the same equations as the given problem, e.g., for the probability
of some event, or for the mean of some random variable in the game. One plays
it IV times and estimates the relevant quantities by traditional statistical methods.
Here N is a large number, because the standard deviation of a statistical estimate
typically decreases only inversely proportional to v/N.

42 Chapter 1. Principles of Numerical Calculations

The idea behind the Monte Carlo method was used by the Italian physicist
Enrico Fermi to study the neutron diffusion in the early 1930s. Fermi used a small
mechanical adding machine for this purpose. With the development of computers
larger problems could be tackled. At Los Alamos in the late 1940s the use of the
method was pioneered by John von Neumann, Stanislaw Ulam and others for many
problems in mathematical physics including approximating complicated multidi-
mensional integrals. The picturesque name of the method was coined by Nicholas
Metropolis.

The Monte Carlo method is now so popular that the definition is too narrow.
For instance, in many of the problem where the Monte Carlo method is successful,
there is already an element of chance in the system or process which one wants to
study. Thus such games of chance can be considered to be a numerical simulation
of the most important aspects. In a wider sense Monte Carlo methods were used
as early as in the 1800s, under different names, e.g., experimental sampling.

Inside Shield Outside

d

Figure 1.5.1. Neutron scattering.

Monte Carlo methods may be used, when the changes in the system are de-
scribed with a much more complicated type of equation than a system of ordinary
differential equations. The following are some areas where the method has been
applied:

(a) Problems in reactor physics; for example, a neutron, because it collides with
other particles, is forced to make a random journey. In infrequent but impor-
tant cases the neutron can go through a layer of (say) shielding material (see
Fig. 1.6.1).

(b) Technical problems concerning traffic (telecommunication, railway networks,
regulation of traffic lights and other problems concerning automobile traffic,
etc.).

(c) Queuing problems.
(d) Models of conflict.
(e) Approximate computation of multiple integrals.

(f) Stochastic models in financial mathematics.

1.5. Monte Carlo Methods 43

In a simulation, one can study the result of various actions more cheaply, more
quickly, and with less risk of organizational problems than if one were to take the
corresponding actions on the actual system. In particular, for problems in applied
operations research, it is quite common to take a shortcut from the actual system to
a computer program for the game of chance, without formulating any mathematical
equations. The game is then a model of the system. In order for the term Monte
Carlo method to be correctly applied, however, random choices should occur in
the calculations. This is achieved by using so-called random numbers; the values
of certain variables are determined by a process comparable to dice throwing.

Simulation is so important that several special programming languages have
been developed exclusively for its use.

1.5.2 Random and Pseudo-Random Numbers

The sequence of twenty digits
11100 01001 10011 01100

is a record of twenty tosses of a coin where “heads” are denoted by 1 and “tails” by
0. Such digits are sometimes called (binary) random digits, assuming that we have
a perfect coin—i.e., that heads and tails have the same probability of occurring. We
also assume that the tosses of the coin are made in a statistically independent way.
(Of course, these assumptions cannot be obtained in practice.)

Similarly, decimal random digits could in principle be obtained by using an
icosahedral (twenty-sided) dice, and assigning each decimal digit to two of its sides.
In the early 1950s the Rand Corporation constructed a million-digit table of random
numbers using an electrical “roulette wheel” ([2, 1955]). The wheel had 32 slots, of
which 12 were ignored; the others were numbered from 0 to 9 twice. The following
row of decimal digits is taken from such a table:

95693 02945 81723 43588 81350 76302 ... (1.5.1)

Random digits can be packed together to give sequence of equi-distributed inte-
gers. The sequence in (1.5.1) can be considered as five-digit random numbers,
where each element in the sequence has probability of 10~° of taking on the value,
0,1,2,...,99,999. From the same digits one can also construct the sequence

0.556935, 0.029455, 0.817235, 0.435885, 0.813505, 0.763025, . . ., (1.5.2)

which can be considered a good approximation to a sequence of independent obser-
vations of a variable which is uniformly distributed (or rectangularly distributed)
on the interval [0,1]. The 5 in the sixth decimal place is added in order to get the
correct mean (without this the mean would be 0.499995 instead of 0.5).

By far the most common method of generating random numbers is to use an al-
gorithm on line with the computer program, which generates a sequence of “random
numbers” by a constructive process. Sequences obtained in this way are uniquely
determined by one or more starting values (the seeds) and are reproducible. If by

44 Chapter 1. Principles of Numerical Calculations

a “random” sequence we mean a sequence that satisfies no predictable rule such
sequences are not truly random and they are called pseudo-random sequences. It
is difficult to give a satisfactory definition of a psedo-random sequence. In general
the sequence should possess similar statistical properties as random sequences.?

An important characteristic of a random number generator is its period,
which is the maximum length of the sequence before it begins to repeat. Note that
if the algorithm for computing z,,41 only depends on z,,, then the entire sequence
repeats one xg is duplicated. Other requirements are that the generator should be
fast and use little memory.

The most widely used generators for producing pseudo-random numbers are
the multiple recursive generator based on linear recurrences of order k

Tpn = Q1 Tp_1 + -+ + axTp_rc mod m, (1.5.3)

i.e., x, is the remainder obtained when the right hand side is divided by the modulus

m. Here m is a positive integer and the coefficients ay,...,a; belong to the set
{0,1,...,m — 1}. The state at step i is s; = (Tp—k+1,-..,Tn) and the generator is
started from a seed sx—1 = (xq, ..., Tp—1)-

If m is a prime number and and if the coefficients a; satisfy certain conditions,
then the generated sequence has the maximal period length m* — 1; see Knuth [12].
When k = 1, we obtain the classical linear congruential generator.

Example 1.5.1. A linear congruential generator defined by
T, = 16807z, 1 mod (2*' — 1), (1.5.4)

with period length (23! —2), was proposed originally by Lewis, Goodman, and Miller
(1969). It has been used in many software libraries for statistics and optimization.
This generator but with the multiplier 77 = 823543 was used in early versions
of MATLAB. From MATLAB 5 it has been replaced with a new generator, which
can generate all the floating point numbers in the closed interval [27°% 1 — 2753].
Theoretically it can generate 21492 values before repeating itself.

The pseudo-random integers generated by the above method can be converted
into random numbers in the interval [0, 1] as exemplified above. The least significant
digits of these numbers turns out not to be very random. To use digits generated in
this way to form more numbers with fewer digits can thus be risky. There are other
(more time-consuming) methods of producing pseudo-random numbers where the
above operation is risk-free.

Example 1.5.2. Buffon’s needle problem (Buffon 1707-1778): Suppose a board is
ruled with equidistant parallel lines and that a needle fine enough to be considered
a segment of length [not longer than the distance d between consecutive lines is
thrown on the board. The probability is then 2//(wd) that it will hit one of the
lines.

9“Anyone who considers arithmetic methods of producing random numbers is, of course, in a
state of sin”; John von Neumann (1951).

1.5. Monte Carlo Methods 45

10°

estimate of pi
|m/n=2/pi|

i i i i i i
[o} 200 400 600 800 1000 10° 10" 10° 10°

Figure 1.5.2. The left part shows how the estimate of © varies with the
number of throws. The right part compares |m/n — 2 /x| with the standard deviation
of m/n. The latter is inversely proportional to n'/?, and is therefore a straight line
in the figure.

The Monte Carlo method and this game can be used to approximate the value
of m. Take the distance § between the center of the needle and the lines and the
angle ¢ between the needle and the lines to be random numbers. By symmetry we
can choose these to be rectangularly distributed on [0, d/2] and [0, w/2], respectively.
Then the needle hits the line if 6 < (1/2) sin ¢.

We took I = d. Let m be the number of hits in the first n throws in a Monte
Carlo simulation with 1000 throws. The expected value of m /n is therefore 2/7. So,
2n/m is an estimate of 7 after n throws. In the left part of Fig. 1.6.2 we see, how
2n/m varies with n in one simulation. The right part compares |m/n — 2/7| with
the standard deviation of m/n, which equals /(2/7(1 —2/7)/n) and is, in the log-
log-diagram, represented by a straight line, the slope of which is —1/2. (The spikes,
directed downwards in the figure, typically indicate where m/n— 2/ changes sign.)

By arithmetic operations on numbers R uniformly distributed on [0, 1] one
can form random numbers with other distributions. For example, S =a+ (b—a)R
will be uniformly distributed on [a,b]. The variable R' = 1 — R is also uniformly
distributed on [0, 1]. For example, from the sequence in (1.5.2) we get the following
sequence for R':

0.443065, 0.970545, 0.182765, 0.564115, 0.186495, 0.236975, . . ., (1.5.5)

The sequence (1.5.5) is said to be the antithetic sequence derived from (1.5.2).
Such sequence are an important means of reducing the variance of estimates made
using the Monte Carlo method, see next section.

We now give a general method for generating random numbers with a given

46 Chapter 1. Principles of Numerical Calculations

continuous distribution function F'(z). Let R be a random number uniformly dis-
tributed on [0, 1], and compute X by solving the equation F'(X) = R; see Fig. 1.6.3.
Then, since F'(z) is a nondecreasing function,

P[X < 2] = P[F(X) < F(z)] = P[R < F()],

but the last expression is equal to F'(X), since by definition of a uniform distribution
we have P[R < r] = r for any r in [0,1]. Hence, X has the desired distribution.

The following example shows how one can obtain normally distributed
random numbers in an easier way than the general method:

1

F(9)
09

0.8
R otfp---------+
06
05
04f
03f
02f

01

Figure 1.5.3. Random number with distribution F(z).

Example 1.5.3. Let R;, R> be two independent, uniformly distributed random
numbers in [0,1]. Then two independent, normally distributed random numbers
N1, Na, with mean zero and standard deviation 1 can be obtained using the following
Box—Muller’s transformation:

Ni = /—=2In Ry cos(2wRy), N5 =+/—2InR;sin(27R3).

We shall not derive the rule here, but point out that N;, N, can be considered to
be rectangular coordinates of a oint whose polar coordinates (r, ¢) are determined
by the equations

> =N} +Nj=-2lnR;, ¢=27nR,.

Thus the problem is to show that the distribution function for a pair of indepen-
dent, normally distributed random variables is rotationally symmetric (uniformly
distributed angle) and that their sum of squares is exponentially distributed with
mean 2.

Notice that we can get normally distributed random variables with mean m
and standard deviation o by forming m + o0 N1, m + 0 N,. An antithetic sequence of
normally distributed numbers can be obtained simply by reversing the sign of the
original sequence. For a related method, which avoids the trigonometric functions
in Box—Muller’s transformation, see [4, p.247].

1.5. Monte Carlo Methods 47

Example 1.5.4. Exponentially distributed random numbers with mean 1/\ have
the distribution function

Fz)=1—e (1.5.6)

They can be generated as follows. Let in [0,1]. Then from the general rule given
above we see that X can be obtained by solving the equation 1 — e ** =1~ R, or
hence by forming

X=-2'lnR.

One important use of exponentially distributed random numbers is in the
generation of so-called Poisson processes. Such processes are often fundamental
in models of telecommunications systems and other service systems. A Poisson
process with frequency parameter X\ is a sequence of events characterized by the
property that the probability of occurrence of an event in a short time interval
(t,t 4+ At) is equal to A\-At + o(At), independent of the sequence of events previous
to time t. In applications and “event” can mean a call on a telephone line, the
arrival of a customer in a store, etc. For simulating a Poisson process one can use
the important property that the intervals of time between two successive events are
independent exponentially distributed random numbers. Thus Poisson processes
can be generated using the rule given in Example 1.5.4.

1.5.3 Reduction of Variance.

From statistics, we know that if one makes n independent observations of a quantity
whose standard deviation is o, then the standard deviation of the mean is o/y/n.
In the Monte Carlo method, one can influence the value of o by designing the
experiment in various ways. One important technique is to make the experiments
in antithetic pairs and then computing the mean for each pair of experiments (see
Example 1.5.5 and Exercise 4).

Assume that one has two ways (which require the same amount of work) of
carrying out an experiment, and these experiments have standard deviations o4
and o2 associated with them. If one repeats the experiments n; and n, times
(respectively), the same precision will be obtained if 0y /\/n; = 02//n2, or

n1/ne = o1 /03. (1.5.7)

Thus if a variance reduction by a factor k£ can be achieved, then the number of
experiments needed is also reduced by the same factor k.

Example 1.5.5. In ten simulation and their antithetic experiments of a service
system the following two sets of values were obtained for the treatment time using
a sequence:

685 1,045 718 615 1,021 735 675 635 616 889
731 521 585 710 527 574 607 698 761 532°

48 Chapter 1. Principles of Numerical Calculations

Table 1.5.1. Simulation of patients at a polyclinic.

k=1 k=2
Pno Parr Tbeg R Ttime Tend Parr Tend
1 0* 0 211 106 106 0* 106
2 50 106 3 2 108 0 108
3 100 108 93 26 134 50 134
4 150* 150 159 80 230 100 214
5 200 230 24 12 242 150 226
6 250* 250 35 18 268 200 244
7 300" 300 o4 27 327 | 250" 277
8 350 330 39 20 370 | 3007 320
9 400* 400 44 22 422 | 350* 372
10 450* 450 13 6 456 | 400* 406
Y | 2,250 319 2,663 | 1,800 2,407

From the first experiment the mean for the treatment time is estimated as 763 &+ 52.
Using the sequence means

708 783 652 662 774 654 641 666 688 710,

one gets the estimate 694 + 16.

When one instead supplemented the first sequence with ten values using in-
dependent random numbers, the estimate 704 + 36 using all twenty values was
obtained. These results indicate that, in this example, using antithetical sequence
produces the desired accuracy with (16/36)% ~ 1/5 of the work.

Roughly speaking, since the influence of chance has opposing effects in the
two antithetic experiments, one can presume that the effect of chance on the means
is much less than the effect of chance in the original experiments In Exercise 5 we
give examples of how to make a quantitative estimate of the reduction of variance
accomplished with the use of antithetic experiments.

Example 1.5.6. Monte Carlo methods have been successfully used to study queu-
ing problems. A well known example is a study by Bailey [1] to determine how to
give appointment times to patients at a polyclinic, see Exercise 4. The aim is to find
a suitable balance between the mean waiting times of both patients and doctors.
This problem was in fact solved analytically—much later—after Bailey already had
gotten the results that he wanted; this situation is not uncommon when numerically
methods (and especially Monte Carlo methods) have been used.

Suppose that k patients have been booked at the time ¢ = 0 (when the clinic
opens), and that the rest of the patients (altogether 10) are booked at intervals
of 50 time units thereafter. The time of treatment is assumed to be exponentially
distributed with mean 50. (Bailey used a distribution function which was based

1.5. Monte Carlo Methods 49

on empirical data.) Three alternatives, k = 1,2,3, are to be simulated. By using
the same random numbers for each k (hence the same treatment times) one gets a
reduced variance in the estimate of the change in waiting times as k varies.

The computations are shown in the Table 1.5.4. The following abbreviations
are used: P = patient, D = doctor, T' = treatment. An asterisk indicates that the
patient did not need to wait. In the table P,,.,. follows from the rule for booking
patients given previously. The treatment time T};,,. equals 50R/100 where R are
exponentially distributed numbers with mean 100 taken from a table. Ty., equals
the larger of the number P, (on the same row) and T¢,q (in the row just above),
where Teng = Tyeg + Tireat-

From the table we find that for £ = 1 the doctor waited the time D = 456 —
319 = 137; the total waiting time for patients was P = 2,663 — 2,250 — 319 = 94.
For k£ = 2 the corresponding waiting times were D = 406 — 319 = 87 and P =
2,407 —1,800 — 319 = 288. Similar calculations for kK = 3 gave D = 28 and P = 553
(see Fig. 1.6.4). For k > 4 the doctor never needs to wait.

14

Mean waiting time for doctor
®
T
I

2 L L L L L
50 60

0 30
Mean waiting time for patients

Figure 1.5.4. Mean waiting times for doctor/patients at polyclinic.

One cannot, of course, draw any tenable conclusions from one experiment.
More experiment should be made in order to put the conclusions ons statistically
solid ground. Even isolated experiments, however, can give valuable suggestions
for the planning of subsequent experiments, or perhaps suggestions of appropriate
approximations to be made in the analytic treatment of the problem. The large-
scale use of Monte Carlo methods requires careful planning to avoid drowning in in
enormous quantities of unintelligible results.

Two methods for reduction of variance have here been introduced: anti-
thetic sequence of random numbers and the technique of using the same random
numbers in corresponding situations. The latter technique is used when studying
the changes in behavior of a system when a certain parameter is changed (e.g.,
the parameter k in Exercise 4). Many effective methods have been developed for
reducing variance, e.g., importance sampling and splitting techniques (see

50

Chapter 1. Principles of Numerical Calculations

Hammersley and Handscomb [6]). Another important rule is that, if a part of a
problem can be treated with analytical or traditional numerical methods, then one
should use such methods. There are many ways to combine analytical methods and
Monte Carlo methods.

Review Questions

. What is a uniformly distributed random number?

. Describe general methods for obtaining random numbers with given discrete or con-

tinuous distribution. Give examples of their use.

. What are the most important properties of a Poisson process? How can one generate

a Poisson process with the help of random numbers?

. What is the mixed congruential method for generating pseudo-random numbers?

What important difference is there between the numbers generated by this method
and “genuine” random numbers?

Problems

1.

(a) Let X,Y be independent uniform deviates (on the interval [0,1]). Show that
P(X?+Y? < 1) = /4, and estimate this probability by a Monte Carlo experiment
with (say) 1000 pairs of random numbers. For example, make graphical output like
in the Buffon needle problem.

(b) Make an antithetic experiment, and take the average of the two results. Is the
average better than one can expect if the second experiment had been independent
of the first one.

(c) Estimate similarly the volume of the four-dimensional unit ball. If you have

enough time, use more random numbers. (The exact volume of the whole unit ball
o 2
is /2.

. Simulate (say) 360 throws with two usual dices. Denote the sum of the number

of dots on the two dice in the n’th throw by Y,, 2 <Y, < 12. Tabulate or draw
a histogram, i.e., the (absolute) frequency of the occurrence of j dots versus j,
j =2:12. Make a conjecture about the true value of P(Y,, = j). Try to confirm it
by repeating the experiment with fresh uniform deviates. When you have found the
right conjecture, it is not hard to prove it.

. Write a program that uses uniform deviates (and perhaps uses the the formula

X = ceil(kU) for several values of k) to simulate a random “shuffle” of a deck of 52
cards. This is for a numerical game; do not spend time on drawing beautiful hearts,
clubs etc.

. Suppose we have a random number generator which generates random numbers uni-

formly distributed in [—1, 1]. To generate random points in the unit circle generate
a pair of random numbers xn,yn. If z2 + 32 < 1, then accept (zn,yn); otherwise
discard (zn,yn) and generate new random numbers.

(a) Use, e.g., the function rand in MATLAB to generate points in the unit circle. Plot
the accepted points.

1.6. Linear Algebra and Matrix Computations 51

(b) What is the probability that a pair of points is discarded? Use the observed
number of discarded points in a run of 1000 points to approximate the value of .

5. Repeat the simulation in Example 1.5.6 for K = 1 and k = 2 using the sequence of
exponentially distributed numbers R

13 365 88 23 154 122 87 112 104 213,

antithetic to that used in Example 1.5.6. Compute the mean of the waiting times
for the doctor and for all patients for this and the previous experiment.

1.6 Linear Algebra and Matrix Computations

In this section the basic elements of vector spaces and matrix algebra are recalled
notations to be used in the rest of the text are introduced. For a more detailed
expositions and proofs the reader is referred to Leon [9] or Strang [12].

1.6.1 Linear Vector Spaces

Let K be the field of real numbers R or complex numbers C. A vector space over
K is a set V of elements called vectors for which the operation addition and scalar
multiplications are defined with the following properties:

1. addition is commutative and associative;
2. scalar multiplication is associative;

3. the following distributive properties hold:
alv +w) = av + aw, (a + v = av + P,
for all @, € K and v,w € V;

4. there is an element 0 € V called the null vector such that v + 0 = v for all
v € V;

5. for each vector v there exists a vector —v such that v + (—v) = 0;

6. 0-v=0and 1-v =v where 0 and 1 are the zero and unity in K.

Familiar examples of a vector space are V = R" (V = C"), i.e. the set of
n-tuples, 1 < n < oo, of real (complex) numbers. In approximation theory the
vector space P, of polynomials p,(z) = ZZ;& arz® of degree less than n plays
an important role. Another example is V. = CP([a,b]), the set of complex-valued
functions which are continuous up to their pth derivatives (0 < p < o0) on [a, b].

If W C V is a vector space then W is called a vector subspace of V. The
set of all linear combinations of vy, ..., v € V form a vector subspace denoted by

k
span {vy,...,vx} = ZO‘W“ a, €K, i=1:k.
i=1

52 Chapter 1. Principles of Numerical Calculations

If S1,..., Sk are vector subspaces of V then their sum S = S; U Sy ---U Sk,
defined by
S={vi+--+ulvieS,i=1:k}

is also a vector subspace. The intersection 1" of a set of vector subspaces is also a
subspace,
T=5nN8---NSk.

If the intersection of the subspaces are empty, S; N S; = 0, ¢ # j, then the sum of
the subspaces is called their direct sum and denoted by

S=5®5--PS;.

A set of vectors {vy,va,...,vx} in V is said to be linearly independent if
k
E civi=0, = c=cp=---=c¢c,=0.
i=1
Otherwise, if a nontrivial linear combination of vy, ..., vy is zero, the vectors are said

to be linearly dependent. Then at least one of vector v; will be a linear combination
of the rest.

A basis in V is any set of linearly independent vectors vy, vs,...,v, € V such
that all vectors v € V can be uniquely decomposed as

n
v = Z fﬂ)z
i=1

The scalars & are called the components or coordinates of v with respect to the
basis {v;}.

If the vector space V has a basis of k vectors, then every system of linearly
independent vectors of V has at most k elements and any other basis of V has
the same number £ of elements. The number & is called the dimension of V and
denoted by dim(V).

The standard basis for C™ is the set of unit vectors ey, es, ..., €, where the
jth component of e; equals 1 if j = 4, and 0 otherwise. We shall use the same name
for a vector as for its coordinate representation by a column vector, with respect to
the standard basis. For the the vector space P, of polynomials of degree less the n
monomials 1, z,...,2" ! form a basis.

1.6.2 Matrix and Vector Algebra

A matrix A is a collection of m x n numbers ordered in m rows and n columns

ail a1 - Ain
a1 22 ... Q2pn

A= (aij) =

Am1 Am2 oo Qmn

1.6. Linear Algebra and Matrix Computations 53

We write A € R™*™, where R™*™ denotes the set of all real m x n matrices. If
m = n, then the matrix A is said to be square and of order n. If m # n, then A is
said to be rectangular. A column vector is a matrix consisting of just one column
and we write z € R™ instead of # € R™*!. Similarly a row vector is a matrix
consisting of just one row.

A linear map from the vector space C" to C™ is a function f such that

flav + fw) = af(u) + Bf(v)

for all a, 8 € K and u,v € C". Let z and y be the column vectors representing the
vectors v and f(v), respectively , using the standard basis of the two spaces. Then
there is a unique matrix A € C™*"™ representing this map such that

y = Azx.

This gives a link between linear maps and matrices.

We will follow a convention introduced by Householder'® and use capital letters
(e.g. A, B) to denote matrices. The corresponding lower case letters with subscripts
ij then refer to the (i,j) component of the matrix (e.g. a;j,bi;). Greek letters
a, 3, ... are usually used to denote scalars. Column vectors are usually denoted by
lower case letters (e.g. x,y).

Two matrices in R™*" are said to be equal, A = B, if

aij:bi]‘, i:l:m, j:l:n.

The basic operations with matrices are defined as follows. The product of a matrix
A with a scalar « is
B = aA, bz‘j = ;-

The sum of two matrices A and B in R™*" is
C=A+B, Cij = Qjj -|-bl'j. (161)

The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A € R™*"™ and B € R"*P then

C =AB e R™*?, cij = Zaz’kbkj; (1.6.2)
k=1

and can be computed with mnp multiplications. As a special case of the multipli-
cation rule if A € R™*™ z € R" then

n
y= Az € R™, yi:Zaijmj, i=1:m.
j=1

Matrix multiplication is not commutative. The product BA is defined only if
p = m. Then the matrices AB € R™*™ and BA € R"*™ are both square, but if

10A. S. Householder 1904-1993, mathematician who pioneered the use of matrix factorization
and orthogonal transformations in numerical linear algebra.

54 Chapter 1. Principles of Numerical Calculations

m # n of different orders. In general, AB # BA even when m =n. If AB = BA
the matrices are said to commute.
Matrix multiplication satisfies the rules

A(BC) = (AB)C, A(B+C) = AB + AC.

Note, however, that the number of arithmetic operations required to compute, re-
spectively, the left- and right-hand sides of these equations can be very different!
If C € RP*4 then computing the product ABC as (AB)C requires mp(n + q) op-
erations whereas A(BC) requires ng(m + p) operations. For example, if A and B
are square n X n matrices and z a column vector of length n then computing the
product ABz as (AB)x requires n® + n? operations whereas A(Bx) only requires
2n? operations. When n >> 1 this makes a great difference!

The transpose A? of a matrix A = (a;;) is the matrix whose rows are the
columns of 4, i.e., if C = AT then ¢;; = aj;. For a complex matrix we denote by
AH the complex conjugate transpose of A

A = (aij), AT = (ay),

and it holds that (AB)H = BHAH.
Row vectors are obtained by transposing column vectors (e.g. z%,y%). For
the transpose of a product we have

(AB)T = BT AT,

i.e., the product of the transposed matrices in reverse order.
The Euclidian inner product of two vectors x and y in R" is given by

n
»TTy = szyz = yTl"-
=1

In particular
n
ol = E ||
i=1

is the Euclidian length of the vector .
The outer product of x € R™ and y € R" is the matrix

1Yy .- T1Yn
zyl = 5 : € R™*",
For many problems it often is more relevant and convenient to work with

complex vectors and matrices, i.e., the vector space C"*™ of all complex n x m
matrices whose components are complex numbers.!!

1Tn MATLAB the only data type used is a matrix with either real or complex elements.

1.6. Linear Algebra and Matrix Computations 55

Most concepts introduced here carry over to complex matrices. Addition and
multiplication of vectors and matrices follow the same rules as before. However, the
complex, or Hermitian, inner product of two vectors z and y in C" is defined by

n
ey =" Ty, (1.6.3)
k=1

H — (zy,...,%,) and Zj denotes the complex conjugate of z;. Hence

where z
fy = yHy,

It is useful to define array operations, which are carried out element-by-
element on vectors and matrices. Following the convention in Matlab we denote
array multiplication and division by .x and ./, respectively. If A and B have the
same dimensions A.* B is the matrix with elements equal to a;; - b;; and A./B
has elements a;;/b;;. (Note that for +, — array operations coincides with matrix
operations so no distinction is necessary.)

Any matrix D for which d;; = 0 if i # j is called a diagonal matrix. If
xz € R™ is a vector then D = diag (z) € R"*™ is the diagonal matrix formed by the
elements of . For a matrix A € R™*" the elements a;;, 1 = 1 : n form the main
diagonal of A, and we write

diag (4) = diag (a11,a22, .-, Qnn)-

For k =1 :n —1 the elements a; 1+ (@Gitr,i), ¢ =1 :n —k form the kth super-
diagonal (subdiagonal) of A. The elements a;,—;+1, ¢ = 1 : n form the (main)
antidiagonal of A.

The unit matrix I, € R"*" is defined by

I, =diag(1,1,...,1) = (e, ea,...,€n),

and the k-th column of I, is denoted by e;. We have that I,, = (d;;), where d;; is
the Kronecker symbol §;; = 0,¢ # j, and d;; = 1,7 = j. For all square matrices
of order n it holds AI = I A = A. If desirable, we set the size of the unit matrix as
a subscript of I, e.g., I,.

A matrix A for which all nonzero elements are located in consecutive diagonals
is called a band matrix. A is said to have upper bandwidth r if 7 is the smallest
integer such that

Q5 = 07 .7 >0+ r,

and similarly lower bandwidth s if 7 is the smallest integer such that
a;; =0, ©>j+s.

The number of nonzero elements in each row of A is then at most equal to w =
r + s + 1, which is the bandwidth of A. For a matrix A € R™*" which is not
square we define the bandwidth as

w = 1r§ni:i>7<n{j —k+1|aijay #0}.

56 Chapter 1. Principles of Numerical Calculations

Several classes of band matrices that occur frequently have special names.
Thus, a matrix for which 7 = s = 1 is called tridiagonal, if r =0, s =1 (r = 1,
s =0) it is called lower (upper) bidiagonal etc. A matrix with s =1 (r =1) is
called an upper (lower) Hessenberg matrix.

An upper triangular matrix is a matrix R for which 7;; = 0 whenever ¢ > j.
A square upper triangular matrix has form

11 T12 oo T1n
0 T9292 oo Top

R =
0 0 ... Taun

If also 7;; = 0 when ¢ = j then R is strictly upper triangular. Similarly a matrix L
is lower triangular if [;; = 0,7 < j, and strictly lower triangular if /;; = 0,¢ < j.
Sums, products and inverses of square upper (lower) triangular matrices are again
triangular matrices of the same type.

A square matrix A is called symmetric if its elements are symmetric about
its main diagonal, i.e. a;; = aji, or equivalently AT = A. The product of two
symmetric matrices is symmetric if and only if A and B commute, that is, AB = BA.
If AT = —A, then A is called skew-symmetric. A square matrix A is called
persymmetric if it is symmetric about its antidiagonal, i.e., a;; = Gn—j+1,n—it1-

The determinant of a square matrix A is denoted by det(A). It can be
defined by the expression

det A = Z SgUO * A1,y * On oy, (1.6.4)
oES,
where the sum is over all permutations o € S, of the set {1,...,n} and sgno is +1

according to whether ¢ is an even or odd permutation. If det A # 0 the solution of
the linear system Az = b can be expressed as

z; =det Aj/detA, i=1:n, (1.6.5)

where A; is the matrix A where the jth column has been replaced by the right hand
side b. This expression is known as Cramer’s rule.'? Cramer’s rule is useful for
numerical computation only in very special cases, e.g., if n = 2.

Using the definition (1.6.4) to evaluate det A requires n - n! arithmetic opera-
tions. By the following three rules det(A) can be computed much more efficiently:

(i) The value of the determinant is unchanged if a row (column) multiplied by a
scalar is added to another row (column).

(ii) The determinant of a triangular matrix equals the product of the elements in
the main diagonal, i.e., if R is upper triangular

det(R) =T11722 """ Tnn-

12Named after Gabriel Cramer 1704-1752.

1.6. Linear Algebra and Matrix Computations 57

(iii) If two rows (columns) are interchanged the value of the determinant is multi-
plied by (—1).

Obviously det(aA) = o™ det(A). The following rules are also valid:
det(AT) = det(A), det(AB) = det(A) det(B).

A matrix is nonsingular if and only if det(A4) # 0. Otherwise the matrix is
singular. Hence a triangular matrix is nonsingular if and only if all its diagonal
elements are nonzero. If A is nonsingular then there exists an inverse matrix
denoted by A~! with the property that

A" A=AAT =1L

By AT we will denote the matrix (A1) = (AT7)~!. For the inverse of a product
of two matrices we have
(AB)™' =B~t4A™,

where the product of the inverse matrices are taken in reverse order.

1.6.3 Partitioning and Block Matrices

It is often suitable to think of a matrix (vector) as being built up of matrices
(vectors) of lower dimensions. This can be achieved by partitioning the matrix or
vector into blocks. We write, e.g.,

q1 q2 s qN
D1 { An A ... Ain b1 { z1
D2 { Ao Ass ... Aoy D2 {)
A= , T = . . (1.6.6)
p{\Am1 Am2 ... Aun pv { \zm

where Aj; is a matrix of dimension p; x gy. We call such a matrix a block ma-
trix. The partitioning can be carried out in many ways, and is often suggested by
the structure of the underlying problem. For square matrices the most important
partitionings are those for which M = N, and p; = ¢;. In this case the diagonal
blocks Aj;,I =1: N are square matrices.

The great convenience of block matrices lies in the fact that the operations
of addition and multiplication can be performed by treating the blocks Ar; as
non-commuting scalars and applying the definitions (1.6.1) and (1.6.2). Therefore
many algorithms defined for matrices with scalar elements have another simple
generalization to partitioned matrices. Of course the dimensions of the blocks must
correspond in such a way that the operations can be performed. When this is the
case, the matrices are said to be partitioned conformally.

Let A = (Arx) and B = (Bgyj) be two block matrices of block dimensions
M x N and N x P respectively, where the partitioning corresponding to the index
K is the same for each matrix. Then we have C = AB = (Cyy), where

N
CIJ:ZAIKBK.L 1<I<M, 1<J<P
K=1

58 Chapter 1. Principles of Numerical Calculations

For example, if N = M = P = 2 we have

<A11 A12> (Bu BlZ) _ <A11311 + A12B21 A11DBi» +A12322>
Ao Ass By1 B As1Bi1 + AsaBor As1Bia + AssBos) -

Be careful to note the order of the factors in the products! In the special case of
block upper triangular matrices this reduces to

<R11 R12> (Sll Sl2> — <R11511 R11512+R12S22>
0 R22 0 SQQ 0 R22522)

Note that the product is again block upper triangular and its block diagonal equals
the products of the diagonal blocks of the factors.

As a simple example consider the case when A and z are as in (1.6.6). Then
the product z = Az is a block vector with blocks

N

ZI:ZAIKQJK; I=1:M.
K=1

Often it is convenient to partition a matrix into rows or columns. In the
special case when M =1 and A € R™*"™ we write

A= (a1,az,...,a,),

where a; € R™, j = 1 : n, is the j-th column of A. Similarly, when N =1, we
write

a; € R", i =1:m, means that a! is the i-th row of A. Let A € R™*", B € R"*?,
Then the matrix product C = AB € R™*P can be written

by
o) o
C=AB=(a1 a2 ---an)| . | = Zakka, (1.6.7)
: k=1
bT

n

where a; € R™, by € RP. Note that each term in the sum of (1.6.7) is an outer
product. When the matrices A and B only have relatively few nonzero elements it
can be shown that this is a more efficient way to compute their products than using
the more common inner product formula (1.6.2) obtained from the partitioning

T
ay

T
a

C =AB = : (b1 bz R bp) = (Cl'j), Cij = ainj.
ap,

1.6. Linear Algebra and Matrix Computations 59

1.6.4 Inner Products, Orthogonality and Projections

An inner product on a vector space V defined over K is a continuous mapping (-, -)
from V x V onto K with the properties

1. (v,v) >0 <= v #0;
2. (v,w) = (w,v);
3. (au + pv,w) = a(u,w) + B(v,w).

A vector space for which an inner product is defined is called an inner prod-
uct space. We have already seen examples of an inner product space, namely R"
(C") with the Euclidian inner product (z,y) = 2%y ((z,y) = 2Hy).

For a nonsingular linear transformation A which maps a vector space V onto
V there is a unique adjoint transformation A*, such that

(z, A%y) = (Az,y).

A matrix A € C"*"™ is called self-adjoint if A* = A.
For A € R™*" with the Euclidian inner product we have

(Az,y) = (Az)'y = 2T ATy,

that is A* = AT, the transpose of A. Hence A is self-adjoint if A is symmetric. A
symmetric matrix A is called positive definite if

tTAz >0, VeeR", z#0. (1.6.8)

and non-negative definite if 27 Az > 0, for all z € R"”. Otherwise it is called
indefinite.

Similarly, A € C™*" is self-adjoint or Hermitian if A” = A, conjugate
transpose of A. A Hermitian matrix has analogous properties to a real symmetric
matrix. If A is Hermitian, then (2 Az)# = 2 Az is real, and A is positive
definite if

e Az >0, YeeC", z#0,

For the vector space R"™ (C") any inner product can be written as (z,y) =
yT'Gz ((z,y) = y?Gx), where the matrix G is positive definite.

Any matrix A € C™ "™ can be written as the sum of its Hermitian and a
skew-Hermitian part, A = H(A) + S(A), where

H(A) = %(A+AH), S(A) = %(A— A,

A is Hermitian if and only if S(A4) = 0. It is easily seen that A is positive definite
if and only if its symmetric part H(A) is positive definite.

Two vectors v and w in R™ are said to be orthogonal if (v,w) = 0. A set
of vectors vy, ..., v in R™ is called orthogonal with respect to the Euclidian inner
product if

vfv; =0, i#7,

60 Chapter 1. Principles of Numerical Calculations

and orthonormal if also vlv; = 1,5 = 1 : k. An orthogonal set of vectors is

linearly independent. More generally, a collection of subspaces Sy, ..., S, of R™ are
mutually orthogonal if

a:TyZO, x €55, yGSj, i#j.
The orthogonal complement S+ of a subspace S € R" is defined by
St={yeR" ylz=0, z €S}

The vectors ¢y, . .., q; form an orthonormal basis for a subspace S C R" if they are
orthonormal and span{qi,...,qx} = S. Such a basis can always be extended to a
full orthonormal basis q1,. . ., g, for R", and then St = span {qx+1,..-,qn}-

Let ¢1,.-.,q, € R™ be orthonormal and form the matrix @ = (g1,...,q,) €
R™>" m > n. Then the matrix @ is called orthogonal and QTQ = I,. If
m = n then it follows that Q' = Q7, and hence also QQ” = I,,. Further we have
det(Q)? = det(QTQ) =1 and hence |det(Q)| = 1.

Let the intersection of the two subspaces S; and S» = 0 be empty. Then any
vector z € S can be decomposed in a unique way as

rT=wv1+ve, v €Sy, vy € Sos.

The transformation P, that maps z into v, is a linear transformation that is idem-
potent, i.e., P2 = P;. It is called a projector onto S; along S». Hence P is a
projector onto the subspace S; if and only if it holds:

(i) Plb=0b V be Sy, (ii) P =P,. (1.6.9)
The decomposition of an arbitrary vector b € R"™ can be written
b=Pb+ (I —P1)b="0by+ bs. (1.6.10)
If it also holds that (ii4) P = Py, then for all b € R"
Plby =P/ (I - P)b= (P1 — P})b=0,

and it follows that bJb = oI Pib = 0 for all b € S;. Hence by L Sy, i.e., by lies in
the orthogonal complement S+ of Si; in particular b, L b;. In this case P is the
orthogonal projector onto S; and P, = I — P; the orthogonal projector onto Si-.
It can be shown that the orthogonal projector P, is unique. Orthogonal projections
play a central role in the study of least squares problems (see Chapter 8).

In the complex case, A = (a;;) € C™*" the Hermitian inner product leads to
modifications in the definition of symmetric and orthogonal matrices Two vectors
z and y in C" are called orthogonal if 27y = 0. A square matrix U for which
UHU = I is called unitary. From (1.6.3) we find that

(Ux)HUy = 2HUHUy = 2y,

Hence unitary matrices are characterized by the property that they preserve the
Hermitian inner product. In particular the Euclidian length of a vector is invariant
under unitary transformations, i.e., ||[Uz||3 = ||z||3. Note that in every case, the
new definition coincides with the old when the vectors and matrices are real.

1.6. Linear Algebra and Matrix Computations 61

1.6.5 Linear Least Squares Problems

Four fundamental subspaces are associated with a matrix A € R™*"., Two of
them are the range of A

R(A) ={y e R™"| y= Az, z € R"}, (1.6.11)
and the null space of A”
N(AT) ={ze R™| ATz = 0}. (1.6.12)

The other two, the range R(AT) of AT and the null space N'(A) of A are subspaces
of R™ and defined analogously.

If y € R(A) and z € N(AT) then y?2 = 27 ATz = 0, i.e., y is orthogonal to
z. It follows that NV'(A”T) is the orthogonal complement to R(A4) in R™. Likewise
N (A) is the orthogonal complement to R(AT) in R™.

The linear system Az = b, where A € R™*" is said to be consistent if
b € R(A), or equivalently rank (4, b) = rank(A). A consistent linear system
always has at least one solution z; see Sec. 1.3.7. If b € R(A), or equivalently
rank (A, b) > rank (A4) the system is inconsistent and has no solution. If m > n the
system is there always are right hand sides b such that Az = b is inconsistent.

For an inconsistent linear system Az = b there are many possible ways of
defining a vector x, which in some sense “best” satisfies the system. A choice
which can often be motivated for statistical reasons and also leads to a simple
computational problem is to take x to be a vector which minimizes the Euclidian
length of the residual vector r = b — Ax

min ||b — Az, (1.6.13)
where we have used the notation
[zllz = (|z2|* + - + |za]) = (2T 2)/2.

for the Euclidian length of a vector . We call (1.6.13) a linear least squares
problem and any minimizer = a least squares solution of the system Az = b.
The set of all solutions to problem (1.6.13) can the be characterized as follows:

Theorem 1.6.1.
The vector x minimizes ||b— Azx||2 if and only if the residual vector r = b— Az
is orthogonal to R(A), or equivalently

AT (b— Az) = 0. (1.6.14)

Proof. Let = be a vector for which AT (b — Az) = 0. Then for any y € R”
b— Ay = (b— Az) + A(x — y). Squaring this and using (1.6.14) we obtain

16— Ayllz = [1b = Azl + | Az = »)lI3 > [Ib — Azl

62 Chapter 1. Principles of Numerical Calculations

On the other hand assume that A7 (b — Az) = z # 0. Then if x —y = —ez we have
for sufficiently small € # 0,

16— Ayll3 = [1b = Axll3 — 2¢l|2]I3 + €*[| Azl < [|b — Ax]l3
so « does not minimize ||b — Az||,. O

Theorem 1.6.1 shows that any least squares solution decomposes the right
hand side b into two orthogonal components

b= Az +r, r 1l Ax. (1.6.15)

Here Az is the orthogonal projection onto R(A) and r € N'(A”); see Fig. 1.7.1. Note
that although the least squares solution z may not be unique the decomposition
(1.6.15) always is unique,

Figure 1.6.1. Geometric characterization of the least squares solution.

The above characterization of a least squares solution immediately leads to
a classical method for solving the least squares problem (1.6.13). Multiplying in
the factor AT in (1.6.14) it follows that a least squares solution always satisfies the
normal equations

AT Az = ATp. (1.6.16)

Here AT A € R" ™ is a symmetric, positive semidefinite matrix. The normal equa-
tions are always consistent since

ATh e R(AT) = R(AT A),

and therefore a least squares solution always exists.
We now give a condition for the least squares solution to be unique.

Theorem 1.6.2.
The matriz AT A is positive definite if and only if the columns of A are linearly
independent, i.e., when rank (A) = n. In this case the least squares solution x is

unique and given by
x=(ATA)71ATD. (1.6.17)

1.6. Linear Algebra and Matrix Computations 63

Proof. If the columns of A are linearly independent, then z # 0 = Az # 0.
Therefore z # 0 = 2T AT Az = ||Az||3 > 0, and hence AT A4 is positive definite. On
the other hand, if the columns are linearly dependent, then for some z¢ # 0 we have
Azg = 0. Then zl' AT Azg = 0, and therefore AT A is not positive definite. When
AT A is positive definite it is also nonsingular and (1.6.17) follows. O

In the full column rank case, rank (A) = n, the residual r = b — Az can be

written
r=b—Prab, Pra=AATA)TTAT, (1.6.18)

which gives an expression for Pr(4), the orthogonal projector onto R(4), the range
space of A. It follows that any solution to the consistent linear system Az = Pr(4)b
is a least squares solution.

In more general least squares problems Az = b we can have rank (4) < n, and
then A has a nontrivial nullspace. In this case if & is any vector that minimizes
|| Az — b]|2, then the set of all least squares solutions is

S={z=d+y|yeNA} (1.6.19)

In this set there is a unique solution of minimum norm characterized by z L N (A).

1.6.6 Similarity Transformations and Eigenvalues

Consider the linear transformation y = Az, where A € R™*". Let V be nonsingular
and suppose we change basis by setting x = V¢, y = Vn, Then the column vectors
¢ and 7 represents the vectors and y with respect to the basis V = (vy,...,v,).
Now Vi = AV, and hence

n=V AV,

which shows that the matrix V! AV represents the operator A with respect to the
basis V. The mapping A — V1AV is called a similarity transformation of the
matrix A.

An eigenvector of A is a non-zero vector w that satisfies the equation,

Aw = lw,

for some real or complex value A that is called an eigenvalue of A. Equivalently
we can write (A — A)w = 0, and the eigenvalues are therefore determined by the
characteristic equation,

Pn(A) = det(A — AI) = 0.

One can show that this is an algebraic equation of degree n, so counting multiplic-
ities the matrix A has precisely n (possibly complex) eigenvalues. To each distinct
eigenvalue A; there is at least one eigenvector w;. The set of eigenvalues of a matrix
is denoted by A(A) and called its spectrum. The largest modulus of an eigenvalue
is called the spectral radius and denoted by

p(A) = max | \i(4)].

64 Chapter 1. Principles of Numerical Calculations

Note that if Aw = Aw, and we change basis, w = Vb, then V1AV = \ib.
This shows that V1AV has the same eigenvalues as A, and the eigenvectors are
w; = Vlw;. In other words: eigenvalues and eigenvectors are properties of the
operator itself, independent of the basis used for its representation by a matrix.

The trace of a square matrix of order n is the sum of its diagonal elements

trace (A) = zn: Qi = zn: /\2
=1 =1

The last equality follows using the relation between the coefficients and roots of the
characteristic equation. Hence the trace of the matrix is invariant under similarity
transformations.

Given A € C™*™ there exists a unitary matrix U € C™*" such that

/\1 t12 . tln
Az e th

UPAU =T = , R
An

where T is upper triangular. This is the Schur normal form of A. Since det(T —
M) = (A — A)(Aa — A)-+- (A, — A) the diagonal elements A1,---,\, of T are the
eigenvalues of A.
A matrix A € C™*® is said to be normal if A A = AAH . Tt follows that for
a normal matrix the upper triangular matrix 7" in the Schur normal form is normal,
ie.
THT =TT".

It can be shown that from this implies that all nondiagonal elements in 7" vanishes.
Hence for a normal matrices the matrix 7" in the Schur normal form is diagonal.
Then we have AU = UT = UA, where A = diag ()\;), or with U = (u1, ..., uy),

Au; = Nug, i=1:n.

This shows the important result that a normal matrix always has a set of mutually
unitary (orthogonal) eigenvectors.

Important classes of normal matrices are Hermitian (A = A*), skew-Hermitian
(A" = — A), unitary (A~! = A#). Hermitian matrices have real eigenvalues, skew-
Hermitian matrices have imaginary eigenvalues, and unitary matrices have eigen-
values on the unit circle.

Let V = (v1,...,v,) be the eigenvectors and A = diag (A1, ..., A,) the eigen-
values of a matrix A. Then, Av; = \jv;, i =1:n, or

AV =VA.

If the eigenvalues are linearly independent then V is non-singular, A = V1AV,
and A is said to be diagonalizable. An example of a non-diagonalizable matrix

1.6. Linear Algebra and Matrix Computations 65

are the matrices of the form

A

The matrix J,, () is called a Jordan block. It has one eigenvalue A of multiplicity
m to which corresponds only one eigenvector v; = e;.

1.6.7 The Singular Value Decomposition

Let A € R™*" be a matrix of rank r. Then there is a decomposition of A into a
product of three matrices

¥ 0

_ T _
A=UxvT, 2_<0 0

> e R™*", (1.6.20)

where U € R™*™ and V € R™*"™ are orthogonal, ¥, = diag (01, 09,...,0,), and
oy 202220 >0.

(Note that if » = n and/or 7 = m, some of the zero submatrices in ¥ disappear.)
The o; are called the singular values of A and if we write

U= (u,-..,un), V= (v1,-..,0n),

the u;, i = 1:m, and v;, i = 1 : n, are left and right singular vectors, respectively.
The rank of A equals the number of nonzero singular values.

Similarly, for any complex matrix A € C™*" we have the decomposition
A=UXVH where U and V are unitary matrices and ¥ a real diagonal matrix. (A
proof of the singular value decomposition (SVD) will be given in Sec. 8.3.)

The SVD is of great theoretical and practical importance.'®> The geometrical
significance of the SVD can be described as follows. The rectangular matrix A
represents a mapping from R" to R™. From the SVD it follows that there is an
orthogonal basis in each of these two spaces, with respect to which this mapping is
represented by the generalized diagonal matrix . Note that transposing (1.6.20)
we obtain the SVD of AT,

AT =yxTyT. (1.6.21)

The singular values of A are uniquely determined. For any distinct singular
value o; # 0, i # j, the corresponding singular vector v; is unique (up to a factor
+1). For multiple singular values, the corresponding singular vectors can be chosen
as any orthonormal basis for the unique subspace that they span. Once the singular

13The SVD was independently published more than a century ago by Eugenio Beltrami 1873
and Camille Jordan 1874. Its use in numerical computations is much more recent.

66 Chapter 1. Principles of Numerical Calculations

vectors vj, 1 < j < r have been chosen, the vectors uj, 1 < j < r are uniquely
determined, and vice versa, by

1 1)
uj = o—jAuj, v; = U—jATuj j=1:r (1.6.22)
If U and V are partitioned according to

U= (U, Uy), Uy eR™" V=W, W), VieR"™. (1.6.23)

then the SVD can be written in the more compact form
T
A=US V" =) o] (1.6.24)
i=1

The last expression expresses A as a sum of r matrices of rank one.
The pseudoinverse of A is defined as

o

t_ yytyl b _
At =vty?, 2_<0 0

> e R™™, (1.6.25)

The pseudoinverse solution of the linear system Ax = b is
z =AM =VEiUT

and equals the least squares solution of minimum Euclidian length.

The SVD gives complete information about the four fundamental subspaces
associated with A. Using (1.6.20)—(1.6.21) it is easy to verify that the range and
nullspace of A and AT are given by

R(A) =R(U1) N(AT) = R(Uy) (1.6.26)
RAT)=R(MV1) N(4) =R(Va). (1.6.27)
Hence we immediately find the well-known relations
R(A =N(AT), N =R,
In general we have
dimR(A) = dimR(AT), dimN(A) =n -7, dim NV (AT) =m —r,

where 7 = rank (A).

The rank r equals the maximum number of independent row or column vectors
of A, and thus r < min(m,n). If rank (A) = n we say that A has full column rank.
If rank (A) = m, then A is said to have full row rank. A square matrix A € R"*"
is nonsingular if and only if N'(A4) = {0}.

If S = span (U) and U = (uy,...,uz) is orthogonal, UTU = I, then it is easily
seen that the orthogonal projector onto S can be written P = UU’. Similarly the
orthogonal projectors onto the four fundamental subspaces of A can be expressed
in terms of the singular vectors of A as

Priay = AA'=U\UY, Pyar) = U2UY, (1.6.28)
PR(AT) — AT(AT)T — ‘/1‘/1717 PN(A) — ‘/2‘/2T

1.6. Linear Algebra and Matrix Computations 67

1.6.8 Norms of Vectors and Matrices

In many applications it is useful to have a measure of the size of a vector or a
matrix. An example is the quantitative discussion of errors in matrix computation.
Such measures are provided by vector and matrix norms, which can be regarded as
generalizations of the absolute value function on R.

A norm on a vector space V over C is a function V — R denoted by || - ||
that satisfies the following three conditions:

1. Jlz||>0, VeeV, z#0 (definiteness)
2. Jlaz|| =|alllz]l, YVaeC, zeC” (homogeneity)
3. lz+yll <zl + lyll Vz,yeV (triangle inequality)

The triangle inequality is often used in the form (see Problem 11) ||z £ y|| >

| Hlll = Iyl |
The most common vector norms are special cases of the family of Holder

norms or {p-norms (see Sec. 4.1.3)
lzlly = (22]P + |22l + - + [en)/?, 1< p<oco. (1.6.29)

The Ip-norms have the property that ||z||, = |||z|||,- Vector norms with this prop-
erty are said to be absolute. The three most important particular cases are p = 1,2
and the limit when p — oc:

Izl = lz1] + -+ + Jaal,

llzllz = (Jer? + -+ [eal*)? = (@)'2, (1.6.30)
[#]loo = max fz;].
1<i<n

The vector 2-norm is also called the Euclidean norm. It is invariant under unitary
(orthogonal) transformations since

Q|3 = " Q" Qz = 2™z = ||z)3

if @ is orthogonal.
Another important property of the /,-norms is the Holder inequality

—

1
|z y| < [lzllpllyllq, stg=bL p2l (1.6.31)

s

For p = ¢ = 2 this becomes the Cauchy—Schwarz inequality
| y| < [ll2[lyll2-
Norms can be obtained from inner products by tasking

l2]|* = (z,2) = " Ga,

68 Chapter 1. Principles of Numerical Calculations

where G is Hermitian and positive definite. It can be shown that the unit ball
{z : ||z|| < 1} corresponding to this norm is an ellipsoid, and hence they are also
called elliptic norms. A special case that frequently is useful is the scaled [,-norms
defined by

lzllp,0 = ||Dzllp, D =diag(di,...,dn), d;i#0, i=1:n. (1.6.32)
All norms on C" are equivalent in the following sense: For each pair of norms
|| -]| and || - || there are positive constants ¢ and ¢’ such that
1
ZJlall’ < Izl < ¢llall’, Vo€ C™. (1.6.33)
¢

In particular it can be shown that for the £,-norms we have

1_1
lelly < llzll, < nG=D|jall, 1<p<qg< . (1.6.34)

We now consider matrix norms. We can construct a matrix norm from a
vector norm by defining

Ax
14 = sup 1420 gy (1.6.35)

e#0 |1zl llzll=1

This norm is called the operator norm, or the matrix norm subordinate to the
vector norm. From the definition it follows directly that

[Azl| <[[A[l ||lz]|, =€ C™

Whenever this inequality holds, we say that the matrix norm is consistent with
the vector norm.

It is an easy exercise to show that operator norms are submultiplicative,
i.e., whenever the product AB is defined it satisfies the condition

4. N(AB) < N(A)N(B)
The matrix norms

[Allp = sup [|Az[l,, p=1,2,o00,

llzll=1

subordinate to the vector p-norms are especially important. For these it holds that
[|I.]lp = 1. The 1-norm and oco-norm are easily computable from

|AllL = max Z|a”| [Allec = max Z|aw| (1.6.36)

respectively. Note that ||A]|; = || A7 |-
The 2-norm is also called the spectral norm. Its major drawback is that it
is expensive to compute. We have
|A|l2 = sup (2 A" Az)Y? = oy (A), (1.6.37)

llzll=1

1.6. Linear Algebra and Matrix Computations 69

where o1(A) is the largest singular value of A. Since the nonzero eigenvalues of
A" A and AAH are the same it follows that ||A||s = ||A#||2. A useful upper bound
for the matrix 2-norm is

1All2 < (1AL IIAll) 2. (1.6.38)

The proof of this bound is given as an exercise in Problem 16.

Another way to proceed in defining norms for matrices is to regard C™*" as
an mn-dimensional vector space and apply a vector norm over that space. With
the exception of the Frobenius norm derived from the vector 2-norm

|AllF = (zm: z": |aij|2)1/2 (1.6.39)

i=1 j=1

such norms are not much used. Note that ||[Af ||z = ||A||r. Useful alternative
characterizations of the Frobenius norm are

k
||| = trace (A" A) = " 07(4), k=min(m,n), (1.6.40)

i=1

where 0;(A) are the nonzero singular values of A. The Frobenius norm is submulti-
plicative. However, it is often larger than necessary; e.g., ||I,||# = n'/2. This tends
to make bounds derived in terms of the Frobenius norm not as sharp as they might
be. From (1.6.40) we also get lower and upper bounds for the matrix 2-norm

1
—|Allr < ||A]l2 < ||4]|g-
TrlAlle <4l < Al

An important property of the Frobenius norm and the 2-norm is that both
are invariant with respect to orthogonal transformations, i.e. for all orthogonal
matrices Q and P (Q¥Q = I, and P# P = I) of appropriate dimensions

QAP = ||All.
We finally remark that the 1-,00- and the Frobenius norm satisfy
AL = [A[L, - [A]l = (lag]),

but for the 2-norm the best result is that || |A] ||z < n'/2||A||2. The vector and matrix
norms defined in this section can immediately be extended to complex vectors and
matrices.
One use of norms is the study of limits of sequences of vectors and matrices

(see Sec. 9.2.4). Consider an infinite sequence zy,zs,... of elements of a vector
space V and let || - || be a norm on V. The sequence is said to converge (strongly if
V is infinite dimensional) to a limit x € V, and we write limy_, o xx = @ if

lim ||z — 2| =0,

k—o0
For a finite dimensional vector space the equivalence of norms (1.6.33) shows that
convergence is independent of the choice of norm. The particular choice || || shows

70

Chapter 1. Principles of Numerical Calculations

that convergence of vectors in C™ is equivalent to convergence of the n sequences of
scalars formed by the components of the vectors. By considering matrices in C™*"
as vectors in C™" the same conclusion holds for matrices. For an excellent survey
of vector and matrix norms we refer to Stewart and Sun [13, Ch.II].

Review Questions

1.

Define the concepts:
(i) Real symmetric matrix. (ii) Real orthogonal matrix.
(iii) Real skew-symmetric matrix. (iv) Triangular matrix.

(v) Hessenberg matrix.

. (a) Give conditions for a matrix P to be the orthogonal projector onto a subspace

SeR"
(b) Define the orthogonal complement of S in R".

. What is the Schur normal form of a matrix A € C"*"?

(b)What is meant by a normal matrix? How does the Schur form simplify for a
normal matrix?

. (a) Show that A" = A~ when A is a nonsingular matrix.

(b) Construct an example where G # A despite the fact that GA = I.

. (a) Construct an example where (AB)" # BT AT,

(b) Show that if A is an m x r matrix, B is an r X n matrix, and rank (A) =
rank (B) = r, then (AB)" = BT A'.
Show, using the SVD, that Pra) = AA" and Prary = AtA,

. Define the matrix subordinate norm to a given vector norm.

. Define the l, norm of a vector x. Give explicit expressions for the matrix I, norms

for p = 1,2, c0. Show that

1 1
Z < ——lzlls < ||2]co.
el < \/ﬁllfﬂllz < [l

which are special cases of (1.6.34).

. Show that for any consistent matrix norm || - || it holds that p(A) < ||A4||, where p(A)

is the spectral radius of A.

Problems

1.

2.

Show that if A, B € R"*™ are both symmetric and persymmetric, then AB + BA
also has this property.
Let A € R™*™ have rows a; , i.e., AT = (a1,...,amn). Show that

m
T T
ATA= E aia; .
i=1

What is the corresponding expression for ATA if A is instead partitioned into
columns?

Problems 71

10.

11.

12.

13.

14.
15.

. (a) Let A,B € R™*" have lower bandwidth r and s respectively. Show that the

product AB has lower bandwidth r + s.

(b) An upper Hessenberg matrix H is a matrix with lower bandwidth r = 1. Using
the result in (a) deduce that the product of H and an upper triangular matrix is
again an upper Hessenberg matrix.

(c) Show that if R € R"*™ is strictly upper triangular, then R" = 0.

. To solve a linear system Az = b, where A € R", by Cramer’s rule (see Equation

(1.6.5)) requires the evaluation of n + 1 determinants of order n. Estimate the
number of multiplications needed for n = 50 if the determinants are evaluated in
the naive way. Estimate the time it will take on a computer performing 10° floating
point operations per second!

(a) Show that if w € R" and w”w = 1, then the matrix P(w) = I — 2ww” is both
symmetric and orthogonal.

(b) Given two vectors x,y € R", x # v, ||z||2 = ||yl|2, then

Plwe=y, w=(y—u)/lly—=zl

. Show that if the complex matrix U = @1 + iQ)2 is unitary, then the real matrix

m_ Q1 —Q2
U‘(@b Q1>

is orthogonal.

. Let A € R"™" be a given matrix. Show that if Az = y has at least one solution

for any y € R", then it has ezactly one solution for any y € R™. (This is a useful
formulation for showing uniqueness of approximation formulas.)

. Show that for x € R",

li = .
Jim]l max |4

. Prove the following inequalities are valid and best possible:

lellz < llelh < n' 2zl llzlleo < [zl < nlle]|oo.
Derive similar inequalities for the comparison of the operator norms || A||1,||A]|2,and
N Alloo-

Show that any vector norm is uniformly continuous by proving the inequality
Hzll =Myl < lle —wll, x,yeR"

Show that for any matrix norm there exists a consistent vector norm.
Hint: Take ||z|| = ||zy”|| for any vector y € R™, y # 0.
Derive the formula for ||Al|e given in (1.6.36).

Show that for any subordinate matrix norm
A+ Bl <[Al+IBl, [IABI|l < [IA[llBII-

Show that ||A|l2 = [|PAQ)||2 if P and Q are orthogonal matrices.

Use the result ||A]|3 = p(ATA) < ||AT A||, valid for any matrix operator norm || - ||,
where p(ATA) denotes the spectral radius of A7 A, to deduce the upper bound in
(1.6.38).

72 Chapter 1. Principles of Numerical Calculations
16. (a) Let T be a nonsingular matrix, and let || - || be a given vector norm. Show that
the function N(z) = ||Tz|| is a vector norm.
(b) What is the matrix norm subordinate to N(z)?
(c) If N(z) = max; |kix;|, what is the subordinate matrix norm?
17. Let B € R™*" be a matrix for which ||B]| < 1. Show that the infinite sequence and

product

(I+B)(I+B*)(I+B*)I+B®%---
both converge to the indicated limit.
Hint: Use the identity (I + B +---+ B*)(I — B) = I — B**%.
(b) Show that the matrix (I — B) is nonsingular and that ||(I—B)™*|| < 1/(1—||BJ)-

2 3 4
(I_B)1:{I+B+B +B*+B*,

Notes and References

A good paper explaining to a mathematical audience problems inherent in numerical
computations is Forsythe [3, 1970], The paper by Fox [5, 1971] gives numerous
examples in which incorrect answers are obtained from plausible numerical methods.

For a summary of the theory and current practice of random number genera-

tors, see Knuth [8, 1981] and [10, 1988]. Press et al.[11, 1997, Ch.7] gives an up to
date survey reflecting recent progress in random number generators.

[1]

N. T. J. Bailey. A study of queues and appointment systems in hospital
outpatient departments, with special reference to waiting times. J. Roy. Stat.
Soc., 3:14:1851f, 1951.

RAND Corporation. A Million Random Digits and 100,000 Normal Deviates.
Free Press, Glencoe, IL, 1955.

G. E. Forsythe. Pitfalls in computation, or why a math book isn’t enough.
Technical Report CS 147, Computer Science Department, Stanford Univer-
sity, Stanford, CA, 1970.

G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Method for
Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ, 1977.

L. Fox. How to get meaningless answers in scientific computation (and what
to do about it),. IMA Bulletin, 7:10:296-302, 1971.

J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen,
London, UK, 1964.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, 2002.

D. E. Knuth. The Art of Computer Programming, Vol. 2. Seminumerical
Algorithms. Addison-Wesley, Reading, MA, second edition, 1981.

S. J. Leon. Linear Algebra with Applications. Macmillan, New York, fourth
edition, 1994.

Problems 73

[10] S. K. Park and K. W. Miller. Random number generators: good ones are
hard to find. Comm. ACM, 22:1192-1201, 1988.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes in Fortran 77; The Art of Scientific Computing. Cambridge
University Press, Cambridge, UK, second edition, 1993.

[12] G. Strang. Linear Algebra and Its Applications. Academic Press, New York,
third edition, 1988.

[13] G. W. Stewart and J.-G. Sun. Matriz Perturbation Theory. Academic Press,
New York, 1990.

74

Chapter 1.

Principles of Numerical Calculations

Chapter 2

How to Obtain and
Estimate Accuracy

2.1 Basic Concepts in Error Estimation

1
2.1.1 Sources of Error

The main purpose of numerical analysis and scientific computing is to develop ef-
ficient and accurate methods to compute approximations to quantities that are
difficult or impossible to obtain by analytic means. However, numerical analysts
must also be experts at controlling different sources of errors so that these will not
interfere with the computed results.

Numerical results are affected by many types of errors. Some sources of error
are difficult to influence; others can be reduced or even eliminated by, for example,
rewriting formulas or making other changes in the computational sequence.

Errors are propagated from their sources to quantities computed later, some-
times with a considerable amplification or damping. It is important to distinguish
between the new error produced at the computation of a quantity (a source error),
and the error inherited (propagated) from the data that the quantity depends on.

A. Errors in Given Input Data. Input data can be the result of measurements
which have been influenced by systematic errors or by temporary disturbances.
A rounding error occurs, for example, whenever an irrational number is
shortened (“rounded off”) to a fixed number of decimals. It can also occur
when a decimal fraction is converted to the form used in the computer.

B. Rounding Errors During the Computations. The limitation of floating point

numbers in a computer leads at times to a loss of information that, depending
on the context, may or may not be important. Two typical cases are:
(i) If the computer cannot handle numbers which have more than, say, s digits,
then the exact product of two s-digit numbers (which contains 2s or 2s — 1
digits) cannot be used in subsequent calculations; the product must be rounded
off.

I This section last revised by Ake Bjorck 2003 02 24.

75

76 Chapter 2. How to Obtain and Estimate Accuracy

(ii) If, in a floating point computation, a relatively small term b is added to a,
then some digits of b are “shifted out” (see Example 2.2.4), and they will not
have any effect on future quantities that depend on the value of a + b.

The effect of such roundings can be quite noticeable in an extensive calculation,
or in an algorithm which is numerically unstable (see Example 1.3.4).

C. Truncation Errors. These are errors committed when a limiting process is trun-
cated (broken off) before one has come to the limiting value. A truncation
error occurs, for example, when an infinite series is broken off after a finite
number of terms, or when a derivative is approximated with a difference quo-
tient (although in this case the term discretization error is better). Another
example is when a nonlinear function is approximated with a linear function
as in Newton’s method. Observe the distinction between truncation error and
rounding error.

D. Simplifications in the Mathematical Model. In most of the applications of math-
ematics, one makes idealizations. In a mechanical problem, for example, one
might assume that a string in a pendulum has zero mass. In many other types
of problems it is advantageous to consider a given body to be homogeneously
filled with matter, instead of being built up of atoms. For a calculation in
econormics, one might assume that the rate of interest is constant over a given
period of time. The effects of such sources of error are usually more difficult
to estimate than the types named in A, B, and C.

E. “Human” Errors and Machine Errors. In all numerical work, one must expect
that clerical errors, errors in hand calculation, and misunderstandings will
occur. One should even be aware that textbooks (!), tables and formulas may
contain errors. When one uses computers, one can expect errors in the program
itself, typing errors in entering the data, operator errors, and (more seldom).

Errors which are purely machine errors are responsible for only a very small
part of the strange results which (occasionally with great publicity) are produced
by computers. Most of the errors depend on the so-called human factor. As a
rule, the effect of this type of error source cannot be analyzed with the help of
the theoretical considerations of this chapter! We take up these sources of error
in order to emphasize that both the person who carries out a calculation and the
person who guides the work of others can plan so that such sources of error are
not damaging. One can reduce the risk for such errors by suitable adjustments in
working conditions and routines. Stress and tiredness are common causes of such
€rrors.

Intermediate results that may reveal errors in a computation are not visible
when using a computer. Hence the user must be able to verify the correctness of
his results or be able to prove that his process cannot fail! Therefore one should
carefully consider what kind of checks can be made, either in the final result or
in certain stages of the work, to prevent the necessity of redoing a whole project
for the sake of a small error in an early stage. One can often discover whether
calculated values are of the wrong order of magnitude or are not sufficiently regular,
for example using difference checks (see Section 4.5).

2.1. Basic Concepts in Error Estimation 77

Occasionally one can check the credibility of several results at the same time
by checking that certain relations are true. In linear problems, one often has the
possibility of sum checks. In physical problems, one can check, for example, to see
whether energy is conserved, although because of the error sources A—D one cannot
expect that it will be exactly conserved. In some situations, it can be best to treat
a problem in two independent ways, although one can usually (as intimated above)
check a result with less work than this.

Errors of type E do occur, sometimes with serious consequences. For exam-
ple, the first American Venus probe was lost due to a program fault caused by the
inadvertent substitution of a statement in a Fortran program of the form DO 3 I
= 1.3 for one of the form DO 3 I = 1,3. A hardware error that got much public-
ity surfaced in 1994, when it was found that the INTEL Pentium processor gave
wrong results for division with floating point numbers of certain patterns. This was
discovered by a mathematician doing research on prime numbers.

From a different point of view, one may distinguish between controllable and
uncontrollable (or unavoidable) error sources. Errors of type A and D are usually
considered to be uncontrollable in the numerical treatment (although a feedback
to the constructor of the mathematical model may sometimes be useful). Errors
of type C are usually controllable. For example, the number of iterations in the
solution of an algebraic equation, or the step size in a simulation can be chosen,
either directly or by setting a tolerance, see Sec. 1.4.1.

The rounding error in the individual arithmetic operation (type B) is, in a
computer, controllable only to a limited extent, mainly through the choice between
single and double precision. A very important fact is, however, that it can often be
controlled by appropriate rewriting of formulas or by other changes of the algorithm,
see, e.g., Example 2.3.4.

If it doesn’t cost too much, a controllable error source should be controlled
so that its effects are evidently negligible, for example compared to the effects of
the uncontrollable sources. A reasonable interpretation of “full accuracy” is that
the controllable error sources should not increase the error of a result more than
about 20%. Sometimes, “full accuracy” may be expensive, for example in terms of
computing time, memory space or programming efforts. Then it becomes important
to estimate the relation between accuracy and these cost factors. One goal of the
rest of this chapter is to introduce concepts and techniques useful to this purpose.

We strongly encourage the reader to use quality library programs when pos-
sible, since a lot of experience and profound theoretical analysis has often been
built into these (sometimes far beyond the scope of this text). It is not practical
to “reinvent the wheel”! Nevertheless, many real-word problems contain some non-
standard features, where understanding the general principles of numerical methods
can save much time in the preparation of a program as well as in in the computer
runs.

2.1.2 Absolute and Relative Errors

Approximation is a central concept in almost all the uses of mathematics. One must
often be satisfied with approximate values of the quantities with which one works.

78 Chapter 2. How to Obtain and Estimate Accuracy

Another type of approximation occurs when one ignores some quantities which are
small compared to others. Such approximations are often necessary to insure that
the mathematical and numerical treatment of a problem does not become hopelessly
complicated.

We make the following definition.

Definition 2.1.1.
Let & be an approximate value whose exact value is x. Then the absolute
€rror in I 1s:
Arx =1 —ux,

and if x # 0 the relative error is:
Ax/z = (% —z)/x.

In some books the error is defined with the opposite sign to that we use here.
It makes almost no difference which convention one uses, as long as one is consistent.
Using our definition « — & is the correction which should be added to Z to get rid of
the error. The correction and the error have then the same magnitude but different
sign.

It is important to distinguish between the error £ —z, which can be positive or
negative, and a bound for the magnitude of the error. In many situations one wants
to compute strict or approximate error bounds for the absolute or relative error.
Since it is sometimes rather hard to obtain an error bound that is both strict and
sharp, one sometimes prefers to use less strict but often realistic error estimates.
These can be based on the first neglected term in some expansion or some other
asymptotic considerations.

The notation z = # + € means, in this book, |# — z| < e. For example, if
x = 0.5876 £ 0.0014 then 0.5862 < z < 0.5890, and |Z — z| < 0.0014. In other
texts, the same plus-minus notation is sometimes used for the “standard error” (see
Sec. 2.3.4) or some other measure of deviation of a statistical nature. If x is a vector
|| - || then the error bound and the relative error bound may be defined as bounds
for

17— =l and ||z — =[|/|]z]],

respectively, where || - || denotes some vector norm (see Sec. 1.6.8). A bound ||Z —
z||/||z|| < 1/2-107? then implies that components Z; with |Z;| & ||z|| have about p
significant digits but this is not true for components of smaller absolute value. An
alternative is to use componentwise relative errors, e.g.,

mlax|57,~ — x| /| i), (2.1.1)

but this assumes that z; # 0, Vi.

We will distinguish between the terms accuracy and precision. By accuracy
we mean the absolute or relative error of an approximate quantity. The term pre-
cision will be reserved for the accuracy with which the basic arithmetic operations
+,—, %,/ are performed. For floating point operations this is given by the unit
roundoff; see (2.2.8).

2.1. Basic Concepts in Error Estimation 79

Numerical results which are not followed by any error estimations should often,
though not always, be considered as having an uncertainty of % a unit in the last
decimal place. In presenting numerical results, it is a good habit, if one does not
want to go to the difficulty of presenting an error estimate with each result, to give
explanatory remarks such as:

e “All the digits given are thought to be significant.”
e “The data has an uncertainty of at most 3 units in the last digit.”

e “For an ideal two-atomed gas, cp/cy = 1.4 (exactly).”

We shall also introduce some notations, useful in practice, though their defi-
nitions are not exact in a mathematical sense:

a < b (a>b)isread: “ais much smaller (much greater) than ”. What
is meant by “much smaller” (or “much greater”) depends on the context—
among other things, on the desired precision.

a ~ b is read: “a is approximately equal to b” and means the same as
|a — b] < ¢, where ¢ is chosen appropriate to the context. We cannot
generally say, for example, that 1076 ~ 0.

a § b (or b é a) is read: “a is less than or approximately equal to b” and
means the same as “a < bora~b.”

Occasionally we shall have use for the following more precisely defined math-
ematical concepts:

f(z) = O(g(x)), © — a, means that |f(z)/g(z)| is bounded as z — a
(@ can be finite, +00, or —00).

f(z) = o(g(x)), £ = a, means that lim,_,, f(z)/g(z) = 0.

f(z) ~ g(z), £ — a, means that lim,_,, f(z)/g(z) = 1.

2.1.3 Rounding and Chopping

When one counts the number of digits in a numerical value one should not include
zeros in the beginning of the number, as these zeros only help to denote where the
decimal point should be. If one is counting the number of decimals, one should of
course include leading zeros to the right of the decimal point. For example, the
number 0.00147 is given with three digits but has five decimals. The number 12.34
is given with four digits but has two decimals.

If the magnitude of the error in @ does not exceed % -107%, then a is said to
have ¢t correct decimals. The digits in a which occupy positions where the unit is
greater than or equal to 107! are called, then, significant digits (any initial zeros
are not counted). Thus, the number 0.001234 & 0.000004 has five correct decimals
and three significant digits, while 0.001234 + 0.000006 has four correct decimals
and two significant digits. The number of correct decimals gives one an idea of the
magnitude of the absolute error, while the number of significant digits gives a rough
idea of the magnitude of the relative error.

We distinguish here between two ways of rounding off a number = to a given
number ¢ of decimals. In chopping (or round toward zero) one simply leaves off all

80 Chapter 2. How to Obtain and Estimate Accuracy

the decimals to the right of the tth. That way is generally not recommended since
the rounding error has, systematically, the opposite sign of the number itself. Also,
the magnitude of the error can be as large as 107,

In rounding to nearest (sometimes called “correct” or “optimal” round-
ing”), one chooses, a number with s decimals which is nearest to . Hence if p is
the part of the number which stands to the right of the sth decimal one leaves the
tth decimal unchanged if and only if |p| < 0.5-107°. Otherwise one raises the sth
decimal by 1. In case of a tie, when z is equidistant to two s digit numbers then
one raises the sth decimal if it is odd or leaves it unchanged if it is even (round
to even). In this way, the error is positive or negative about equally often. The
error in rounding a decimal number to s decimals will always lie in the interval
[—3107%,310°].

Suppose that you are tabulating a transcendental function and a particular
entry has been evaluated as 5.0835 correct to the digits given. You want to round
the value to three decimals. Should the final digit be 4 or 57 The answer depends on
whether there is a nonzero trailing digit. You compute the entry more accurately
and find the 5.08350, then 5.083500, then 5.0835000, etc. Since the function is
transcendental clearly there is no bound on how many digits you have to be compute
before distinguishing if to round to 5.084 or 5.085. This is called the tablemaker’s
dilemma. This can be used to advantage in order to protect mathematical tables
from illegal copying by rounding a few entries incorrectly where the error in doing so
is insignificant due to several trailing zeros. An illegal copy could then be exposed
simply by looking up these entries!

Example 2.1.1.
Shortening to three decimals:

0.2397 rounds to 0.240 (is chopped to 0.239)
—0.2397 rounds to —0.240 (is chopped to —0.239)
0.23750 rounds to 0.238 (is chopped to 0.237)
0.23650 rounds to 0.236 (is chopped to 0.236)
0.23652 rounds to 0.237 (is chopped to 0.236)

Observe that when one rounds off a numerical value one produces an error;
thus it is occasionally wise to give more decimals than those which are correct.
Take, for example, a = 0.1237 £ 0.0004, which has three correct decimals according
to the definition given previously. If one rounds to three decimals, one gets 0.124;
here the third decimal is not correct, since the least possible value for a is 0.1233.

Example 2.1.2.

The difference between chopping and rounding can be important as is born
out by the following story. The index of the Vancouver Stock Exchange, founded
at the initial value 1000.000 in 1982, was hitting lows in the 500s at the end of
1983 even though the exchange apparently performed well. It was discovered (The
Wall Street Journal, Nov. 8, 1983, p. 37) that the discrepancy was caused by a
computer program which updated the index thousands of times a day and used
chopping instead of rounding to nearest! The rounded calculation gave a value of

Review Questions 81

1098.892.

Review Questions

1. Clarify with examples the various types of error sources which occur in numerical
work.

2. (a) Define “absolute error” and “relative error” for an approximation Z to a scalar
quantity x. What is meant by an error bound?
(b) Generalize the definitions in (a) to a vector .

3. (a) How is “rounding to nearest” performed.

4. Give 7 to four decimals using: (a) chopping; (b) rounding.

5. What is meant by the “tablemaker’s dilemma”?

2.2 Computer Number Systems
2.2.1 The Position System

In order to represent numbers, we use in daily life a position system with base 10
(the decimal system). Thus to represent the numbers we use ten different characters,
and the magnitude with which the digit a contributes to a number’s value depends
on the digit’s position in the number. If the digit stands n steps to the right of the
decimal point, the value contributed is a-10~". For example, the sequence of digits
4711.303 means

4-10°+7-10°+1-10"+1-10°+3-10"'0-10"2+3-1073.

Every real number has a unique representation in the above way, except for the
possibility of infinite sequences of nines—for example, the infinite decimal fraction
0.3199999. .. represents the same number as 0.32.

One can very well consider other position systems with base different from 10.
Any natural number § > 2 can be used as base. One can show that every positive
real number ¢ has, with exceptions analogous to the nines-sequences mentioned
above, a unique representation of the form

a=df" +dp 1 A S d ST+ d T+

or more compactly a = (dpdy_1...do.d_1d_5...)3, where the coefficients d;, the
“digits” in the system with base 3, are positive integers d; such that 0 < d; < g—1.

One of the greatest advantages of the position system is that one can give
simple, general rules for the arithmetic operations. The smaller the base is, the
simpler these rules become. This is just one reason why most computers operate in
base 2, the binary number system. The addition and multiplication tables then
take the following simple form:

0+0=0; 04+1=14+0=1; 1+1=10;
0-0=0; 0-1=1-0=0; 1-1=1;

82 Chapter 2. How to Obtain and Estimate Accuracy

In the binary system, the number seventeen, for example, becomes 10001, since
1-2240-2240-2240-2! 4+ 1-2° = sixteen + one = seventeen. Put another way
(10001)3 = (17)10, where the index (in decimal representation) denotes the base of
the number system. The numbers become longer written in the binary system; large
integers become about 3.3 times as long, since IV binary digits suffice to represent
integers less than 2%V = 10V 198102 & 10N/3:3,

Occasionally one groups together the binary digits in subsequences of three or
four, which is equivalent to using 2% and 2%, respectively, as base. These systems
are called the octal and hexadecimal number systems, respectively. The octal
system uses the digits from 0 to 7; in the hexadecimal system the digits O through
9 and the letters A, B,C,D,E, F (“ten” through “fifteen”) are used.

Example 2.2.1.

(17)10 - (10001)2 - (21)8 - (11)16;
(13.25)10 = (1101.01)3 = (15.2)s = (D.4) 16,
(0.1)10 = (0.000110011001 .. .); = (0.199999 ..)16.

Note that the finite decimal fraction 0.1 cannot be represented exactly by a finite
fraction in the binary number system! (For this reason some pocket calculators use
the base 10.)

Example 2.2.2. In 1991 a Patriot missile launched in Saudi Arabia failed to track
and interrupt an incoming Scud due to a precision problem. The Scud then hit an
Army barrack and killed 28 Americans. The computer used to control the Patriot
missile was based on a design dating from the 1970’s using 24-bit arithmetic. For
the tracking computations time was recorded by the system clock in tenth of a
second but converted to a 24-bit floating point number. Rounding errors in the
time conversions caused an error in the tracking. After 100 hours of consecutive
operations the calculated time in seconds was 359999.6567 instead of the correct
value 360000, an error of 0.3433 seconds leading to an error in the calculated range
of 687 meters. Modified software was later installed.

In the binary system the “point” used to separate the integer and fractional
part of a number (corresponding to the decimal point) is called the binary point.
The digits in the binary system are called bits(=binary digits).

We are so accustomed to the position system that we forget that it is built
upon an ingenious idea. The reader can puzzle over how the rules for arithmetic
operations would look if one used Roman numerals, a number system without the
position principle described above.

Recall that rational numbers are precisely those real numbers which can be
expressed as a quotient between two integers. Equivalently rational numbers are
those whose representation in a position system have a finite number of digits or
whose digits are repeating.

We now consider the problem of conversion between two number systems with
different base. Since almost all computers use a binary system this problem arises

2.2. Computer Number Systems 83

as soon as one want to input data in decimal form or print results in decimal form.

Algorithm 2.2.1 Conversion between number systems

Let a be an integer given in number systems with base a. We want to determine
its representation in a number systems with base :

a="b,B" 4+ by 1V 4+ by, 0<Db; <p. (2.2.1)

The computations are to be done in the system with base a and thus also § is
expressed in this representation. The conversion is done by successive divisions of
a with 3: Set go = a, and

qk/ﬂ:qk+1ﬂ+bk, k=0,1,2,.... (2.2.2)

(gr+1 is the quotient and 7, the remainder in the division.)

If a is not an integer, we write a = b + ¢, where b is the integer part and
CcC = bflﬁil =+ b,2ﬁ72 =+ b,3B73 4+ - (223)

is the fractional part, where b_1,b_»,... are to be determined. These digits are
obtained as the integer parts when successively multiplying ¢ with 8: Set p_; = ¢,
and

Pk B=bB+pr_1, k=-1,-2,-3.... (2.2.4)

Since a finite fraction in a number system with base « usually does not correspond
to a finite fraction in the number system with base 8 rounding of the result is in
general needed.

When converting by hand between decimal system and, for example, the bi-
nary system all computations are made in the decimal system (a = 10 and 8 = 2).
(It is then more convenient to convert the decimal number first to octal or hexadec-
imal, from which the binary representation easily follows.) If, on the other hand,
the conversion is carried out on a binary computer, the computations are made in
the binary system (a = 2 and 8 = 10).

Example 2.2.3. Convert the decimal number 176.524 to ternary form (base 5 = 3).
For the integer part we get 176/3 = 58 with remainder 2; 58/3 = 19 with remainder
1; 19/3 = 6 with remainder 1; 6/3 = 2 with remainder 0; 2/3 = 0 with remainder 2.
It follows that (176)10 = (20112);.

For the fractional part we compute .524-3 = 1.572, .572-3 = 1.716, .716 -3 =
2.148, Continuing in this way we obtain (.524);9 = (.112010222...)5. The finite
decimal fraction does not correspond to a finite fraction in the ternary number
system!

2.2.2 Fixed and Floating Point Representation

A computer is in general built to handle pieces of information of a fixed size called a
word. The number of digits in a word (usually binary) is called the word-length

84 Chapter 2. How to Obtain and Estimate Accuracy

of the computer. Typical word-lengths are 32, 48, or 64 bits. A real or integer
number is usually stored in a word. Integers can be exactly represented, provided
that the word-length suffices to store all the digits in its representation.

In the first generation of computers calculations were made in a fixed-point
number system, that is, real numbers were represented with a fixed number of ¢
binary digits. If the word-length of the computer is s + 1 bits (including the sign
bit), then only numbers in the interval I = [—2°7% 257%] are permitted. Some
common conventions in fixed point are ¢t = s (fraction convention) or t = 0 (integer
convention). This limitation causes difficulties, since even when © € I, y € I, we can
have, e.g.,x —y ¢ I or x/y ¢ I. In a fixed-point number system one must see to it
that all numbers, even intermediate results, remain within /. This can be attained
by multiplying the variables by appropriate scale factors, and then transforming
the equations accordingly. This is a tedious process. Moreover it is complicated by
the risk that if the scale factors are chosen carelessly, certain intermediate results
can have many leading zeros which can lead to poor accuracy in the final results. As
a consequence, fixed point is very seldom used for computations with real numbers.
An exception is in some on-line real-time computations, e.g., in digital filtering,
where fixed point systems still are used. Otherwise it is limited to computations
with integers as in subscript expressions for vectors and matrices.

By a normalized floating point representation of a real number a, we
mean a representation in the form

a==+m- B9, 7 <m <1, q an integer. (2.2.5)

(Alternatively the representation can be normalized by the condition 1 < m < 3.)
Such a representation is possible for all real numbers a, and unique if a # 0. Here the
fraction part m is called the mantissa (also called significand), ¢ is the exponent
and f the base (also called the radix).)

To measure the difference between a floating point number and the real number
it approximates we shall occasionally use “unit in last place” or ulp. For example,
if in a decimal floating point system the number 3.14159 is represented as 0.3142-10*
this has an error of 0.41 ulps. We shall say that “the quantity is perturbed by a
few ulps”.

In a computer, the number of digits for ¢ and m is limited by the word-length.
Suppose that t digits is used to represent m. Then we can only represent floating
point numbers of the form

a=+m-f°, m=(didy---dy)z, 0<d;<0}, (2.2.6)

where 7 is the mantissa m rounded to p digits, and the exponent is limited to a
finite range
€min S € S €max- (227)

A floating point number system F'is characterized by the base 3, the precision
t, and the numbers ey, emax. Only a finite set F' of rational numbers can be
represented in the form (2.2.7). The numbers in this set are called floating point
numbers. Since d; # 0 this set contains precisely 2(3 —1)87 ! (emax — €min + 1) + 1

2.2. Computer Number Systems 85

numbers. (Show this!) The limited number of digits in the exponent implies that
a is limited in magnitude to an interval which is called the range of floating point
system. If a is larger in magnitude than the largest number in the set F, then a
cannot be represented at all (exponent spill). The same is true, in a sense, of
numbers smaller than the smallest nonzero number in F'.

Example 2.2.4. Consider the floating point number system for f = 2, p = 3,
emin = —1, and ey,x = 2. The normalized numbers in the corresponding set F' are
shown in Fig. 2.2.1. The set F' contains exactly 216 + 1 = 33 numbers. In this

Figure 2.2.1. Normalized numbers when 8 =2, p =3, emin = —1, and emax = 2.

example the nonzero numbers of smallest magnitude that can be represented are
(0.100), - 21 = 1 and the largest is (0.111), - 22 = L.

Notice that floating point numbers are not equally spaced; the spacing jumps
by a factor § at each power of 5. (This wobbling is smallest for 8 = 2.) The spacing
of floating point numbers is characterized by the machine epsilon, which is the
distance €js from 1.0 to the next larger floating point numbers.

Even if the operands in an arithmetic operation are floating point numbers
in F, the exact result of the operation may not be in F. For example, the exact
product of two floating point p-digit numbers has 2p or 2p — 1 digits.

If a real number a is in the range of the floating point system the obvious way
is to represent a by a = fl (a), where fl (a) denotes a number in F' which is nearest
to a. This corresponds to rounding of the mantissa m, and according to Sec. 7?7,
we have

1
|m —m| < 5571)-

(There is one exception. If |m| after rounding should be raised to 1, then || is set
equal to 0.1 and e raised by 1.) Since m > 0.1 this means that the magnitude of
the relative error in a is at most equal to

Even with the exception mentioned above this relative bound still holds. (If chop-
ping is used, this doubles the error bound above.) This proves the following theorem:

Theorem 2.2.1.
In a floating point number system F = F(B,p,emin, emax) every real number
in the floating point range of F' can be represented with a relative error, which does

86 Chapter 2. How to Obtain and Estimate Accuracy

not exceed the unit roundoff u, which is defined by

. { %B—IJ-H, if rounding is used, (2.2.8)

B~P+L if chopping is used.

The quantity « is, in many contexts, a natural unit for relative changes and rel-
ative errors. For example, termination criteria in iterative methods usually depend
on the unit roundoft.

Example 2.2.5.

Sometimes it is useful to be able to approximately determine the unit roundoff
in a program at run time. This may be done using the observation that u ~ u, where
w is the smallest floating point number x such that fl (1 + x) > 1. The following
program computes a number p which differs from the unit roundoff v at most by a
factor of 2:

z:=1;
while 1+z >1 z:=2z/2; end,;
pi= ;

One reason why u does not exactly equal p is that so called double rounding occurs.
This is when a result is first rounded to extended format and then to the target
precision.

A floating point number system can be extended by including denormalized
numbers (also called subnormal numbers). These are numbers with the minimum
exponent and with the most significant digit equal to zero. The three numbers

(.001)5271 = 1/16, (.010)227' =2/16, (.011),27" = 3/16,

can then also be represented. Denormalized numbers have fewer digits of precision
than normalized numbers.

Figure 2.2.2. Normalized and denormalized numbers when f =2, p =3,
emin = —1, and emax = 2.

2.2.3 IEEE Floating Point Standard

Actual computer implementations of floating point representations may differ in
detail from the one given above. Although some pocket calculators use a floating
point number systems with base f = 10, almost all modern computers use base
B = 2. Most current computer now conform to the IEEE 754 standard for binary

2.2. Computer Number Systems 87

floating point arithmetic? This standard from 1985 (see [4]), which is the result of
several years work by a subcommittee of the IEEE, is now implemented on almost
all chips used for personal computers and workstations. (There is also a standard
IEEE 854 for floating point arithmetic for base 2 and 10, which is used by several
hand calculators.)

The IEEE 754 standard specifies basic and extended formats for floating point
numbers, elementary operations and rounding rules available, conversion between
different number formats, and binary-decimal conversion. Also the handling of
exceptional cases like exponent overflow or underflow, division by zero are specified.

Two main basic formats, single and double precision are defined, using 32 and
64 bits respectively. In single precision a floating point number a is stored as a
sign s (one bit), the exponent e (8 bits), and the mantissa m (23 bits). In double
precision of the 64 bits 11 are used for the exponent, and 52 bits for the mantissa;
see Fig. 2.2.2. The value v of a is in the normal case

V= (_1)8(]—~m)2267 —€min < € < €hpax-

Note that the digit before the binary point is always 1 for a normalized number.
This bit is not stored (the hidden bit). In that way one bit is gained for the mantissa.
A biased exponent is stored and no sign bit used. For example, in single precision
€min = —126 and en,, = 127 and e + 127 is stored.

There are distinct representations for +0 and —0. =£0 is represented by a
sign bit, the exponent eni, — 1 and a zero mantissa. Comparisons are defined so
that +0 = —0. One use of a signed zero is to distinguish an positive and negative
underflowed numbers. Another use occurs in complex arithmetic.

Example 2.2.6. The function /7 is multivalued and there is no way to select the
values so the function is continuous over the whole complex plane. If a branch cut
is made by excluding all real negative numbers from consideration the square root
becomes continuous. Signed zero provides a way to distinguish numbers of the form
z +4(+0) and = + i(—0) and to select one or the other side of the cut.

Infinity is also signed and oo is represented by the exponent ep,x + 1 and
a zero mantissa. When an overflows occurs the result is set to £oo. This is safer
than simply returning the largest representable number, that may be nowhere near
the correct answer. The result oo is also obtained from the illegal operations a /0,
where a # 0. The infinity symbol obeys the usual mathematical conventions, such
as 00 + 00 = 00, (—=1) X 00 = —00, a/oo =0 if a # 0.

The IEEE standard also includes two extended precision formats that offer
extra precision and exponent range. The standard only specifies a lower bound on
how many extra bits the provides. Hardware implementation of extended precision
normally does not use a hidden bit, so the double extended format uses 80 bits
rather than 79. Extended formats simplify tasks such as computing elementary
functions accurately in single or double precision. Extended precision formats are

2W. Kahan, University of California, Berkeley, was given the Turing Award by the Association
of Computing Machinery for his contribution to this standard.

88 Chapter 2. How to Obtain and Estimate Accuracy

used also by hand calculators. These will often display 10 decimal digits but use 13
digits internally—“the calculator knows more than it shows”!
The characteristics of the IEEE formats are summarized in Table 2.2.1.

Table 2.2.1. IEEFE floating point formats.

Format t e €min €max
Single 32 bits 23+1 8 bits —126 127
Single extended > 43 bits > 32 > 11 bits < —1022 > 1023
Double 64 bits 52+ 1 11 bits —1022 1023
Double extended > 79 bits >64 > 15bits < —16382 > 16383

(The hidden bit in the mantissa accounts for the +1 in the table.)

The unit roundoff equals 2724 ~ 5.96-1078 in single and 2753 ~ 1.11-107 !¢ in
double precision. (The machine epsilon is twice as large.) The largest number that
can be represented is 2.0 - 2127 ~ 3.4028 x 1038 in single precision and 2.0 - 21923 ~
1.7977x103% in double precision. The smallest number is 1.0-27126 ~ 1.1755x10~3%
in single precision and 1.0 - 271922 & 2.2251 x 1073%8 in double precision.

Example 2.2.7. Although the exponent range of the floating point formats seems
reassuringly large, even simple programs can quickly give exponent spill. If zo = 2,
Tpy1 = 22, then already z19 = 2192% is larger than what IEEE double precision
permits. One should also be careful in computations with factorials, e.g., 35! > 1040
and 459! > 101026,

Four rounding modes are supported by the standard. The default rounding
mode is round to nearest representable number, with round to even in case of a
tie. (Some computers in case of a tie round away from zero, i.e., raise the absolute
value of the number, because this is easier to realize technically.) Chopping is also
supported as well as directed rounding to co and to —oo. The latter mode simplifies
the implementation of interval arithmetic, see Section 2.4.5.

The standard specifies that all arithmetic operations should be performed as if
they were first calculated to infinite precision and then rounded to a floating point
number according to one of the four modes mentioned above. This also includes
the square root and conversion between integer and floating point. The standard
also requires the conversion between internal formats and decimal to be correctly
rounded.

This can be implemented using extra guard digits in the intermediate result
of the operation before normalization and rounding. Using a single guard digit,
however, will not always ensure the desired result. However by introducing a second
guard digit and a third sticky bit (the logical OR of all succeeding bits) the rounded
exact result can be computed at only a little more cost (Goldberg [16]). One
reason for specifying precisely the results of arithmetic operations is to improve
the portability of software. If a program is moved between two computers both
supporting the IEEE standard intermediate results should be the same.

IEEE arithmetic is a closed system, i.e. every operation, even mathematical

2.2. Computer Number Systems 89

invalid operations, even 0/0 or /=1 produces a result. To handle exceptional
situations without aborting the computations some bit patterns (see Table 2.2.2)
are reserved for special quantities like NaN (“Not a Number”) and co. NaNs (there
are more than one NaN) are represented by e = emax + 1 and m # 0.

Table 2.2.2. IEEE 75} representation.

Exponent Mantissa Represents
€ =é€mnin — 1 m=20 +0
€= é€min — 1 m # 0 +0.m - 26min

€min < € < €max +1.m - 2¢
€ =éemnax +1 m=20 +o00
€ =é€max + 1 m # 0 NaN

An exponent e = ey, — 1 and m # 0, signifies the denormalized number
v = (—1)%(0.m),26min;

see Table 2.2.2. The smallest denormalized number that can be represented is
27126=23 ~ 7.14 x 10~ in single precision and 21022 — 52 ~ 4.94 x 10732 in
double precision.

Note that the gap between 0 and the smallest normalized number is 1.0 x 2¢min,
This is much larger than for the spacing 27 P+! x 2¢min for the normalized numbers
for numbers just larger than the underflow threshold; compare Example 2.2.4. With
denormalized numbers the spacing becomes more regular and permits what is called
gradual underflow.. This makes many algorithms well behaved also close to the
underflow threshold. Another advantage of having gradual underflow is that it
makes it possible to preserve the property

z=y & x—y=0

as well as other useful relations. Several examples of how denormalized numbers
makes writing reliable floating point code easier are analyzed by Demmel [12].

One illustration of the use of extended precision is in converting between
IEEE 754 single precision and decimal. The converted single precision number
should ideally be converted with enough digits so that when it is converted back
the binary single precision number is recovered. It might be expected that since
224 < 108 eight decimal digits in the converted number would suffice. However,
it can be shown that nine decimal digits are needed to recover the binary number
uniquely (see Goldberg [16, Theorem. 15] and Problem 3). When converting back
to binary form a rounding error as small as one ulp will give the wrong answer. To
do this conversion efficiently extended single precision is needed!

A NaN is generated by operations such as 0/0, +00 + (—00), 0 x co and /—1.
A NaN compares unequal with everything including itself. (Note that z # x is a
simple way to test if equals a NaN.) When a NaN and an ordinary floating-point
number is combined the result is the same as the NaN operand. A NaN is often
used also for uninitialized or missing data.

90 Chapter 2. How to Obtain and Estimate Accuracy

Exceptional operations also raise a flag. The default is to set a flag and
continue, but it is also possible to pass control to a trap handler. The flags are
“sticky” in that they remain set until explicitly cleared. There is one flag for
each of the following five exceptions: underflow, overflow, division by zero, invalid
operation and inexact. By testing the flags it is, for example, possible to test if an
overflow is genuine or the result of division by zero.

Because of cheaper hardware and increasing problem sizes double precision
is more and more used in scientific computing. With increasing speed and mem-
ory becoming available, bigger and bigger problems are being solved and actual
problems may soon require more than IEEE double precision! When the IEEE 754
standard was defined no one expected computers able to execute more than 102
floating point operations per second!

2.2.4 Elementary Functions

Although the square root is included, the IEEE 754 standard does not deal with
the implementation of elementary functions, i.e., the exponential function exp, the
logarithm log, and the trigonometric and hyperbolic functions sin, cos, tan, sinh,
cosh, tanh, and their inverse functions. With the IEEE 754 standard more accurate
implementations are possible which in many cases give almost correctly rounded
exact results. To always guarantee correctly rounded exact results sometimes re-
quire computing many more digits than the target accuracy (cf. the tablemaker’s
dilemma) and therefore is in general too costly. It is also important to preserve
monotonicity, e.g, 0 < z < y < 7/2 = sinz < siny, and range restrictions, e.g.,
sinz < 1, but these demands may conflict with rounded exact results!

The first step in computing an elementary function is to perform a range
reduction. To compute sinz an additive range reduction is first performed, in
which a reduced argument z*, —7/4 < z* < 7/4 is computed by finding an integer
k such that * = 2 — kn/2 (7/2 = 1.57079 63267 9489661923). (Quantities that
are often used in standard subroutines are listed in decimal form to 30 digits and
octal form to 40 digits in Hart et al. [Appendix C][21] and to 40 and 44 digits in
Knuth [27, Appendix A].) Then sinz = £ sinz* or sinz = £ cosz*, depending on
if £ mod 4 equals 0,1,2 or 3. Hence approximation for sin z and cos z need only be
provided for 0 < z < 7/4. If the argument z is very large then cancellation in the
range reduction can lead to poor accuracy; see Example ?7.

For the exponential an integer k is determined such that z* = x — kln2,
z* € [0,ln2] (In2 = 0.69314 718055994530942...) then it holds that exp(z) =
exp(z*) - 2k, To compute Inz, x > 0, a multiplicative range reduction is used. An
integer k is determined such that z* = /2% 2* € [1/2,1]. Thenlnz = Inz*+k-In2.

Details about implementations can be found in older references like Hart et
al. [21] and Cody and Waite [9]. These contain many tables of coefficients of polyno-
mial and rational approximations, suitable for software implementations. A trend
now is that elementary functions are more and more implemented in hardware.
Hardware implementations are discussed by Muller [32].

To test the implementation of elementary function a Fortran package ELE-
FUNT has been developed by Cody [10]. This checks the quality using indentities

Review Questions 91

like cos x = cos(z/3)(4 cos?(x/3) — 1). For complex elementary functions a package
CELEFUNT serves the same purpose; see Cody [11].

2.2.5 Multiple Precision Arithmetic

Occasionally one may want to perform some calculations, e.g., the evaluation of
some elementary functions, to very high precision. Some important algorithms,
which may be used include power series, continued fractions, solution of equations
(with Newton’s method or other superlinearly convergent methods etc.). For per-
forming such tasks it is convenient to have routines for performing floating point
operations on numbers represented as arrays in floating point with a large base
and a long mantissa. In this way arithmetic of any given precision can be used to
simulate arithmetic of arbitrarily high precision.

Brent [7, 6] developed one of the first such multiple-precision Fortran software
package. This package represent multiple precision numbers as arrays of integers
and operates on them with integer arithmetic. A more recent package is that of
Bailey [5], which is written in Fortran 77 code. It represents multiple precision
numbers as a vector of single precision floating point numbers and uses a base of
224 Complex multiprecision numbers are also represented.

In an Appendix A we describe the basics of Mulprec, a collection of MATLAB
m-files for, in principle, unlimited multiple precision floating point computation.
and give examples of its use.

Review Questions

1. What base § is used in the binary, octal and hexadecimal number systems?

2. Show that any finite decimal fraction corresponds to a binary fraction that eventually
is periodic.

3. What is meant by a normalized floating point representation of a real number?

w

How large can the maximum relative error be in representation of a real number a
in the floating point system F = F(3,p, €min, €max)? It is assumed that a is in the
range of F'.

How are the quantities “machine epsilon” and “unit round off” defined?
What are the characteristics of the IEEE single and double precision formats?
What are the advantages of including denormalized numbers in the IEEE standard?

N ok

Give examples of operations that give NaN as result.

Problems

1. Which rational numbers can be expressed with a finite number of binary digits to
the right of the binary point?

2. (a) Prove the conversion algorithms described in Sec. 2.2.1.
(b) Show that the octal form of 0.1 is (0.1)19 = 0.063146 3146 3146 What error is

92 Chapter 2. How to Obtain and Estimate Accuracy

incurred in rounding this number to IEEE 754 single precision and double precision,
respectively?

3. (W. Kahan) An (over-)estimate of u can be obtained for almost any computer by
evaluating |3 x (4/3 — 1) — 1| Using rounded floating point for every operation. Test
this on a calculator or computer available to you.

4. (D. Goldberg) The binary single precision numbers in the half-open interval [10®,1024)
have 10 bits to the left and 14 bits to the right of the binary point. Show that there
are (2'° —10%) - 2'* = 393, 216 such numbers, but only (2'° — 10%) - 10* = 240, 000
decimal numbers with 8 decimal digits in the same interval. Conclude that 8 decimal
digits are not enough to uniquely represent single precision binary numbers in the
IEEE 754 standard.

5. Suppose one wants to compute the power A™ of a square matrix A, where n is a
positive integer. To compute A**1 = A. A* for k =1:n— 1 requires n — 1 matrix
multiplications. Show that the number of multiplications can be reduced to less than
2|log, n] by converting n into binary form and successive squaring A%* = (4F)?,
k=1: [logyn].

6. Give in decimal representation: (a) (10000)2; (b) (100)s; (c) (64):16; (d) (FF).6;
(e) (0.11)s; (g) the largest positive integer which can be written with thirty—one
binary digits (answer with one significant digit).

7. (a) Show how the following numbers are stored in the basic single precision format
of the IEEE 754 standard: 1.0; —0.0625; 250.25; 0.1.

(b) Give in decimal notation the largest and smallest positive numbers which can be
stored in this format.

8. (N. J. Higham.) Let a and b be floating point numbers with a < b. Show that the
inequalities a < fI((a +b)/2) < b can be violated in base 10 arithmetic. Show that
a < flla+ (b—a)/2) <bin base B arithmetic, assuming the use of a guard digit.

2.3 Accuracy and Rounding Errors
2.3.1 Floating Point Arithmetic

It is useful to have a model of how the basic floating point operations are carried
out. If z and y are two floating point numbers we denote by

flz+y), flx—y), fl(xz-y), fl(z/y)

the results of floating addition, subtraction, multiplication, and division, which the
machine stores in memory (after rounding or chopping). We will in the following
assume that underflow or overflow does not occur. and that the following standard
model for the arithmetic holds:

Definition 2.3.1. Assume that x,y € F. Then in the standard model it holds
fl(z opy) = (@ op y)(1+0), |8 <u, (23.1)

where u is the unit roundoff and “op” stands for one of the four elementary opera-
tions +, —, -, and /.

2.3. Accuracy and Rounding Errors 93

The standard model holds, also for with the default rounding mode for com-
puters implementing the IEEE 754 standard. In this case we also have

ALVE) = Va+6), 18] <u, (2.3.2)
If a guard digit is lacking then instead of (2.3.1) only the weaker model
fl(zopy) =x(1+61) op y(1+32), [0] <wu, (2.3.3)

holds for addition/subtraction. The lack of a guard digit is a serious drawback
and can lead to damaging inaccuracy caused by cancellation. Many algorithms
can be proved to work satisfactorily only if the standard model (2.3.1) holds. We
remark that on current computers multiplication is as fast as addition/subtraction.
Division usually is 5-10 times slower than a multiply and a square root about twice
slower than division.

Some earlier computers lack a guard digit in addition/subtraction. Notable
examples are several models of Cray computers (Cray 1,2, X-MP,Y-MP, and C90)
before 1995, which were designed to have the highest possible floating-point perfor-
mance. The IBM 360, which used a hexadecimal system, lacked a (hexadecimal)
guard digit between 1964-1967. The consequences turned out to be so intolerable
that a guard digit had to be retrofitted.

Sometimes the floating point computation is more precise than what the stan-
dard model assumes. An obvious example is that when the exact value x op y can
be represented as a floating point number there is no rounding error at all.

Some computers can perform a fused multiply-add operation, i.e. an expression
of the form a x z + y can be evaluated with just one instruction and there is only
one rounding error at the end

fllaxz+y)=(axz+y)(1+9), | <u.

Fused multiply add can be used to advantage in many algorithms. For example,
Horner’s rule to evaluate the polynomial p(z) = agz™ + a;z"~* + -+ + ap_17 + ap,
which uses the recurrence relation by = ag, b; = b;—1 - ¢ + a4, i = 1 : n, needs only
n fused multiply-add operations.

It is important to realize that these floating point operations have, to some
degree, other properties than the exact arithmetic operations. For example, float-
ing point addition and multiplication are commutative, but not associative and
the distributive law also fails for them. This makes the analysis of floating point
computations more difficult.

Example 2.3.1.
To show that associativity does not, in general, hold for floating addition,
consider adding the three numbers

a = 0.1234567 - 10°, b=0.4711325-10%, c=—b.

in a decimal floating point system with ¢ = 7 digits in the mantissa. The following
scheme indicates how floating point addition is performed:

fl(b+c) =0, fl(a+ fl(b+c)) =a=0.1234567 - 10°

94 Chapter 2. How to Obtain and Estimate Accuracy

a = 0.0000123 | 4567 - 10*

+b = 04711325 ‘ -10*
fl(a+b) = 04711448 -10%
c = —0.4711325 ‘ -10*

The last four digits to the right of the vertical line are lost by outshifting, and
FL(fl(a+Db)+¢) =0.0000123 - 10* = 0.1230000 - 10° # fl(a + fl(b+¢)).

An interesting fact is that assuming a guard digit is used floating point sub-
traction of two sufficiently close numbers is always exact.

Lemma 2.3.2 (Sterbenz).
Let the floating point numbers © and y satisfy

y/2 <z < 2.

If subtraction is performed with a guard digit then fl(r —y) = x —y, unlessx — y
underflows.

Proof. By the assumption the exponent of z and y in the floating point representa-
tions of z and y can differ at most by one unit. If the exponent is the same then the
exact result will be computed. Therefore assume the exponents differ by one. After
scaling and, if necessary, interchanging = and y it holds that Then /2 <y < x < 2
and the exact difference z = « — y is of the form

r = 1.2 ...T¢
y= 0wi-- Y1y
z = Z21.22 .. Zt2t4+1

But from the assumption /2 —y < 0 or © —y < y. Hence we must have z; =0, so
after shifting the exact result is obtained also in this case. O

With gradual underflow, as in the IEEE 754 standard, the condition that x —y
does not underflow can be dropped.

Example 2.3.2. A corresponding result holds for any base 5. For example, using
four digit floating decimal arithmetic we get with guard digit
£1(0.1000 - 10" — 0.9999) = 0.0001 = 1.000 - 10~*,
(exact) but without guard digit
£1(0.1000 - 10" — 0.9999) = (0.1000 — 0.0999)10" = 0.0001 - 10" = 1.000 - 1073.

The last result satisfies equation (2.3.3) with |§;| < 0.5- 1073 since 0.10005 - 10* —
0.9995 = 103.

Outshiftings are common causes of loss of information that may lead to catas-
trophic cancellation later, in the computations of a quantity that one would have
liked to obtain with good relative accuracy.

2.3. Accuracy and Rounding Errors 95

10°

107

107 -

10°

10° =N 4
N

107 : o 4
N

107

i
10* 10

Figure 2.3.1. Computed values for n = 10P, p = 1: 14, of the sequences:
dotted line |(1 4+ 1/n)™ — e|; solid line |exp(nlog(l+ 1/n)) — e| using (2.3.4).

Example 2.3.3.

An example where the result of Lemma 2.3.2 can be used to advantage is in
computing compounded interest. Consider depositing the amount ¢ every day on
an account with an interest rate ¢ compounded daily. Then with the accumulated
capital at the end of the year equals

dl+z)" =1)/z, z=1i/n <K 1,

and n = 365. Using this formula does not give a accurate results. The reason is
that a rounding error occurs in computing fI(1+) = 14 Z and low order bits of
is lost. For example, if i = 0.06 then ¢/n = 0.0001643836 and in decimal arithmetic
using six digits when this is added to one we get fI(1+1i/n) = 1.000164 so four low
order digits are lost.

The problem then is to accurately compute (1 + z)" = exp(nln(1 + z)). The

formula
it fl(l+z)=1;

otherwise.

€,
In(l42)={ In(+2)
(1+z)-1

(2.3.4)

can be shown to yield accurate results when x € [0,3/4] provided subtraction is
performed with a guard digit and the computed value of In(1 + x) equals the exact
result rounded; see Goldberg [16, p. 12].

To check this formula we recall that the base e of the natural logarithm can
be defined by the limit

e= lim (1+1/n)"

n—oo

In Figure 7?7 we show computed values, using double precision floating point arith-
metic, of the sequence |(1 + 1/n)" — | for n = 107, p = 1 : 14. More precisely, the

96 Chapter 2. How to Obtain and Estimate Accuracy

expression was computed as

|exp(nlog(l+ 1/n)) — exp(1)]

The smallest difference 3-10~8 occurs for n = 108, for which about half the number
of bits in x = 1/n are lost. For larger values of n rounding errors destroy the
convergence. However, using (2.3.4) we obtain correct results for all values of n!
(The Maclaurin series In(1 +) = x — 22/2 + 23 /3 — 2 /4 + - - - will also give good
results; see Computer Exercise 1.

A fundamental insight from the above examples can be expressed in the fol-
lowing way:

“mathematically equivalent” formulas or algorithms are not in general

“numerically equivalent”.

This adds a new dimension to calculations in finite precision arithmetic and it will
be a recurrent theme in the analysis of algorithms in this book!

By mathematical equivalence of two algorithms we mean here that the
algorithms give exactly the same results from the same input data, if the com-
putations are made without rounding error (“with infinitely many digits”). One
algorithm can then, as a rule, formally be derived from the other using the rules
of algebra for real numbers, and with the help of mathematical identities. Two
algorithms are numerically equivalent if their respective floating point results,
using the same input data are the same.

In error analysis for compound arithmetic expressions based on the standard
model (2.3.1) one often needs an upper bound for quantities of this form

e=|(14+61)1+02) - (1+d,)—1], 6] <u, i=1:n.
Since € < (1 4+ w)™ — 1 and
In(14+w)" =nln(l +u) <nu, (u<l),

it holds that € < ™ — 1. An elementary calculation now gives

2 3

e<e"“—1§nu+%+n3i!+~-~
nu nu\ 2 nu
1+ — (—)) —— = Yn, 2.3.5
<nu(+2+ 5) * <1_nu/2 Y ()

provided that nu < 2. (The notation 7, was introduced by N. J. Higham [24].) If
we make the realistic assumption that nu < 0.1, then € < 1.06nu = na.

Complex arithmetic can be reduced to real arithmetic. Let £ = a+ib and
y = ¢+ id be two complex numbers. Then we have:
Complex division

rxy=azxtc+i(bxtd),
xy = (ac — bd) + i(ad + be), (2.3.6)
ac+bd . bc—ad
oy = c? +d? +Zc2—+—d2’

2.3. Accuracy and Rounding Errors 97

Hence, complex addition (subtraction) needs two real additions and multiplying two
complex numbers requires four real multiplications using the formula
For computing the square root of a complex number u+iv = \/z + iy we have

r+x 1/2 r—x 1/2
UZ(> ; UZ() , r=va? +y2 (2.3.7)

2 2

When = > 0 there will be cancellation when computing v, which can be severe if
also |z| > |y| (cf. Sec. 2.3.6). To avoid this we note that uv = vr? —22/2 = y/2,
so v can be computed from v = y/(2u). When 2 < 0 we instead compute v from
(2.3.7) and set u = y/(2v).

Lemma 2.3.3. Assuming the standard model (2.3.1) the complex operations com-
puted according to (2.3.6) satisfy

fllxty)=(x£y)1+6), [0 <u,
fl(zy) =ay(1+6), 8] < V2, (2.3.8)
fl(z/y) = x/y(1+36), 6] < V2,

where 6 is a complex number and vy, is defined in (2.3.5).
Proof. See Higham [24, Sec.3.6]. 0O

Most rounding error analysis given in this book are formulated for real arith-
metic. Since the bounds in Lemma 2.3.3 are of the same form as the standard model
for real arithmetic, these can simply be extended to complex arithmetic.

2.3.2 Basic Results

We now use the notation of Sec. 2.3.1 and the standard model of floating point
arithmetic (Definition 2.3.1) to carry out rounding error analysis of some basic
computations. Most but not all results are still true if only the weaker bound
(2.3.3) hold for addition and subtraction. Note that fI(z op y) = (z op y)(1 + 9),
|0] < u, can be interpreted for multiplication to mean that fI(z -y) is the ezact
result of = - y(1 + §) for some 4, |§] < u. In the same way, the results using the
three other operations can be interpreted as the result of exact operations where
the operands have been perturbed by a relative amount which does not exceed u. In
backward error analysis (see Sec. 2.4.6) one applies the above interpretation step
by step backwards in an algorithm.

By repeatedly using formula (2.3.1) in case of multiplication, one can show
that

T122(1 + 02)x3(1+03) - (14 0n), 0| <w, 1=2:n.

That is, the computed product fl(zizs---x,) is ezactly equal to a product of the
factors
T =1, :Tc,-::ci(l-l-é,-), 1=2:n.

98 Chapter 2. How to Obtain and Estimate Accuracy

Using the estimate and notation of (2.3.5) it follows from this analysis that
|fl(z120 - xy) — 122 - Tp| < Yno1lT1T2 - - Tpl, (2.3.9)

which bounds the forward error of the computed result.
For a sum of n floating point numbers similar results can be derived. If the
sum is computed in the natural order we have

JUC- (21 4 22) + 23) + -+ - + 20))
:$1(1+(51)+£B2(1+(52)+"‘+$n(1+(5n),

where
101] < Yn-1, 10| < Yng1—i- 1=2:n,

and thus the computed sum is the ezact sum of the numbers z;(1 + J;). This also
gives an estimate the forward error

|fL(- (1 + @) +@3) + -+ @) — (@1 + T2+ 23+ - +)

n n
<D Anti-ila] < 1 Y lal, (2.3.10)
i=1 i=1

where the last upper bound holds independent of the summation order.

Notice that to minimize the first upper bound in equation (2.3.10), the terms
should be added in increasing order of magnitude! For large n an even better bound
than can be shown if the summation is done using the divide-and-conquer technique
described in Sec. 1.5; see Problem 2.

Example 2.3.4.
Using a hexadecimal machine (3 = 16), with ¢ = 6 and chopping (u = 167> ~

10~°%) one computed
10,000

Z n~? ~ 1.644834
n=1

in two different orders. Using the natural summation order n = 1,2, 3, ... the error
was 1.317 - 1073. Summing in the opposite order n = 10,000, 9,999,9,998... the
error was reduced to 2 - 1075, This was not unexpected. Each operation is an
addition, where the partial sum s is increased by n~2. Thus, in each operation,
one commits an error of about s - u, and all these errors are added. Using the first
summation order, we have 1 < s < 2 in every step, but using the other order of

summation we have s < 1072 in 9,900 of the 10,000 additions.

Similar bounds for roundoff errors can easily be derived for basic vector and
matrix operations; see Wilkinson [1965, pp.114-118]. For an inner product z%y
computed in the natural order we have

fl(@Ty) = z1yi (1 + 61) + oy2 (L4 02) + - + Y0 (1 + 65)

2.3. Accuracy and Rounding Errors 99

where
|(51| < Yn, |5r| < VYnt2—i, t=2:n.

The corresponding forward error bound becomes

n n
1FL@"y) ="yl <D ympailaallyil < Y laillyil,
i=1 i=1

If we let |z|, |y| denote vectors with elements |z;|, |y;| the last estimate can be
written in the simple form

fL(z"y) — &yl <yl lyl. (2.3.11)

This bound is independent of the summation order and holds also for the weaker
model (2.3.3) valid with no guard digit rounding.

The bound (2.3.11) can easily be extended to matrix multiplication. Let
A e R™" B e R"P, and denote by |A| and |B| matrices with elements |a;;| and
|bi;|. Then it holds that

|fl(AB) — AB| < v,|A||B. (2.3.12)

The product of two ¢ digit floating point numbers can be exactly represented
with at most 2¢ digits. This allows inner products may often be computed in ex-
tended precision without much extra cost. If fl. denotes computation with extended
precision and u, the corresponding unit roundoff then the forward error bound for
an inner product becomes

AL y) = 2"y] < ula”y] + 7= (1 + u)l2" Iyl (2.3.13)

— nu, /2

where the first term comes form the final rounding. If |z7||y| < wu|zTy| then
the computed inner product is almost as accurate as the correctly rounded exact
result. These accurate inner products can be used to improve accuracy by iterative
refinement (see Chapter 7-9) in many linear algebra problems. However, since
computations in extended precision are machine dependent it has been difficult to
make such programs portable.> The recent development of Extended and Mixed
Precision BLAS (Basic Linear Algebra Subroutines) (see [28] may now make this
more feasible!

2.3.3 Compensated Summation

To reduce the effects of rounding errors in computing a sum .. , #; one can use
compensated summation. In this algorithm the rounding error in each addition
is estimated and then compensated for with a correction term. Compensated sum-
mation can be useful when a large number of small terms are to be added as in

31t was suggested that the IEEE 754 standard should require inner products to be precisely
specified, but that did not happen.

100 Chapter 2. How to Obtain and Estimate Accuracy

numerical quadrature. Another example is the case in the numerical solution of ini-
tial value problems for ordinary differential equations. Note that in this application
the terms have to be added in the order in which they are generated.

Compensated is based on the possibility to simulate double precision floating
point addition in single precision arithmetic. To illustrate the basic idea we take as
in Example 2.3.1

a=0.1234567-10°, b= 0.4711325-10%,
so that s = fl(a +b) = 0.4711448 - 10*, Suppose we form
c= fl(fl(b—s)+a)=—0.1230000- 10° + 0.1234567 - 10° = 4567000 - 107,

Note that the variable ¢ is computed without error and picks up the information
that was lost in the operation fI(a + b).
The following algorithm uses this idea to accurately computing > | a;:

Algorithm 2.3.1 Compensated Summation.

s:=uz1; c:=0;
fori=2:n

Y :i=c+x;;
t:=s54+y;
c:=(s—1t)+y;
s:=1;

end

It can be proved (see Goldberg [16, 1991]) that on binary machines with a
guard digit the computed sum satisfies

n

s=Y (1+&)zi, [&]<2u+O(nu?). (2.3.14)

i=1

This formulation is a typical example of a backward error analysis; see Sec. 2.4.6.
The single precision term in the error bound is independent of n.

2.3.4 Standard Error

The bounds for the accumulated rounding error we have derived so far are estimates
of the maximal error. These bounds are often much too pessimistic when the
number of variables is large. As a complement one can use the standard error.

The theory of standard error is based on probability theory and will not be
treated in detail here. The standard error of an estimate of a given quantity is the
same as the standard deviation of its sampling distribution.

If in asum y =) ', x; each z; has error |A;| < 4, then the maximum
error bound for y is nd. Thus, the mazimal error grows proportionally to n. If

2.3. Accuracy and Rounding Errors 101

n is large—for example, n = 1000—then it is in fact highly improbable that the
real error will be anywhere near nd, since that bound is attained only when every
Az; has the same sign and the same maximal magnitude. Observe, though, that
if positive numbers are added, each of which has been abridged to ¢ decimals by
chopping, then each Az; has the same sign and a magnitude which is on the average
%6, where 6 = 10~%. Thus, the real error is often about 5004.

oar

Figure 2.3.2. The normal distribution for o = 1.

If the numbers are rounded instead of chopped, and if one can assume that the
errors in the various terms are stochastically independent with standard deviation
€, then the standard error in y becomes (see Theorem 2.4.5)

(E++.. .+ =ev/n.

Thus the standard error of the sum grows only proportionally to \/n. This supports
the following rule of thumb: if a rounding error analysis gives a bound CnPu for
the mazimum error, then one can expect the real error to be of size CnP/u.

If n > 1, then the error in y is, under the assumptions made above, approxi-
mately normally distributed with standard deviation o = €y/n. The correspond-
ing frequency function is

1 o) ..2 /-2

_ —(1/2)z" /o

T) = e ,
f(z) oy

is illustrated in Fig. 2.2.2; the curve shown there is also called the Gauss curve.
The assumption that the error is normally distributed with standard deviation o
means, e.g., that the statement “the magnitude of the error is greater than 2¢” (see
the shaded area of Fig. 2.2.2) is false in about only 5 % of all cases (the clear area
under the curve). More generally, the assertion that the magnitude of the error is
less than o, 20, and 30 respectively, is about 32%, 5%, and 0.27%.

One can show that if the individual terms in a sum y = 3" | #; have a uni-
form probability distribution in the interval [—14, 18], then the standard deviation
of an individual term is §/12. Therefore, in only about 5% of the cases is the error
in the sum of 1,000 terms greater than 204/1000/12 & 184, which can be compared
to the maximum error 5004. This shows that rounding can be far superior to chop-
ping when a statistical interpretation (especially, the assumption of independence)

102 Chapter 2. How to Obtain and Estimate Accuracy

2 L L L L L L L L L
0.999 0.9992 0.9994 0.9996 0.9998 1 1.0002 1.0004 1.0006 1.0008 1.001

Figure 2.3.3. Calculated values of a polynomial: dashed line p(z) = (z —
1); solid line p(z) = 2° — 52* + 1023 — 1022 + 52 — 1 = 0.

can be given to the principal sources of errors. Observe that, in the above, we have
only considered the propagation of errors which were present in the original data,
and have ignored the effect of possible round-off errors in the additions themselves.

Rounding errors are not independent random variables, but behave in a more
complicated way. However, the assumption that the errors are normally distributed
is justified in many computational situations and scientific experiments where the
error can be considered to have arisen from the addition of a large number of
independent error sources of about the same magnitude.

Statistical analysis of rounding errors goes back to an early paper of Goldstine
and von Neumann [18, 1951]. Probabilistic models are often useful and give an
adequate description of the observed behavior.

Example 2.3.5.

Figure 2.4.3 illustrates the effect of rounding errors on the evaluation of two
different expressions for the polynomial p(z) = (x — 1)® for x € [0.999,1.001],
using a machine precision of about 2.2 - 107*¢, Among other things it shows that
the monotonicity of a function can be lost due to rounding errors. The model of
rounding errors as independent random variables works well in this example. It is
obvious that it would be impossible to locate the zero of p(x) to a precision better
than about (0.5 - 1074)Y/6 ~ 0.0007 using the expanded form of p(z). However,
using the expression p(z) = (1 —z)® function values can be evaluated with constant
relative precision even close to = 1, and the problem disappears!

In science and technology, one generally should be careful to discriminate
between systematic errors and random errors. A systematic error can, e.g., be
produced by insufficiencies in the construction of an instrument; such an error is
the same in each trial. Random errors depend on the variation in the experimental

2.3. Accuracy and Rounding Errors 103

environment which cannot be controlled; then the formula for standard errors is
used. For systematic errors, however, the formula for maximal error (2.4.6) should
be used.

2.3.5 Avoiding Overflow

In the rare cases when input and output data are so large or small in magnitude that
the range of the machine is not sufficient, one can, for example, use higher precision
or else work with logarithms or some other transformation of the data. One should,
however, keep in mind the risk that intermediate results in a calculation can produce
an exponent which is too large exponent overflow or too small underflow for the
floating point system of the machine. Different machines take different actions in
such situations, as well for division by zero. Too small an exponent is usually, but
not always, un-provoking. If the machine does not signal underflow, but simply
sets the result equal to zero, there is a risk of harmful consequences. Occasionally,
“unexplainable errors” in output data are caused by underflow somewhere in the
computations.

The Pythagorean sumThe ¢ = va? + b? occurs frequently, e.g., in con-
version to polar coordinates and in computing the complex modulus and complex
multiplication. If the obvious algorithm is used, then damaging underflows and
overflows may occur in the squaring of @ and b even if a and b and the result ¢ are
well within the range of the floating point system used. This can be avoided by
using instead the algorithm: If ¢ = b = 0 then ¢ = 0; otherwise set p = max(|al, |b|),
g = min(|al,|b|), and compute

p=4q/p; c=py1+p2 (2.3.15)

The formula (2.3.6) for complex division suffers from the problem that inter-
mediate results can overflow even if the final result is well within the range of the
floating point system. This problem can be avoided by rewriting the formula as for
the Pythagorean sum:

If |¢| > |d| then compute

a+ib a+be b—ae
— = +1
c+id r

, e=dfe, T=c+de.

If |d| > |c| then e = ¢/d is computed and a corresponding formula used.

Similar precautions are also needed for computing the Euclidian length (norm)
of a vector ||z|l» = (X1, m?)l/z, z # 0. We could avoid overflows by first finding
Tmar = MaX1<i<p |¢;| and then forming

n

s = Z(xi/xmam)Q, lzll2 = Tmaz Vs (2.3.16)

i=1

This has the drawback of needing two passes through the data. The following
algorithm requiring only one pass is due to S. J. Hammarling:

t=0; s=1;

104 Chapter 2. How to Obtain and Estimate Accuracy

fori=1:n

if |.Z'z| >t
s=1+s(t/z:)% t=l|zi;
else
s =5+ s(z;/t)%
end
end

llzll2 = tV/s;

2.3.6 Cancellation of Terms

One very common reason for poor accuracy in the result of a calculation is that
somewhere a subtraction has been carried out in which the difference between the
operands is considerably less than either of the operands.

Consider the computation of y = x1 — x5 where ; = z1 + Azy, o = 29+ Axy
are approximations to the exact values. If the operation is carried out exactly the
result is § = y + Ay, where Ay = Az; — Azy. But, since the errors Az and Azo
can have opposite sign, the best error bound for g is

|Ay| < |Azy| + |Ay. (2.3.17)

Notice the plus sign! Hence for the relative error we have

‘%‘ < 1Azl +|Azs| (2.3.18)

y |z1 — 2]

This shows that there can be very poor relative accuracy in the difference between
two nearly equal numbers. This phenomenon is called cancellation of terms.

Example 2.3.6.
For computing the roots of the quadratic equation az® + bx + ¢ = 0 (a # 0)
we have the well-known formula

r2 = (—bE Vb —4dac)/(2a).

Hence the quadratic equation z? — 56z + 1 = 0 has the two roots

r1 =28+ V783 ~ 28 + 27.982 = 55.982 + 11072,
ro =28 — /783 & 28 — 27.982 = 0.018 + 1107°.

In spite of the fact that the square root is given to five digits, we get only two
significant digits in ro, while the relative error in 7 is less than 10>, Notice that
the subtraction in the calculation of 5 has been carried out exactly.

The cancellation in the subtraction only gives an indication of the unhappy conse-
quence of a loss of information in previous steps, due to the rounding of one of the
operands, and is not the cause of the inaccuracy.

2.3. Accuracy and Rounding Errors 105

In general one should if possible try to avoid cancellation, as in the example
above, by an appropriate rewriting of formulas, or by other changes in the algo-
rithm. For the quadratic equation above, by comparing coefficients in
22+ (b/a)r +c/a= (x —r1)(x —ra) = 2? — (r1 +12) + 1172,
we get the dependence between coefficients and roots

T+ 712 = —b/a, T = c/a. (2.3.19)

Computing the the root of smaller magnitude from the latter of these relations, we
get o = 1/55.982 = 0.0178629 £ 0.0000002, i.e., five significant digits instead of
two. In general we can avoid cancellation by using the algorithm:

Algorithm 2.3.2 Solving a quadratic equation.

d:=b* — dac;
if d > 0 % real roots
r1 := —sign(b) (|b] + \/E)/(Qa);
ro :=c/(a-T1);
else % complex roots = + iy
x:= —b/(2a);
y = V—d/(2a);

end

Note that we define sign(b) = 1, if b > 0, else sign(b) = —1.% It can be shown that
this algorithm computes a slightly wrong solution to a slightly wrong problem.

Lemma 2.3.4.

Assume that the Algorithm (2.3.6) is used to compute the roots of the quadratic
equation az® + bx + ¢ = 0. Denote the computed root T1,2 and denote by 715 the
exact roots of the nearby equation az® + bx + ¢ = 0, where |¢ — c| < y2|é|. Then it
holds that |7; — 7| < vs|Fil, i = 1,2.

Proof. See Kahan [25]. O

More generally, if |§] < z, then one should rewrite

r+d—z 0
VI+d+yr i+ z

There are other exact ways of rewriting formulas which are as useful as the
above; for example,

N

cos(z + J) — cosz = —25sin(d/2) sin(z + 0/2).

4In MATLAB sign(0) = 0, which can lead to failure of this algorithm!

106 Chapter 2. How to Obtain and Estimate Accuracy

If one cannot find an exact way of rewriting a given expression of the form f(z +
0) — f(z), it is often advantageous to use one or more terms in the Taylor series

F@+0) = f(a) = f@)5+ S f' @) + -+

Example 2.3.7. (Cody [10])

To compute sin22 we first find |22/(7w/2)| = 14. It follows that sin22 =
—sinz*, where z* = 22 — 14/(n/2). Using the correctly rounded 10 digit approxi-
mation 7/2 = 1.57079 6327 we obtain

z* = 22— 1.570796327 = 8.85142- 10 3.

Here cancellation has taken place and the reduced argument has a maximal error
of 7-107%, The actual error is slightly smaller since the correctly rounded value
is * = 8.85144 8711 - 10~ which corresponds to a relative error in the computed
sin 22 of about 2.4 - 1075 in spite of using a ten digit approximation to /2.

For very large arguments the relative error can be much larger. Techniques For
carrying out accurate range reductions without actually needing multiple precision
calculations are discussed by Muller [32].

In previous examples we got a warning that cancellation would occur, since
xo was found as the difference between two nearly equal numbers each of which
was, relatively, much larger than the difference itself. In practice, one does not
always get such a warning, for two reasons: first, in using a computer one has no
direct contact with the individual steps of calculation; secondly, cancellation can be
spread over a great number of operations. This may occur in computing a partial
sum of an infinite series. For example, in a series where the size of some terms are
many order of magnitude larger than the sum of the series small relative errors in
the computation of the large terms can then produce large errors in the result.

Example 2.3.8.
Set yo = 28 and define y,, for n = 1: 100, by the recursion formula:

Yn = Yn—1 — V 783/100.

As previously, we use the approximate value 27.982 for the square root. We
then compute with five decimals in each operation in order to make the effect of
further rounding errors negligible. We get the same bad value for y199 that we got
for z; in the previous example. Of all the subtractions, only the last would lead
one to suspect cancellation, y190 = 0.29782 — 0.27982 = 0.01800, but this result in
itself gives one no reason to suspect that only two digits are significant. (With four
significant digits, the result is 0.01786.)

2.3. Accuracy and Rounding Errors 107

2.3.7 Automatic Control of Accuracy

A different approach to rounding error analysis is to perform the analysis automat-
ically, for each particular computation. This gives an a posteriori error analysis as
compared to the a priori error analysis discussed above.

A simple form of a posteriori analysis, called running error analysis, was used
in the early days of computing, see Wilkinson [38]. To illustrate his idea we rewrite
the basic model for floating point arithmetic as

zop y = fl(zop y)(1+e).

These are also satisfied for most implementations of floating point arithmetic. Then,
the actual error can be estimated |fI (zopy) — zopy| < u|fl (zopy)|. Note that the
error is now given in terms of the computed result and is available in the computer
at the time the operation is performed. This running error analysis can often be
easily implemented. We just take an existing program and modify it, so that as
each arithmetic operation is performed, the absolute value of the computed results
is added into the accumulating error bound.

Example 2.3.9.
The inner product fI(zTy) is computed by the program

s=0; 7n=0;
fori=1,2,...,n
t= fl(wi); n=mn+]t;
s=fl(s+1t); n=n+]s;
end

For the final error we have the estimate |fl (z¥y) —27y| < nu. Note that a running
error analysis takes advantage of cancellations in the sum. This is in contrast to the
previous estimates, which we call a priori error analysis, where the error estimate
is the same for all distribution of signs of the elements x; and ;.

Efforts have been made to design the computational unit of a computer so
that it gives, in every arithmetic operation, only those digits of the result which
are judged to be significant (possibly with a fixed number of extra digits), so-called
unnormalized floating arithmetic. This method reveals poor construction in al-
gorithms, but in many other cases it gives a significant and unnecessary loss of
accuracy. The mechanization of the rules, which a knowledgeable and experienced
person would use for control of accuracy in hand calculation, is not as free from
problems as one might expect. As complement to arithmetical operations of con-
ventional type, the above type of arithmetic is of some interest, but it is doubtful
that it will ever be widely used.

A fundamental difficulty in automatic control of accuracy is that to decide
how many digits is needed in a quantity to be used in later computation, one needs
to consider the entire context of the computations. It can in fact occur that the
errors in many operands depend on each other in such a way that they cancel each

108 Chapter 2. How to Obtain and Estimate Accuracy

other. Such cancellation of error, is a completely different phenomenon from the
previously discussed cancellation of terms, is most common in larger problems, but
will be illustrated here with a simple example.

Example 2.3.10.

Suppose we want to compute y = z1 + 22, where z; = Va2 + 1, 29 = 200 — z,
x = 100 £+ 1, with a rounding error which is negligible compared to that resulting
from the errors in z; and zs. The best possible error bounds in the intermediate
results are z; = 100+ 1, 2o = 100 &+ 1. It is then tempting to be satisfied with the
result y = 200 & 2.

However, the errors in z; and zo due to the uncertainty in x will, to a large
extent, cancel each other! This becomes clear if we rewrite the expression as

1
V2 +1+a

It follows that y = 200 + u, where 1/202 $ u < 1/198. Thus y can be computed
with an absolute error less than about 2/(200)? = 0.5 - 10=%. Therefore using the
expression y = z; + 2o the intermediate results z; and z; should be computed
to four decimals even though the last integer in these is uncertain! The result is
y = 200.0050 £ $£107*.

y =200+ (Va2 +1—2x) =200+

In larger problems, such a cancellation of errors can occur even though one
cannot easily give a way to rewrite the expressions involved. The authors have
seen examples where the final result, a sum of seven terms, was obtained correctly
to eight decimals even though the terms, which were complicated functions of the
solution to a system of nonlinear equations with fourteen unknowns, were correct
only to three decimals.!

2.3.8 Interval Arithmetic

In interval arithmetic one assumes that all input values are given as intervals
and systematically calculates an inclusion interval for each intermediate result. It
is partly an automatization of calculation with maximal error bounds.

The most frequently used representations for the intervals are the infimum-
supremum representation

I=[a,b]:={z|a<z<Db}, (a<b). (2.3.20)
The magnitude of an interval is defined as
la,b] | max{|a| | & € [a,]} = max{al, [b]}. (2.3.21)

The midpoint and the radius of the interval [a, b] is defined as

mid ([a, b]) = %(a +b), rad ([a,b]) = 1(b— a). (2.3.22)

2.3. Accuracy and Rounding Errors 109

An alternative representation for an interval is the midpoint-radius representa-
tion, for which we use brackets

(a.p):={z|le—al <7} (0 <). (2.3.23)

The result of an interval operation equals the the range of the corresponding
real operation. For example, the difference between the intervals [a;, a2] and [by, b2],
is defined as the shortest interval which contains all the numbers x; — x5, where
x1 € [a1,as], x2 € [b1,ba], 1. [a1, az]—[b1,ba] := [a1 —b2, a2 —b1]. Other elementary
interval arithmetic operations are similarly defined:

[al,az] op [bl,bz] = {11,'1 Op T2 | AN [al,az], Ty € [bl,bz]}, (2324)

where op € {+,—,-,div}. The interval value of a standard function ¢ (e.g.,
sin, cos, exp, log) evaluated on an interval is defined as

¢([a,0])[min_¢(z), max @(x)].

z€la,b] z€[a,b]

Although (2.3.24) characterizes interval arithmetic operations we also need
operational definitions. We take

[a1, az] + [b1,b2] = [a1 + b1, a2 + ba],
[al,a2] - [bl,bQ] = [al — b2, a2 — bl],
[a1,as] - [b1,bs] = [min{albl,albz,azbl,agbz},max{albl,albg,agbl,azbg}],
1/[a1,a2] = [1/a2,1/a1], for ajas >0, (2.3.25)
[a1, a2]/[b1, b2] = [a1, az] - (1/[b1, b2]).
It is easy to prove that in exact interval arithmetic the operational definitions above
give the exact range (2.3.24) of the interval operations. Division by an interval

containing zero is not defined.
For intervals in the midpoint-radius representation (-) we take

Y + (a2, 72) = (a1 + az,r1 + 72),
(a1,m1) — (a2,72) = (a1 + az,r1 + 72),
) X {aa,72) = (a1az,|ai|ra + rilas| + r172), (2.3.26)
1/{a,m) =(1/r1,1/a1), for ayry >0,
(ay,r1)/(az,72) = (a1, 1) - (1/{az,r2)).
For addition, subtraction and inversion, these operational definitions give the exact

range. For multiplication and division they overestimate the range. For multiplica-
tion we have for any z1 € {a1,71) and x2 € (a2, r2)

|z122 — aras| = |a1(z2 — a2) + az(x1 — a1) + (21 — a1)(z2 — az)|

<lai|rs + |az|ry + ri72.

A degenerate interval with radius zero is called a point interval and can be
identified with a single number a = [a,a]. In this way the usual arithmetic is

110 Chapter 2. How to Obtain and Estimate Accuracy

recovered as a special case. The intervals 0 = [0,0] and 1 = [1,1] are the neutral
elements with respect to interval addition and interval multiplication, respectively.
A nondegenerate interval has no inverse with respect to addition or multiplication
For example, we have

[1,2]-[1,2) = [-1,1], [1,2)/[1,2] =[0.5,2].

For interval operations the commutative law [a1, az] op [b1, ba] = [b1, b2] 0p [c1, ¢2]
holds. However, the distributive law has to be replaced by so called subdistribu-
tivity

[al, az]([bl , b2] + [Cl, 02]) g [al, ag]([bl, bz] + [Cl, 02]). (2327)
This unfortunately means that expressions, which are equivalent in real arithmetic,
differ in exact interval arithmetic. The simple example

[—1,1)([1,1] + [-1, 1)) = 0 C [-1,1][1, 1] + [1, 1][-1, —1] = [-2, 2]

shows that —[—1, 1] is not the additive inverse to [—1, 1] and also illustrates (2.3.27).
The operations introduced are inclusion monotonic, i.e,

[a1,a2] C [e1,¢2], [b1,b2] Cla = [a1,az]op[b1,ba] C[c1,c2]oply. (2.3.28)

In implementing interval arithmetic using floating point arithmetic the oper-
ational interval results may not be exactly representable as floating point numbers.
Then if the lower bound is rounded down to the nearest smaller machine num-
ber and the upper bound rounded up, the exact result must be contained in the
resulting interval. Recall that these rounding modes (rounding to —oo and +o0)
are supported by the IEEE 754 standard. For example, using 5 significant decimal
arithmetic, we would like to get

[1,1] 4+ [-10%°, 10719 = [0.99999,1.0001] =< 1,10 ** > .

Note that in the midpoint-radius representation there is no roundoff. The conversion
between the infimum-supremum representation is straight forward but the midpoint
may not be exactly representable.

One use of interval arithmetic is to enclose the range of a real valued function.
This can be used, e.g., for localizing and enclosing global minimizers and global
minima of a real function of one or several variables in a region. It can also be used
for verifying the nonexistence of a zero of f(x).

Let f(z) be a real function composed of a finite number of elementary op-
erations and standard functions. If one replaces the variable z by an interval
[[zs, T3] and evaluates the resulting interval expression one gets as result an interval
f([[zi,75]). (We assume that all operations can be carried out.) A fundamental
result is that this evaluation is inclusion monotonic, i.e.,

[z, 7] € lly. 9], = flzz]) C fly,).

In particular this means that « C [z] = f(z) C f([z]), i.e., f([z]) contains the
range of f(z) over the interval [z]. A similar result holds also for functions of
several variables f(z1,...,x,).

2.3. Accuracy and Rounding Errors 111

There is an important case when interval evaluation gives the exact range of
a function. This is when f(z1,...,z,) is a rational expression, where each variable
x; occurs only once in the function.

Example 2.3.11. In general narrow bounds cannot be guaranteed. For example,
if f(z) =z/(1 — z) then

f((2,3) = [2,3]/(1 = [2,3]) = [2,3]/[-2, - 1] = [-3, — 1.

The result contains but does not coincide with the exact range [—2, —3/2]. However,
if we rewrite the expression as f(xz) = 1/(1/x — 1), where z only occurs once, then
we get

f((2,3) =1/(1/2,3] = 1) = 1/[-2/3, -1/2] = [-2, =3/2],

which is the exact range.
A complex interval In the infimum-supremum representation

[21,22] = {z + iy | ® € [z1,22], Y € [y1,92]}

is a rectangle in the complex plane defined by the two real intervals,

(21, 22] = [1,22] +i[y1,92], o1 <22, Y1 <o

This can be written more compactly as [z1,22] := {2 | 21 < z < 23}, where we use
the partial ordering

z<w & Rz<Rw & Sz < Sw.

Complex interval operations are defined in terms of the real intervals [z] =
[z1,x2] and [y] = [y1, y2] in the same way as the complex operations are defined for
complex numbers z = x +¢y. For addition and subtraction the result coincides with
the exact range. This is not the case for complex interval multiplication, where the
result

([2] +ily]) - ([u] +i[v]) = [2] - [u] + [y] - [o] + i ([2] - [v] = [y] - [u]).

is a rectangle in the complex plane, whereas the actual range is not of this shape.
Therefore multiplication will for complex intervals result in an overestimation.
In the complex case the midpoint-radius representation is

(w,r) = {z€C|lz—w|<r}, 0<m,

where the midpoint w is a complex number and |z — w| the magnitude of the
complex number z —w. This is a disk in the complex plane. The operational defini-
tions (2.3.26) now generalize directly. Interval arithmetic using the midpoint-radius
representation is therefore also called circular arithmetic. For complex multi-
plications it generates less overestimation than the infimum-supremum notation. In
the following, for simplicity, we only consider real interval arithmetic.

112 Chapter 2. How to Obtain and Estimate Accuracy

When interval analysis is used in a naive manner as a simple technique for
simulating forward error analysis it does not in general give sharp bounds on the
total computational error. To get useful results the computations in general need
to be arranged so that overestimation as far as possible is minimized. Often a
refined design of the algorithm is required in order to prevent the bounds for the
intervals from becoming unacceptably coarse. The answer [—oo, 00] is of course
always correct but not at all useful!

Example 2.3.12. Evaluate for [z] = [2, 3] the cubic polynomial

px)=1—z+22 —2° +2* -2
Using exact interval arithmetic we find p([2,3]) = [-252,49]. (verify this!) This
is an overestimate of the exact range, which is [—182, —21]. Rewriting p(z) in the
form p(z) = (1 — z)(1 + 22 + z) we obtain the correct range. In the first example
there is a cancellation of errors in the intermediate results, which is not revealed
by the interval calculations.

The remainder term in Taylor expansions includes a variable £, which is known
to lie in an interval ¢ € [a,b]. This makes it suitable to treat the remainder term
with interval arithmetic.

Let f(z) be a twice differentiable function in an interval [zg]. Enclosures of
a real simple zero z* € [zg] of f(x) may be computed by a variant of Newton’s
method. By the mean value theorem

0=f(&)+ (" - 1),

for some ¢ between z* and &. If & and the root z* both lie in the interval [z¢] then
so does &. If 0 ¢ f'([xx]) it follows that

¥ € N([zo]) =2 —

and hence the intersection N([zo]) N [zo], must contain a root. By iterating this
procedure we can to compute a sequence of intervals [z] containing a simple root z*.
Interval Newton method

Given a starting interval [zo] enclosing a simple root, compute for £ = 0, 1,2, . ..
the sequence of intervals [z4+1] given by

f(m[zg])
M

It is assumed that 0 ¢ f'([z1]) since otherwise the computation breaks down.
Moore [29] shows that if N([zy]) is defined and N([zx]) N [z] is empty the [z]
does not contain a root. Further, if [zo] does not contain a root then after a finite
number of steps the iteration will stop with an empty interval.

N([zx]) = mid ([z1]) - [Thia] = N(zx]) 0],

2.3. Accuracy and Rounding Errors 113

Example 2.3.13. Take f(z) = 22 — 2 and [zo] = [1,2]. Using interval Newton
method

(m[zg])* -2

N () = mes]) — S5

[wr1] = N([zx]) 0]

we obtain the sequence of intervals

[z1] = N([zo]) = 3/2 — 1/4/[2,4] = [22/16,23/16],
45 (45/32)2—2 45 (45)? —2(32)2

[.272] = N([ﬂ?l]) = 3—2 - W = 3—2 - m C [1.41406, 1.41442].

The radius of the intervals can be shown to converge quadratically to zero.

In order to treat multidimensional problems interval vectors [z] = ([z;]) with
interval components [z;], i = 1 : n and interval matrices [A] = ([a;;]) with interval
elements [a;;], i = 1:m, j =1 :n, are introduced.

Operations between interval matrices and interval vectors are defined in an
obvious manner. The interval matrix-vector product [A][z] is the smallest inter-
val vector, which contains the set {Az | A € [A], x € [z]}, but normally does not
coincide with it. We have the inclusion property

{Az|Ac[A] 7€ a]) C [Alla] = (Z[aij][wj])
j=1

In general there will be an overestimation in enclosing the image with an interval
vector caused by the fact that the image of an interval vector under a transfor-
mation in general is not an interval vector, This phenomenon, intrinsic to interval
computations, is called the wrapping effect.

Example 2.3.14. We have

= (4 1) w- () - e (53),

Hence b = (2

_1> € [A][z], but there is no « € [z] such that Az = b.

The magnitude of an interval vector or matrix is interpreted componentwise

and defined by
|[2]] = (| [za] | | [22]], - [Tea] DT,

where the magnitude of the components are defined by (2.3.21). The oco-norm of a
vector or matrix is defined as the co-norm norm of co-norm of their magnitude,

2l loo = [T 2] oo, [[ATlloo = IITA] [l]oo- (2.3.29)

We now consider the implementation of matrix multiplication. It is important
to avoid case distinctions in the inner loop, because that would make it impossible

114 Chapter 2. How to Obtain and Estimate Accuracy

to use fast vector an matrix operation. Interval arithmetic it is possible to compute
strict enclosures of the product of two matrices. Note that this is needed also in the
case of the product of two point matrices since rounding errors will occur. Then
we want to compute an interval matrix [C] such that fI(A-B) C [C] = [Cint, Csup]-
The following simple code does that using two matrix multiplications:

setround(—1); Cinr = A - B;
setround(1); Cgup = A - B;

Here and in the following we assume that switching rounding mode is performed
by the command setround(i), i = —1,0,1 corresponding to rounding to —oo, to
nearest, and to oo, respectively.

We next consider the product of a point matrix A and an interval matrix
[B] = [Bint; Bsup)- The following code, suggested by A. Neumeier, performs this
using four matrix multiplications:

A_ =min(4, 0); Ay =max(4, 0);
setround(—1);

Cint = Ay - Bint + A_ + Bgyp;
setround(1);

Csup = A_ - Bins + Ay - Bgup;

For an algorithm using eight matrix multiplications for computing the product
of two interval matrices, see Rump [35]. There also several faster implementation
are given, provided a certain overestimation can be allowed.

A square interval matrix [A] is called nonsingular if it does not contain a
singular matrix. An interval linear system is a system of the form [A] z = [b], where
A is a nonsingular interval matrix and b an interval vector. The solution set of such
an interval linear system is the set

X={x|Av="b, Ac[A], be]} (2.3.30)

Computing this solution set can be shown to be an intractable problem (NP-
complete). Even for a 2 x 2 linear system this set may not be easy to represent.

Example 2.3.15. (Hansen [19, Chapter 4])

Consider a linear system with
_ (12,3] [0,1] ~(]0,120]
l4]= <[172] [2,3]> , b= ([60,240]) . (2.3.31)

The solution set A" in (2.3.30) is the star shaped region in Figure 2.3.4.

An enclosure of the solution set of an interval linear system can be computed
by a generalization of Gaussian elimination adopted to interval coefficients.. A
triangular system is computed in interval arithmetic. The solution of this will give
an inclusion of the solution set. Realistic bounds can obtained in this way for

2.3. Accuracy and Rounding Errors 115

Figure 2.3.4. The solution set (solid line) and its enclosing hull (dashed
line) for the linear system in Example 2.3.16.

special classes of matrices, e.g., for diagonally dominant matrices and tridiagonal
matrices; see Hargreaves [20]. For general systems this approach unfortunately
tends to give interval sizes which grow exponentially during the elimination. Even
for well-conditioned linear systems the elimination can break down prematurely,
because all remaining possible pivot elements contain zero.

For example, if [z] and [y] are intervals then in the 2 x 2 reduction

G M) ” (é [y][f]m)

If [z] = [y] the size of the interval [y] — [z] will be twice the size of [z]. This growth
is very likely to happen

Verified bounds on a point or interval linear system can be computed using
an idea that goes back to E. Hansen [1965] of using an approximate inverse to
precondition the system with an approximate inverse C.

Assume that an initial interval [2(°)] C X is known, where X is the solution set
(2.3.30). An improved enclosure can then be obtained by Krawczyck’s method.
For all A € [A] and b € [b] it holds that

A =Cb+ (I - CAAbe O+ (I - CA)[=zV] =: [2WV)].
This suggests the iteration

[p(+D] = (c] + (I - C[A])[x@)]) N[z9], i=0,1,2,..., (2.3.32)

for computing a sequence of interval enclosures [#(?] of the solution. The interval
vector [c] = C'[b] and interval matrix [E] = I — C'[A] need to be computed only

116 Chapter 2. How to Obtain and Estimate Accuracy

once. The cost per iteration therefore is about one interval matrix times interval
vector multiplication.

As approximate inverse we can take the inverse of the midpoint matrix C' =
(mid [A])~!. An initial interval can be chosen of the form [z(%)] = Cmid [b]+3[~1, 1],
with g sufficiently large. The iterations are terminated when the bounds are no
longer improving. A measure of convergence can be computed as p = [|[E]||co-

Rump [35, 34] has developed a MATLAB toolbox INTLAB (INTerval LABo-
ratory). This is very efficient and easy to use and includes many useful subroutines.
INTLAB uses a variant of Krawczyck’s method applied to a residual system to
compute an enclosure of the difference between the solution and an approximate
solution ,, = C'mid [b]; see Rump [35].

Example 2.3.16. A method for computing an enclosure for the inverse of an
interval matrix can be obtained by taking [b] equal to the identity matrix and
solving the system [A][X] = I. For the symmetric interval matrix

[[0.999,1.01] [-0.001,0.001]
4] = ([—0.001,0.001] (0.999,1.01] >

the identity C' = mid [A] = [is an approximate point inverse, and we find

_ ~ { [-0.01,0.001] [-0.001,0.001]
[E] =1 =0l = <[—0.001,0.001] [-0.01,1.001]) '

An enclosure for the inverse matrix is given by [X (9] =[0.9, 1.1][4],
[X(+D] = (I+ E[X@‘)]) NXD], i=0,1,2,....
The iteration converges rapidly in this case.

Another application of interval arithmetic is to initial value problems for or-
dinary differential equations

y' = f(z,y), y(zo) =y0, yeR"

Interval techniques can be used to provide for errors in the initial values, as well as
truncation and rounding errors, so that at each step intervals are computed that
contain the actual solution. However, it is a most demanding task to construct an
interval algorithm for the initial value problem, and they tend to be significantly
slower than corresponding point algorithms. One problem is that a wrapping effect
occurs at each step and causes the computed interval widths to grow exponentially.
This is illustrated in the following example.

Example 2.3.17.

The recursion formulas =, 11 = (T — ¥n)/V2, Yns1 = (Tn + yn)/V/2, mean a
series of 45-degree rotations in the zy-plane (see Fig. 2.3.4). By a two-dimensional
interval one means a rectangle whose sides are parallel to the coordinate axes. If

Review Questions 117

SIGI@ks

Figure 2.3.5. Wrapping effect in interval analysis.

(zo,yo0) is given as some interval |zg — 1| < ¢, |yo| < € (see the dashed square, in
the leftmost portion of Fig. 2.4.1), then (x,,y,) will, with ezact performance of
the transformations, also be a square with side 2¢, for all n (see the other squares
in Fig. 2.4.1). If the computations are made using interval arithmetic, rectangles
with sides parallel to the coordinate axis will, in each step, be circumscribed about
the exact image of the interval one had in the previous step. Thus the interval is is
multiplied by v/2 in each step. After forty steps, for example, the interval has been
multiplied by 22° > 108.

Review Questions

1.

What is the standard model for floating point arithmetic? What weaker model holds
if a guard digit is lacking?

. Give examples to show that some of the axioms for arithmetic with real numbers do

not always hold for floating point arithmetic.

. (a) Give the results of a backward and forward error analysis for computing fI (z1 +

o+ -+ xn). It is assumed that the standard model holds.

(b) Describe the idea in compensated summation.

. Explain the terms “maximum error” and “standard error”. What statistical as-

sumption about rounding errors is often made, for example, when calculating the
standard error in a sum due to rounding?

. Explain, what is meant by “cancellation of terms”. Give an example how this can

be avoided by rewriting a formula.

. Describe two possibilities of representing intervals in interval arithmetic.

Problems

1.

(a) The expression 2> — 3? exhibits catastrophic cancellation if || ~ |y|. Show that
it is more accurate to evaluate it as (z + y)(z — y).

(b) Consider using the trigonometric identity sin® z + cos® = 1 to compute cos z =
(1 —sin? z)*/2. For which arguments in the range 0 < z < 7/4 will this formula fail
to give good accuracy?

118 Chapter 2. How to Obtain and Estimate Accuracy

2. The polar representation of a complex number is

z=x+iy=r(sing +cosp) =r-e’.
Develop accurate formulas for computing this polar representation from z and y
using real operations.

3. Suppose that the sum s = Z?:l zi, n = 2% is computed using the the divide
and conquer technique described in Sec. 1.5. Show that this summation algorithm
computes an exact sum

5= Za:l(l +0;), |0i] < ulog,ym.
i=1
Hence for large values of n this summation order can be much more accurate than
the conventional order.

4. Show that for the evaluation of a polynomial p(x) =Y " a;z’ by Horner’s rule the
following roundoff error estimate holds:

1 (p(2)) = p@)| < 71 »_(2i+ Daslal’, (2nu < 0.1).
i=0

5. In solving linear equations by Gaussian elimination there often occurs expressions of
the form s = (¢ — Z?:_f a;bi)/d. Show that by a slight extension of the result above
shows that the computed 3 satisfies

n—1 n—1
sd—c+ Y ab| < %(|§d| +3 |ai||bi|),
i=1 i=1
where the inequality holds independent of the summation order.

6. One has measured two sides and the included angle of a triangle to be a = 100.0+0.1,
b = 101.0 £ 0.1, and the angle C = 1.00° £ 0.01°. Then the third side is given by
the cosine theorem

¢ = (a®+b* = 2abcos C)'/.
(a) How accurately is it possible to determine ¢ from the given data?
(b) How accurately does one get ¢ if one uses the value cos1° = 0.9998, which is
correct to four decimal places.
(c) Rewrite the cosine theorem so that it is possible to compute ¢ to full accuracy
using only a four-decimal table for the trigonometric functions.

7. (W. Kahan [1983]) The area A of a triangle with sides equal to a,b,c is given by

Heron’s formula
A= \/s(s—a)(s—b)(s—c), s=(a+b+c)/2.

Show that this formula fails for needle-shaped triangles, using five digit decimal
floating arithmetic and @ = 100.01, b = 99.995, ¢ = 0.025.

The following formula can be proved to work if addition/subtraction satisfies (2.3.15):
Order the sides so that a > b > ¢, and use

A= 1V/a+ Gre)le—(a—)+ (a—b)a+b-0).

Compute a correct result for the data above using this modified formula. If a person
tells you that this gives an imaginary result if a — b > ¢, what do you answer him?

Computer Exercises 119

8. Carry out the following calculations in exact interval arithmetic:
(a) [0,1] +[L,2); (b) [3,31] = [0,0,2]; (c) [~4. — 1] - [6,5];
(d) [27 2] : [_17 2]; (e) [_17 1]/[_27 _0'5]; (f) [_37 2] : [_3'17 2'1];
9. Treat the Example 1.3.2 using interval analysis and four decimal digits. Starting

with I < [0,1/60] == [0,0.01667] generate successively Iy k = 9 : —1 : 5 using
interval arithmetic and the recursion I,,—; = 1/(5n) — I,,/5.

Computer Exercises

1. (a) To compute In(1 + z) for 0 < 2 < 1, the Mclaurin series In(1+z) = « — 2/2 +
233 —2*/4+2°/5 + - - - is useful. How many terms in the series are needed to get
IEEE 754 double precision accuracy for all z < 10737
(b) Show that In(1 4+ z) = In(1 + y) — In(1 — y), where y = (¢/2)/(1 + x/2), and
deduce that In(1+ z) = 2(y +4¥*/3 +v°/5 + - - -. How many terms in this series are
needed for the same computation as in (a)?

Hint: Assume that the error from truncating the series can be estimated by the first
neglected term.

2. In the statistical treatment of data, one often needs to compute the quantities

n

1 :_ 1y 2
== x, s :_E (zi —T)".
im

If the numbers z; are the results of statistically independent measurements of a
quantity with expected value m, then Z is an estimate of m, whose standard deviation
is estimated by s/v/n — 1.

(a) The computation of £ and m using the formulas above have the drawback that
they require two passes through the data z;. Let a be a provisional mean, chosen
as an approximation to Z, and set x; = x; — @. Show that the formulas

n n
_ 1 . 1 ; _ .
w:a-l—ﬁg @, szzﬁg (@)’ — (z — a)’.
i=1 i=1

hold for an arbitrary c.
(b) In sixteen measurements of a quantity = one got the following results:

1 546.85) 546.81 9 546.96 13 546.84
2 546.79 6 546.82 10 546.94 14 546.86
3 546.82 7 546.88 11 546.84 15 546.84
4 546.78 8 546.89 12 546.82 16 546.84

Compute Z and s to two significant digits using o = 546.85.

(c) In the computations in (b), one never needed more than three digits. If one uses
the value oo = 0, how many digits is needed in (z})? in order to get two significant
digits in s2? If one uses five digits throughout the computations, why is the cancel-
lation in the s* more fatal than the cancellation in the subtraction z; — a? (one can

120 Chapter 2. How to Obtain and Estimate Accuracy

even get negative values for s?!)
(d) If we define

then it holds that Z = m,,, and s> = g, /n. Show the recursion formulas

mi=x1, mg =mg_1+ (xr —mp_1)/k
=0, Gk = qr—1 + (wx — mp—1)*(k — 1) /k

3. Compute the sum in Example 2.3.4 using the natural summation ordering in IEEE
754 double precision. Repeat the computations using compensated summation Al-
gorithm 2.2.1.

2.4 Error Propagation and Condition Numbers
2.4.1 Numerical Problems, Methods and Algorithms

By a numerical problem we mean here a clear and unambiguous description of
the functional connection between input data —that is, the “independent vari-
ables” in the problem—and output data—that is, the desired results. Input data
and output data consist of a finite number of real (or complex) quantities and are
thus representable by finite dimensional vectors. The functional connection can be
expressed in either explicit or implicit from. We require for the following discussion
also that the output data should be uniquely determined and depend continuously on
the input data.

By an algorithm® for a given numerical problem we mean a complete descrip-
tion of well-defined operations through which each permissible input data vector is
transformed into an output data vector. By “operations” we mean here arithmetic
and logical operations, which a computer can perform, together with references to
previously defined algorithms. (The concept ”algorithm” can be analogously defined
for problems completely different from numerical problems, with other types of in-
put data and fundamental operations—for example, inflection, merging of words,
and other transformations of words in a given language.)

By the term numerical method we mean in this book a procedure either
to approximate a mathematical problem with a numerical problem or to solve a
numerical problem (or at least it to a simpler problem). A numerical method
should be more generally applicable than an algorithm, and set lesser emphasize on
the completeness of the computational details. The transformation of a differential
equation problem to a system of nonlinear equations, as in Example 1.4.1 can be
called a numerical method—even without instructions as to how to solve the system
of nonlinear equations. Newton’s method is a numerical method for determining

5The term “algorithm?” is a latinization of the name of the Arabic 9th century mathematician Al-
Khowérizmi. He also introduced the word algebra (Al-jabr). Western Europe became acquainted

with the Hindu positional number system from a latin translation of his book entitled “Algorithmi
de numero Indorum”.

2.4. Error Propagation and Condition Numbers 121

a root of a large class of nonlinear equations. In order to call it an algorithm
conditions for starting and stopping the iteration process should be added.

For a given numerical problem one can consider many differing algorithms.
In floating point computations these can give approximations of widely varying
accuracy to the exact solution.

Example 2.4.1.
To determine the largest real root of the cubic equation

p(2) = apz® + a12® + asz +az =0,

with real coefficients ag, a1, as, a3, is a numerical problem. The input data vector
is (ap,a1,az2,as). The output data is the desired root z; it is an implicitly defined
function of the input data. An algorithm for this problem can be based on Newton’s
method, supplemented with rules for how the initial approximation should be chosen
and how the iteration process is to be terminated. One could also use other iterative
methods, or even algorithms based upon Cardano’s exact solution of the cubic
equation. Cardano’s solution uses square roots and cube roots, so one needs to
assume that algorithms for the computation of these functions have been specified
previously.

One often begins the construction of an algorithm for a given problem by
breaking down the problem into subproblems in such a way that the output data
from one subproblem is the input data to the next subproblem. Thus the distinction
between problem and algorithm is not always so clearcut. The essential point is
that, in the formulation of the problem, one is only concerned with the initial state
and the final state. In an algorithm, however, one should clearly define each step
along the way, from start to finish. Before an algorithm can be used it has to be
implemented in an algorithmic program language in a reliable and efficient manner.
This is far from a trivial task—it has been said that when the novice thinks the job
is done then the expert knows that most of the hard work lies ahead!

Example 2.4.2.

The problem of solving the differential equation

2

% — 2 4y
with boundary conditions y(0) = 0, y(5) = 1, is not a numerical problem according
to the definition stated above. This is because the output data is the function vy,
which cannot in any conspicuous way be specified by a finite number of parameters.
The above mathematical problem can be approximated with a numerical problem
if one specifies the output data to be the values of y for x = h,2h,3h,...,5 — h.
Also the domain of variation of the unknowns must be restricted in order to show
that the problem has a unique solution. This can be done, however, and there are a
number of different algorithms for solving the problem approximately, which have
different properties with respect to number of arithmetic operations needed and the
accuracy obtained.

122 Chapter 2. How to Obtain and Estimate Accuracy

2.4.2 Propagation of Errors

In scientific computing the given input data is usually imprecise. The errors in the
input will propagate and give rise to errors in the output. In this section we develop
some general tools for studying the propagation of errors. These error-propagation
formulas are also of great interest in the planning and analysis of scientific
experiments.

Note that rounding errors from each step in a calculation are also propagated
to give errors in the final result. For many algorithms a rounding error analysis can
be given, which shows that the computed result always equals the exact (or slightly
perturbed) result of a nearby problem, where the input data has been slightly
perturbed, (See, e.g, Lemma 2.3.4.) Then the effect of rounding errors on the final
result can be estimated using the tools of this section.

We first consider two simple special cases of error propagation. For a sum of
an arbitrary number of terms we get from (2.3.17) by induction:

Lemma 2.4.1.
In addition and subtraction, a bound for the absolute errors in the result is
given by the sum of the bounds for the absolute errors of the operands

y=> =+, |Ayl <) |Az. (2.4.1)
i=1 i=1

To obtain a corresponding result for the error propagation in multiplication
and division, we start with the observations that for y = In(z) we have A(In(z)) =
A(z)/z. In words: the relative error in a quantity is approximately equal to the
absolute error in its natural logarithm. This is related to the fact that displacements
of the same length at different places on a logarithmic scale, mean the same relative
change of the value. From this we obtain the following result:

Lemma 2.4.2.
In multiplication and division, an approzimate bound for the relative error is
obtained by adding the relative errors of the operands. More generally, for y =

mi ,, M2 m.
a’:l .Z'Z “ .. a’:n n 5
n
Ay <
= |
Yy i=1

AJ?Z‘

i

(2.4.2)

Proof. The proof follows by differentiating Iny = m; Inx1 +molnzo+- - -+m,, Inz,
and estimating the perturbation in each term. 0O

Example 2.4.3.

In Newton’s method for solving a nonlinear equation a correction is to be
calculated as a quotient y = f(zr)/f'(zx), Assume that f(zj) is known only to a
certain relative accuracy. How accurately should one compute f’(xy), assuming that

2.4. Error Propagation and Condition Numbers 123

the work grows as one demands higher accuracy? Since the limit for the relative
error in y is equal to the sum of the bounds for the relative errors in f(x) and
f'(zr), there is no gain in making the relative error in f’(zy) very much less than
the relative error in f(xy). This observation is of great importance in particular in
the generalization of Newton’s method to systems of nonlinear equations.

We now study the propagation of errors in more general non-linear expressions.
Consider first the simple case when we want to compute a function y = f(z) of a
single real variable z. How is the error in x propagated to y? Let & — x = Ax.
Then, a natural way is to approximate Ay = § — y with the differential of y (see
Fig. 2.4.1). By the mean value theorem,

Ay = f(z + Az) - f(z) = f'(§)Az,

where ¢ is a number between z and z + Az. Suppose that |Az| < e. Then it follows
that

|Ay| < mgax|f’(§)|e, E€r—ex+¢. (2.4.3)

In practice, it is usually sufficient to replace ¢ by the available estimate of x. Even
if high precision is needed in the value of f(zx), one rarely needs a high relative
precision in an error bound or an error estimate. It is only in the neighborhood of
zeros of the first derivative f'(z) that one has to be more careful.

Figure 2.4.1. Propagated error in function y = f(x).

By the implicit function theorem a similar result holds if y is an implicit
function of z defined by g(z,y) = 0. If g—z # 0, then

o9

189] < max |20 /4@ e, €€ lo-catl (2.4.4)

Example 2.4.4. The result in Lemma 2.3.4 does not say that the computed roots
of the quadratic equation are close to the exact roots r1, 5. To answer that question
we must determine how sensitive the roots are to a relative perturbations in the

124 Chapter 2. How to Obtain and Estimate Accuracy

coefficient c. Differentiating az? + bz + ¢ = 0, where z = z(c) with respect to ¢ we
obtain (2az + b)dz/dc+1 = 0, dz/dc = —1/((2ax + b). With z = r; and using

r1 + 79 = —b/a, rire = c¢/a this can be written
dry dc 1y
el cry—ry

This shows that when |r; — ro| < |r2| the roots can be very sensitive to small
relative perturbations in c.

When r; = 12, i.e. when there is a double root, this linear analysis breaks
down. Indeed it is easy to see that the equation (z — r)? + Ac = 0 has roots

z=r++vAc

To analyze error propagation in a function of several variables f = f(z1,z2,...,2,)
we need the following generalization of the mean value theorem:

Theorem 2.4.3.

Assume that the real valued function f is differentiable in a neighborhood of
the point © = (z1,%2,...,%,), and let = ¢ + Az be a point in this neighborhood.
Then there exists a number 6, such that

of
aiIJi

Af:f(:c-l—A:c)—f(x):zn: (x +0Az)Az;,, 0<6<1.
i=1

Proof. The proof follows by considering the function F(t) = f(z + tAx) and using
the mean value theorem for functions of one variable and the chain rule. 0O

From Theorem 2.4.3 it follows that the perturbation A f is approximately equal
to the total differential. The use of this approximation means that the function
f(z) is, in a neighborhood of x that contains the point « + Az, approximated by
a linear function. All the techniques of differential calculus, such as logarithmic
differentiation, implicit differentiation etc. may be useful for the calculation of the
total differential; see the examples and the problems at the end of this section.

Theorem 2.4.4. General Formula for Error Propagation:

Let the real valued function f = f(x1,%2,...,x,) be differentiable in a neigh-
borhood of the point x = (z1,2a,...,T,) with error Azxy,Azxs,...,Ax,,. Then it

holds
"9
Af > af
=1

i
where the partial derivatives are evaluated at x.
For the maximal error in f(x1,xa,...,x,) we have the approzimate bound

AfIRY
=1

of

2.4. Error Propagation and Condition Numbers 125

In order to get a strict bound for |Af|, one should use in (2.4.6) the maximum
absolute values of the partial derivatives in a neighborhood of the known point z.
In most practical situations it suffices to calculate |0f/0z;| at « and then add a
certain marginal amount (5 to 10 percent, say) for safety. Ouly if the Axz; are
large or if the derivatives have a large relative variation in the neighborhood of x,
need the maximal values be used. (The latter situation occurs, for example, in a
neighborhood of an extremal point of f(z).)

The bound in Theorem 2.4.4 is the best possible, unless one knows some
dependence between the errors of the terms. Sometimes it can, for various reasons,
be a coarse overestimate of the real error, as we have seen in Example 2.3.8.

Example 2.4.5.
Compute error bounds for f = 27 —x5, where 1 = 1.03£0.01, 75 = 0.45+0.01.

We obtain of
—| =12z <21 —
O | $1| - ’ Oz
and find [Af] < 2.1-0.01+1-0.01 = 0.031, or f = 1.061 — 0.450 £ 0.032 =
0.611 £ 0.032; the error bound has been raised 0.001 because of the rounding in the
calculation of x3.

9 :|_1|:1,

One is seldom asked to give mathematically guaranteed error bounds. More
often it is satisfactory to give an estimate of the order of magnitude of the anticipated
error. The bound for |Af| obtained with Theorem 2.4.3 estimates the maximal
error, i.e, covers the worst possible cases, where the sources of error Ax; contribute
with the same sign and magnitudes equal to the error bounds for the individual
variables.

In practice, the trouble with formula (2.4.6) is that it often gives bounds which
are too coarse. More realistic estimates are often obtained using the standard error.
In Sec. 2.3.4 we introduced the standard error for a sum. Here we give without
proof the result for the general case, which can be derived using probability theory
and the formula (2.4.5).

Theorem 2.4.5.

Assume that the errors Axy, Axs, ..., Az, are independent random variables
with mean zero and standard deviations €y, ¢€s,...,€,. Then the standard error e for
flx1,@a, ... @y) is given by the formula:

n /3
ez<2(8f>262)12 (2.4.7)
> \ax) < 4.

Analysis of error propagation is more than just a means for judging the relia-
bility of calculated results. As remarked above, it has an equally important function
as a means for the planning of a calculation or scientific experiment. For example,
it can help in the choice of algorithm, and in making certain decisions during a
calculation. Examples of such decisions are the choice of step length during a nu-
merical integration. Increased accuracy often has to be bought at the price of more

126 Chapter 2. How to Obtain and Estimate Accuracy

costly or complicated calculations. One can also shed some light, to what degree
it is advisable to obtain a new apparatus to improve the measurements of a given
variable, when the measurements of other variables are subject to error as well.

2.4.3 Condition Numbers of Problems

It is useful to have a measure of how sensitive the output data is for variations
in the input data. In general, if small changes in the input data can result in
“large” changes in the output data, we call the problem ill-conditioned; otherwise
it is called well-conditioned. (The definition of large may differ from problem
to problem depending on the accuracy of the data and the accuracy needed in the
solution.)

We have seen in Sec. 2.4.1 that | f'(z)| can be interpreted as a measure of the
sensitivity of f(x) to a perturbation Az of x. In many contexts, the ratio of the
relative perturbations in f(z) and z is of more interest.

Definition 2.4.6. Assume that x # 0 and f(z) # 0, Then the condition number
k for the numerical problem of computing y = f(z) is
o et An - @) /1Al
|Az|-0 £ ()]]

' ()]
[f ()]

We say that the problem of computing f(z) given x is ill-conditioned if is “large”
and well-conditioned otherwise.

|z|

(2.4.8)

Note that the condition number is a property of the numerical problem and
does not depend on the algorithm used! An ill-conditioned problem is intrinsically
difficult to solve accurately using any numerical algorithm. Even if the input data
is exact rounding errors made during the calculations in floating point arithmetic
may cause large perturbations in the final result.

Example 2.4.6.
Consider the linear system

(o 1)) =0)

where a # 1 is the input data. The exact solution is
r=1/(1-a%), y=—a/(l-a?).

The matrix is singular for a = 1, and the problem of computing z and y is ill-
conditioned when a &~ 1. Using equation (2.4.8) we find that the condition number
for computing z is

k= az'(a)/z(a) = 27 /|1 — a?|.
For a = 0.9950 we get using Gaussian elimination and four decimal digits the
computed values

g = —0.995/(1 — 0.9902) = —99, 80, T =140.9950-99.80 = 100.30,

2.4. Error Propagation and Condition Numbers 127

instead of the correct values y = —99.7494, = = 100.2506. Note that two digits were
lost through cancellation in the divisor when computing y. The condition number
k = 198 indicates correctly that we can expect to loose two significant decimal
digits.

Consider now a multivariate numerical problem P where the output data
y; = fj(z), 7 = 1 : m depends non-linearly on the input data x = (z1,...,2,).
Then by the general error propagation formula (see Theorem 2.4.4) we have the
maximal error estimate

n
Ayl £
i=1
This gives us a matrix of (relative) condition numbers

B ‘afj

Rij = ox;
1

|Az;|, j=1:m. (2.4.9)

0f;
8:5,-

|z
ly;|’

1=1:n, j=1:m.

It is often more convenient to have a single number to measure the conditioning
of the problem. This can be achieved, as in the linear case, by using norms.

Definition 2.4.7. The condition number k of a problem P with input data (z1,...,z,)
and output data (y1,...,Ym) is

1llg —
H(P)zlimsup—w, |7 — || < elz|l- (2.4.10)

=0 e |yl

Note that x(P) is a function of the input data x and depends on the choice of
norms in the data space and solution space. If the condition number of a problem
is K, then for sufficiently small € we have the estimate

17 = yll < kellyll + O(€*).

It follows that the solution will have roughly s = log,, & less significant decimal
digits than the input data.

If we get an inaccurate solution to a ill-conditioned problem P, then often
nothing can be done about the situation, since the difficulty is intrinsic to the
problem P. But sometimes the difficulty can depend on the form one has chosen to
represent the input and output data of the problem.

The conditioning of a problem can to some degree be illustrated geometrically.
A numerical problem P means a mapping of the space X of possible input data onto
the space Y of the output data. The dimensions of these spaces are usually quite
large. In Fig 2.3.2 we picture a mapping in two dimensions. Since we are considering
relative changes, we take the coordinate axis to be logarithmically scaled. A small
circle of radius r is mapped onto an ellipse whose major axis is kr, where k is the
condition number of the problem P.

128 Chapter 2. How to Obtain and Estimate Accuracy

Space of Space of
Input data Output data
X Y

P

A\

C

)

Figure 2.4.2. Geometrical illustration of the condition number.

Example 2.4.7.
The polynomial

P(z) = (z — 10)* 4+ 0.200(z — 10)* + 0.0500(z — 10)* — 0.00500(z — 10) + 0.00100,

is identical with a polynomial) which if the coefficients are rounded to six digits,
becomes

Q(x) = z* — 39.8000> + 594.050z2 — 3941.00z + 9805.05.

One finds that P(10.11) = 0.0015 £ 10~*, where only three digits are needed in the
computation, while Q(10.11) = —0.0481 + % -107*, in spite of the fact that eight
digits were used in the computation. The rounding to six digits of the coefficients
of @ has thus caused an error in the polynomial’s value at z = 10.11; the erroneous
value is more than 30 times larger than the correct value. When the coefficients of
@ are input data, the problem of computing the value of the polynomial for z =~ 10
is far more ill-conditioned than when the coefficients of P are input data.

2.4.4 Perturbation Analysis for Linear Systems

Let x be the solution z to a system of linear equations Az = b, where A is nonsin-
gular and b # 0. We shall investigate the sensitivity of « to perturbations dA and
6bin A and b. The perturbation dz satisfies

(A+6A) (2 + 6x) = b+ bb.

Subtracting out Az = b we get (A + §A)dox = (—JAx + 6b). Assuming that also
the matrix A + §A is nonsingular, we can multiply by A~! and solve for §z which
yields the basic identity

bx = (I +A16A) LA (—5Ax + ob). (2.4.11)
Taking norms gives

18]l < I(Z + A7 6 A) AT (OA fll] + llobl]) - (2.4.12)

2.4. Error Propagation and Condition Numbers 129

In the simple case that 64 = 0 we have éx = A~15b and
[[62]] < [JA7H][]160]]-

Usually it is more appropriate to consider normwise relative perturbations,

52l 199 |4z
—F <k(Ad,x)—, kK(4,z):=
e < FED g AA =

A7)

where (A, z) is the condition number for computing z. This inequality is sharp in
the sense that for any matrix norm and for any A and b there exists a perturbation
6b such that equality holds.
When 0A # 0 we obtain from (2.4.12), neglecting second order terms and
using the inequality [[b]| = [|Az|| < ||A]] [,
[[0]]

]

QN

19611 [10A] -1
) (Al)) = gy, (24.13)
This shows that a normwise relative perturbation in A or b can at most be amplified
by the factor & = ||A||||A~||. Note that in (2.4.13) equality will hold only for rather
special right hand sides b. For given x (or b) the bound (2.4.13) may be unachievable
for any perturbation 60!

Clearly the condition number x(A) depends on the choice of norms in the data
space and solution space. The most common norms are special cases, p = 1,2 and
00, of the family of vector p-norms, (see Sec. 1.6.8)

|zllp = (@1]” + |22]” + - + |za]?) /P, 1<p<oo

and the corresponding subordinate matrix norm. In particular, using the Euclidian
vector and matrix norm (p = 2) we define:

Definition 2.4.8.
The condition number for a square nonsingular matriz A is

k2 = ka(A) = [|A]l2 |[A7Y2 = o1 /0w, (2.4.14)
where o1 and o, are the largest and smallest singular value of A.

The condition number Kk, measures the sensitivity of the solution z to per-
turbations in A and b. Note that k(aAd) = k(A4), i.e., the condition number is
invariant under multiplication of A by a scalar. From the definition and the iden-
tity AA=! = I it also follows that xK(AB) < k(A)k(B) and

ka(A) = Al A2 > 111 =1,

that is, the condition number k- is always greater or equal to one.
Matrices with small condition numbers are said to be well-conditioned. For
any real, orthogonal matrix () we have

k2(Q) = [QIRIQ7 Ml =1,

130 Chapter 2. How to Obtain and Estimate Accuracy

so @ is perfectly conditioned. Furthermore, k2(A) is invariant under orthogonal
transformations, i.e. for any orthogonal P and @) we have k3 (PAQ) = k2(A).

How large may k be before we consider the problem to be ill-conditioned?
That depends on the accuracy of the data and the accuracy desired in the solution.
If the data have a relative error of 10~7 then we can guarantee a relative error in
the solution to be < 1073 if k < 0.5 - 10*. However, to guarantee a relative error in
the solution < 1079 we need to have & < 0.5 - 10%.

Table 2.4.1. Condition numbers of Hilbert matrices of order < 12.

K2 (Hn) n K2 (Hn)

1 7 | 4.753+08
19.281 8 1.526+10
5.2414+02 | 9 | 4.932+11

1.551+04 | 10 | 1.602+413
4.766+05 | 11 | 5.220+14
1.4954-07 | 12 | 1.678+16

o U N (S

Example 2.4.8.
The Hilbert matrix H,, of order n is an n X n matrix with elements

Hy(i,j) = hij = 1/(i+ 5 = 1).

It is a notable example of an ill-conditioned matrix. In Table 2.4.4 approximate

condition numbers of Hilbert matrices of order < 12, computed in IEEE double
precision, are given. The condition numbers ko(H,,) are seen grow exponentially
with n. For n > 12 the Hilbert matrices are too ill-conditioned even for IEEE
double precision! Gautschi [11, p.34] remarks that from a result by G. Szego it
follows that

(V2 + 14+l 3.5n

~

215/4 /mn ’

which shows that the condition number grows exponentially.

ko(Hy) =~

Although the severe ill-conditioning exhibited by the Hilbert matrices is rare,
moderately and severely ill-conditioned linear systems do occur regularly in many
practical applications!

The normwise analysis in the previous section may not work well unless the
linear system is “well scaled”, i.e., the elements in the A, b, and = have roughly
similar sizes. The a component-wise perturbation analysis may give sharper
bounds. We first need to introduce some notations. The absolute values |A| and |b|
of a matrix A and vector b is interpreted componentwise,

|Ali; = (la]), bl = (|bi])-

2.4. Error Propagation and Condition Numbers 131

The partial ordering “<” for matrices A, B and vectors z, y, is also to be interpreted
component-wise®

A< B < ai; < by, <y < z; Jyi

It follows easily that if C = AB, then |C| < |A]||B|, or

n
leis] < lak] [bij
k=1

A similar rule holds for matrix-vector multiplication.
Assume now that we have component-wise relative bounds for the perturba-
tions in A and b,
[0A] < wl|d|, [6b] <wlb. (2.4.15)

By taking absolute values in (2.4.11) we obtain component-wise error bounds for
the corresponding perturbations in z,

|62 < |(Z+ATT6A) T |ATH(10A]|=] + |ab])

Here the matrix (I —|A~1||0A]) is guaranteed to be nonsingular if || |[A7}| [64] || < 1.
Neglecting second order terms and using (2.4.15) we get the component-wise
relative error bounds

102] S |4~ (6 Alla] + 19b]) < w|A~[(|All2] + o), (2.4.16)
Taking norms in (2.4.16) we obtain
l[0z]| < wl[JAH (| Al 2] + [8]) | (2.4.17)

and
Kal(A) = [[|AT A] (2.4.18)

is the Bauer—Skeel condition number of the matrix A.

2.4.5 Experimental Perturbations

In larger problems, the relations between input data and output data are so compli-
cated that it is difficult to directly apply the general formulas for error propagation.
One can then investigate the sensitivity of the output data for perturbations in
the input data by means of an experimental perturbational calculation: one
performs the calculations many times with perturbed input data and studies the
perturbations in the output data.

Important data, such as the step length in a numerical integration or the
parameter which determines when an iterative process is going to be broken off,
should be varied with all the other data left unchanged. If one can easily vary the
precision of the machine in the arithmetic operations one can get an idea of the

SNote that A < B in other contexts means that B — A is positive semidefinite.

132 Chapter 2. How to Obtain and Estimate Accuracy

influence of rounding errors. It is generally not necessary to make a perturbational
calculation for each and every data component; one can instead perturb many input
data simultaneously—for example, by using random numbers.

A perturbational calculation often gives not only an error estimate, but also
greater insight into the problem. Occasionally, it can be difficult it can be difficult to
interpret the perturbational data correctly, since the disturbances in the output data
depend not only on the mathematical problem but also on the choice of numerical
method and the details in the design of the algorithm.The rounding errors during
the computation are not the same for the perturbed and unperturbed problem.
Thus if the output data reacts more sensitively than one had anticipated, it can be
difficult to immediately point out the source of the error. It can then be profitable
to plan a series of perturbation experiments with the help of which one can separate
the effects of the various sources of error. If the dominant source of error is the
method or the algorithm, then one should try another method or another algorithm.

It is beyond the scope of this book to give further comments on the planning
of such experiments; imagination and the general insights regarding error analysis
which this chapter is meant to give play a large role. Even in the special literature,
the discussion of planning of such experiments is surprisingly meager.

2.4.6 Forward and Backward Error Analysis

An algorithm for a given numerical problem is a complete description of well-
defined operations through which each permissible input data vector is transformed
into an output data vector. By “operations” we mean here arithmetic and logical
operations which a computer can perform. In this section we

Consider a finite algebraic algorithm which from the data (a4, - .., a,), through
intermediate values computes by arithmetic operations a solution (wi,...,ws).
There are two basic forms of roundoff error analysis for such an algorithm, which
both are useful:

(i) In forward error analysis one attempts to find bounds for the errors in the
solution |w; — w;|, i = 1 : t, where @; denotes the computed value of w;.

(ii) In backward error analysis, pioneered by J. H. Wilkinson in the late fifties,
one attempts to determine a modified set of data a; such that the computed
solution w; is the ezact solution, and give bounds for |G; — a;|. There may be
an infinite number of such sets; sometimes there is just one and it can happen,
even for very simple algorithms, that no such set exists.

Sometimes, when a pure backward error analysis is difficult to achieve, one
can show that the computed solution is a slightly perturbed solution to a problem
with slightly modified input data. This is called a mixed error analysis.

Notice that in backward error analysis no reference is made to the exact so-
lution for the original data. In practice, when the data is known only to a certain
accuracy, the “exact” solution may not be well-defined. Then any solution, whose
backward error is smaller than the domain of uncertainty of the data, may be con-
sidered to be satisfactory.

2.4. Error Propagation and Condition Numbers 133

To yield error bounds for @;, a backward error analysis needs to be comple-
mented with a perturbation analysis. For this the general error propagation formula
in Section 2.4.2 can be used. A great advantage of backward error analysis is that
when it applies, it tends to give much sharper results than a forward error analysis.
Perhaps more important, it usually also gives a better insight into the stability (or
lack of it) of the algorithm. It should be stressed that the primary purpose of a
rounding error analysis is to give insight in the properties of the algorithm.

By means of backward error analysis it has been shown, even for many quite
complicated algorithms, that the output data which the algorithm produce under
the influence of roundoff error is the ezact output data of a problem of the same
type in which the data has been changed relatively by a few w.

2.4.7 Stability of Algorithms

One reason for poor accuracy in output data is that the problem is ill-conditioned.
But poor accuracy can also be caused by a poorly constructed algorithm. We say
in general that an algorithm is unstable if it introduces large errors in computed
solutions to problems which are well-conditioned.

Example 2.4.9. .
Compute z = 4y where x and y satisfies the linear system in Example 2.4.6.
This problem is well-conditioned when a =~ 1, since

z=z+y=1/1-0a*)—a/(1 -—a®)=1/(1+a).

The condition number is about 0.5. On the other hand, the problem of comput-
ing z = 1/(1 —a?) (and y = —a/(1 — a?)) is ill-conditioned when a ~ 1 (see
Example 2.4.6).

An algorithm which first solves the linear system for z and y and then adds
to get z gives bad accuracy when a =~ 1. For example, with a = 0.9900, using four
digit decimal arithmetic one gets z = x + y = 50.25 — 49.75 = 0.5000, while the
correct answer is 0.5025, a loss of two digits. The lack of stability is revealed here
by the fatal cancellation that occurs.

There are several different definitions of stability of an algorithm.

Definition 2.4.9.
An algorithm is backward stable if the computed solution @ for the data a
is the exact solution of a problem with slightly perturbed data a such that for some

norm || - || it holds
lla —all/llall < c1u, (2.4.19)

where ¢; a not too large constant and w is the unit roundoff.

We are usually satisfied if we can prove forward or backward stability for |- ||2
or || - |lo, although we may like the estimates to hold element-wise, e.g.

|(Li - a,|/|a,| < cou, 1=1:r (2420)

134 Chapter 2. How to Obtain and Estimate Accuracy

For example, by equation (2.3.12) the usual algorithm for computing an inner prod-
uct Ty is backward stable, for element-wise relative perturbations.

We would like stability to hold for some class of input data. For example,
a numerical algorithm for solving systems of linear equations Az = b is backward
stable for a class of matrices A if for each A € A and for each b the computed
solution Z satisfies AZ = b where A and b are close to A and b.

A backward stable algorithm will not necessarily compute an accurate solution.
However, if the condition number of the problem is x, then it follows that

| — w|| < cruk||w] + O(u?). (2.4.21)

Hence the error in the solution may be large if the problem is ill-conditioned. How-
ever, we have obtained an answer which is the exact mathematical solution to a
problem with data close to the one we wanted to solve. If the perturbations a — a
are within the uncertainties of the given data, the computed solution is as good as
our data warrants!

An important property of backward stable algorithms for the solution of linear
systems is given in the following theorem.

Theorem 2.4.10.
An algorithm for solving Az = b is backward stable according to Defini-

tion 2.4.9 if and only if the computed solution Z has a small residual, that is,

[1b— AZ|| < csull Alll|Z]- (2.4.22)

Proof. Suppose that (2.4.22) holds. If we define for the 2-norm
SA=rzT)||Z|3, r=0b- AL,

then it holds exactly that (4 + dA)ZT = AZ + r = b, where
10A]l2 < lIrll2/1[Z]l2 < csullAlls-

We can take 6b = 0 and hence the algorithm is backward stable by Definition 2.5.3.
Conversely, if the algorithm is backward stable then, AZ = b, where

JA—All < coullAll, |Ib— bl < caullp]].

Since b — Az = (A — A)Z + b — b it follows that an estimate of the form (2.4.22)
holds for the norm of the residual. 0O

Many important algorithms for solving linear systems, for example, most iter-
ative methods, are not backward stable. The following weaker definition of stability
is also useful.

2.4. Error Propagation and Condition Numbers 135

Definition 2.4.11. An algorithm is stable if the computed solution w satisfies
(2.4.21), where ¢ a not too large constant, u is the unit roundoff, and k is the
condition number of the problem.

By the definition of the condition number & it follows that backward stability
implies forward stability, but the converse is not true.

Sometimes it is necessary to weaken the definition of stability. Often an algo-
rithm can be considered stable if it produces accurate solutions for well-conditioned
problems. Such an algorithm can be called weakly stable. Weak stability may be
sufficient for giving confidence in an algorithm.

Example 2.4.10. (Higham [24, Chapter 3.1])

The outer product of two vectors z,y € R" is A = zyl = (a;;), where
a;; = w;y;. In floating point arithmetic we compute A = fl(zy”) = (a;;), where
ajj = 'riyj(]- + 52‘]'), 52‘]' < u, and so

A=y + A, |A] <ulay].

This is a satisfactory result for many purposes, but the computation is not backward
stable. The computed A is not in general a rank one matrix and thus it is not
possible to find perturbations Az and Ay so that A = (z + Ax)(z + Ay)7.

In the method of normal equations for computing the solution of a linear
least squares problem one first forms the matrix AT A. This product matrix can be
expressed in outer form as

m
Ty _ T
A A= E a;a;
i=1

where a] is the ith row of 4, i.e. AT = (a1 as ... an). By the result above
it follows that this computation is not backward stable, i.e. it is not true that
1 (ATA) = (A+ E)T (A + E) for some small error matrix E. In order to avoid loss
of significant information double precision need to be used.

Backward stability is easier to prove when there is a sufficiently large set of
input data compared to the number of output data. This makes it harder to show
backward stability when the input data is structured rather than general.

goodbreak

Example 2.4.11. A Toeplitz matrix T is a matrix whose entries are constant
along every diagonal T' = (ti—j)1<i,j<n,

to i tn—1
t o, to N
T =) € Rnxn}
tont1l tomgs ... to
and is defined by the 2n — 1 values of t_,41,...,%0,...,t,-1. Toeplitz matrices

arising in applications are often large, and dimensions of 10,000 not uncommon.

136 Chapter 2. How to Obtain and Estimate Accuracy

Consequently there is a need for special fast methods for solving Toeplitz systems.
In large problems also storage requirements are important. The original matrix T
only requires 2n — 1 storage. However, if standard factorization methods are used,
at least n(n + 1)/2 storage is needed.

In the construction of an algorithm for a given problem, one often breaks
down the problem into a chain of subproblems, P, Ps, ..., P for which algorithms
Ay, As, ..., Ay are known, in such a way that the output data from P;_; is the input
data to F;. Different ways of decomposing the problem give numerically different
algorithms. It is dangerous if the last subproblem in such a chain is ill-conditioned.
On the other hand, it need not be dangerous if the first subproblem of such a
decomposition is ill-conditioned, even if the problem itself is well-conditioned.

Good algorithm

X X’ Y

@ - | ®

A\

&

Poor algorithm

X X" Y

© -)

&)

A\

Figure 2.4.3. Two examples of a decomposition of a problem P into two
subproblems.

In Fig. 2.5.2 we see two examples of a decomposition of the problem P into
two subproblems. From X to X" there is a strong contraction which is followed
by an expansion about equally strong in the mapping from X" to Y. The roundoff
errors which are made in X" when the intermediate results are stored have as a
consequence that one arrives somewhere in the surrounding circle, which is then
transformed into a very large region in Y. The important conclusion is that even if
the algorithms for the subproblems are stable we cannot conclude that the composed
algorithm is stable!

Example 2.4.12.

The problem of computing the eigenvalues A; of a symmetric matrix A from
its elements (a;;) is always well-conditioned functions, cond = 1. Consider an
algorithm which breaks down this problem into two subproblems:

P;: to compute the coefficients of the characteristic polynomial P()) of A.

Review Questions 137

P5: to compute the roots of the characteristic equation P(\) = 0.

It is well known that the second subproblem P, can be very ill-conditioned.

For example, for a symmetric matrix A with eigenvalues +1,£2,..., £20 the con-
dition number for P, is 10'* in spite of the fact that the origin lies exactly between
the largest and smallest eigenvalues, so that one cannot blame the high condition
number on a difficulty of the same type as that encountered in Example 2.4.7.

Review Questions

1.

The maximal error bounds for addition and subtraction can for various reasons be
a course overestimate of the real error. Give, preferably with examples, two such
reasons.

. How is the condition number x(A) of a matrix A defined? How does k(A) relate

to perturbations in the solution z to a linear system Az = b, when A and b are
perturbed?

. Define the condition number of a numerical problem P of computing output data

Y1,--.,Ym given input data z1,...,xn.

. Give examples of well-conditioned and ill-conditioned problems.
. What is meant by (a) a forward error analysis; (b) a backward error analysis;

(¢) a mixed error analysis?

. What is meant by (a) a backward stable algorithm; (b) a forward stable algorithm;

(c) a mixed stable algorithm; (d) a weakly stable algorithm?

Problems and Computer Exercises

1.

(a) Determine the maximum error for y = z123//Z3, where 1 = 2.0 £ 0.1, 22 =
3.0£0.2, and 3 = 1.0 £ 0.1. Which variable contributes most to the error?

(b) Compute the standard error using the same data as in (a), assuming that the
error estimates for the z; indicate standard deviations.

. One wishes to compute f = (v/2 — 1), using the approximate value 1.4 for /2.

Which of the following mathematically equivalent expressions gives the best result

VZ+1)8 (3-2v2)% (3 +2v2)%’ 99 - T0V%; 99+70ﬁ?

. Analyze the error propagation in z¢:

(a) If z is exact and « in error. (b) If « is exact and z in error.

. One is observing a satellite in order to determine its speed. At the first observation,

R = 30,000 £+ 10 miles. Five seconds later, the distance has increased by r =
125.0 & 0.5 miles and the change in the angle was ¢ = 0.00750 & 0.00002 radians.
What is the speed of the satellite, assuming that it moves in a straight line and with
constant speed in the interval?

138

Chapter 2. How to Obtain and Estimate Accuracy

5. One has an algorithm for computing the integral

1 e*bz
I(a,b) = / Sdz.
0 @t

The physical quantities a and b have been measured to be a = 0.4000 £ 0.003,
b = 0.340 £ 0.005. Using the algorithms for various values of a and b one performs
experimental perturbations and obtains:

a b I

0.39 0.34 1.425032
0.40 0.32 1.408845
0.40 0.34 1.398464
0.40 0.36 1.388198
0.41 0.34 1.372950

How large is the uncertainty in I(a,b)?

. (a) Use the results in Table 2.4.4 to Determine constants ¢ and ¢ such that k(H,) =

c-10%.

(b) Compute the Bauer—Skeel condition number cond (Hy) = || |H; *||Hx|||2, of the
Hilbert matrices for n =1 : 12. Compare the result with the values of x(H,) given
in Example 2.4..

. (a) Let two vectors u and v be given with components (u1,u2) and (vi,v2). Then

the angle ¢ between u and v is given by the formula

U1V1 + U202
(uf +u3)'/2(vi +v3)'/2

cosp =

Show that computing ¢ from the components of w and v is always a well-conditioned
problem.

Hint: Take the partial derivative of cos ¢with respect to ui, and from this compute
O¢/0u1. The other partial derivatives are obtained by symmetry.

(b) Show that the formula in (a) is not stable for small angles ¢.

(c) Show that the following algorithm is stable. First normalize the vectors @ =
u/||ullz, ¥ = v/||v||2, and then compute a = ||& — ?||2, 8 = ||& + 7||.. Now take

| 2arctan(o/B), if a < p;
¢ = m — 2arctan(f/a), if a > p.

. Derive a forward and a backward recursion formula for calculating the integrals

1 n
T
I, = dx.
" /04:z:+1x

Why is one algorithm stable and the other unstable?

Problems and Computer Exercises 139

Notes and References

In the early days of computing floating point computations were not built into
the hardware but implemented in software. The earliest subroutines for floating
point arithmetic were probably those developed by J. H. Wilkinson at the National
Physical Laboratory, England, in 1947. An excellent source of information on float-
ing point computation, rounding error analysis, and related topics is Higham [24,
Chapter 2]

A treatment of many different aspects of number systems and floating point
computations is given in Knuth [27, Chapter4]. He gives an interesting overview
of the historical development of number representation Leibniz 1703 seems to have
been the first to discuss binary arithmetic. He did not advocate it for practical
calculations, but stressed its importance for number-theoretic investigations. King
Charles XII of Sweden came upon the idea of radix 8 arithmetic in 1717. He felt
this to be more convenient than the decimal notation and considered introducing
octal arithmetic into Sweden. He died in battle before decreeing such a change!

Another general source on floating point computation is Sterbenz [36]. The
IEEE standard for binary floating point arithmetic is defined in [3, 1985] An ex-
cellent tutorial on IEEE floating-point standard is Goldberg [16, 1991]; see also
Overton [33, 2001].

The leading significant digit of numbers represented in a number system with
base 8 has been observed to closely fit a logarithmic distribution, i.e., the proportion
of numbers with leading digit equal to n is logg(1+1/n) (n = 0,1,...,8—-1). A
discussion of this intriguing fact with historic references is found in Higham [24,
Section 2.5].

The modern development of interval arithmetic was initiated by the work
of R. E. Moore [29, 1966]. It has since been developed into a useful tool for many
problems in scientific computing and engineering. Only recently has it been possible
to exploit high-performance computers. By making use of the Basic Linear Algebra
Subroutines (BLAS) and IEEE 754 standard fast portable codes can now be written.
The MATLAB toolbox INTLAB developed by Rump, which is very efficient and
easy to use, is described in [35, 34]. An excellent introduction to interval arithmetic,
which includes a short tutorial on INTLAB is Hargreaves [20]

Backward error analysis was developed and popularized by J. H. Wilkinson in
the 1950s and 1960s and the classic treatise on rounding error analysis is [37]. The
more recent survey [38] gives a good summary and a historical background.

A collection of software tools called PRECISE has been developed by Chaitin-
Chatelin et al., see [8]. These are designed to help the user set up computer exper-
iments to explore the impact of the quality of convergence of numerical methods.
It involves a statistical analysis of the effect on a computed solution of random
perturbations in data

Starting in the 1960s much general purpose software, often collected in large
libraries or packages have been developed. Two large suppliers of commercial scien-
tific subroutine libraries are NAG and IMSL. MATLAB is a much used interactive
system for matrix computations, with “toolboxes” available for many application
areas, e.g., control problems. It has been used for this book in testing algorithms

140 Chapter 2. How to Obtain and Estimate Accuracy

and we also have borrowed some of its notation. Many programs and packages are
available in the public domain and can be downloaded free. A prime example is
LAPACK, which superseded LINPACK and EISPACK in the mid 1990s, and con-
tains programs for solving linear systems and eigenvalue problems. Other packages
like DASSL are available for solving ordinary systems of differential equations. For
a survey we refer to Vol. III, Chapter 15.

For software the National Institute of Standards and Technology (NIST) Guide
to Available Mathematical Software (GAMS) is available at the Internet URL
“gams.nist.gov”’. GAMS is an on-line cross-index of mathematical and statistical
software providing abstracts, documentation, and source code of software modules
and provides access to multiple repositories operated by others. Currently four
repositories are indexed, three within NIST, and netlib. Both public-domain and
proprietary software are indexed although source code of proprietary software is
not redistributed by GAMS. Netlib is a repository of public domain mathematical
software, data, address lists, and other useful items for the scientific computing
community. Access to netlib is via the Internet URL ”www.netlib.bell-labs.com”

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computation. Aca-
demic Press, New York, NY, 1983.

[2] G. Alefeld and G. Mayer. Interval analysis: theory and applications. J.
Comput. Appl. Math., 121 (2000), 421-464.

[3] Anon. IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. SIG-
PLAN, 22:2:9-25, 1985.

[4] Anon. IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE
Standard 854-1985. IEEE, New York, 1987.

[5] D. H. Bailey. Algorithm 719: Multiprecision translation and execution of
FORTRAN programs. ACM Trans. Math. Software, 19:3:288-319, 1993.

[6] R.P. Brent. Algorithm 524: A Fortran multiple-precision arithmetic package.
ACM Trans. Math. Software, 4:1:71-81, 1978.

[7] R. P. Brent. A Fortran multiple-precision arithmetic package. ACM Trans.
Math. Software, 4:1:57-70, 1978.

[8] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computa-
tions. STAM, Philadelphia, PA, 1996.

[9] W. J. Cody and W. Waite. Software Manual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs, NJ, 1980.

[10] W. J. Cody Implementation and testing of function software. In Problems
and Methodologies in Mathematical Software Production, P. C. Messina and
A. Murli, eds., Springer-Verlag, Berlin, 1982, pp. 24-47.

[11] W. J. Cody Algorithm 714: CELEFUNT: A portable test package for com-
plex elementary functions. ACM Trans. Math. Software, 14:4 p. 121, 1993.

[12] J. Demmel. Underflow and the reliability of numerical software. SIAM J.
Sci. Stat. Comput., 5:4:887-919, 1984.

Problems and Computer Exercises 141

[13] C. T. Fike. Computer Evaluation of Mathematical Functions. Prentice-Hall,
Englewood Cliffs, NJ, 1968.

[14] G. E. Forsythe. Pitfalls in computation, or why a math book isn’t enough.
Amer. Math. Monthly, 77 (1970), pp. 931-956.

[15] W. Gautschi. Numerical Analysis. Birkh&user, Boston, MA, 1997.

[16] D. Goldberg. What every computer scientist should know about floating
point arithmetic. ACM Computing Surveys, 23:5-48, 1991.

[17] H. H. Goldstine. A History of Numerical Analysis from the 16th through the
19th Century. Springer-Verlag, New York, 1977.

[18] H. H. Goldstine and J. von Neumann. Numerical inverting of matrices of high
order ii. Proc. Amer. Math. Soc., 2:188-202, 1951.

[19] E. Hansen. Topics in Interval Analysis. Oxford University Press, Oxford,
1969.

[20] G. I. Hargreaves. Interval analysis in MATLAB. Numer. Anal. Report 418,
Department of Mathematics, University of Manchester, 2002.

[21] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. F.
Rice, Jr. H. G. Thacher, and C. Witzgall. Computer Approzimations. Wiley,
New York, New York, 1968.

[22] C. Hastings. Approzimations for Digital Computers. Princeton University
Press, Princeton, NJ, 1955.

[23] I. Gargantini and P. Henrici. Circular arithmetic and the determination of
polynomial zeros. Numer. Math., 18:4 (1972), pp. 305-320.

[24] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, second edition, 2002.

[25] W. Kahan. A survey of error analysis. In Proc. IFIP Congress Ljubljana,
Information Processing 1971, North-Holland, Amsterdam, 1972, pp. 1214—
1239.

[26] R. Kearfoot. Interval computations: Introduction, uses, and resources, Eu-
romath. Bulletin, 2:1 (1996), pp. 95-112.

[27] D. E. Knuth. The Art of Computer Programming, Vol. 2. Seminumerical
Algorithms. Addison-Wesley, Reading, MA, second edition, 1981.

[28] X. S. Li, J. W Demmel et al. Design, implementation and testing of Extended
and Mixed Precision BLAS. Tech. Report CS-00-451, Department of Com-
puter Science, University of Tennessee, Knoxville, TN, USA, October 2000.
LAPACK working note 149.

[29] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[30] R. E. Moore. Methods and Applications in Interval Analysis. STAM, Philadel-
phia, PA, 1979.

[31] R. E. Moore. Reliability in Computing. The Role of Interval Methods in
Scientific Computing. John Wiley, New York, 1988.

142

Chapter 2. How to Obtain and Estimate Accuracy

[32]

33]

[34]

[35]

[38]

J.-M. Muller, Elementary Functions: Algorithm and Implementation.
Birkh&user, Boston, MA, 1997.

M. Overton. Numerical Computing with IEEE Floating Point Arithmetic:
Including One Theorem, One Rule of Thumb, and One Hundred and One
Exercises. STAM, Philadelphia, PA, 2001.

S. M. Rump. Fast and parallel interval arithmetic. BIT, 39:3 (1999), pp.
534-554.

S. M. Rump. INTLAB—INTerval LABoratory. In Developments in Reliable
Computing, T. Csendes, ed. Kluwer Academic Publishers, Dordrecht, 1999,
pp. 77-104.

P. H. Sterbenz Floating Point Computation. Prentice-Hall, Englewood Cliffs,
N.J., 1974.

J. H. Wilkinson. Rounding Error in Algebraic Processes. Notes on Ap-
plied Science No. 32, Her Majesty’s Stationery Office, London, UK, 1963.
Reprinted by Dover, New York, 1994.

J. H. Wilkinson. Error analysis revisited. IMA Bull., 22:192-200, 1986.

3.1. Some Basic Facts about Series 145

=2cy + 637 + 12¢47° + -+ -+ (M +2)(m + Depyaz™ + - - -
—zy(z) = —cor — c12% — 22> — -+ — Cpog ™ — - -
Equating coefficients of " in these series gives

co =0, (m+2)(m + 1)cmez2 = —Cm—1, m>1.

It follows from the initial conditions that ¢ =1, ¢; = 0. Thus ¢, = 0, if n is not a
multiple of 3, and using the recursion we obtain

3 28 x?

Y@ =1- 5+ 155~ 2060 T
This gives y(0.5) = 0.97925. The z° term is ignored, since it is less than 2 - 1077,
In this example also the first neglected term gives a strict bound for the error (i.e.
for the remaining terms), since the absolute value of the term decreases, and the
terms alternate in sign.

Since the calculation was based on a trial substitution, one should , strictly
speaking, prove that the series obtained defines a function which satisfies the given
problem. Clearly, the series converges at least for |z| < 1, since the coefficients
are bounded. (In fact the series converges for all z.) Since a power series can be
differentiated term by term in the interior of its interval of convergence, the proof
presents no difficulty. Notice, in addition, that the finite series obtained for y(z)
by breaking off after the x?-term is the exact solution to the following differential

equation:
210

"= gy — ————, 0)=1, 4'(0)=0,
y ™~ 13,960 y(0) y'(0)
where the “perturbation term” —x'°/12,960 has magnitude less than 10~7 for |z| <
0.5. A similar backward analysis can, even in analogous more complicated cases,
be extended to give a strict error estimate by the logarithmic norm technique, see
Sec.13.1.5.

3.1.2 Estimating the Remainder

In practice, one is seldom seriously concerned about a strict error bound when the
computed terms decrease rapidly and it is “obvious” that the terms will continue to
decrease equally quickly. One can then break off the series and use either the last
included term or a coarse estimate of the first neglected term as an estimate of
the remainder.

This rule is not very precise. How rapidly is “rapidly”? Questions like this
occur everywhere in scientific computing. If mathematical rigor costs little effort or
little extra computing time, then it should, of course, be used. Sometimes, however,
obtaining an error bound that is both rigorous and realistic may cost more than
what is felt reasonable for a one-shot problem in the laboratory (say).

In problems, where guaranteed error bounds are not asked for, i.e., when it
is enough to obtain a feeling for the reliability of the results, one can handle these

146 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

matters in the same spirit as one handles risks in every day life. It is then a matter
of experience to formulate a simple and sufficiently reliable termination criterion
based on the automatic inspection of the successive terms. !

The unexperienced scientific programmer may, however, find such questions
hard, also in simple cases. And in the production of general purpose mathematical
software, or in a context where an inaccurate numerical result can cause a disaster,
such questions are serious and sometimes hard also for the experienced scientific
programmer.

For this reason, we shall formulate a few theorems, with which one can often
transform the feeling that “the remainder is negligible” to a mathematical proof.
There are, in addition, actually numerically useful divergent series; see Sec. 3.1.8.
When one uses such series, estimates of the remainder are clearly essential.

Assume that we want to compute a quantity S, which can be expressed in a
series expansion, S = Z;’;O aj, and set

Sn zzn:aj, R,=S5—5,.
=0

We call Z;’in 41 a; the tail of the series; ap is the “last included term” and a,41
is the “first neglected term”. The remainder R, with reversed sign is called the
truncation error. 2

The tail of a convergent series can often be compared to a series with a known
sum, for example, a geometric series, or with an integral which can be computed
directly.

Theorem 3.1.1. Comparison with a Geometric Series.
If lajy1| < kl|aj|, Vi > n, where k < 1, then

lant1] klay|

< .
[l < 1—-k —1-k

In particular if k < 1/2, then it is strictly valid that the absolute value of the
remainder is less than the last included term.

Proof. By induction, one finds that |a;| < k71" "|au41], 5 > n + 1, since |a;| <
K7 ang| = lajia| < Klaj] < K 7"ap4a|- Thus

3 S Janss] _ Klan]
Bl < 30 lagl < D0 K Many| = ﬁ S
Jj=n+1 j=n+1

according to the formula for the sum of an infinite geometric series. The last
statement follows from the inequality k/(1 — k) < 1, when k < 1/2. O

1We postpone the general discussion of termination criteria until Sec. 5.5, where it will be
discussed for iterative methods.

2Tn this terminology the remainder is the correction one has to make in order to eliminate the
error.

3.1. Some Basic Facts about Series 147

Example 3.1.3. Power series with slowly varying coefficients.
Let a; = j'/?7=%). Then ag = 2.4-0.0000011 < 3-10~%. Further,

|ajt1] < (j+ 1)Y/2 g2

ol ST < (141/6)'2772 < 0.11,
J

for j > 6. Thus by Theorem 3.1.1 |Rq| < 3:1070 2L < 4.1077.

Figure 3.1.1. Comparison with an integral.

Theorem 3.1.2. Comparison with an Integral.
If laj| < f(j) for all j > n, where f(x) is a nonincreasing function for x > n,
then

|R,| < / f(z)dz,

which yields an upper bound for R, if the integral is finite.
Ifaj = f; > 0 for all j > n+ 1, we also obtain a lower bound for the error,

namely [, f(x)dz.
Proof. See Fig. 3.1.1. 0O
Example 3.1.4. When a; is slowly decreasing, the two error bounds are typically

rather close to each other, and are hence rather realistic bounds, much larger than
the first neglected term an41. Let aj = 1/(5 + 1), f(z) = 273, It follows that

o0
R, < / 7 3dr =n"?/2.
n
In addition this bound gives an asymptotically correct estimate of the remainder,
as n — 0o. which shows that R, is here significantly larger than the first neglected
term.

For alternating series, however, the situation is typically quite different.

Definition 3.1.3. A series is alternating for j > n if, for all j > n, a; and
a;y1 have opposite signs, or equivalently sign a; = —sign a;y1, where sign x (read

148 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

signum of), is defined by
+1, ifx >0;
signm:{ 0, ifax=0;
-1, ifz<0.

Theorem 3.1.4. If for a certain n it holds that Ry, and R,+1 have opposite signs,
then S lies between S, and S,+1. Furthermore

1 1
S = —(Sn + Sn+1) + —|an+1|.
2 2
We also have the weaker results:

|Rp| < lan+1l; |Rns1] < lanta], sign Ry = sign anyq.

Proof. The fact that R, ; and R, have opposite signs means, quite simply, that
one of S,,4+1 and S, is too large and the other is too small, i.e., that S lies between
Sny1 and S,,. Since a,r1 = Spy1 — Su, one has for positive values of a,41, the
situation shown in Fig. 3.1.2, etc. ... From this figure, and an analogous one for the
case of apy1 < 0, the remaining assertions of the theorem clearly follow. 0O

An+41

Rn _Rn-i-l—’
Sn S Sn+l

Figure 3.1.2. lllustration to Theorem 3.1.4

The actual error of the average %(Sn + Sp+1) is, for slowly convergent alter-
nating series, usually much smaller than the error bound %|an+1|. For example, if
Sp=1-1+1—_.. &1 1limS, =In2=~ 0.6931, the error bound for n = 4is 0.1,
while the actual error is less than 0.01. See Sec. 3.3.3 for a systematic exploration
of this observation, by means of repeated averaging.

We shall see that, in many power series, the remainder has the same sign as
the first neglected term. If the series is alternating, then the above theorem can be
used. An important consequence is:

Theorem 3.1.5.

For an alternating series, the absolute values of whose terms approach zero
monotonically, the remainder has the same sign as the first neglected term a,1,
and the absolute value of the remainder does not exceed |any1].

3.1. Some Basic Facts about Series 149

Figure 3.1.3. The sum of an alternating series.

Proof. (Sketch) That the theorem is true is almost clear from Fig. 3.1.2, and an
analogous figure for the case a,,+1 < 0. The figure shows how S; depends on j when
the premises of the theorem are fulfilled. A formal proof is left to the reader. O

For the use of the Theorem 3.1.5 see Examples 3.1.1 and 3.1.2. An important
generalization is given as Problem 3.2.1(e).

In the preceding theorems the ideas of well known convergence criteria are
extended to bound or estimates of the error of a truncated expansion. In Sec. 3.3,
we shall see a further extension of these ideas, namely for improving the accuracy
of a truncated expansion. This is called em convergence acceleration.

3.1.3 Power Series.

Consider an expansion into powers of a complex variable z, and suppose that it is
convergent for some z # 0, and denote its sum by f(z),

f(z) = Zajzj, z € C. (3.1.1)

It is then known from complex analysis that the series (3.1.1) either converges
for all z, or it has a circle of convergence with radius p, such that it either
converges for all |z| < p, and diverges for |z| > p. (For |z| = p either convergence
or divergence is possible). The radius of convergence is determined by the relation
p = limsup |a,|~*/™. Another formula is p = lim |a,|/|any1|, if this limit exists.

The function f(z) can be expanded into powers of z — a around any point of
analyticity,

flz)= Zaj(z —a)?, z € C. (3.1.2)
j=0

150 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

By Taylor’s formula the coefficients are given by ®

ao = fa), a;=f9)/j!, j>1 (3.1.3)

The function f(z) is analytic inside its circle of convergence, and has at least one
singular point on its boundary. The singularity of f, which is closest to the origin,
can often be found easily from the expression that defines f(z); so the radius of
convergence of a Maclaurin series can often be easily found.

Note that these Taylor coefficients are uniquely determined for the function f.
This is true also for a non-analytic function, for example if f € CP[a,b], although
in this case the coefficient a; exists only for j < p. *

There are several expressions for the remainder R,(z), when the expansion
for f(z) is truncated after the term that contains z"~!. In order to simplify the
notation, we put a = 0, i.e., we consider the Maclaurin series. The following
integral form can be obtained by the application of repeated integration by parts
to the integral z fol f'(zt)dt; the details are left for Problem 14 b.

|2|™ maxg<i<1 | £ (2))
n! '

Ro(z) = 2" /0 %f(")(zt)dt; R(2)] <

(3.1.4)
This holds also in the complex case; if f is analytic on the segment from 0 to
z one integrates along this segment, i.e., for 0 < ¢ < 1, otherwise another path is to
be chosen. °
For a real-valued function, Lagrange’s formula © for the remainder

(n) n
Raw) = T8 e 0.q) (3.1.5)
is obtained by the mean value theorem of integral calculus.

For complex-valued functions and, more generally, for vector-valued functions
the mean value theorem and Lagrange’s remainder term are not valid with a single
&. (Sometimes componentwise application with different ¢ is possible.) A different
form for the remainder, valid in the complex plane is given in Sec. 3.1.4, in terms of
the mazimum modulus M (r) = max,;—, |f(2)|, which may sometimes be easier to
estimate than the n’th derivative.

A power series is uniformly convergent in any closed bounded region strictly
inside its circle of convergence. Roughly speaking, the series can be manipulated
like a polynomial, as long as z belongs to such a region;

e it can be integrated or differentiated term by term,

3This infinite series is in the general case called a Taylor series, while the special case, a = 0,
is by tradition called a Maclaurin series. Brook Taylor(1685-1731), who announced his theorem
in 1712, and Colin Maclaurin (1698-1746) were British mathematicians.

4 Also the remainder formulas mentioned here require only that f € C™. It is thus not necessary
that the infinite expansion converges or even exists.

5A generalization of this to vector-valued functions of vector-valued variables will be given in
the appendix to Ch. 11.

6 Joseph Louis Lagrange was born at Turin 1736 and died at Paris 1813. He made fundamental
contributions to most branches of Mathematics and Mechanics.

3.1. Some Basic Facts about Series 151

e substitutions can be performed, and terms can be rearranged,
e it can be multiplied by another power series, etc.

If f(z) =3 a;27, g(2) = X bpz®, then f(2)g(z) = . cp2™, where
Cn = agby + a1by_1 + ...+ axby = Za]’bn_]’. (316)
j=0

The expression on the right side of (3.1.6) is called the convolution of the coefficient
sequences of f and g.

The use of the Taylor coefficient formula and Lagrange’s form of the remainder
may be inconvenient, and it is often easier to obtain an expansion by manipulating
some known expansions. The geometric series,

1 z"

—— =1+4z+22+2 4+ + 2"+ ;
1-2 1-2

£ 1, (3.1.7)

is of particular importance; note that the remainder z"/(1 — z) is valid even when
the expansion is divergent. (In Sec. 3.1.8 we shall see that this can be a very useful
fact.)

Example 3.1.5. Set © = —t? in the geometric series, and integrate:

/0(1+t2)1dt=§/0 (—t2)fdt+/0 (—2)"(1 + £2)Ldt.

Using the mean-value theorem of integral calculus on the last term we get

—1)ig2i+1 1 2)=1(_1)J p2n+1
arctanx = Z (zl)'e (1+&)" 1re , (3.1.8)

= 2j+1 2n+1
for some ¢ € int[0,z]. Both the remainder term and the actual derivation are
much simpler than what one would get by using Taylor’s formula with Lagrange’s
remainder term. Notice also that Theorem 3.1.4 is applicable to the series obtained
above for all z and n, even for |z| > 1, when the infinite power series is divergent.

Some useful expansions are collected in Table 3.1.1.These formulas are used
quite often; the reader is recommended to memorize the expansions. “Remainder
ratio” means the ratio of the remainder to the first neglected term. In the table, &
means a number between 0 and =z.

The exponent k in (1+z)* is not necessarily an integer; it can even be an irra-
tional or a complex number. This function may be defined as (1 + z)* = ekIn(1+2),
Since In(1+z) is many-valued, (1+z)* is many-valued too, unless k is an integer.
We can, however, make them single-valued by forbidding the complex variable z to
take real values less than —1. In other words, we make a cut along the real axis
from —1 to oo that the complex variable must not cross. © We obtain the principal

“The cut is outside the circle of convergence.

152 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Table 3.1.1. Maclaurin expansions for elementary functions.

Function Expansion (z € C) Remainder ratio (z € R)
(1—z)t l+z+a?+23+---if 2] <1 (1-2z)tifx#1
k k
(1+z)* 1+km+<2>a¢2+<3>a:3+---if|a:|<1 1+oFmifz > -1
2 3 4
In(1 + z) a:—%—f—%—%—f— Sif | < 1 1+&tifz>-1
22 2? ¢
&z
e 1+x+§+§+-~-allx es, all z
I 7
sin x a:—a—{—ﬁ—ﬁ—{—---allm cos&, all z, n odd
2 4 6
Ccos T 1—%+%—%+~-~allx cos¢, all x, n even
1 3 5 1
%ln(li—z) x+%+%+---if|m|<1 m,|m|<1,neven
3 5
1
arctan x x—%+%+---if|x|<1 m,allx

branch by requiring that In(1+z) > 0if z > 0. Let 1 + = = re’®, r > 0, ¢ — £m.
Note that

+im, if ¢ =

—im, if¢p— —m;’ (3.1.9)

l1+z— —r, 1n(1+ac)—>1nr+{

Series expansions for many other functions can be found in the classical handbook of
Abramowitz and Stegun [1]. Lebedev’s treatise on Special Functions [24] provides,
in particular in the chapter about the gamma function, numerous examples of the
use of series expansions and analytic continuation, which are efficient as well as
important and beautiful.

Example 3.1.6. The following procedure can generally be used in order to find
the expansion of the quotient of two expansions. We illustrate it on a case, where
the result is of interest to us later.

The Bernoulli numbers B,, are defined by the following Maclaurin series, 8

8 Jacob (or James) Bernoulli (1654-1705) Swiss mathematician, one of the earliest to realize
how powerful was the infinitesimal calculus. The Bernoulli numbers were published posthumously
in 1713, in his fundamental work Ars Conjectandi (on Probability). The notation for Bernoulli
numbers varies in the literature. Our notation seems to be the most common in modern texts.

3.1. Some Basic Facts about Series 153

o
T

15F q

Figure 3.1.4. The partial sums of the Maclaurin expansions for two func-
tions. The upper curves are for f(x) = cosx, n =0:2:26, 0 < x < 10. This
series converges for all x, but the rounding errors cause trouble for large values of
z, see Sec. 3.1.7, Ill-conditioned series. The lower curves are for f(z) = 1/(1+z?),
n=0:2:18,0 <z <1.5. The convergence radius is 1 in this case.

© B i
z zZBﬂx (3.1.10)

i=1 §=0

Matching the coefficients of 2™, n > 1, on both sides, we obtain a recurrence relation
for the Bernoulli numbers, which can be written in the form

n—1 n—1
1 B
Bo=1, > ——=" =0, n>2 ie, <’;> B; =0, (3.1.11)
! par

hence,Bozl,Blz—l BQZ%,B3:0,B4:—%,B5:0,B6:%,....

Several members of the same family enriched mathematics by their teaching and writings. Their
role in the history of mathematics reminds of the role of the Bach family in the history of music.

154 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

We see that the Bernoulli numbers are rational. We shall now demonstrate
that B,, =0, when n is odd, except for n = 1.

z 1 z/2 —x/2
T r_red _gete (3.1.12)
et —1 2 2er—1 2¢%/2_¢-2/2

Since the last term is an even function, i.e., its value is unchanged when z is replaced
by —z, its Maclaurin expansion contains only even powers of z.

The singularities of this function are poles at © = 2nmwi, n = £1,£2,£3, ..,
hence the radius of convergence is 2. It can be shown by means of (3.1.20) or
Lemma 3.3.1 that ?

B;/jl = (—1)j/2(27r)*j+0((27r)*2f), (j even, j — o0). (3.1.13)

Further properties of Bernoulli numbers and the related Bernoulli polynomials
are presented in Sec. 3.3.4, where they occur as coefficients in the important Euler—
Maclaurin formula.

The Euler numbers F,,, which will be used later, are similarly defined by
the generating function

1 X E.2" m
i =) <3 (3.1.14)
n=0 :

Obviously E,, = 0 for all odd n. It can be shown that the Euler numbers are
integers, Fp =1, Es = —1, B4, = 5, Eg = —61; see Problem Te.

Example 3.1.7. Let f(x) = (z*+1)~2. Compute Ji5 f(z)dx to 9 decimal places,
and f"'(10), with at most 1% error. Since z~! is fairly small, we expand in powers

of z71:

. . . 1 1-3
_ .—3/2 —3y-1/2 _ ,-3/2(1 _ L1 -3 -6 _
flz)=x 1+z°) x (1 5% + g ")

1
— 15 _ 53774.5 + gwﬂ.s -
By integration,
o 1
f(z)dr =2-107°% — 210735 + ERTNE +...=0.632410375.
10 7 52

Each term is less than 0.001 of the previous term.
By differentiating the series three times, we similarly obtain

@) =g

For z = 10 the second term is less than 1% of the first; the terms after the second
decrease quickly and are negligible. One can show that the magnitude of each term

9This is useful, even when j is rather small, e.g., we obtain Bg ~ 1/42.7

3.1. Some Basic Facts about Series 155

is less than 8 273 of the previous term. We get f"'(10) = —4.1210~* to the desired
accuracy. The reader is advised to carry through the calculation in more detail.

Example 3.1.8. How to compute sinh x. On a binary computer with machine unit
u=273% ~ 1.46-10"!!, one wishes to compute sinh z with good relative accuracy,
both for small and large |z|, at least moderately large. Assume that e is computed
with a relative error less than 5u in the given interval. The formula (e® — e %)/2
for sinh z is sufficiently accurate except when |z| is small and cancellation occurs.
Hence for |z| < 1, €* and e~ and hence (e* — e~%)/2 can have absolute errors
of order of magnitude (say) 5u. Then the relative error in (e — e~%)/2 can have
magnitude =~ 5u/|z|; for example, this is more than 500% for z ~ 10711

When |z| is small one can instead use two terms in the series expansion for
sinh x,

sinhe =z + 2% /3! +2°/5! + ...,

one gets an absolute truncation error which is about z°/120, and a round-off error
of the order of 2u|z|. Thus the formula x + x3/6 is better than (e* — e=%)/2 if

|z|° /120 + 2u|z| < 5u.

If 2u|z| < 5u, we have |z|> < 600u ~ 300-27%% or |z| < 300'/5-2-7 ~ 0.0243,
(which shows that 2u|z| really could be ignored in this rough calculation). Thus, if
one switches from (e* —e~*)/2 to z + */6 for |z| < 0.0243, the relative error will
nowhere exceed 5u/0.0243 ~ 4-10~°. If one needs higher accuracy, one can take
more terms in the series, so that the switch can occur at a larger value of |z|.

For very large values of |z| one must expect a relative error of order of mag-
nitude |zu| because of round-off error in the argument z. See Problem 5 for a
modernization of this example.

The analytic functions have many important properties that you may find
in any text on complex analysis. A good summary for the purpose of numerical
mathematics is found in the first chapter of Stenger [32]. Two important properties
are contained in the following lemma.

Lemma 3.1.6. An analytic function can only have a finite number of zeros in a
compact subset of the region of analyticity, unless the function is identically zero.
10

Suppose that two functions f1 and fo are analytic in regions Dy and Do,
respectively. Suppose that Dy N Do contains an interval throughout which fi(z) =
f2(2).

Then f1(z) = f2(z) in the intersection Dy N Ds.

Proof. We refer, for the first part, to any text on Complex Analysis. We here
follow Titchmarsh [34] closely. The second part follows by the application of the
10The region of analyticity of a function f(z) is an open set. If, e.g., we say that f(z) is analytic

on a closed real interval, it means that there exists an open set, where f(z) is analytic, which
contains this interval.

156 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

first part to the function f; — fo. O

A consequence of this is known as the permanence of functional equations, i.e.,
in order to prove the validity of a functional equation (or “a formula for a function”)
in a region of the complex plane, it may be sufficient to prove its validity in (say)
an interval of the real axis, under the conditions specified in the lemma.

Example 3.1.9. The permanence of functional equations. We know from elemen-
tary real analysis that the functional equation

eP+a)z — opz ez

holds for all z € R. We also know that all the three functions involved are analytic
for all z € C. Set in the lemma D; = Dy = C, and let “the interval” be any
compact interval of R. The lemma then tells that that the displayed equation holds
for all complex z. The right and the left hand side then have identical power series.
Applying the convolution formula and matching the coefficients of 2z, we obtain

—j n . .
-+ o pr e o (I

=0

This is not a very sensational result. It is more interesting to start from the following
functional equation

(1+2)P+ = (1+ 2)P(1 + 2)".

The same argumentation holds, except that D;, D, are equal to the complex plane
with a cut, and that the Maclaurin series is convergent in the unit disk only. We
obtain the equations

()R 000) e

(They can also be proved by induction, but it is not needed.) This sequence of alge-
braic identities, where each identity contains a finite number of terms, is equivalent
to the above functional equation.

We shall see that this observation is useful for motivating certain “symbolic
computations” with power series, that can provide elegant derivations of useful
formulas in numerical mathematics.

Now we may consider the aggregate of values of fi(z) and fo(z) at points
interior to D or D, as a single analytic function f. Thus f is analytic in the union
D, U Dy, and f(z) = fi(z) in Dy, f(z) = f2(z) in D>.

The function f, may be considered as extending the domain in which f; is
defined, and it is called a (single-valued) analytic continuation of f;. In the same
way f1 is an analytic continuation of fs. Analytic continuation denotes both this
process of extending the definition of a given function, and the result if the process.

3.1. Some Basic Facts about Series 157

We shall see examples of this, e.g. in Sec. 3.3. Under certain conditions the analytic
continuation is unique.

Theorem 3.1.7. Suppose that a region D is overlapped by regions Dy, Do, and
that (D1 N D2) N D contains an interval. Let f be analytic in D, and let f1 be an
analytic continuation of f to Dy, and let fo an analytic continuation of f to Do,
so that f(z) = fi(z) = fa(z) in (D1 N D) N D.

Then either of these functions provides a single-valued analytic continuation
of f to D1 N Dy. The results of the two processes are the same.

Proof. Since f1 — fo is analytic in D1 N D, and f; — fo = 0 in the set (D1 ND>)ND,
which contains an interval, it follows from the lemma that fi(z) = f2(z) in D1NDa,
which proves the theorem. [

If the set (D; N Dy) N D is void, the conclusion in the theorem may not be
valid. We may still consider the aggregate of values as a single analytic function,
but this function can be multi-valued in D1 N Ds.

In some contexts, algebraic recurrence relations are convenient to use for com-
puting the coefficients in Maclaurin expansions, in particular if only a moderate
number of coefficients are wanted. We shall study a few examples.

Example 3.1.10. Expansion of a composite function.

Let f(z) = apt+arz+asz?+..., ®(2) = co+c12+c222+. . ., be given, analytic
at the origin. Find the power series for g(z) = ®(f(z)) = by + byx + baz? +.... In
particular, we shall study the case ®(z) = e*.

The first idea we may think of is to substitute the expansion ag+a1z+azz?+. ..
for z into the power series for ®(z). This is, however, no good unless ag = 0, because
(f(z)* = ak + ka’g_lalw + ... gives a contribution to, e.g., by, by for every k, so we
cannot successively compute the b; by finite computation.

Now suppose that ag = 0, a; = 1, ! ie., f(z) = & + asz? + asz® + Then
2% = 2% + kasz* ! + We obtain

g(x) = co + 1 + (craz +)2 + (craz + 2c2as + c3)x® + ...,
and the coefficients of g(z) come out recursively,
by = co; b1 = c1; ba = c1a2 + c2; by = c1a3 + 2caas + c3; . ..
b; depends only on ay, ¢k, k < j. Now consider the case ®(z) = e*, i.e., ¢, = 1/nl.

We first see that it is then easy to handle the case that ag # 0, since ef(*) =

eag ealz+a2w2+a3w3+... .

But there exists a more important simplification if ®(z) = e*. Note that g
satisfies the differential equation ¢'(x) = f'(x)g(z), g(0) = e®. Hence

Z(n + Dbyyrz™ = Z(] + Va2 Z bk,
n=0 j=0 k=0

1 The assumption a; = 1 is not important, but it simplifies the writing.

158 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Apply the convolution formula (3.1.6), and match the coefficients of ™ on the two
sides.

by = e, (n+1)bn+1 = a1b, + 2a2b,—1 +...+(n+1)an+1b0, (n :0,1,2,...).

This recurrence relation is more easily programmed than the general procedure
indicated above. Other functions that satisfy appropriate differential equations can
be treated similarly; see Problem 8. See also Knuth [23], Sec. 4.7.

Example 3.1.11. A matrix representation of a truncated power series.
In a programming language, where matrices are easy to handle, it is often
. - N-1 i .
practical to represent a truncated power series fy(z) = ijo a;jz’ by a triangular

N x N matrix, fy(S) = Z;-V;Ol a;S?, where S is a shift matrix. For N = 4,

01 0 O T D) apg a3 as as
_ 0 0 1 0 A . €9 _ I3 . _ 0 apg a1 a2
S=looo1]" e lul’ =10 0 w a«
0 0 00 Ty 0 0 0 0 ag

Sums and products of matrices of the same structure as fy(S) do still have
the same structure '2 | and similarly for the inverse of fn(S) if ag # 0. Note that
SN =0, a so-called nilpotent matrix. This is why this matrix representation is
suited for truncated power series. If the Maclaurin series of f(z), g(z) are truncated
to fn(2), gn(z) then you can read the first N coefficients of the Maclaurin series
for f(z)g(z) in the first row of the matrix fx(S) - gn(5).

Similarly, you find the Bernoulli numbers (divided by factorials), see Example
3.1.6, by inverting the matrix fn(5) associated with a truncated expansion of (e* —
1)/z.

If you know ¢(5), and if your language contains functions for matrix exponen-
tial, matrix logarithm, matrix square root etc., these can be used for obtaining the
Maclaurin expansions of exp(g(z)),1n(g(z)), /9(2),- . ..

More generally, if fy(2z) = Z;.VJOI ajz?, the first N coefficients of the expansion

of f(g(z)) are found in the first row of Z;V;Ol ajgn(S)?. You can use Horner’s rule
for computing the matrix polynomial.

These algorithms may not seem efficient from the point of view of the number
of arithmetic operations or the storage requirements. Since the derivation of expan-
sion coefficients is usually a small task for a modern personal computer, you do not
need to worry about smart matrix handling. The programming becomes very easy.
If, in some sense, you measure the total efforts of yourself and your computer, these
algorithms may become competitive. See, e.g., Problem 8(d,e).

Henrici [20, §1.3] represents formal power series by infinite upper triangular
Toeplitz matrices.

12Matrices (not necessarily triangular), whose entries are constant along each diagonal, are called
Toeplitz matrices. The product of two non-triangular Toeplitz matrices, however, is in general
not a Toeplitz matrix. Similarly for the inverse.

3.1. Some Basic Facts about Series 159

When a large number of coefficients is needed, the Cauchy+FFT method, see
Sec. 3.1.4, can be an efficient alternative to the procedures exemplified in the present
subsection and in Problem 8.

Knuth, loc. cit., treats other general devices for the manipulation of power
series. He presents, for example, several algorithms for power series reversion,
i.e., for finding the power series for the inverse function to the function defined by a
given power series with ap = 0. He gives both a classical algorithm due to Lagrange
1768, and a relatively recent algorithm due to Brent and Kung 1978. The latter
is based on an adaptation, to formal power series, of Newton’s idea for solving a
numerical algebraic equation. It doubles the number of terms in each iteration;
compare the quadratic convergence in the numerical case, e.g., in the square root
algorithm, Sec.1.2.

The following simple cases of power series reversion are often sufficient and
useful in low order computations.

y=z4arfF+.. . (k>1),= c=y—at —. .. =y—ay® —...; (3.1.16)

y=z+ar’ +azz’ +... = z=y—aw’+ (2a5 —a3)y* +...; (3.1.17)

Formulas like those mentioned in this subsection, and in Problem 8, are often
used in packages for symbolic differentiation and automatic differentiation.
Expanding a function into a Taylor series is equivalent to finding the sequence of
derivatives of the function at a given point.

CoOMMENT: The goal of symbolic differentiation is to obtain analytic expres-
sions for derivatives of functions given in analytic form. This is handled by computer
algebra systems, e.g., Maple or Mathematica.

In contrast, the goal of automatic differentiation is to create an algorithm (a
program) for the computation of the numerical values of the derivatives of a function
that is given in the form of an algorithm (a program). Typical applications are in
the solution of ordinary differential equations by Taylor expansion, see Example
3.1.2 and Sec. 13.3. Such techniques are also used in optimization. See examples in
Ch.11. See, e.g., Griewank and Corliss [15]; a software package is presented in [16].

In numerical computation a series should be regarded as a finite expansion
together with a remainder. Taylor’s formula with the remainder (3.1.7) is valid for
any function f € C"[a,a + z], but the infinite series is valid only if the function is
analytic in a complex neighborhood of a.

If a function is not analytic at 0, it can happen that the Maclaurin expansion
converges to a wrong result. A classical example, see Appendix to Ch. 6 in Courant
[8], reads: f(z) = eV forz #0, f(0) = 0. It can be shown that all its Maclaurin
coefficients are zero. This trivial Maclaurin expansion converges for all z, but the
sum is wrong for x # 0. There is nothing wrong with the use for Taylor’s formula
as a finite expansion with a remainder. Although the remainder, which in this case
equals f(x) itself, does not tend to 0 as n — oo (for a fixed x # 0), it tends to
0 faster than any power of x, as * — 0, for any fixed n. The “expansion” gives
excellent absolute accuracy when z is small, e.g., 43 decimal digits for = 0.1, but
the relative error is 100%. Also note that this function (and there are lots of other
examples) can be added to any function without changing its Maclaurin expansion.

160 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

From the point of view of complex analysis, however, the origin is a singular
point for this function, note, e.g., that |f(z)] = oo as z — 0 along the imaginary
axis, and this prevents the application of any theorem that would guarantee that
the infinite Maclaurin series represents the function. This trouble does not occur
for a truncated Maclaurin expansion around a point, where the function under
consideration is analytic. The size of the first non-vanishing neglected term then
gives a good hint about the truncation error, when |z| is a small fraction of the
radius of convergence.

The above example may sound like a purely theoretical matter of curiosity.
We emphasize this distinction between the convergence and the validity of an infi-
nite expansion in this text, as a background to other expansions of importance in
numerical computation, e.g., the Euler-Maclaurin expansion in Sec. 3.3.4, which
may converge to the wrong result, also in the application to a well-behaved analytic
function. On the other hand, we shall see, e.g., in Sec. 3.1.8, that divergent expan-
sions can sometimes be very useful. The universal recipe is to consider an infinite
series as a finite expansion plus a remainder term. Convergence of an expansion is
neither necessary nor sufficient for its success in practical computation.

A power series is, however, not only a means for numerical computation; it is
also an aid for deriving formulas in numerical mathematics and in other branches
of applied mathematics. Then one has another, a more algebraic, aspect of power
series that we shall briefly introduce. A more strict and detailed treatment (65
pages) is found in Henrici [20, Ch.1] and the literature quoted there (including
Bourbaki!). This aspect will be applied extensively to operator series in Sec. 3.2.

In a formal power series, P = ag + a1x + axx? + - -+, the coefficients a;
may be real or complex numbers (or elements in some other field), while x is an
algebraic “indeterminate”; x and its powers can be viewed as placekeepers. No real
or complex values are assigned to x and P. Convergence, divergence and remainder
term have no relevance for formal power series. In the language of algebra, the set
of formal power series is an integral domain.

We do not consider formal power series with several indeterminates. There
may occur expressions with several boldtype symbols. Only one of them is the
indeterminate, and the other must be shorthand notations for formal power series
with respect to this indeterminate.

The sum of P and another formal power series, Q = by + b1xX + box? + - -+, is
defined as P + Q = (ag + bo) + (a1 + b1)x + (az + b2)x? + - - -. Similarly, the Cauchy
product is defined as PQ = co + ¢1X + cox? + - - -, where the coefficients are given

by the convolution formula (3.1.6),
n
cp = agby, +a1bp—1 + ...+ apby = Z ajbn_j.
=0

Other operations are defined without surprises, e.g., the derivative of P is defined
as P’ = laq + 2a9x + 3asx> + The usual rules for differentiation are still valid.
The identity element is the series I := 14+ 0x+0x?+.... If ag # 0, P~1 exists, and
the division of two formal power series is performed as indicated in Example 3.1.6.

If a function f of a complex variable z is analytic at the origin, then we define

3.1. Some Basic Facts about Series 161

13 f(x) as the formal power series with the same coefficients as the Maclaurin series
for f(z). In the case of a multivalued function we take the principal branch.

The other operations on power series studied in this subsection, are valid also
for formal power series, e.g., substitution and change of variable (indeterminate)—in
Example 3.1.10 and in Problem 8—and the reversal of power series.

There is a kind of “permanence of functional equations” also for the general-
ization from a function g(z) of a complex variable that is analytic at the origin, to
the formal power series g(x). We illustrate the general principle on an important
special example that we formulate as a lemma, since we shall need it in the next
section.

Lemma 3.1.8.
(e¥)? =ef*, (€ R). (3.1.18)

Proof. Let the coefficient of x? in the expansion of the left hand side be ¢;(6).
The corresponding coefficient for the right hand side is 67/;!. If we replace x by
a complex variable z, the power series coefficients are the same, and we know that
(e)? = €%, hence ¢;(0) =69 /4!, j =1,2,3..., hence 3 o° ¢;(8)x7 = > o7 (67 /j)x7,
and the lemma follows. 0O

The theory of formal power series has been developed with other applications
than ours in mind, and works under more general conditions than we need. When
we replace the indeterminate by a complex variable z, our formal series becomes
the Maclaurin series of a function that is assumed to be analytic for z = 0. We
have not seen any discussion of this particular case in the literature about formal
power series. The possibilities offered by the one-to-one correspondence between
such power series and functions analytic at the origin seem to be ignored in that
literature. The applications to operator series in Sec. 3.2, show that, in spite of this
analyticity assumption, the operator series, after multiplication by an operand, may
lead to a much more general class of series, not necessarily convergent in the usual
sense but still numerically useful.

Example 3.1.12.
Find (if possible) a formal power series Q = 0 + b1 x + byx? + b3x® + ..., that
satisfies the equation
e Q=1-x, (3.1.19)

where e7Q =1 - Q + Q?/2! —.... We can, in principle, determine an arbitrarily
long sequence by, by, bs, ... b, by matching the coefficients of x,x%,x3,...x*, in the
two sides of the equation. We display the first three equations.

1— (01X +b0ox® +03x° +...) + (X + bax® +...)%/2 — (ix +...)% /6 + ...

=1-1x+0x>4+0x>+....

I3 Henrici, loc. cit., does not use this concept—it may not be established.

162 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

We see that the matching can be done in a unique 4 way:

- =-1= b1:1;
—by +b7/2=0= by =1/2;
—b3+b1b2—b1/6:0:> b3:1/3;

There exists, however, a much easier way. For the analogous problem with
a complex variable z, i.e., to solve the equation e~4*) = 1 — z, ¢(0) = 0, we can
apply the same procedure, and we obtain the same recursive formulas, and hence
the same coefficients b;,j = 1,2,3,.... In this case, however, we know the explicit
solution: ¢(z) = —In(1 — z) = 3" 27/ (the principal branch). It follows that the
solution for the formal series reads *°

(o)

Q:—ln(l—x):ij/j.

j=1

This example will be applied in Example 3.2.18 to the derivation of formulas
for numerical differentiation.

The theory of formal power series can in a similar way justify many elegant
“symbolic” applications of power series for deriving mathematical formulas. Note
that it is not necessary to set up the recurrence relations explicitly. We did it
in the previous examples just for explaining the principle. It is enough to make
sure that such relations exist, and that they determine the coefficients uniquely.
The applications to operator series in Sec. 3.2, hopefully will give you a feeling
for the circumstances under which the calculation of the coefficients in a formal
series certainly lead to the same coefficients as in an analogous computation for
an analytic function of a complex variable, where a rich collection of methods is
available, including also the matrix representation described in Example 3.1.11 and
the Cauchy+FFT method, which is the topic of the next subsection.

3.1.4 The Cauchy+FFT Method.
Suppose that the value f(z) of an analytic function can be computed at any point
inside and on the circle C, = {z : |z —a| = r}, and set

M(r) =max|f(z)], z€C,, z=a+re?, 2 =a+re? (' <r).

Then the following formulas, due to Cauchy, for the coefficients of the Taylor ex-
pansion around a can be very useful,

1
an = 5— . (z —a)" "V f(2) dz
—n 2w
=" e~ f(a +ret?) db. (3.1.20)
2 0

MNote the role that the assumption that by = 0 (the principal branch) plays here.
15The first three coefficients are, of course, the same as the coefficients computed above.

3.1. Some Basic Facts about Series 163

For a derivation, multiply the Taylor expansion (3.1.2) by (z — a) ™!, integrate
term by term over C., and note that

1 [oairtar= L il gg = [1 15 =m; (3.1.21)
2mi Jeo, 2w Jo 0, if j #n. o

The following inequalities are useful consequences of (3.1.20).

lan| < 77" M(r), (3.1.22)

| Bn(2)] < ;W(zl —a)< Ml(rz(iw

This form of the remainder term of a Taylor series is useful in theoretical studies, and
also for practical purpose, if the maximum modulus M(r) is easier to estimate
than the n’th derivative.

Set z = a +re??, A§ = 27/N, and apply the trapezoidal rule to the second
integral in (3.1.20). Then !¢

N—1
1))
ap, & Qp, = N E e kA £ (g 4 reRAY) p =0 N~ 1. (3.1.23)
k=0

The approximate Taylor coefficients a,, are here expressed by means of the so-called
Discrete Fourier Transform of the function f(a + re??), also called discrete
Fourier analysis. This transform will be studied more systematically in Ch. 4 and
Ch. 9.

If N is a power of 2, it is shown in Sec. 4.5 that, given the N values f(a+re
0 <k <N —1, no more than Nlog, N complex multiplications and additions are
needed for the computation of all the N coefficients a,, if an implementation of the
discrete Fourier transform known as the Fast Fourier Transform (FFT) is used;
see Ch. 4. (Packages for interactive mathematical computation usually contain
commands related to FFT.)

The inverse transformation, sometimes called discrete Fourier synthesis, reads
(if a =0, r = 1): Compute Z;-V:_Ol a;jz, for z = €2k =0: N — 1. It is of the
same type as the sum in (8.1.23), apart from the sign of i. It can therefore also
be performed by means of O(NN log N) elementary operations, instead of the O(N?)
operations that the most direct approach to this task requires.

Since the Taylor coefficients are equal to £ (a)/n!, this is de facto a method
for the accurate numerical differentiation of an analytic function. If r and N are
chosen appropriately, it is more well-conditioned than most alternative methods,
such as the difference approximations mentioned in Ch. 1; see also Sec. 3.2 and
Ch. 4. It requires, however, complex arithmetic for convenient implementation. We
call this the Cauchy+FFT method for Taylor coefficients and differentiation.

The question arises, how to choose N and r. Theoretically, any r less than
the radius of convergence would do, but there may be trouble with cancellation, if

iA0)7

165ee (1.2.6). Note that the integrand has the same value for § = 27 as for 6 = 0.

164 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

r is small. On the other hand, the truncation error of the numerical integration
usually increases with r. “Scylla and Charybdis situations” 7 like this are very
common with numerical methods. As a rule such a situation is handled by a com-
bination of numerical experimentation and theoretical analysis of a more or less
simplified model, including a few elementary optimization calculations. We take
the opportunity to exemplify below this type of “hard analysis” on this question.

We first derive two lemmas, which are important also in many other contexts.
First we have a discrete analogue of equation (3.1.21).

Lemma 3.1.9. Let p, N be integers. Then ZkN;()l e2™Pk/N = () unless p = 0 or a
multiple of N, in which case every term equals 1, and the sum equals N.

Proof. If p is not a multiple of IV, the sum is a geometric series, the sum of which
is equal to (€27 —1)/(e2™®/N — 1) = 0. The rest of the statement is obvious. O

Lemma 3.1.10. Suppose that f(z) = > o an(z—a)™ is analytic in the disc |z—a| <
p. Let a, be defined by (3.1.23), where r < p. Then

n = = AN Y + Qppon TN + apisy N +..., 0<n < N. (3.1.24)

Proof. Since A =27 /N,

1 N—-1 00 m 1 o0 N—-1

_ —27ink /N 2mik /N _ m 27i(—n+m)k/N

n= N e amlre =N amr e)
k=0 m=0 m=0 k=0

s}

By the previous lemma, the inner sum of the last expression is zero, unless m — n
is a multiple of N. Hence (recall that 0 < n < N),

an ™" N + Qpy N PPtV N 4 QAntoN PPN N) ,

= 3

from which equation (3.1.24) follows. 0O

Remark 3.1.1. If the expansion is two-sided, e.g., a complex Fourier series or a
Laurent series, see Sec.3.1.5, there are more terms in (3.1.24).

The details of the following example may be omitted without consequences for
the understanding of most of the rest of the text, but the ideas may be important
for some problems.

Example 3.1.13. “ScyLLA AND CHARYBDIS” IN THE CAUCHY+FFT.

17 According to American Heritage Dictionary Scylla is a rock on the Italian side of the Strait
of Messina, opposite to the whirlpool Charybdis, personified by Homer (Ulysses) as a female sea
monster who devoured sailors. The problem is to navigate safely between them.

3.1. Some Basic Facts about Series 165

Let M (r) be the maximum modulus for the function f(z) on the circle C,
and denote by M (r)U an upper bound for the error of a computed function value
f(2), |#| = r, where U < 1. Assume that rounding errors during the computation
of a, are of minor importance.

Then, by (3.1.23), M(r)U/r™ is a bound for the rounding error of a,. (The
rounding errors during the computation can be included by a redefinition of U.)

Next we shall consider the truncation error of (3.1.23). First we estimate the
coefficients that occur in (3.1.24) by means of max |f(z)| on a circle with radius r';
r’ > r, where r is the radius of the circle used in the computation of the first N
coefficients. So, in (3.1.20) we substitute 7/, j for r, n, respectively, and obtain the
inequality

la;| < M(")(r') 7, 0<r<r <p.

The actual choice of r/, strongly depends on the function f. '8 Put this inequality
into (3.1.24), where we shall choose r < ' < p. Then

|an _ an| S M(T’) ((Tl)fanrN + (rl)fn72NT2N + (rl)fn73NT3N + ..)

= MO (/N + P+))

_ M)
IGGAESY
We make a digression here, because this is an amazingly good result. The trape-
zoidal rule that was used in the calculation of the Taylor coefficients is typically
expected to have an error that is O((AG)Z) = O(N’Z). This application is, how-
ever, a very special situation: a periodic analytic function is integrated over a full
period. We shall return to this several times, next time in Sec. 3.3.4. In this case,
for fixed values of 7, 7', the truncation error is O((r/r")Y) = O(e="/A?), where
n >0, Ad — 0.

It follows that a bound for the total error of a,, i.e., the sum of the bounds

for the rounding and the truncation errors, is given by

M) () "

UM(T)Tin + m

(3.1.25)

Assume that a,, is requested to have a uniformly small absolute error for (say)
n=0:n,1n>1.

First consider the rounding error. By the maximum modulus theorem, M (r)
is an increasing function, hence, for r > 1, max, M(r)r—™ = M(r) > M(1). On
the other hand, for r < 1, max,, M (r)r—™ = M(r)r—™. Let r* be the value of r, for
which this is minimal. Note that »* = 1 unless rM'(r)/M (r) = @i for some r < 1.

Then try to determine N and r' € [r*, p) so that, for r = r*, the second term
of (3.1.25) becomes much smaller than the first term, i.e., the truncation error is
made negligible compared to the rounding error. This works well if p > r*. In
such cases, we may therefore choose r = r*, and the total error is then just a little
larger than UM (r*)(r*) ™.

181n rare cases we may choose ' = p.

166 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

For example, if f(z) = e* then M(r) = e, p = co. In this case r* = 1 (since
> 1). Then we shall choose N and r' = N, so that e’ /((r')N —1) <« eU. One can
show that it is sufficient to choose N >> |InU/In |InU||. For instance, if U = 1075,
this is satisfied with a wide margin by N = 32. On a computer, the choice r = 1,
N = 32, gave (with 53 bits floating point arithmetic) an error less than 2-10716,
The results were much worse for r = 10, and for r = 0.1; the maximum error of the
first 32 coefficients became 4-10~* and 9-10*3(!), respectively. In the latter case the
errors of the first 8 coefficients did not exceed 10~ 1°, but the rounding error of a,,,
due to cancellations, increase rapidly with n.

If p is not much larger than r*, the procedure described above may lead to a
value of N that is much larger than 7. In order to avoid this, we now set 1 = a/V.
We assume that » < 7 < p < 1, n = 0 : n. Then, with all other parameters
fixed, the bound in (3.1.25) is maximal for n = f. We simplify this bound; M (r) is
replaced by the larger quantity M ('), and the denominator is replaced by (' /r)™.

Then, for given 7', , N, we set z = (r/r')Y and determine z so that

MY~ N Uz + z)
is minimized. The minimum is obtained for z = (aU)/(1+) e, for r = r'z'/N,
and the minimum is equal to

M(TI)(T')_"Ul/(1+a)c(a), where c(a) = (1 + Oé)Oé_a/(1+a),

19

We see that the error bound contains the factor U1+ This is, e.g., pro-
portional to 2U1/2 for @ = 1, and to 1.65U%/° for o = 1. The latter case is thus
much more accurate, but, for the same 7, one has to choose IV four times as large,
which gives more than four times as many arithmetic operations. In practice, 7 is
usually given, and the order of magnitude of U can be estimated. Then « is to be
chosen to make a compromise between the requirements for good accuracy and for
small volume of computation. if p is not much larger than r*, we may choose

N =nja, z=(aU)Y/0+) p=pgt/N,

Experiments were made with f(z) = In(1 — 2). Then p = 1, M(1) = oo. Take
i =64, U = 1071 ¢/ = 0.999. Then M(r') = 6.9. For a = 1,1/2,1/4, we
have N = 64, 128, 256, respectively. The above theory suggests r = 0.764, 0.832,
0.894, respectively. The theoretical estimates of the absolute errors become, 1079,
2.410712,2.7107 14, respectively. The smallest errors obtained in experiments with
these three values of a are, 6 1071%, 1.8 1072, 1.8 10~ %, which were obtained for
r = 0.766, 0.838, 0.898, respectively. So, the theoretical predictions of these exper-
imental results are very satisfactory.

197 his is a strict upper bound of the error for this value of r, in spite of the simplifications in
the formulation of the minimization.

3.1. Some Basic Facts about Series 167

3.1.5 A brief introduction to Laurent, Fourier and Chebyshev
Series.

A Laurent series is a series of the form

i cn 2", (3.1.26)

n=—oo

Its convergence region is the intersection of the convergence regions of the expansions
Yoo genz™and Yoo ¢ 2™ ™, the interior of which are determined by conditions
of the form |z| < 7y and |z| > r1. The convergence region can be void, e.g., if
ro < 7T1.

If 0 <7 < 72 < 0o the convergence region is an annulus, r1 < |z| < ry. The
series defines an analytic function in the annulus. Conversely, if f(z) is a single-
valued analytic function in this annulus, it is there represented by a Laurent
series, that converges uniformly in every closed subdomain. The coefficients are
determined by Cauchy’s formula,

1
tn = 5 2" f(2)dz, T <r<ry, —oo<n<oo. (3.1.27)
T J)z|=r

The extension to the case when ry = oo is obvious; the extension to r; = 0 depends
on whether there are any terms with negative exponents or not. 2°

Example 3.1.14.
A function may have several Laurent expansions (with different regions of
convergence), e.g.,

1 {— Yool gam e if 2] < a

(z—a)” = Yoo _jamTtzmmif |z > al.

The function (z —1)7! + (2 —2)~! has three Laurent expansions, with validity
conditions |z| < 1, 1 < |z| < 2, 2 < |z|, respectively. The series contains both
positive and negative powers of z in the middle case only. The details are left for
Problem 9c.

REMARK. The restriction to single-valued analytic functions is important in
this subsection. In this book we cannot entirely avoid to work with multi-valued
functions such as v/z, Inz, 2%, (a non-integer). We always work with such a
function, however, in some region where one branch of it, determined by some
convention, is single-valued. In the examples mentioned, the natural conventions
are to require the function to be positive when z > 1, and to forbid z to cross the
negative real axis. In other words, the complex plane has a cut along the negative

201n the extension of formal power series to formal Laurent series, however, only a finite number
of terms with negative indices are allowed to be different from zero, see Henrici loc.cit. Sec. 1.8.
If you substitute z for z~! an infinite number of negative indices is OK, if the number of positive
indices is finite.

168 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

real axis. The annulus mentioned above is in these cases incomplete; its intersection
with the negative real axis is missing, and we cannot use a Laurent expansion.
For a function like In ;ﬂ, we can, depending on the context, cut out either
the interval [—1,1] or the complement of this interval with respect to the real axis.
We then use an expansion into negative or into positive powers of z, respectively.

See Problem 17 for further comments on multi-valued functions in theory and
computation.

If 1 <1< 7, weset F(t) = f(e). Note that F(t) is a periodic function;
F(t + 27) = F(t). By (3.1.26) and (3.1.27), the Laurent series then becomes for

z = e'* a Fourier series:

1 ™

:% .

Fty= Y ™, ¢, e "M (t)dt. (3.1.28)

n=—oo

Note that ¢_,, = O(r{") for m — +oo, and ¢, = O(r,") for n — +oo. The
formulas in (3.1.28), however, are valid in much more general situations, where
¢n — 0 much more slowly, and where F(t) cannot be continued to an analytic
function f(z), z = re'’, in an annulus. (In such a case r; = 1 = ry, typically.)

A Fourier series is often written in the following form,

o0
F(t) = Yag+ Y _ ay coskt + by sin kt. (3.1.29)
k=1
Consider cie™*t + c_pe~ ™t = qy, cos kt + by sin kt. Since eT™*t = cos kt + i sin kt, we

obtain for k£ > 0:

1 [" 1 /"
ap =Cp +c_p = ;/ F(t)cosktdt; by =i(cky —c—g) = —/ F(t) sin ktdt.

-7 -7
(3.1.30)
Also note that a — iby = 2¢y,. If F(t) is real for ¢t € R then c_j, = ¢;,. We
mention without proof the important Riemann—Lebesgue theorem, by which
the Fourier coefficients ¢,, tend to zero as n — oo for any function that is integrable
(in the sense of Lebesgue), a fortiori for any periodic function that is continuous
everywhere. A finite number of finite jumps in each period are also allowed. 2!
Another classical result in the theory of Fourier series reads: If F(t) is of bounded
variation in the closed interval [—m,«| then ¢, = O(n™!); see Titchmarsh [34,
§13.21,§13.73].
This can be generalized. Suppose that F®) is of bounded variation on [—m, 7],
and that FU) is continuous everywhere for j < p. Denote the Fourier coefficients
of F®)(t) by AP, Then

en = (in)"PlP) = O(n7P7Y). (3.1.31)

2L F(t) is of bounded variation in an interval if, in this interval, it can expressed in the form
F(t) = F1(t) — F2(t) where F; and F» are non-decreasing bounded functions. A finite number of
jump discontinuities are allowed. For a differentiable function on [a, b] the variation of F' is defined

as [F'(1)]dt.

3.1. Some Basic Facts about Series 169

This follows from the above classical result, after the integration of the formula for
¢, in (3.1.27) by parts p times. Bounds for the truncation error of a Fourier series
can also be obtained from this. The details are left for Problem 9e, together with
a further generalization. A similar result is that ¢, = o(n~?) if F(?) is integrable,
hence a fortiori if F' € CP.

In particular, we find for p = 1 (since Y_n~2 is convergent) that the Fourier
series (3.1.27) converges absolutely and uniformly in R. It can also be shown that
the Fourier series is valid, i.e., the sum is equal to F(t).

The Chebyshev polynomials of the first and the second kind are

To(z) = cosng, Unor(2) = S;fn”j,

respectively. When we write just Chebyshev polynomial we refer to the first kind.
Note that To(z) = 1, T1(z) = z. That T,,(z) is a n’th degree polynomial follows, by
induction, from the important recurrence relation,

where z = cos ¢, (3.1.32)

Tnt1(2) =22T0(2) = Tn1(2), (n>1), (3.1.33)

which is derived from the well known trigonometric formula cos(n + 1)¢ + cos(n —
1)¢ = 2 cos ¢ cosng. We obtain,

To(z) = =14 22% Ts(z) = =3z +42% Tu(z) =1— 82" + 82

Note that |T,,(z)| <1 for z € [-1,1], in spite that its leading coefficient is as large
as 21, This is a unique property of the Chebyshev polynomials and is one of the
reasons why they are very important for Numerical Mathematics; see, e.g., Prob-
lem 19. U, _1(z) satisfies the same recurrence relation, with the initial conditions

The Chebyshev polynomial T, (x)

N A A O T T
[A R

Figure 3.1.5. The Chebyshev polynomial Tys(z),z € [—1,1].

U-1(z) =0, Up(z) = 1; its degree is n — 1.
Set €' = w; ¢ and z may be complex. Then

z=tw+w™), Ta(z) = iw"+w™), (3.1.34)

170 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

w=zxv22-1, (24 V2> z2)+ Up—1(2)V22 — 1.

It follows that a Chebyshev expansion,

2) =Y ¢Ty(2), (3.1.35)
j=0

formally corresponds to a Laurent expansion,
w+w Loy, ifj#0;
= M ; = ; = 2 "7‘ ’ J ’
g(w) f <) E a;w 7 a—; a; { Co, ifj =0.

It can be shown, e.g., by the parallelogram law, that |z + 1| + |z — 1| = |w| + |w| 7},
(Problem 9f). Hence, if R > 1, z = $(w 4+ w ') maps the annulus {w : R™*
|w| < R}, twice onto an ellipse £g, determined by the relation,

Ern={z:1z=1+|z+1| <R+ R}, (3.1.36)

with foci at 1 and —1. The axes are, respectively, R+ R~ and R— R~!, and hence
R means the sum of the semi-axes.

Note that, as R — 1, the ellipse degenerates into the interval [—1,1]. As
R — o0, it becomes close to the circle |z] < $R. It follows from (3.1.34) etc. that
this family of confocal ellipses are level curves of |w| = |z £ v22 — 1|. In fact, we
can also write,

Epn=1{z:1<|z+V22— 1| < R}. (3.1.37)

Theorem 3.1.11.
Let f(z) be real-valued for z € [—1,1], analytic and single-valued for z € Eg,
R > 1. Assume that |f(z)| < M for z € Er . Then

2MR™™
ZC] 1—7R1) fOT’ T E [_1,].]

Proof. Set as before, z = $(w + w™), g(w) = f(3(w + w™")). Then g(w) is
analytic in the annulus R™! + ¢ < |w| < R — ¢, and hence the Laurent expansion
(1.2) converges there. In particular it converges for |w| = 1, hence the Chebyshev
expansion for f(z) converges when z € [—1,1].

Set r = R — €. By Cauchy’s formula, we obtain, for j > 0,

) 9 [2m))
lej| = 2|a;| = | / g(w)yw™ U dw| < oy Mr=i7 rdp = 2Mr—7.
lw|=r

™ Jo

We then obtain, for z € [-1,1],

_ichj(x) = chTj(x)
7=0 n

oo

<> el <2M D e <2MrTm /(1= 1r).
n

n

3.1. Some Basic Facts about Series 171

This holds for any € > 0. We can here let € — 0 and thus replace r by R. 0O

If a Chebyshev expansion converges rapidly, the truncation error is, by and
large, determined by the first few neglected terms. As indicated by Fig. 3.1.5 and
Fig. 3.1.8 the error curve is oscillating with slowly varying amplitude in [-1,1]. In
contrast, the truncation error of a power series is proportional to a power of x.

Note that f(z) is allowed to have a singularity arbitrarily close to the interval
[—1,1], and the convergence of the Chebyshev expansion will still be exponential,
although the exponential rate deteriorates, as R | 1.

Important properties of trigonometric functions and Fourier series can be re-
formulated in the terminology of Chebyshev polynomials. For example, they satisfy
certain orthogonality relations, see Problem 20. Also results like (3.1.31) con-
cerning how the rate of decrease of the coefficients or the truncation error of a Fourier
series, is related to the smoothness properties of its sum, can be translated to Cheby-
shev expansions. So, even if F is not analytic, a Chebyshev expansion converges
under amazingly general conditions (unlike a power series), but the convergence is
much slower than exponential. A typical result reads: if f € C*[—1,1], k > 0, there
exists a bound for the truncation error that decreases uniformly like O(n=* logn).
Sometimes convergence acceleration can be successfully applied to such series, see
Sec. 3.3. More about Chebyshev polynomials and related questions in Sections 4.4
and 4.5, and in Ch. 12.

The numerical value of a truncated Chebyshev expansion can be computed by
means of Clenshaw’s algorithm given in Problem 21, which holds for any sum of
the form S = Zz;ll ckor, where {¢;} satisfies a three term recurrence relation
22

Pr+1 = Ak Pr — VePr—1, k=1:n—2.

Clenshaw’s algorithm can therefore also be applied to series of Legendre functions,
Bessel functions, Coulomb wave functions etc., because they satisfy recurrence re-
lations of this type, where the ay, v, depend on z; see Abramowitz and Stegun or
any text on special functions. Other applications are the case when the ¢y are the
denominators or numerators of the convergents of a continued fraction, see Sec. 3.4,
and, above all, the case when ¢ () is a family of orthogonal polynomials, see Ch.
12. In that case ar = «j, - (x — fi), where «, B, v are independent of .

3.1.6 Perturbation Expansions

In the equations of applied mathematics it is often possible to identify a small
dimensionless parameter (say) e. The case when e = 0 is called the reduced problem
or the unperturbed case, and one asks for a perturbation expansion, i.e. an
expansion of the solution of the perturbed problem into powers of the perturbation
parameter €. In many cases it can be proved that the expansion has the form
co+cre+cae? +. .., but there are also important cases, where the expansion contains
fractional or some negative powers.

22This is sometimes given for k = 0 : n—2, with the initial conditions ¢9 = 1, ¢_1 = 0. Warning:
Then, for the Chebyshev polynomials, o = 2z for £ > 0, but ag = x.

172 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

We first consider an analytic equation ¢(z,€) = 0 and seek the roots z;(e). It
is practical to move the origin to z;(0). (See Problem 1.4.1 or 1.4.2.) If 2;(0) is a
simple root, i.e., if 9¢/0z # 0, (z,€) = (2;(0),0) then a theorem of complex analysis
tells us that z;(€) is an analytic function in a neighborhood of the origin, hence the
expansion
zi(€) = co + cre + ca€® + ...

exists. We call this a regular perturbation problem.

If 2;(0) is a k-fold root then (under certain conditions) there exists an expan-
sion of the form z;(€) = co + c1€'/* + coe?/* 4 ... for each of the k E'th roots of
€. If one tries to determine the coefficients in an expansion of the wrong form, one
usually runs into contradictions.

A simple perturbation example for a differential equation is given in Problem
12. More interesting examples are presented in Sec. 13.8.

Example 3.1.15.

We shall expand the roots of ¢(z,€)) = €z — 2z + 1 = 0 into powers of €. The
reduced problem —z + 1 = 0 has only one finite root 2;(0) = 1. Set z = 1 + we,
T =c1+cee+c3e? +.... Then ¢(1+ ze, €)/e = (1 +ze)? —z =0, ie.,

(14 cre+cze* +...)% — (c1 + cze +c3e? +...) = 0.

Matching the coefficients of €°, €!, €2, we obtain the system

1-c=0 = c =1,
2c0 —co =0 = ¢ =2
202+cf—0320 = c3 =9;

hence z;(€) = 1+ €+ 2€? + 53 +

Now, the easiest way to obtain the expansion for the second root z3(e), is to
use the fact that the sum of the roots of the quadratic equation equals ¢!, hence
zo(e) =€l —1—€e—22+....

Note the appearance of the term ¢~!. This is due to a characteristic feature
of this example. The degree of the polynomial is lower for the reduced problem
than it is for € # 0; one of the roots escapes to co as € — 0. This is an example of
a singular perturbation problem; an important type of problem for differential
equations, see Sec. 13.8.

Although we have already determined z»(e), we shall use this problem to
illustrate a general balancing procedure, recommended in Lin—Segel [25, Sec.
9.1], where it is applied to singular perturbation problems for differential equations
too. The basic idea is very simple: each term in an equation behaves like some
power of €. The equation cannot hold, unless there is a B, such that a pair of terms
of the equation behave like €2, and the e-exponents of the other terms are larger than
or equal to 3. (Recall that larger exponents make smaller terms.)

In the example above, suppose that z;(e) ~ Ae®, (a < 0). The three terms
have the exponents

1+2a, «, 0.

3.1. Some Basic Facts about Series 173

Try the first two terms as the candidates for being the dominant pair. Then 14+2a =
a, hence a = —1. The three exponents become —1, —1, 0. Since the third exponent
is larger than the exponent of the candidates, this choice of pair seems possible, but
we have not shown that it is the only possible choice.

Now try the first and the third terms as candidates. Then 1 4 2a = 0, hence
a= —%. The exponent of the non-candidate is —% < 0; this candidate pair is thus
impossible.

Finally try the second and the third terms. Then a = 0, but we are only
interested in negative values of «. (This pair gives the balance for the finite root
z1)

The conclusion is that we can try coefficient matching in the expansion z2(€) =
¢ 16 4+ cp+cre+.... Wedon't need to do it, since we know the answer already,
but it indicates how to proceed in more complicated cases.

Example 3.1.16.

First consider the equation 23 — 22 + € = 0. The reduced problem 2% — 22 =0
has a single root, z; = 1, and a double root, 2,3 = 0. By a similar coefficient
matching as in the previous example we find that z1(e) = 1 — e — 2¢2 +.... For the
double root, try z(e) = coe'/? 4 c1€ + c2¢°/? + ... By matching the coefficients of

€, €3/2, €2, we obtain the system
—g+1=0 ===l
1
—2c¢cpc1 +cg =0 =c¢ = 2
5
—2¢gCa — c? + 20(2301 + clcg =0 =>c = ig,
hence 23 3(€) = £e'/? + Tet %63/2 +.... Since 21 + 22 + 23 = 1, we conclude from

the expansion of z1(€) that the next term reads €2.

There are, however, exceptions, where we do not have a pair of roots which
behave like +coe'/? as € — 0. In such a case the balancing procedure described
above may help; this time with a positive a.

Take the equation ¢(z,€) = (1 + €)z? + 4ez + €2 = 0. The reduced problem
reads 22 = 0, with a double root. Try z ~ Ae®, a > 0. The exponents of the
three terms become 2a, a + 1, 2. We see that @ = 1 makes the three exponents all
equal to 2. (This is OK.) So, set z = ey. The equation reads, after division by €2,
(1+€)y? +4y +1 =0, hence y(0) = a = —2 4+ /3. Coefficient matching yields the
result

z=ey=ae+ (—a+d’/2)E +..., a=-2+V3

The intention of the two previous examples is to give hints, how to proceed
in the case of an equation or a system of a more complicated type, where a small
parameter € can be identified. When more terms are needed in such expansions,
automatic formula manipulation may be useful.

If € is small enough, the last term included can serve as an error estimate. A
more reliable error estimate (or even an error bound) can be obtained by inserting

174 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

the truncated expansion into the equation. It shows that the truncated expansion
satisfies exactly a perturbed equation. A general error estimate for such a situa-
tion is given in (6.5.3). The same idea was indicated for a differential equation in
Example 3.1.2, and can be applied to equations of many other types.

One may, however, ask, whether one really needs the power series or just any
polynomial approximation that represents z(e) with a certain accuracy for (say)
0 < € < €. It depends on the purpose. In the latter case, there are purely nu-
merical alternatives to a series; one may solve the equation (or system) ¢(z,e) =0
numerically for (say) k different values of € and then interpolate an (approximating)
algebraic expression of the right form to the points (e,-,z(ei)), it =1:k, seee.g., the
introduction of Ch.4.

Such a calculation has to be tested carefully, because of the risk for catas-
trophic cancellations, for example, if the points ¢; have been chosen too densely, or
if the values of z(¢;) have too large irregular errors. Least squares polynomial fitting,
see Sec.4.1 and Sec. 9.3, is an alternative to interpolation.

3.1.7 llI-Conditioned Series.

Slow convergence is not the only numerical difficulty which occurs in connection
with infinite series. There are also series where the size of certain terms are many
orders of magnitude larger than the sum of the series. Small relative errors in the
computation of the large terms can then produce large errors in the result. We
call such a series ill-conditioned. The following example—in itself of no practical
interest—provides some insight.

Example 3.1.17.
The Maclaurin series

n=0

converges for all z. The ratio of consecutive terms is

any1 x"Tpl x

a, a" (n+1)!:_n+1'

Thus, the magnitude of the terms grows, as long as n + 1 < z. For z = 20, the
largest term is about 202°/(20)! = 4-107, but the sum is only e=2° ~ 2.10~%. Hence
a relative error of 1076 in the largest term can lead to an error of more than 100%
in the result. The convergence of the series is rather slow to begin with, but no
worse than what one is forced to accept in other situations. The remainder term
after 100 terms is 201°°/(100!) &~ 7-1072°. So one would have about ten significant
digits in the result, if there were no rounding errors, but an actual floating point
computation with u ~ 10716 gave almost 100% error. Hence this series can be
considered as quite difficult from a numerical point of view, in spite of the fact that
it is convergent.

It goes without saying that there are many other simple procedures by which

0 can be computed to full accuracy.

6_2

3.1. Some Basic Facts about Series 175

A less trivial case is the Bessel function, Jo(z) = Y.~ ,(=1)" (w(f,)):n It con-
verges for all z. The terms for 2 = 50 are displayed in Fig. 3.1.7 that shows that
this case is very ill-conditioned.

We shall in Ch.12 and in Sec.3.3 see methods that transform a rather big
class of ill-conditioned series either into an integral (methods based on formulas of
Plana and Lindeldf) or into a “bell sum”, i.e., a special kind of series of positive
terms, where shortcuts can be made in the summation. These methods have been
successful on some examples, where it was hard to find an alternative to the power
series quickly.

For the computation of Jo(50), however, a method based on Plana’s formula
needed an amount of work equivalent to the evaluation of about 2500 terms to
obtain an error less than 5107%. The Bessel functions are of great importance
in Mathematical Physics and belong to the most intensively studied mathematical
functions. One has developed several well-conditioned procedures for computing
Jo(z) for large values of x, where the power series is avoided. Some of these proce-
dures would handle this problem by only a few per cent of the effort mentioned.

At the present state of the art of handling ill-conditioned series, it may often
be worthwhile to try to avoid the series, by the use of special information related
to the given problem. (See Problems 10 and 15.)

Figure 3.1.6. The terms of the ill-conditioned power series for the Bessel
function Jo(2), 2 = 50. The largest term is ~ 10'°, while the sum is ~ 0.056. Direct
summation with u = 10716 gave the useless result 655.29.

3.1.8 Numerical Use of Divergent or Semiconvergent Series

In the previous sections, we saw that the fact that a series is convergent is no
guarantee that it is numerically useful. In this section, we shall see examples of the
reverse situation: a divergent series can be of use in numerical computations. This
sounds strange, but it refers to series where the size of the terms decreases rapidly
at first and increases later (see Fig. 3.1.8), where one can compare the magnitude of
the remainder with the absolute and value of the first neglected term. Such series
are sometimes called semiconvergent.

176 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Figure 3.1.7. The terms of a semiconvergent series. (The ratio of the
consecutive terms is usually much bigger.)

Example 3.1.18. Give a semiconvergent series for the computation of

o0 o0
flz) = ez/ et ldt = / e “(u+) tdu
T 0
for large values of z. (The second integral was obtained from the first by the

substitution ¢ = u + z.) The expression (u + z)~! should first be expanded in a
geometric series with remainder term, valid even for u > z,

n—1
(w+z) =zl +2ztu) =2t Z(—l)jw*juj + (=D)"(u+z) (@)"
j=0
We can write f(z) = S, (z) + R,(z), where

n—1 00
Sp(z) =271 Z(—l)jw_j/ ule ™ du
j=0 0

11 2 (n—1)!
= 4 S 4 (=pm?
T m2+:ﬂ3 +(=1)

(=)™ /Ooo(u +a)7t (%)ne_“du.

The terms in S, (x) qualitatively behave as in Fig. 3.1.7. The ratio between the
last term in Spy1 and the last term in S, is

R, (x)

n! "

gntl (n—1)!

(3.1.38)

and since the absolute value of that ratio for fixed z is unbounded as n — oo, the
sequence {S,(z)}22, diverges for every positive x. But since sign R,(z) = (=1)"
for z > 0, it follows from Theorem 3.1.4 that

£@) = 3 (S0(@) + Sura(@)) = 5

3.1. Some Basic Facts about Series 177

The idea is now to choose n so that the estimate of the remainder is as small
as possible. According to (3.1.38), this happens when n is equal to the integer part
of z. For x = 5 we choose n = 5,

S5(5) = 0.2 — 0.04 + 0.016 — 0.0096 + 0.00768 = 0.17408,
Se(5) = S5(5) — 0.00768 = 0.16640,

which gives f(5) = 0.17024 £ 0.00384. The correct value is 0.17042, so the actual
error is only 5% of the error bound.

For larger values of x the accuracy attainable increases. Omne can show that
the bound for the relative error using the above computational scheme decreases
approximately as (m-2/2)'/?e~*. Thus the above divergent series gives extremely
good accuracy for large values of z, if one stops at the smallest term. It can even be
improved further, by the use of repeated averages, see Sec. 3.3.2. The algorithms for
the transformation of a power series into a rational function described in Sec. 3.4
can also sometimes be applied to divergent expansions (continued fractions, Padé
approximants).

One can derive the same series expansion as above by repeated integration by
parts. This is often a good way to derive numerically useful expansions, convergent
or semi-convergent, with a remainder in the form of an integral. For convenient
reference, we formulate this as a lemma that is easily proved by induction and the
mean value theorem of integral calculus. See Problem 14 for applications.

Lemma 3.1.12. (Repeated Integration by Parts)

Let F € CP(a,b), let Go be a piecewise continuous function, and let Go,G1, . ..
be a sequence of functions such that G’ (x) = G;(z) with suitably chosen constants
of integration. Then

/ PG = Y (1 FO 0G| + (-1 / O (06, (0t
a =0 t=a a

The sum is the “expansion”, and the last integral is the “remainder”. If Gp(t) has
a constant sign in (a,b), the remainder term can also be written in the form

(—1)PFP)(€)(Gpr1 (b) — Gpya(a), € € (a,b).

This expansion in Lemma 3.1.12 is valid as an infinite series, if and only if
the remainder tends to 0 as p — co. Even if the sum converges as p — oo, it may
converge to the wrong result. (See, e.g., Sec. 3.1.3 and 3.3.3.)

The series in Example 3.1.18 is an expansion in negative powers of x, with the
property that for all n, the remainder, when & — 0o, approaches zero faster than the
last included term. Such an expansion is said to represent f(z) asymptotically
as x — 00. Such an asymptotic series can be either convergent or divergent
(semi-convergent).

178 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

It is important to appreciate that an asymptotic series does not define a sum
uniquely. For example f(xz) = e * is asymptotically represented by the series
> 0279, as — oo. So e~%, (and many other functions), can therefore be added to
the function, for which the expansion was originally obtained.

Asymptotic expansions are not necessarily expansions into negative powers of
x. An expansion into positive powers of ¢ — a, f(z) ~ Z:;é cv(z —a)’ + Ry (z),
represents f(z) asymptotically when © — a if lim,_,,(z — a)" " YR, (z) = 0.
Asymptotic expansions of the error of a numerical method into positive powers of
a step length h are of great importance in the more advanced study of numeri-
cal methods. Such expansions form the basis of simple and effective acceleration
methods for improving numerical results, see Sec. 3.3.5.

In many branches of applied mathematics, divergent asymptotic series are an
important aid, though they are often needlessly surrounded by an air of mysticism.

Review Questions

1. Formulate three general theorems that can be used for estimating the remain-
der term in numerical series.

What can you say about the remainder term, if the n'th term is O(n=*,
k > 17 Suppose in addition that the series is alternating. What further con-
dition should you add, in order to guarantee that the remainder term will be
O(n=*)?

2. Give, with convergence conditions, the Maclaurin series for In(1+x), €%, sin z,
cosz, (1+z)*, (1—2)~*, In £££. For which of these functions does also another
Laurent expansion exist?

3. Give the Cauchy formula for the coefficients of Taylor and Laurent series, and
describe the Cauchy+FFT method. Give the formula for the coefficients of a
Fourier series.

4. Give the generating functions of the Bernoulli and the Euler numbers. De-
scribe generally how to derive the coefficients in a quotient of two Maclaurin
series.

5. If a functional equation, e.g. 4(cosx)® = cos3x + 3 cos z, is known to be valid
for real x, how do you know that it holds also for all complex x? Explain what
is meant by the statement that it holds also for formal power series, and why
is this true?

6. If the Maclaurin series is given for the function f(z), that is analytic at the
origin, describe an easy way to compute the Maclaurin series for e/(*)? Is this
procedure valid also for formal power series?

7. Describe by an example the balancing procedure that was mentioned in the
subsection about perturbation expansions.

8. Define the Chebyshev polynomials, and tell some interesting properties of
these and of Chebyshev expansions. For example, what do you know about the

Problems and Computer Exercises 179

speed of convergence of a Chebyshev expansion for various classes of functions?
(The detailed expressions are not needed.)

. Describe and exemplify, what is meant by an ill-conditioned power series.
10.

Define what is meant, when one says that the series Zgo apx™ "

(a) converges to a function f(z) for z > R;

(b) represents a function f(z) asymptotically as — oo.

Give an example of a series that represents a function asymptotically as ¢ —
00, although it diverges for every finite positive x.

What is meant by semi-convergence? Say a few words about termination
criteria and error estimation.

Problems and Computer Exercises

1.

In how large a neighborhood of & = 0 does one get, respectively, four and six
correct decimals using the following approximations?

(a) sinz ~ z; (b) (14222 ~ 1-2%/2; (c) (14 x?)"1/2eVeos®
e(1— 2a22).

Comment: The truncation error is asymptotically gzP where you know(?) p.
An alternative to an exact algebraic calculation of ¢, is a numerical estimation
of g, by means of the actual error for a suitable value of z—neither too big
nor too small(!). (Check the estimate of ¢ for another value of x.)

. (a) Let a,b, be the lengths of the two smaller sides of a right angles triangle,

b < a. Show that the hypotenuse is approximately a + b*/(2a) and estimate
the error of this approximation. If ¢ = 100, how large is b allowed to be, in
order that the absolute error should be less than 0.017

(b) How large relative error do you commit, when you approximate the length
of a small circular arc by the length of the chord? How big is the error i
the arc is 100 km on the earth? (Approximate the earth by a ball of radius
40000/ (27) km.)

(c) P(z) =1 — 2 4+ ' is a polynomial approximation to cosz for small
values of |z|. Estimate the errors of P(z), P'(z), + [, P(t)dt, and compare
them, e.g., for z = 0.1.

(d) How accurate is the formula arctanz ~ 37 — 1/z for £ > 1 ?

. (a) Compute 10—(999.999)'/3 to 9 significant digits, by the use of the binomial

expansion. Compare with the result obtained by a computer, directly from
the first expression.

(b) How many terms of the Maclaurin series for In(1 + z) would you need
in order to compute In2 with an error less than 107 ? How many terms
do you need, if you use instead the the series for In (1 + z)/(1 — z), with an
appropriate choice of 7

. Give an approximate expression of the form ah®f(¢)(0) for the error of the

estimate of the integral ffh f(x)dz obtained by Richardson extrapolation (ac-

180 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS
cording to Sec. 1.2.2) from the trapezoidal values T'(h),T(2h).

5. Adapt Example 3.1.8 in Sec. 3.1.3 (concerning sinh z) to the precision of your
computer. Replace the assumption that “e* is computed with a relative error
less than (say) Suby a more useful assumption.

6. Compute, by means of appropriate expansions, the following integrals to (say)
five correct decimals.

0.1 00
(a) / (1—01sint)/2dt; (b / (# + 1)1,
0 10
7. (a) Expand arcsinz into powers of x by the integration of the expansion of
(1) 1 /2_
(b) Prove the expansion
b 1sinh® z n 1-3sinh®z 1-3-5sinh” z
z =sinhz — = — —
2 3 24 5 246 7
(See an application in Example 3.2.9.)
(c)
in terms of the Bernoulli numbers. Hint: Set & = 2iy into (3.1.12). Differen-
tiate the second function.
(d) Show that
z+1 1 1 1
1 :2(— 4) > 1.
N z+323+525+ 12
Find a recurrence relation for the coefficients of the expansion
I\-1 1
(lnz+) =2z Pzt — sz — ..., 2| > L
z—1 2
Compute g1, p3, 5 and determine > o° pojt1 by letting z | 1. (Full rigor is
not required.) Hint: Look at Example 3.1.6.
(e) Find a recurrence relation for the Euler numbers E,,, see Example 3.1.6,
and use it for showing that these numbers are integers.
8. Let the power series expansion f(z) = ag + a1x + azx? + ... be given. Find

recurrence relations for the coeflicients of the expansion for g(z) = ¢(f(z)) =

bo + bixz + bez® + ... in the following cases:

(a) ¢(y) =1ny, if ap # 0.

Hint: Use f(z) = e9®), and rearrange the formulas given in Example 3.1.10.
1 1 n—1

Answer: by =Inag, b, = E(a” = 21 (n —j)ajbn,j).

(b) $(y) = y*, if ag £ 0, a # 1.

Hint: Show that fg' = agf', where / means differentiation with respect to
. Then proceed analogously to Example 3.1.10. Answer: by = af, b, =
n}l Z;l Ol(an—(a-l-l))bjn—;.

(c) ¢1(y) = cosy, ¢=(y) = siny, simultaneously.

Problems and Computer Exercises 181

Hint: Consider instead ¢(y) = €%, and separate real and imaginary parts
afterwards.

(d)If you have the matrix representation, described in Example 3.1.11, for a
function such that fy(0) = 0, how do you obtain a square matrix representa-
tion for fn(z)/z?

(e) Let f(z) = —z 'In(1 — 2). Find the first five coefficients of the Maclaurin
series for the functions f(z)*, k = 2 : 5, by means of the matrix representa-
tion. (The answer and an application to numerical differentiation are given in
Example 3.2.6.)

(f) If your computer language has a convenient matrix handling , compute the
first twelve Maclaurin coefficients of arcsinhz = In(z + /1 + z2), by means of
the matrix representation. Compare with Problem 7(b).

(g) If you know the Maclaurin expansion f(z) = Y axz* and want the Maclau-
rin expansions for f(2)*, k = 1: K, you can also ask for a generating func-
tion F(t,z) = 3 32, f(2)"th /k! = e/ ()t = e0entea2a’t . Write a program
that transforms the product (with suitable truncations) into an expansion into
powers of ¢, the coefficients of which are the requested expansions into powers
of z. Test this on Problem (d), i.e., for f(z) = —In(1 — 2).

In the case of Problem (d), you also have a chance to find an analytic ex-
pression for F(t, z), which easily leads to an approximating polynomial in two
variables ¢, z, where the terms have to be rearranged in order to yield a trun-
cated power series in t, where the K coefficients are the requested truncated
power series in z. For a change, you may like to use a computer algebraic
system like Maple or Mathematica this time. For the different approaches
mentioned above, and also for the Cauchy+FFT method, compare both the
results and the efforts made, your own and your computer’s.

9. (a) Apply (on a computer) the Cauchy+FFT method to find the Maclaurin
coefficients a,, of (say) e* and (1 + z)'/2. Make experiments with different
values of r and N, and compare with the exact coefficients. This presupposes
that you have access to good programs for FFT.

Try to summarize your experiences of how the error of a,, depends on r, N.
You may find some guidance in 3.1.5.

(b) Reconstruct, by means of the Cauchy+FFT method, the table for the
Maclaurin coefficients of 1/I'(z) given in Abramowitz and Stegun, Sec. 6.1.34,
and improve the relative accuracy of the small coefficients. Check experimen-
tally the accuracy you obtain by means of this series for different values of |z|.
Hint: Some ideas of Example 3.1.5 may be useful.

This presupposes that you have access to good programs for FFT and for the
Gamma function with a complex argument. Alternatively, you may write a
program yourself for InI'(z 4+ 1) according to the indications given in Example
3.3.16.

(¢) Find the Laurent expansions for f(z) = -5 + 5.
(d) How do you use the Cauchy+FFT method for finding Laurent expan-
sions? Test your ideas on the function in the previous subproblem (and on

182

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

10.

a few other functions). There may be some pitfalls with the interpretation
of the output from the FFT program, related to so-called aliasing, see Ch. 4
and Strang [33].

(e) As in Sec. 3.1.5, suppose that F(P) is of bounded variation in [, 7] and

denote the Fourier coefficients of F(®) by c(p). Derive the following general-
ization of (3.1.31):

()" S~ FO(m) — FO (o) |
(in)it+1 (in)P

Cp =
™

“M

and show that if we add the condition that F' € C7[—o00,00], j < p, then the
asymptotic results given in (and after) (3.1.31) hold.

(f) Let z = £ (w+w™"). Show that |z — 1| + |z 4+ 1] = |w| + |w| 7 .

Hint: Use the parallelogram law, |p — q|* + [p + ¢|> = 2(]p|* + |¢|?)-

(g) Theorem 3.1.11 is concerned with the convergence of a Chebyshev expan-
sion when = € [—1,1]. Make a small change in the proof, in order to find
a statement about the speed of convergence of a Chebyshev expansion for
complex values of x.

(a) The error function is an important function in many branches of applied
mathematics. It is defined by an integral

er(e) = 7= [e

The integral cannot be expressed in terms of more elementary functions. Given
below are two methods of varying accuracy and efficiency. Write a program
which uses each of these to compute the error function. You should evaluate
erf(z) in the range 0 < x < 5 in steps of 0.5. Use the built in function, if it
exists, or values from a table as a standard of comparison for your computed
approximate results. Print out the number of terms used.

e Substituting the Maclaurin expansion of the exponential function into the
integral definition of erf(z) and integrating term by term we get

n 2n+1
f(z (1—t 4= —-
“ \F/ +5 IZ nl(2n+ D

This is an alternating series. For which values of # and n can Theorem 3.1.5
be used for estimating the truncation error ?

e The above Maclaurin series is an ill-conditioned series when x is large. The
following formula is an alternative that can be derived by integration by parts,
or by the hints given in Problem 23c of Sec. 3.2.
2r o 2z2 (22?)? (22%)3
) = 2o (14 2)
erf(e) = Z=e ti3T13 s 1357

Hint: To evaluate the series S = Y (t,, first derive a recurrence relation
tn = gntp—1 for computing successive terms.

Problems and Computer Exercises 183

11.

12.

13.

14.

See Problem 15 for another approach to the computation of erf(z) for large z.
(b) For a given z, which is the largest term of the second series? Plot for (say)
x = 10, both the natural values of the terms (including the factor in front of
the parenthesis) and their logarithms.

CoMMENT: We call such a series a a bell sum; we shall return to bell sums in
Problem 23 of Sec. 3.2 and in Sec. 3.3.4.

Compute a few terms of the expansions into powers of € or k of each of the
roots of the following equations, so that the error is O(e?) or O(k=2) (e is
small and positive; k is large and positive). Note that some terms may have
fractional or negative exponents. Also try to fit an expansion of the wrong
form in some of these examples, and see what happens.

(@) (L+e€)z2—€e=0; (b)ex®—22+1=0; (c)ez®>—2+1=0;
(d) 24— (K> +1)22 = k* =0, (k* > 1).
The solution of the boundary value problem

(1+ey" —ey=0, 9(0)=0, y(1)=1,

has an expansion of the form y(t;€) = yo(t) +y1(t)e+y2(t)e? +. ... (Make sure
you use the right boundary conditions for y;,y>.) By coefficient matching,
set up differential equations and boundary conditions for yg,y1,y2, and solve
them.

COMMENT: It may seem strange that the expansion of the solution does not
contain fractional powers, when the expansion of its characteristic roots does
so (see Problem 11a). “Explain” this paradox.

In order to compute the Bessel function Jo(z) for moderately large values of
z, typically & = 20, to six correct decimals one considers the use of the power
expansion

n=0
which converges for all . Answer the following questions for x = 20:
(a) How many terms must one compute?
(b) How large is the largest term?
(c) How many digits must one use in the calculations?

(d) For how large values of x can the series provide almost full accuracy on
your computer ?

COMMENT: This series converges for every z. It becomes more and more ill-
conditioned as x increases. See examples and problems to Sec. 3.2.3 conerning
other methods for computing Bessel functions.

(e) Construct by computer a picture for this expansion, similar to the upper
part of Fig. 3.1.4. Extend to larger values of z and n, so that the illconditioned
nature becomes visible.

(a) Derive the expansion of Example 3.1.18 by repeated integration by parts.
(b) Derive the Maclaurin expansion with the remainder according to (3.1.4) by

184

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

15

16
17

18.

19.

the application of repeated integration by parts to the equation f(z) — f(0) =
Ly
z [y f'(zt)dt.

Derive three terms of a semiconvergent series for
2 o0 2
2¢” / e~ dt, (z— o0).
x

Give a strict proof of Theorem 3.1.5.

Some of the functions appearing in Table 3.1.1, in Problem 6, and in other
examples and problems are not single-valued in the complex plane. Brush up
your Complex Analysis, and find out how to define the branches, where these
expansions are valid, and (if necessary) define cuts in the complex plane that
must not be crossed. It turns out not to be necessary for these expansions.
Why?

If you have access to programs for functions of complex variables (or to com-
mands in some package for interactive computation), find out the conventions
used for functions like square root, logarithm, powers, arctan etc. If the man-
ual does not give enough detail, invent numerical tests, both with strategically
chosen values of z and with random complex numbers in some appropriate do-
main around the origin.

For example, do you obtain In ;ﬂ —In(z+1)+In(z—1)=0forall 2z 7
Or, what values of v/z2 — 1 do you obtain for z = +i? What values should
you obtain, if you want the branch which is positive for z > 17

What do you obtain, if you apply Cauchy’s coefficient formula or the Cauchy
+FFT method to find a Laurent expansion for /27 Note that /z is analytic
everywhere in an annulus, but that does not help. The expansion is likely to

become weird. Why?

(a) Suppose that r is located inside the unit circle; ¢ is real. Show that

1—r? 9 2°°n : 2rsint _2°°n, ;
1 2rcost 412 + nz_:lr cosn T —2rcosirr2 Z_:lr sinnt.
Hint: First suppose that r is real. Then make analytic continuation.

(b) Let a be positive, € [—a,a], while w is complex, w ¢ [—a,a]. Let
r=r(w), |r| < 1be aroot of the quadratic r? — 227 +1 = 0. Show that (with
an appropriate definition of the square root)

1 1
w—ac_\/wZ_,ﬂ.(

1+22r"Tn(2)), (w ¢ [~a, a], « € [a,a)).

Find the corresponding expansion for ﬁ

Hint: Set w = i, and take the imaginary part. Explain the order of magnitude
of the error and the main features of the error curve in fig. 3.1.8.

Denote the n’th degree Chebyshev polynomial by T,,(z), see Sec. 3.1.5. Note
that deg (2" — 2! 7"T),(z)) = n — 2.

Problems and Computer Exercises 185

flz) =

09r q
0.8 B
0.7F B
0.6 q
05F B

0.4r q

0.5 1 15

Figure 3.1.8. Illustrations to Problem 18b. Upper part: The function

ﬁ, x € [0,1.5]. Lower part: The error of the expansion of f(z) as a sum

of Chebyshev polynomials Ty, (x/1.5), n < 10. (The scale is 1073.)

20.

(a) Find a polynomial p(z) of degree n — 2, such that |z — p(z)| < 2(r/2)"
for —r < o < r. (p depends on r). If this is applied to the term of highest
degree of a truncated power series for a function f, the series might be replaced
by a polynomial of lower degree with a moderately increased bound for the
truncation error. This process, which is called economization of a power
series, can be repeated, so that one may end up with a useful polynomial
approximation to f(z) with a considerably smaller number of terms than the
original truncated power series.

(b) The expansion of arsinh ¢ into powers of ¢, truncated after ¢7, is obtained
from Problem 7b. Economize this to a polynomial approximation of the form
cit + cst® in the interval —1 < ¢ < 3. Give bounds for the truncation error
for the original truncated expansion and for the economized expansion.

Hint: Ts(z) = 5z — 202° + 162°; Ty(x) = —Tx + 562° — 1122° + 6427.

(c) You see in Fig.3.1.5 that |T12(z)| < 1 for « € [—1,1], but is it really true
that T12(3) >].08 ?

(a) Show that

1 du 0, ifm#mn;
T ()T (z) e = Lt ifm=n#£0;.
/,1 () = {2” fm=ng

m, ifm=n=0

CoMMENT: Because of the similarity with orthogonality conditions in R",

186 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

the Chebyshev polynomials of the first kind is called a system of orthogonal
polynomials, with respect to the density function (1—22)~1/? on the interval
[—1,1].
Hint: Derive first the analogous relations for the functions {cosnt}, t € [0, x].
Show that the coefficients of a uniformly convergent Chebyshev series f(z) =
Yoo cmTm (), are given by
1
e G L O

where Ko =, K,, = 37 if n # 0.
(b) Find a similar orthogonality condition for the Chebyshev polynomials of
the second kind (with respect to a different density function).

21. Clenshaw’s algorithm; ordinary (backward) version. Suppose that a se-
quence {¢y } satisfies a three term recurrence relation

¢k+1 = akgbk — ’ykqﬁk_l, k=1:n-— 2, (3.1.39)

(a) Show that S = Zz;é ¢ Py can be computed by the following algorithm
due to Clenshaw, where we set ag = 0.

Ynr1 =05 yn =0;
for k=n—1:-1:0, yp = QkYk+1 — Vk+1Yk+2 + Ck; end
S = yodo + y1(P1 — ando).

(b) Let o, j = 1 : n be the zeros of the Chebyshev polynomial T}, (z), n >
1. (There are, of course, simple trigonometric expressions for them.) Apply
Clenshaw’s algorithm to compute Y""% T, ()T (), for z = aj, j =1 : n.
It turns out that the results are remarkably simple. (An explanation to this
will be found in Sec. 4.5.

(¢) A forward version of Clenshaw’s algorithm reads
Yy—2=0; y-1=0;
—Yk—2 + QpYr—1 + C
Vk+1 ’
S = cndn + YnYn-10n—1 — Yn—20n-
Add this version as an option to your program, and study Numerical Recipes

[28, Sec. 5.4] from which this formula is quoted (with adaptation to our nota-
tion etc.). Make some test example of your own choice.

end

fork=0:n-1, y, =

3.2 Difference Operators and Operator Expansions

Difference operators are handy tools for the deduction, analysis, and practical use
of formulas for interpolation, differentiation, and quadrature of a function in terms
of its values at equidistant arguments.

3.2. Difference Operators and Operator Expansions 187

The simplest notations for difference operators and applications to derivatives,
e.g., d*y/dz* ~ A%y/(Ax)?, were mentioned in §1.2.3. Difference schemes and the
algebra of operators are treated in § 3.2.1. Operator expansions with applications are
developed in §3.2.2 and §3.2.4. Peano’s remainder theorem is presented in §3.2.3.
Finally, the basic facts about single linear difference equations are presented in
§3.2.5.

Other applications of difference operators include the convergence acceleration
of infinite sequences, see Sec. 3.3, and multistep methods for differential equations,
see Sec. 13.4.

3.2.1 Difference Operators and Their Simplest Properties

Let y denote a sequence {y,}. Then we define the shift operator E (or translation
operator) and the forward difference operator A by the relations

Ey = {yns1}, Ay = {Yn+1 — Yn},

(see Sec. 1.2). E and A are thus operators which map one sequence to another
sequence. Note, however, that if y, is defined for a < n < b only, then Ey, is
not defined, and the sequence Ey has fewer elements than the sequence y. (It is
therefore sometimes easier to extend the sequences to infinite sequences, e.g., by
adding zeros in both directions outside the original range of definition.)

These operators are linear, i.e., if «, 8 are real or complex constants and if
Y,z are two sequences, then E(ay + 8z) = aEy + fEz, and similarly for A.

Powers of E and A are defined recursively, i.e.,

Bty = EB(EFy), Aty =A@ Yy).

By induction, the first relation yields E¥y = {y,+1}. We extend the validity of this
relation to & = 0 by setting £’y = y and to negative values of k. AFy is called
the kth difference of the sequence y. We make the convention that A° = 1. There
will be little use of A* for negative values of k in this book, although A~! can be
interpreted as a summation operator.

Note that Ay = Ey —y, and Ey = y + Ay for any sequence y. It is therefore
convenient to express these as equations between operators: 23

A=E-1, E=1+A.

It can be shown that all formulas derived from the axioms of commutative algebra
can be used for these operators, for example, the binomial theorem for positive
integral k.

k
AF = (E-1)* = § (—nF (_)Eﬂ, (3.2.1)
— J
7=0
23The identity operator is in this context traditionally denoted by 1.

188 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

Ef=(1+A)t= Xk: (@)Af’,

J

We abbreviate the notation further and write, for example, Ey,, = y,,+1 instead of
(EY)n = yYni1, and APy, instead of (A*y),,. However, it is important to remember
that A operates on sequences and not on elements of sequences. Thus, strictly
speaking, this abbreviation is incorrect, though convenient. The formula for E*
will, in next subsection, be extended to an infinite series for non-integral values of
k, but that is beyond the scope of algebra. A difference scheme consists of a
sequence and its difference sequences, arranged in the following way:

Yo
Ayo
(0 A?yo
Ay Ay
Yo A%y, Ay,
Ays A31/1
Ys A2y2
Ays
Ya

A difference scheme is best computed by successive subtractions; the formulas in
(3.2.1) are used mostly in theoretical contexts.

In many applications the quantities y, are computed in increasing order
n =0,1,2,..., and it is natural that a difference scheme is constructed by means
of the quantities previously computed. One therefore introduces the backward
difference operator Vy,, =y, —y, 1 = (1 — E~1)y,,. For this operator we have

Vk=1-EH, EF*=(1-V) (3.2.2)

Note the reciprocity in the relations between V and E1.

Any linear combination of the elements yn, Yn—1,--- Yn—k can also be ex-
pressed as a linear combination of Y., Vyn,...,V¥y,, and vice versa ** . For
example, ¥n + Yn—1 + Yn—2 = 3Yn — 3Vyn + V?yn, because
1+ E'+E?2=1+(1-V)+(1-V)? =3-3V + V2 By the reciprocity, we
also obtain vy, + Vyn + V2yn = 3yn — 3Yn_1 + Yn_2-

24 An analogous statement holds for the elements yn, Yn41,--- »Yn+k and forward differences.

3.2. Difference Operators and Operator Expansions 189

In this notation the difference scheme reads

Yo
Vi
(1 VZya
Vyz V3y3
Y2 V3ys Viys
Vys V34
Ys V2y4
Vys
Ya

In the backward difference scheme the subscripts are constant along diagonals di-
rected upwards (backwards) to the right, while, in the forward difference scheme,
subscripts are constant along diagonals directed downwards (forwards). Note, e.g.,
that V¥y,, = Aky,_,. In a computer, a backward difference scheme is preferably
stored as a lower triangular matrix.

Example 3.2.1.
Part of the difference scheme for the sequence y = {...,0,0,0,1,0,0,0,...} is
given below.

0 0 1 -7

0 0 1 -6 28
0 1 -5 21

0 1 —4 15 —56
1 -3 10 —35

1 -2 6 —20 70
-1 3 —10 35

0 1 —4 15 —56
0 -1 5 -21

0 0 1 —6 28
0 0 -1 7

This example shows the effect of a disturbance in one element on the sequence
of the higher differences. Because the effect broadens out and grows quickly, dif-
ference schemes are useful in the investigation and correction of computational and
other errors, so-called difference checks. Notice that, since the differences are
linear functions of the sequence, a superposition principle holds. The effect of
errors can thus be estimated by studying simple sequences such as the one above.

Example 3.2.2.

For the sequence y, = (—1)" one finds easily that Vy,, = 2y, V3y, = 2Vy, =
4y, ..., VFy, = 2Fy, . If the error in the elements of the sequence are bounded by e,
it follows that the errors of the kth differences are bounded by 2*e. A rather small
reduction of this bound is obtained if the errors are assumed to be independent
random variables (Problem 3.3.26).

190 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

It is natural also to consider difference operations on functions not just on
sequences. E and A map the function f onto functions whose values at the point
T are

Ef(z)=f(x+h), Af(z)=f(z+h) - f(z), (3.2.3)
where h is the step size. Of course, Af depends on h; in some cases this should
be indicated in the notation. One can, for example, write Ap, f(z), or Af(z;h). If
we set y, = f(xo + nh), the difference scheme of the function with step size h is
the same as for the sequence {y,}. Again it is important to realize that, in this
case, the operators act on functions, not on the values of functions. It would be
more correct to write f(zg + h) = (Ef)(zo). Actually, the notation (z¢)E f would
be even more logical, since the insertion of the value of the argument z¢ is the last
operation to be done, and the convention for the order of execution of operators
proceeds from right to left, but this notation would be too revolutionary. 23

Example 3.2.3. The following is a difference scheme for a 4 decimal table of the
function f(z) = tanz, « € [1.30,1.35], with step h = 0.01. The differences are given
with 10~ as unit.

T Y Vy Vi V3y Vi Vo

1.30 3.6021
1450
1.31 3.7471 113
1563 13
1.32 3.9034 126 5
1689 18 —4
1.33 4.0723 144 1
1833 19
1.34 4.2556 163
1996
1.35 4.4552

We see that the differences decrease roughly by a factor of 0.1—that indicates that
the step size has been chosen suitably for the purpose of interpolation, numerical
quadrature etc.—until the last two columns, where the rounding errors of the func-
tion values have a visible effect. In fact, even the sign of V°y is wrong, which is
compatible with the result of Example 3.2.2.

Note, however, that no new errors are introduced during the computation of
the differences, but the effects of the original irregular errors of y grow exponentially.
We emphasize the word irreqular errors, e.g., rounding errors in y, since systematic
errors, e.g., the truncation errors in the numerical solution of a differential equation,
often have a smooth difference scheme. For example, if the values of y have been
produced by the iterative solution of an equation, where z is a parameter, with the
same number of iterations for every x and y and the same algorithm for the first
approximation, then the truncation error of y is likely to be a smooth function of
x.

25The notation [zo]f occurs, however, naturally in connection with divided differences, Sec. 4.2.

3.2. Difference Operators and Operator Expansions 191

Difference operators are in many respects similar to differentiation operators.
Let f be a polynomial. By Taylor’s formula, Af(z) = f(z + h) — f(z) = hf'(z) +
%hgf”(w) +.... We see from this that deg Af = deg f — 1. Similarly for differences
of higher order; if f is a polynomial of degree less than k, then A~ f(x) =const.,
and AP f(x) =0, Vp > k. The same holds for backward differences.

The following important result can be derived directly from Taylor’s theorem
with the integral form of the remainder. Assume that all derivatives of f up to kth
order are continuous. If f € C*,

AFf(z) =hEFR(Q), ¢ €lx,x+kh] (3.2.4)

Hence h=* A f(z) is an approximation to f(*)(z); the error of this approximation
approaches zero as h — 0 (i.e., as (= x). As a rule, the error is approximately
proportional to h. We postpone the proof to Ch. 4, where it appears as a particular
case of a theorem concerning divided differences.

Even though difference schemes do not have the same importance today that
they had in the days of hand calculations or calculation with desk calculators, they
are still important conceptually, and we shall also see how they are still useful
also in practical computing. In a computer it is more natural to store a difference
scheme as an array, e.g. with 4,,, Vyn, V3¥n,..., VFy, in a row (instead of along
a diagonal).

Many formulas for differences are analogous to formulas for derivatives, though
usually more complicated. The following results are among the most important.

Lemma 3.2.1.

It holds that AF(a®) = (a" — 1)*a®, V*(a®) = (1 —a ")*a®.

For sequences, i.e., if h=1, AF{a"} = (a — 1)¥{a"}, AF{2"} ={2"}.
Proof. Let ¢ be a given constant. For £ = 1 we have

A(ca®) = ca®™ " — ca® = ca®a" — ca® = c(a” — 1)a”

The general result follows easily by induction. The backward difference formula is
derived in the same way. [

Lemma 3.2.2. The Difference of a Product

A(upvy,) = unAvy, + Aty Vg .

Proof. We have A(u,v,) = Un1Vnt1 — UnVp = Un(Vng1 — Vn) + (Ung1 — Un)Vny1-
Compare the above result with the formula for differentials, d(uv) = udv+vdu.
Note that we have v,+1 (not v,) on the right-hand side. 0O

192 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

Lemma 3.2.3. Summation by Parts

N-1 N-1
E Up AV, = UNUN — UgUy — E Ay Vpyy 1.
n=0 n=0

Proof. (Compare the rule for integration by parts and its proof!) Notice that

N-1
ZAwn: (wy —wo) + (w2 —wy) + ...+ (wy —wWN_1) = WN — Wp.

n=0

Use this on w,, = u,v,. From the result in Lemma 4.5.2 one gets after summation,

N—1 N-1
UNVN — UgUy = E unAv, + E AUpVpt1,
n=0 n=0

and the result follows. (For an extension, see Problem 1d.) O

3.2.2 The Calculus of Operators

Formal calculations with operators, using the rules of algebra and analysis, are
often an elegant means of assistance in finding approzimation formulas that are
exact for all polynomials of degree less than (say) k, and they should therefore be
useful for functions that can be accurately approximated by such a polynomial.
Our calculations often lead to divergent (or semi-convergent) series, but the way
we handle them can usually be justified by means of the theory of formal power
series, of which a brief introduction was given at the end of §3.1.3. The operator
calculations also provide error estimates, asymptotically valid as the step size h — 0.
Strict error bounds can be derived by means of Peano’s remainder theorem, §3.2.3.

Operator techniques are sometimes, see, e.g., Sec. 3.3, successfully used in a
way that it is hard, or even impossible, to justify by means of formal power series. It
is then not trivial to formulate appropriate conditions for the success and to derive
satisfactory error bounds and error estimates, but it can sometimes be done.

We make a digression about terminology. More generally, the word operator
is in this book used for a function that maps a linear space S into another linear
space S’. S can, for example, be a space of functions, a coordinate space, or a space
of sequences. The dimension of these spaces can be finite or infinite. For example,
the differential operator D maps the infinite-dimensional space C'[a, b] of functions
with a continuous derivative, defined on the interval [a, b], into the space C|a, b] of
continuous functions on the same interval.

In the following we denote by Py the set of polynomials of degree less than k.
26 Note that Py, is a k-dimensional linear space, for which {1, z, z%,..., ¥ "1} is a

26Some authors use similar notations to denote the set of polynomials of degree less than or
equal to k. We regret that.

3.2. Difference Operators and Operator Expansions 193

basis called the power basis; the coeflicients (ci, ca, ..., ¢i) are then the coordinates
of the polynomial p defined by p(x) = Y| czi=!.

For simplicity, we shall assume that the space of functions on which the oper-
ators are defined is C*°(—00,), i.e., the functions are infinitely differentiable on
(—00, 00). This sometimes requires (theoretically) a modification of a function out-
side the bounded interval where it is interesting. There are techniques for achieving
this, but they are beyond the scope of this book. Just imagine that they have been
applied.

We define the following operators:

Ef(z) = f(x+h) Shift (or translation) operator
Af(x) = f(z+h) — f(x) Forward difference operator
Vi(z)=f(z)— f(x —h) Backward difference operator
Df(z) = f'() Differentiation operator

) x) Central difference operator
(f(z+ 1h)+ f(z — 3h)) Averaging operator

Suppose that the values of f are given on an equidistant grid only, e.g., ; = zo+jh,
j=—M: N, (jis integer). Set f; = f(z;). Note that 6f;, 6°f; ..., (odd powers)
and puf; cannot be exactly computed; they are available halfway between the grid
points. 27 The even powers §2f;, 6*f;..., and udfj, pdf;..., can be exactly
computed. This follows from the formulas

(fe+h)= fle—h)), pw=LA+V), #=A-V. (325)

pof () = 3

Several other notations are in use, e.g., at the study of difference methods for
partial differential equations D4y, Dop, D_p, are used instead of A, ud,V, respec-
tively.

An operator P is said to be a linear operator if

P(af + Bg) = aPf + Pg

holds for arbitrary complex constants «, § and arbitrary functions f,g. The above
six operators are all linear. The operation of multiplying by a constant «, is also a
linear operator.

If P and () are two operators, then their sum, product, etc., can be defined in
the following way:

(P+Q)f=Pf+Qf,
(P-=Q)f=Pf-Qf,
(PQ)f =PQF),
(aP)f = a(Pf),
P*f=P-P---Pf, n factors.

27TWe shall see a way to get around this in Example 3.2.11.

194 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

Two operators are equal, P = Q if Pf = Qf, for all f in the space of functions
considered. Notice that A = E'— 1. One can show that the following rules hold for
all linear operators:

P+Q=Q+P, P+(Q+R)=(P+Q)+R,
P(Q + R) = PQ + PR, P(QR) = (PQ)R.

The above six operators, I, A, V, hD, §, and u, and the combinations of them by
these algebraic operations make a commutative ring, so PQ = QP holds for these
operators, and any algebraic identity that is generally valid in such rings can be
used.

If S = R” & = R™, and the elements are column vectors, then the linear
operators are matrices of size [m,n]. They do generally not commute.

If S’ = R or C, the operator is called a functional. Examples of functionals
are, if zo denotes a fixed (though arbitrary) point,

1 1
Lf = f(zo), Lf = f'(x0), Lf = /0 e~ f(z)dz, /0 | () [2da;

all except the last one are linear functionals.

There is a subtle distinction here. For example, E is a linear operator that
maps a function to a function. Ef is the function whose value at the point z is
f(z + h). If we consider a fixed point, e.g. xq, then (Ef)(zo) is a scalar. This is
therefore a linear functional. We shall allow ourselves to simplify the notation and
to write E f(zo), but it must be understood that E operates on the function f, not
on the function value f(zo). This was just one example; simplifications like this will
be made with other operators than F, and similar simplifications in notation were
suggested earlier in this chapter. There are, however, situations, where it is, for
the sake of clarity, advisable to return to the more specific notation with a larger
number of parentheses.

If we represent the vectors in R"™ by columns y, the linear functionals in R™
are the scalar products a’z = Y_i = 1"a;y;; every row a’ thus defines a linear
functional.

Examples of linear functionals in P}, are linear combinations of a finite number
of function values, Lf =)" a;f(z;). If 2; = zo + jh the same functional can be
expressed in terms of differences, e.g., Za;Ajf(wo), see Problem 3. The main
topic of this subsection is to show how operator methods can be used for finding
approximations of this form to linear functionals in more general function spaces.
First, we need a general theorem.

Theorem 3.2.4.
Let x1, xa,. .., z be k distinct real (or complez) numbers. Then no non-trivial
relation of the form

.
Zajf(;cj) =0 (3.2.6)

3.2. Difference Operators and Operator Expansions 195

can hold for all f € Py. If we add one more point (xy), there exists only one
non-trivial relation of the form Z?:o a;f(x;) =0, (except that it can be multiplied
by an arbitrary constant). In the equidistant case, i.e., if ©; = xo + jh, then
k _
Zj:o a;- (z;) = cAF f(x0), ¢ #0.

Proof. 1If (3.2.6) were valid for all f € Py, then the linear system

k
Z:c;flaj =0, 1=1,...,k,
j=1
would have a non-trivial solution (a1, as, ..., ar). The matrix of the system, how-

ever, is a Vandermonde matrix; its determinant is thus equal to the product of all
differences (x; — x;), i > j, 1 < i < k, which is nonzero.
Now we add the point zg. Suppose that there exist two relations,

k

)
Y obif(a) =0, 3 eif(a;) =0,
j=0

=0

with linearly independent coefficient vectors. Then we can find a (non-trivial) linear
combination, where xy has been eliminated, but this contradicts the result that we
have just proved. Hence the hypothesis is wrong; the two coefficient vectors must
be proportional. We have seen above that, in the equidistant case, AF f(zo) = 0 is
such a relation. More generally, we shall see in Chapter 4 that, for k + 1 arbitrary
distinct points, the kth order divided difference is zero for all f € P,. 0O

COROLLARY: Suppose that a formula for interpolation, numerical differenti-
ation or integration etc. has been derived, for example by an operator technique,
(although there are many other ways to derive such formulas). If it is a linear com-
bination of the values of f(x) at k given distinct points xj, j =1 : k, and is ezact
for all f € Py, this formula is unique. (If it is exact for all f € Pp,, m < k, only,
it is not unique.)

In particular, for any {cj};?zl, a unique polynomial P € Py, is determined by
the interpolation conditions P(x;) =c¢j, j=1:k.

Proof. The difference between two formulas that use the same function values
would lead to a relation that is impossible, by the theorem. 0O

Now we shall go outside of polynomial algebra and consider also infinite series
of operators. The Taylor series

Flo+h) = f(z) + h'(z) + %f”(:c) + %f”’(:c) +o

can be written symbolically as

TR

Ef = (1+hD+ (hD)? | (hD)” +...)f.

196 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

We can here treat hD like an algebraic indeterminate, and consider the series inside
the parenthesis (without the operand) as a formal power series 28 for the function
e"P | which is defined by this series. The reader is advised to take a look again at
the last part of §3.1.3.

For a formal power series the concepts of convergence and divergence do not
exist. When the operator series acts on a function f, and is evaluated at a point ¢, we
obtain an ordinary numerical series, related to the linear functional E f(c) = f(c+h).
We know that this Taylor series may converge or diverge, depending on f, ¢, and
h.

Roughly speaking, the last part of §3.1.3 tells that, with some care, “analytic
functions” of one indeterminate can be handled with the same rules as analytic
functions of one complex variable.

Theorem 3.2.5.
P =FE=1+A, e " =F1=1-V, 2sinh LhD = "P/2 —e=hP/2 = g,

(1+A) = ("P)! =P (6 € R).

Proof. The first formula follows from the previous discussion. The second and the
third formulas are obtained in a similar way. (Recall the definition of §.) The last
formula follows from the first formula together with Lemma 3.1.8 (in Sec. 3.1.3). O

It follows from the power series expansion that (e"P)? f(z) = /P f(x) = f(xz+6h),
when it converges. Since E = e"” it is natural to define E? f(z) = f(z + 0h), and
we extend this definition also to such values of @ that the power series for /P f ()
is divergent. Note that,e.g., the formula E%2E% f(z) = Ef%01 f(x), follows from
this definition.

When one works with operators or functionals it is advisable to avoid notations
like Az™, De®®, where the variables appear in the operands. For two important
functions we therefore set

F, : Fy(x) = e ot folz) =a™ (3.2.7)

Let P be any of the operators mentioned above. When applied to F, it acts like a
scalar that we shall call the scalar of the operator ?° and denote it by sc(P),

PF, =sc(P)F,.

We may also write (P; ha) if it is desirable to emphasize its dependence on ha. (We
normalize the operators so that this is true, e.g., we work with hD instead of D.)
Note that

s¢(BP +7Q) = fsc(P) +75¢(Q), (8,7 € C), sc(PQ) = sc(P)sc(Q),

28We now abandon the bold-type notation for indeterminates and formal power series used in
§3.1.3.
29In applied Fourier analysis this scalar is, for a = iw, often called the symbol of the operator.

3.2. Difference Operators and Operator Expansions 197

For our most common operators we obtain

(B')=¢" se(V) =sc(l-E7Y) =1-e"% (3.2.8)
sc(A) =sc(E —1) = el —1;
sc(8) = sc(EY? — E71/?) = eha/2 _ g=ha/2,

Let Qn be one of the operators hD, A, §, V. It follows from the last formulas that
so(@n) ~ ha, (h = 0); [sc(@n)] < |haje

The main reason for grouping these operators together is that each of them has
the important property (3.2.4), i.e., Q% f(c) = h* f*¥)(¢), where lies in the smallest
interval that contains all the arguments used in the computation of Q¥ f(c). Hence,

feP, = Qrf=0, VYn>k. (3.2.10)

This property 3° makes each of these four operators well suited to be the indetermi-
nate in a formal power series that, hopefully, will be able to generate a sequence of
approximations, Ly, Ly, Ls..., to a given linear operator L. L,, is the n’th partial
sum of a formal power series for L. Then

fFEP, = Luof=L¢f, Yn>k (3.2.11)

We shall see in the next theorem that, for expansion into powers of Qp, lim,,_,o L, f(z) =
Lf(x)if fis a polynomial. This is not quite self-evident, because it is not true for all
functions f, and we have seen in §3.1.3 that it can happen that an expansion con-
verges to a “wrong result”. We shall see more examples of that later. Convergence
does not necessarily imply validity.

Suppose that z is a complex variable, and that ¢(z) is analytic at the origin,
i.e., ¢(z) is equal to its Maclaurin series, (say) ¢(z) = ag + a1z + az2? + ..., if
|z| < p for some p > 0. For multivalued functions we always refer to the principal
branch. The operator function ¢(Q)},) is usually defined by the formal power series,
#(Qr) = ap+a1Qp+a2Q% +. .., where Q) is treated like an algebraic indeterminate.

The operators E, hD, A, §, V and p are related to each others. See Table 3.2.2
that is adapted from an article by the eminent blind British mathematician W. G.
Bickley (1948). Some of these formulas follow almost directly from the definitions,
others are derived in this subsection, and the rest are left for Problem 5e. We find
the value sc(-) for each of these operators by substituting a for D in the last column
of the table. (Why?)

Example 3.2.4. Express E in terms of V.

The definition of V reads in operator form E~' = 1 — V. This can be looked
upon as a formal power series (with only two non-vanishing terms) for the reciprocal
of E with V as the indeterminate. By the rules for formal power series mentioned
in §3.1.3 , we obtain uniquely E = (E"1) "' =(1-V)1=1+V+V?2+.... We
find in the table an equivalent expression containing a fraction line.

30T he operators F and u do not possess this property.

198 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

Table 3.2.1. Bickley’s table of relations between difference operators

A 3 v hD
1 h
1+A 1+ 362 +064/1+ 102 - ehP
v
2 hD
A E—1 A 6y/1+4 262+ 16 v e"P —1
) EY? _ pm1/2 A(1+)71z) V(1 -V)~Y2 2sinh 3hD
A
_ g1 152 _ 1452 _ ¢~ hD
v 1-E TTA dy/1+ 30219 v 1—e
hD InE In(1+ A) 2sinh~! 16 —1In(1 — V) hD
14+ 1A 1-1v
1 1/2 —1/2 2 152 2 1
I 3 (E + E) 7(1+A)1/2 A1+ 30 7(17V)1/2 cosh $hD

Suppose that we have proved the last column of the table. So, sc(V) =
1 —e~h hence sc((1 — V)71 = (e7h?) 7! = eh® = s¢(EB).

Example 3.2.5.

Suppose that we have proved the first and the last columns of Bickley’s table
(except for the equation hD = In E). We shall prove one of the formulas in the
second column, namely the equation § = A(1 4 A)~1/2,

By the first column, the right hand side is equal to (E — 1)E~'/2 = E'/? —
E-1? =45 Q.E.D.

We shall also compute sc(A(1 + A)~1/2). Since sc(A) = " — 1 we obtain

1 1
SC(A(L 4+ A)~1/2) = (ehe — 1)(eh*)~1/2 = e2"* — 72" = 2sinh Lha = sc(9).

By the aid of Bickley’s table, we are in a position to transform L into the form
(Qn)Rp. !

e (Jj is the one of the four operators, hD, A, §, V, which we have chosen to be
the “indeterminate”.

Lf~¢@Qn)f=(ao+a1Qn+aQy+...)f (3.2.12)

The coefficients a; are the same as the Maclaurin coefficients of ¢(z), z € C
if ¢(z) is analytic at the origin. They can be determined by the techniques
described in §3.1.3 and §3.1.4. The meaning of the relation ~ will hopefully be
clear from the following theorem.

e Ry is, e.g., ud or E*, k integer, or more generally any linear operator with the
properties that Ry F, = sc(Ry)F,, and that the values of Ry, f(z,) on the grid
Tn = xg + nh, n integer, are determined by the values of f on the same grid.

Theorem 3.2.6. Recall the notation Q, for either of the operators A,0,V,hD,

31 A sum of several such expressions with different indeterminates is also OK.

3.2. Difference Operators and Operator Expansions 199

and the notations F,(z) = e**, f,(x) = z™. Note that

Fu(z) =) i—?fn (x), (3.2.13)

n=0

Also recall the scalar of an operator and its properties, e.g., LF, = sc(L)F,,

Q) Fy = (s¢(Qn)) Fa; for the operators under consideration the scalar depends on
ha.

Assumptions:
1. A formal power series equation L = 377 a;Qy has been derived. > Furthef-
more, |sc(Qp)| < p, where p is the convergence radius of the series > a;z7,

2 €C, and .
sell) = 3 as(se(@n)). (3.2.14)
par
) 1L Ry = L (LF) @)
oa™ damn

at a = 0, or equivalently,

F,(z)da (LF,)(z) da
L | an = /o s . (3.2.15)
where C' is any circle with the origin as center.
3. The domain of x is a bounded interval I; in R.
Then
b .
LF, = (Z an;l)Fa, if [sc(Qn)] < p, (3.2.16)
j=0
k—1 '
Lf(z) =Y a;Q}f(z), if fe Py, (3.2.17)
j=0

for any positive integer k.

A strict error bound for (3.2.17), if f ¢ Py, is obtained in Theorem 3.2.7,
due to Peano.

An asymptotic error estimate (as h — 0 for fized k) is given by the first
neglected non-vanishing term a,Q} f(x) ~ a.(hRD)" f(x), r > k, if f € C"[I], where
the interval I must contain all the points used in the evaluation of Q} f(x).

Proof. By Assumption 1,
J—-1] J—1) J—1]
LFy = sc(L)Fy = lim 20: ajsc(Qf)Fo = lim. 20: a;QhFo = JILH;O(ZO: a; Q) Fa,

32To simplify the writing, the operator Ry, is temporarily neglected. See one of the comments
below.

200 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

hence LF, = (37° Q%)Fa This proves the first part of the theorem.
By (3.2.13), Cauchy’s formula (3.1.20) and Assumption 2,

2mi Fa (LFy)(x) do
g =i [Falelin _ [(L)) de
Q) Fo(z)d) Fo(x) d
/Z‘“ [S e,

Let € be any positive number. Choose J so that the modulus of the last term be-
comes €0, 27 /n!, where |6,,| < 1. This is possible, since |sc(Qp)| < p, see Assumption
1. Hence, for every x € I,

J)da - J
Lfu() - eanz—ZJQ/ S =Y Qe ZaJthn

j=0

The last step holds if J > k > n, because, by (3.2.10), jfn = 0for j > n. It follows
that |Lfp(z) — Zf éaJQ fn(x)] < € for every € > 0, hence Lf, = Z?;& anflfn.

If f € Py, fis a linear combination of f,, n = 0 : k — 1. Hence Lf =
Zk ! a; Q] fif f € Py. This proves the second part of the theorem.

The error bound is derived in § 3.2.3. Recall the important formula (3.2.4) that
expresses the k’th difference as the value of the k’th derivative in a point located in
an interval that contains all the points used in the in the computation of the k’th
difference., i.e., the ratio of the error estimate a,(hD)" f(x) to the true truncation
error tends to 1,as h - 0. O

COMMENTS TO THEOREM 3.2.6:

e This theorem is concerned with series of powers of the four operators collectively
denoted @p,. One may try to use operator techniques also to find a formula in-
volving, e.g., an infinite expansion into powers of the operator E. Then one
should try afterwards to find sufficient conditions for the validity of the result.
This procedure will be illustrated in connection with Euler-Maclaurin’s formula
in Sec. 3.3.

Sometimes, operator techniques which are not covered by this theorem can, af-
ter appropriate restrictions, be justified (or even replaced) by transform meth-
ods, e.g., z-transforms, Laplace or Fourier transforms.

e The operator R; that was introduced just before the theorem, was neglected
in the proof, in order to simplify the writing. We now have to multiply the
operands by Ry in the proof and in the results. This changes practically noth-
ing for Fy,, since Ry Fy = sc(Rp)Fy. In (3.2.17) there is only a trivial change,
because the polynomials f and Rh f may not have the same degree. For ex-
ample, if R, = pd and f € P,—an interesting case in Example 3.2.11—then
Rypf € Py—.

e The verification of the assumptions typically offers no difficulties.

e It follows from the linearity of Eq. (3.2.16) that it is satisfied also if F, is
replaced by a linear combination of exponential functions F, with different a,

3.2. Difference Operators and Operator Expansions 201

provided that [sc(Qp)| < p for all the occurring . With some care, one can let
the linear combination be an infinite series or an integral.

e There are two things to note in connection with the asymptotic error estimates.
First, the step size should be small enough; this means in practice that, in the
beginning, the magnitude of the differences should decrease rapidly, as their
order increases. When the order of the differences becomes large, it often hap-
pens that the moduli of the differences also become increasing. This can be
due to two causes: semi-convergence (see the next comment) and/or rounding
€rrors.

The rounding errors of the data may have so large effects on the high order
differences 32 that the error estimation does not make sense. One should then
use a smaller value of the order k, where the rounding errors have a smaller in-
fluence. An advantage with the use of a difference scheme is that it is relatively
easy to choose the order k£ adaptively, and sometimes also the step size h.
This comment is of particular importance for numerical differentiation. Nu-
merical illustrations and further comments are given below in Example 3.2.6
and Problem 6b, and in several other places.

e The sequence of approximations to Lf may converge or diverge, depending
on f and h. It is also often semiconvergent, recall §3.1.8, but in practice the
rounding errors mentioned in the previous comment, have often, though not
always, taken over already, when the truncation error passes its minimum. See
Problem 6b.

Example 3.2.6. The Backwards Differentiation Formula.
By Theorem 3.2.5, e™*” = 1 —V. We look upon this as a formal power series;
the indeterminate is @y = V. By Example 3.1.12,

1_. 1
L:hD:—ln(l—V):V+§V2+§V3+... (3.2.18)
Verification of the assumptions of Theorem 3.2.6: 34
1. sc(V) = 1 — e~"2; the convergence radius is p = 1.

sc(L) = sc(hD) = ha; Zsc ¥ /j=—-In(l-(1-e ")) =ha.

The convergence condition |SC(V)| < 1reads ha > —In2 = —0.69 if « is real,
|hw| < 7/3 if @ = iw.

2. For a =0, DZ-(e ‘”) = Dz" = nz" L.
By Leibniz’ rule: 2+ (ae®®) = 02" + nz" 1.
By the theorem, we now obtain a formula for numerical differentiation that
is exact for all f € Py.

1_, 1 1
hf'(a) = (V+ SV gV mv’“*l)f(ac) (3.2.19)
33Recall Example 3.2.2
34Recall the definition of the scalar sc(-), after (3.2.7).

202 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

By Theorem 3.2.4, this is the unique formula of this type that uses the values of f(z)
at the k points z,, : —h : x,,_;+1. The same approximation can be derived in many
other ways, perhaps with a different appearance, see Ch.4. This derivation has
several advantages; the same expansion yields approximation formulas for every
k, and if f € C*, f ¢ Py, the first neglected term, i.c., %Vﬁf(xn), provides an
asymptotic error estimate, if f(¥)(z,) # 0.
We now apply this formula to the table in Example 3.2.3, where f(x) = tanz,

h=0.01, k =6,
0.0163 ~ 0.0019 0.0001 0.0004

s T3 i T s
i.e., we obtain a sequence of approximate results,

#'(1.35) ~ 19.96, 20.78, 20.84, 20.84, 20.83.

0.01/'(1.35) ~ 0.1996 +

The correct value to 3D is (cos 1.35) 2 = 20.849. Note that the last result is worse
than the next to last. Recall the last comments to the theorem. In this case this is
due to the rounding errors of the data. Upper bounds for their effect of the sequence
of approximate values of f'(1.35) is, by Example 3.2.2, shown in the series
P 2 4 8 16
10 (1+2+3+4+ 3 +...)

A larger version of this problem was run on a computer with the machine unit
275 &~ 10715; f(z) = tanz, = 1.35 : —0.01 : 1.06. In the beginning the error
decreases rapidly, but after 18 terms the rounding errors take over, and the error
then grows almost exponentially (with constant sign). The eighteenth term and its
rounding error have almost the same modulus (but opposite sign). The smallest
error equals 5107'0, and is obtained after 18 terms; after 29 terms the actual error
has grown to 21075, Such a large number of terms is seldom used in practice, unless
a very high accuracy is demanded. See also Problem 6b, a computer exercise that
offers both similar and different experiences.

Eq. (3.2.18)—or its variable step size variant in Ch.4—is called the Back-
wards Differentiation Formula. 1t is the basis of the important BDF method for the
numerical integration of ordinary differential equations, see Ch.13.

Coeflicients for Backwards differentiation formulas for higher derivatives, are
obtained from the equations

(hD/V)* = (=In(1 = V)/V)*.

The following formulas were computed by means of the matrix representation of a
truncated power series 2> | see Example 3.1.11 and Problem 3.1.8(d).

hD/V 1 1/2 1/3 1/4 1/5 1
(hD/V)? 1 1 11/12 5/6 137/180 v
(hD/V? | =11 3/2 7/4 15/8 29/15 |-| V2 [|. (3.2.20)
(hD/V)* 1 2 17/6 7/2 967/240 A

(hD/V)? 1 5/2 25/6 35/6 1069/144 vi

35The rows of the matrix in (3.2.20) are the first rows taken from the matrix representation of
each of the expansions (hD/V)¥, k=1:5.

3.2. Difference Operators and Operator Expansions 203

When the effect of the irregular errors of the data on a term becomes larger
in magnitude than the term itself, the term should, of course, be neglected; it does
more harm than good. This happens relatively early for the derivatives of high
order; see Problem 6. When these formulas are to be used inside a program (rather
than during an interactive post-processing of results of an automatic computation),
some rules for automatic truncation have to be designed; an interesting kind of
detail in scientific computing.

The forwards differentiation formula, which is analogously based on the oper-
ator series,

hD =In(1+A)=A - %AQ + %A3 +... (3.2.21)

is sometimes useful too. We obtain the coefficients for derivatives of higher order
by inserting minus signs in the second and fourth columns of the matrix in (3.2.20).

A grid (or a table) may be too sparse to be useful for numerical differentiation
and for the computation of other linear functionals. For example, we saw above that
the successive backward differences of % increase exponentially if |wh| > /3. In
such a case the grid, where the values are given, gives insufficient information about
the function. One also says that “the grid does not resolve the function”. This is
often indicated by a strong variation in the higher differences. However, even this
indication can sometimes be absent. An extreme example is, f(z) = sin(wz/h),
on the grid ; = jh, j = 0,£1,£2,.... All the values, all the higher differences,
and thus the estimates of f'(z) at all grid points are zero, but the correct values of
f'(x;) are certainly not zero. So, this is an example where the expansion (trivially)
converges, but it is not valid! (Recall the discussion of a Maclaurin expansion for a
non-analytic function at the end of Sec. 3.1.3. Now a similar trouble can occur also
for an analytic function.)

A less trivial example is given by the functions

20 10
flz) = Z ansin(2mnz), g(x) = Z(an + a10+n) sin(2wnz).
n=1 n=1

f(z) = g(x) on the grid, hence they have the same difference scheme, but f'(z) #
g'(z) on the grid, and typically f(z) # g(z) between the grid points.

*** This is perhaps the right place to introduce the ”local time scale” and
relate it to a difference scheme and to the radius of convergence of the local Taylor
series. This is not yet written, except for its application to ODE’s in Ch.13. ***

3.2.3 The Peano Theorem

One can often, by a combination of theoretical and numerical evidence, rely on
asymptotic error estimates. Since there are exceptions, it is interesting that there
are two general methods for deriving strict error bounds. We call one of them the
norms and distance formula. It is not restricted to polynomial approximation,
and it is typically easy to use, but it requires some advanced concepts and it often
overestimates the error. We therefore postpone the presentation of that method to
a later chapter.

204 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

We shall now present another method, due to Peano. 36 Consider a linear
functional L, e.g., Lf = Z;):l b; f(z;), suggested for the approximate computation
of another linear functional L, e.g., Lf = fol Vaf(z)dx. Suppose that it is exact,
when it is applied to any polynomial of degree less than k: In other words, Lf=LfF,
for all f € Pj. The remainder is then itself a linear functional, R = L — L, with the
special property that

Rf=0 if f € Pg.
Next theorem gives a representation for such functionals, which provides a universal
device for deriving error bounds for approximations of the type that we are con-

cerned with. Let f € C™[a,b]. In order to make the discussion less abstract we
confine it to functionals of the following form, 0 < m < n,

b p
Rf:/ o(@)f(@)dz + 3 (b0 (x7) + b f'(@5) + oo + by fT (25)), (3.2:22)
a j:l

where the function ¢ is integrable, and the points z; lie in the bounded real interval
[a,b], and bj,, # 0 for at least one value of j. Moreover, we assume that

Rp =0 for all p € P (3.2.23)
We need some terminology. The function 37
; J 1 + signt
ty = max(t,0); t), = (t+) ;) = %; (3.2.24)

Note that ¢}, € C7=1, (j > 1).
The Peano kernel K(u) of the functional R is defined by the equation,

K(u) = ﬁRz(ﬂc —w)k ™tz €[a,b],u € (o0, 00). (3.2.25)

The subscript in R, indicates that R acts on the variable x (not u).

The function K(u) vanishes outside [a, b], because:

e if u > b then u > x, hence (v — u)ﬁ_1 =0 and K(u) =0,

e if u < a then z > u. It follows that (z — u)ﬁ__1 = (z —u)*"! € Py, hence
K (u) =0, by (3.2.25) and (3.2.23).

If ¢(z) is a polynomial then K (u) becomes a piecewise polynomial; the points
x; are the joints of the pieces. In this case K € C¥~™=2; the order of differentiability
may be lower, if ¢ has singularities.

We are now in a position to prove an important theorem.

Theorem 3.2.7. Peano’s Remainder Theorem.

36Giuseppe Peano (1858-1932), Italian mathematician and logician.

3TWe use the neutral notation ¢t here for the variable, to avoid to tie up the function too closely
with the variables z and w which play a special role in the following. The function tg_ is often
denoted H(t) an is known as the Heaviside unit step function. The function sign is defined in
§3.1.2.

3.2. Difference Operators and Operator Expansions 205

Suppose that Rp =0 for all p € Py,. Then ** | for all f € C*[a,b],

o0
Rf= [@K @du. (3.2.26)
—0o0
The definition and some basic properties of the Peano kernel K (u) were given above.

Proof. By Taylor’s formula,

k=1 ,(;)
f9(a) © k) (y i
f(x)zz%(:v—ay-l-/a (k_(l))!(:c—u)k du.

This follows from putting n =k, z = ¢ —a, t = (u — a)/(z — u) into (3.1.4). We
rewrite the last term as [5 (u) (@ —u)i‘ldu. Then apply the functional R = R,
to both sides. This yields

(k=l oo £(k) k1
PRy R DIy SO AL

—1)! (k — 1) —du,

since we can allow the interchange of the functional R with the integral, for the class
of functionals that we are working with. The theorem then follows from (3.2.25).
O

COROLLARY. Suppose that Rp =0 for all p € Py. Then

oz —a)k = k! /_OO K(u)du. (3.2.27)

For any f € C*[a,b], Rf = f(kk)!(g) Ry ((z — a)*), holds for some & € (a,b), if and
only if K(u) does not change its sign.
If K(u) changes its sign, the best possible error bound reads

RIS s 1790) / w)ldu;

u€la,b]
a formula with f®) (&) is not generally true in this case.

Proof. First suppose that K(u) does not change sign. Then, by (3.2.26) and the
mean value theorem of Integral Calculus, Rf = f*)(¢) ffooo K(u)du, £ € [a,b]. For

f(z) = (z — a)¥ this yields (3.2.27). The “if” part of the corollary follows from the
combination of these formulas for Rf and R(z — a)*.

If K(u) changes its sign, the “best possible bound” is approached by a se-
quence of functions f chosen so that (the continuous functions) f*)(u) approach

(the discontinuous function) sign K (u). The “only if” part follows. 0O

38The definition of f)(u) for u ¢ [a,b] is arbitrary.

206 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

Example 3 2.7. The remainder of the trapezoidal rule (one step of length h) reads

Rf = fo z)dz — 2(f(h) + f(0)). We know that Rp = 0 for all p € P,. The Peano
kernel is zero for u ¢ [0, k], while for u € [0, h],

" —u)? —u —ulh—u
K(u):/o (m—u)+dw—g((h—u)++0)): (h -) _h(h2) _ (h2) <o

We also compute

/_ _h_hz RN U
2 76 4 127

Since the Peano kernel does not change sign, we conclude that

3
ppe t

11, §€(O,h).

Example 3.2.8. Peano kernels for difference operators. Let Rf = A3f(a), and
set ©; = a+1ih, i =0:3. Note that Rp = 0 for p € P3. Then

Rf = f(z3) = 3f(z2) + 3f(z1) — f(20),
2K (u) = (z3 — u)% — 3(z2 — u)2 + 3(z1 — u)i — (w0 — u)?,

ie.,
0, if u> xs;
(r3 — u)?, if zo <u < x3;
2K (u) = { (23 —u)? — 3(w2 — u)?, if 11 <wu < @
(x5 —u)? — 3(x2 —u)? + 3(z1 — uw)? = (u — 20)?, if 2o <u < x5
(x3 —u)? —3(x2 —u)? + 3(z1 —uw)? — (zo —u)? =0, ifu < zo.
(3.2.28)

For the simplification of the last two lines we used that A3 (zg — u)? = 0.

Note that K (u) is a piecewise polynomial in Ps and that K" (u) is discontin-
uous at u =x;, 1 =0:3.

It can be shown (numerically or analytically) that K(u) > 0 in the interval
(ug,us). This is no surprise, for, by (3.2.4), A" f(z) = h™ (") (¢) for any integer n,
and, by the above corollary, this could not be generally true if K (u) changes its sign.
These calculations can be generalized to A* f(a) for an arbitrary integer k. This
example will be generalized in Sec. 4.2.5 to divided differences of non-equidistant
data.

In general it is rather laborious to determine a Peano kernel. Sometimes one
can show that the kernel is piecewise a polynomial, that it has a symmetry, and
that has a simple form in the intervals near the boundaries. All this can simplify
the computation, and might have been used in these examples.

It is usually much easier to compute R((x — a)*), and an approzimate error
estimate is often given by

f*) (a)
Rf ~ k!()R((m—a)k), f®(a) £ 0. (3.2.29)

3.2. Difference Operators and Operator Expansions 207

For example, suppose that = € [a,], where b — a is of the order of magnitude of a
step size parameter h, and that f is analytic in [a, b]. By Taylor’s formula,

f¥(a) x_a)k+w(x_a)k+l+..., F¥(a) #0,

f(@) = p(z) + ! (k+1)!

where p € Py, hence Rp = 0. Most of the common functionals can be applied term
by term. Then

- f(k) (a) k f(kH) (a) k+1
Assume that, for some ¢, R,(z — a)® = O(h¥*¢), for k = 1,2,3,.... (This

is often the case.) Then (3.2.29) becomes an asymptotic error estimate as
h — 0. It was mentioned above that for formulas derived by operator methods, an
asymptotic error estimate is directly available anyway, but if a formula is derived
by other means (see Chapter 4) this error estimate is important.

If Rp = 0 for p € Py, then a fortiori Rp = 0 for p € P—;, t = 0: k. We may
thus obtain a Peano kernel for each 4, which is temporarily denoted by Kji_;(u).
They are obtained by integration by parts,

Ryf = /_OO Ki(w) 0 (w)du = /_OO K () =0 () = /Kk_g(u)f(k_Q) (w)du ..

(3.2.30)
where Ky ; = (=D)'Ky, i = 1,2,..., as long as Ky_; is integrable. The lower
order kernels are useful, e.g., if the actual function f is not as smooth as the usual
remainder formula requires.

For the trapezoidal rule we obtain Ki(u) = 4ul + £ —u + 2(u — h)J.

A second integration by parts can only be performed within the framework
of Dirac’s delta functions (distributions); Ky is not integrable. A reader, who is
familiar with these generalized functions, may enjoy the following formula:

Rf = /O:O Ko(u) f(u)du = /Oo (—gé(u) +1- g&(u - h))f(u)du.

—0Q

This is for one step of the trapezoidal rule, but many functionals can be expressed
analogously.

3.2.4 Applications of Operator Techniques for Finding
Approximation Formulas

Example 3.2.9. Finding interpolation formulas by operator methods.
Consider the operator expansion

o0

oAby = BT = (1 - V)0 =3 (7) (VY 1),

=0 M

208 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

The verification of the assumptions of Theorem 3.2.6 offers no difficulties, and we
omit the details. Truncate the expansion before (—V)*. By the theorem we obtain,
for every ~:

e an approximation formula for f(b—~h) that uses the function values f(b—jh)
for j =0: k —1; it is exact if f € Py, and is unique in the sense of Theorem 3.2.4;

e an asymptotic error estimate if f ¢ Py, namely the first neglected term of
the expansion, i.e., (})(=V)¥f(b) ~ (})(=h)* f*) (b)

Note that the binomial coefficients are polynomials in the variable ~y, and
hence also in the variable x = b — vh. It follows that the approximation formula
yields a unique polynomial Pg € Py, that solves the interpolation problem:
Pg(b—hj) = f(b—hy), j =0: k—1; (B stands for Backward). If we set x = b—~h,
we obtain

PB(iIJ)

Ef(b) = (1 - V)" f(a) (3.2.31)

k—1
3 (7) (“VYF(B) = F(b— k) + O F0).
i—o N

Due to the uniqueness, see the corollary of Theorem 3.2.4, the approximation
to f'(b) obtained by the first k — 1 terms in Example 3.2.4 for z,, = b is exactly the
derivative Pg(b).

Similarly, the interpolation polynomial Pr € P}, that uses forward differences
based on the values of f at a,a+ h,...,a+ (k — 1)h, reads, if we set © = a + 6h,

k—1
o\ .
Pr(a) = Ef(0) = 0+ 8)°S@) = X () 471(@) = fla-+0m) + 00),
j=0
(3.2.32)
These formulas are known as Newton’s interpolation formulas for constant
step size, backwards and forwards. The generalization to variable step size will be
found in Sec.4.2.
There exists a similar expansion for central differences. Set
6(0+1i—1
WO =1, 00 =0, 0= ("

;) (G >1). (3.2.33)

¢; is an even function if j is even, and an odd function if j is odd. It can be shown
that 67y, (0) = dr—;(6), and 67 ¢x(0) = &; 4, (Kronecker’s delta). The functions ¢y
have thus an analogous relation to the operator ¢ as, e.g., the functions 67 /! and (g)
have to the operators D and A, respectively. We obtain the following expansion,
analogous to Taylor’s formula and Newton’s forward interpolation formula. The
proof is left for Problem 4(b). Then

k—1
E’f(a) = ;(0)8 f(a) = fla+6h) + O(RF f)). (3.2.34)
j=0

The direct practical importance of this formula is small, since 6/ f(a) cannot be
expressed as a linear combination of the given data when j is odd. There are several

3.2. Difference Operators and Operator Expansions 209

formulas, where this drawback has been eliminated by various transformations.
They were much in use before the computer age; each formula had its own group
of fans. We shall derive only one of them, by a short break-neck application of the
formal power series techniques. 3° Note that

E? = "D = cosh §hD + sinh 6hD,

62 =ehD _9 4 e’hD, ehD _ o=hD _ 26,
cosh6hD = L(E’ + E%) =" ¢y
7j=0
1 d(cosh ehD > 1 dé¥ ds?
inh 0hD = =
S 9 Z 94257 anD)
o j(sz(jfl) -
= Z@j (H)T(e’”) e "P) = Z¢ZJ() u527 L
Jj=0 j=0
Hence,*°

Flao+00) = B fo = fo + 0usfo + S50%Fy + Z@J V(T gy + 67 5o

(3.2.35)
This is known as Stirling’s interpolation formula %' . Note that

$2j(0) = 02(6 = 1) (8% —4) -+ (67 — (5 — 1)*)/(2))".

The expansion yields a true interpolation formula 42 iff it is truncated after an even
power of 4.

Strict error bounds can be found by means of Peano’s theorem, but the re-
mainder terms given in Sec.4.2 for Newton’s general interpolation formula (that
does not require equidistant data) typically give the answer easier. Both are typi-
cally of the form cgq1 f*+1)(¢) and require a bound for a derivative of high order.
The assessment of such a bound typically costs much more work than performing
interpolation in one point.

A more practical approach is to estimate a bound for this derivative by means
of a bound for the differences ** of the same order. This is not a rigorous bound, but
it typically yields a quite reliable error estimate, in particular if you put a moderate

39 Differentiation of a formal power series with respect to an indeterminate has a purely algebraic
definition. See the last part of §3.1.3.

40The first three terms have been taken out from the sum, in order to show their simplicity
and their resemblance to Taylor’s formula. They yield the most practical formula for quadratic
interpolation; it is easily remembered and worth to be remembered. An approximate error bound
for this quadratic interpolation reads |0.0165° f| if || < 1.

41 James Stirling (1692-1770), British mathematician, perhaps most famous for his amazing
approximation to n!.

42For k = 1 you see that fo + 0udfo is not a formula for linear interpolation; it uses three data
points instead of two. It is similar for all odd values of k.

43Recall the important formula in (3.2.4).

210 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

safety factor on the top of it. There is much more to be said about the choice of
step size and order; we shall return to this kind of questions in later chapters.

You can make error estimates during the run; it can happen sooner ot later
that it does not decrease, when you increase the order. You may just as well stop
there, and accept the most recent value as the result. This event is most likely due
to the influence of irregular errors, e.g. rounding errors, but it can also indicate
that the interpolation process is semi-convergent only.

The attainable accuracy of polynomial interpolation applied to a table with
n equidistant values of an analytic function, depends strongly on 8; the results are
much poorer near the boundaries of the data set than near the center. This question
will be illuminated in Sec.4.4 by means of complex analysis.

More information about the classical methods for polynomial interpolation of
equidistant data is found in, e.g., Froberg [12] and Steffensen [31], in particular
§18 about “the calculus of symbols”. For the history of these matters see, e.g.,
Goldstine [14].

Example 3.2.10. Continuation of the difference scheme of a polynomial. The
following is a classical application of a difference scheme for obtaining a smooth
extrapolation of a function outside its original domain. Given the values y, ; =
f(xy —ih) for i =1 : k and the backward differences, V/y,_1, j = 1: k— 1. Recall
that V#~1y is a constant for y € P;. Consider the algorithm

VE = Vi g
forj=k—1:-1:1, V'7'y, =V/"ly, ; +Viy,; end (3.2.36)
Yn = voyn;

It is left for Problem 7a to show that the result y,, is the value at © = x, of the
interpolation polynomial which is determined by ¥, ;, ¢ = 1 : k. This is a kind
of inverse use of a difference scheme; there are additions from right to left along a
diagonal, instead of subtractions from left to right.

This algorithm, which needs additions only, was, in principle, used long ago
for the production of mathematical tables, e.g., for logarithms. Suppose that one
knows, e.g., by means of a series expansion, a relatively complicated polynomial
approximation to (say) f(z) = Inz, that is accurate enough in (say) the interval
[a,b], and that this has been used for the computation of k very accurate values
yo = f(a), y1 = f(a+ h),...yr—1, needed for starting the difference scheme. The
algorithm is then used forn =k, k+1, k+2,..., (b—a)/h. k—1 additions only
are needed for each value y,,. Some analysis must have been needed for the choice
of the step h to make the tables useful with (say) linear interpolation, and for the
choice of k to make the basic polynomial approximation accurate enough over a
substantial number of steps. The precision used was higher, when the table was
produced than when it was used. When « = b was reached, a new approximating
polynomial was needed for continuing the computation over an other interval; at
least a new value of V¥~1y,,.

This procedure was the basis of the unfinished Difference Engine project of
the great 19th century British computer pioneer Charles Babbage. He abandoned

3.2. Difference Operators and Operator Expansions 211

it after a while in order to spend more time on his huge “Analytic Engine” project,
which was also unfinished, but he documented a lot of ideas, where he was (say)
100 years ahead of his time. “Difference engines” based on Babbage’s ideas were,
however, constructed in Babbage’s own time, by the Swedish inventors Scheutz
(father and son) 1834 and by Wiberg 1876, and they were applied, among other
things, to the automatic calculation and printing of tables of logarithms. See, e.g.,
Goldstine [14].

A generalization of the algorithm in (3.2.36) to the non-equidistant case will
be presented in Ch. 4, with the use of the notion of scaled divided differences. In
Sec. 13.4, both the equidistant and the non-equidistant case will be applied to
the implementation of multistep methods for the numerical solution of differential
equations.

Example 3.2.11. Central difference formulas for numerical differentiation.
From the definition and from Bickley’s table, i.e., Table 3.2.1,

§=EV? g1/ = 2sinh(%hD). (3.2.37)

We may therefore put z = %hD, sinhx = %(5 into the following expansion (see
Problem 3.1.7),

il lsinh3x+1~3sinhsx 1:3-5sinh’s
PSR TY TS T 5 246 7 7

with the result

3 5 7 9 11
& 36 50 356 6307 . (3.2.38)

5
D =2arcsinh- =6 — — + — — B '
h arcsinhy =0 = 57+ 510 7,168 204,912 2,883,584

The verification of the assumptions of Theorem 3.2.6 follows the pattern of Example
3.2.6, and we omit the details. Since arcsinhz, z € C has the same singularities as
its derivative (1 + 22)~'/2, namely z = i, it follows that the expansion in (3.2.38),
if sc(6/2) is substituted for §/2, converges if sc(d/2) < 1, hence p = 2.

By squaring the above relation, we obtain

. . 54 56 58 510 (512
hD)? =6 - — + — — — — +...
(hD) 12 + 90 560 + 3,150 16,632 ’
52 54 56 58 (510 (52f0
"r) R (1=t = — = —— — +...] =22 (3.2
(o) (1 12 90 560 " 3,150 16,632 > h?2 (3.2.39)

By Theorem 3.2.6 Eq. (3.2.39) holds for all polynomials. Since the first ne-
glected non-vanishing term of (3.2.39) (when it is applied to f) is (asymptotically)
c02 f"(x9), the formula for f"(z) is exact if f” € Pio, ie. if f € Py4, although
only 13 values of f(x) are used. ** We thus gain one degree and, in the application
to other functions than polynomials, one order of accuracy, compared to what we

44Recall that P14 is the space of polynomials of degree less than 10,

212 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

may have expected by counting unknowns and equations only, see Theorem 3.2.4.
This is typical for a problem that has a symmetry with respect to the hull of the data
points.

Suppose that the values f(z) are given on the grid & = xo + nh, n integer.
Since Eq. (3.2.38) contains odd powers of 4, it cannot be used to compute f;, on
the same grid. #® This difficulty can, however, be overcome by means of a formula

given in Bickley’s table, namely
/ 1
=1/1+ 152. (3.2.40)

This is derived as follows. The formulas y = cosh 22 2 , g = sinh % follow rather

directly from the definitions; the details are left for Problem 5a. The formula
(coshhD)? — (sinh hD)? =1 holds also for formal power series. Hence

1 1
u2—1(52:1, or u2:1+152,

from which the relation (3.2.40) follows.
Now multiply the right hand side of equation (3.2.38) by the expansion

1\ 172 52 350 585 3568
= —_— = . :l: .« e . . .
1=p(1+ 1°) u(1- 8 128 " 1,024 T 32,768) 324

By (3.2.41) and (3.2.38),

hD:u(1—§+%48+)(e- 53+%+) (3.2.42)
2 4 6
:(1—%+g—0—i—oi...)u5.

This leads to a useful central difference formula for the first derivative (where we
have used more terms than we displayed in the above derivation).
52 54 56 58 510 512 fl f 1
! =l-—=4+—=—-——+ = - + .
flao) = (1= G+ 55~ 1m0 om0~ o T ot) an

(3.2.43)

If you truncate the operator expansion in (3.2.43) after the 6** term, you obtain
exactly the derivative of the interpolation polynomial of degree 2k + 1 for f(z) that
is determined by the 2k + 2 values f;, ¢ = £1,£2,...,+(k + 1). Note that all
the neglected terms in the expansion vanish when f(z) is any polynomial of degree
2k + 2, independent of the value of fy. 6 So, although we search for a formula that
is exact in Pajp42, we actually find a formula that is exact in Paj3.

By the multiplication of the expansions in (3.2.39) and (3.2.42), we obtain
the following formulas, which have applications in other sections

(hD)® = (1 — —52 + F054) pd® (3.2.44)
45This was pointed out in the beginning of §3.2.2.
46Check the statements first for k = 0; you will recognize a familiar property of the parabola.

3.2. Difference Operators and Operator Expansions 213

(hD)®> = (1 — %62 + ..)ud®
(hD)" = pué™ + ...

Another valuable feature typical for 62-ezpansions, i.e., for expansions in powers of
02, is the rapid convergence. It was mentioned earlier that p = 2, hence p? = 4,
(while p =1 for the backwards differentiation formula). The error constants of the
differentiation formulas obtained by (3.2.39) and (3.2.43) are thus relatively small.

All this is typical for the symmetric approximation formulas which are based
on central differences, see, e.g., the above formula for f”(z¢), or the next example.
In view of this, can we forget the forward and backward difference formulas alto-
gether? Well, this is not quite the case, since one must often deal with data that
are unsymmetric with respect to the point where the result is needed. For example,
given f_1, fo, f1, how would you compute f'(x1)? Asymmetry is also typical for
the application to initial value problems for differential equations, see Sec. 13.4 and
Ch. 14; in such applications methods based on symmetric rules for differentiation
or integration have sometimes inferior properties of numerical stability.

When a problem has a symmetry around some point zy, you are advised to
try to derive a d%-expansion. The first step is to express the relevant operator in
the form ®(?), where the function @ is analytic at the origin.

To find a §%-expansion for ®(6?) is algebraically the same thing as expanding
®(z) into powers of a complex variable z. So, the methods for the manipula-
tion of power series mentioned in Sec. 3.1.3 and Prob 3.1.8 are available, and so
is the Cauchy+FFT method (Sec. 3.1.4). For suitably chosen r, N you evaluate
®(re?™k/N) |k = 0: N — 1, and obtain the coefficients of the 6>-expansion by the
FFT! You can therefore derive a long expansion, and later truncate it as needed. 47

Suppose that you have found a truncated §2-expansion, (say) A(6%) = a1 +
az6% +az0* +. . .+ayy16%*, but you want instead an equivalent symmetric expression
of the form B(E) = b, +by(E+E~ 1) +b3(E* + E~2)+...+ b1 (E¥ + E7F). Note
that 6> = E — 2+ E~!. The transformation A(6®) = B(E) can be performed in
several ways. Since it is linear it can be expressed by a matrix multiplication of the
form b = Myy1a, where a, b are column vectors for the coefficients, and My is
the k£ 4+ 1 x k 4+ 1 submatrix in the northwest corner of a matrix M that turns out
to be

1 -2 6 =20 70 =252 924 —3432

0 1 -4 15 -56 210 -792 3003

0 0 1 -6 28 —-120 495 —-2002

0O 0 O 1 -8 45 —220 1001

M= 0O 0 O 0 1 -10 66 —364 (3.2.45)

0O 0 O 0 0 1 -12 91

0O 0 O 0 0 0 1 —14

0O 0 O 0 0 0 0 1

Note that the matrix elements are binomial coefficients that can be generated

47You also obtain error estimates for all these truncated expansions for free.

214 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

recursively (Problem 13). It is therefore easy to extend the matrix; this 8 x 8 matrix
is sufficient for a §%-expansion up to the term agd*?.

The operator D! is defined by the relation (D~'f)(z) = [* f(t)dt. The
lower limit is not fixed, so D~! f contains an arbitrary integration constant. Note
that DD~'f = f, while D™'Df = f 4+ C, where C is the integration constant. A
difference expression like D! f(b) — D~ ! f(a) = f: f(t)dt is uniquely defined. So
is also dD~! f, but D716 f has an integration constant.

A right-hand inverse can be defined also for the operators A, V,§. For exam-
ple, (V~'u),, = 37" u; has an arbitrary summation constant but, e.g., VV~! =1,
and AV~! = EVV~! = E are uniquely defined.

One can make the inverses unique by restricting the class of sequences (or
functions). For example, if we require that Z;io uj is convergent, and make the
convention that (A~'u), — 0 as n — oo, then A~'u, = — 37 wu;; notice the
minus sign. Also notice that this is consistent with the following formal computa-
tion: (1+ E+ E%*+..)u, = (1 — E)"'u, = —A~ u,. We recommend, however,
some extra care with infinite expansions into powers of operators like E that is not
covered by Theorem 3.2.6, but the finite expansion

I+E+E*+...+E" "' =(E"-1)(E-1)""! (3.2.46)

is valid.

Example 3.2.12. Finding the symmetric integration formulas of Newton—Cotes
by operator methods. Let m,n be given integers. let h be a positive step size,
set H = mh. H is called the “bigstep”. The Newton—Cotes formulas *® for
numerical integration are usually written as follows.

mh n
f(x) dz = th,f(Zh) + Rmyn(h)a (wn—i = wi)-
0 i=0
In order to utilize the symmetry of the problem easier, we move the origin to the
midpoint of the interval of integration. Set j = —n/2:1:n/2, 2; = jh, f; = f(jh).
The same formula now reads

mh/2 n/2
/ fl@)de =h Z w; fi + Rm,n(h), w_j = wj. (3.2.47)
—mh/2 j=—n/2

J, n/2 and m/2 are not necessarily integers. For a Newton—Cotes formula n/2 — j
and m/2 — j are evidently integers, hence (m — n)/2 is an integer too, but there
may be other formulas, perhaps almost as good, where this is not the case. The
coefficients w; = wj;m,, are to be determined so that the remainder R,, , vanishes
if f € Py, with ¢ as large as possible for given m,n.

The left hand side, divided by h reads, in operator form,

(eth/Q _ €_th/2)(hD)_1f(ZB0),

48Roger Cotes (1682-1716) was an English mathematician. He was a highly appreciated young
colleague of Isaac Newton (1643-1727).

3.2. Difference Operators and Operator Expansions 215

which is an even function of hD. By (3.2.38), hD is an odd function of §. It follows
that the left hand side is an even function of J, hence we can, for every m, write

(eth/2 —e*th/z)(hD)*1 = A (0%) = a1 +a2,,0° +agm0t+.. .+ai+17m62i e

(3.2.48)
The coefficients are computed by means of the Cauchy+FFT method. Figure 3.2.12
was obtained for N = 32, r = 2. the absolute errors of the coefficients 4° are then
less than 10713,

We truncate after (say) §2%; the first neglected term is then aj;20%%72. We
saw above how to bring a truncated §2-expansion to B(E)-form, by +bs(E+ E 1)+
b3(E? + E=%) +...+ b (E* + E~%). By comparison with (3.2.47), we conclude that
n/2 = k, that the indices j are integers, and that w; = bj11 (if j > 0). If m is even,
this becomes a Newton—Cotes formula. If m is odd, it may still be a useful formula,
but it does not belong to the Newton—Cotes family, because (m —n)/2 =m/2 —k
is no integer.

If n = m a formula is said to be of the closed type; the function values
on the boundary of the interval of integration are used. Its remainder term is the
first neglected term of the operator series, truncated after 2%, 2k = n = m (and
multiplied by h), hence the remainder of (3.2.47) is estimated by a2+m/25m+2f0, or
(better) Rym ~ (Go4my2/m)H(RD)™*? fo, where H = mh. >

If n < m aformula is said to be of the open type. Among the open formulas
we shall only consider the case that n = m — 2; this is called “the” open Newton—
Cotes formula. The operator expansion is truncated after 6™~2 and we obtain
Rm—?,m ~ (a1+m/2/m)H(hD)mf0- 21

We shall need the case m = 8 in §3.3.5. One result of our computations reads,

64, 688, 736. 3956 2368
Ag(6?) =8+ 22524 9885 | T30 55—
8(07) =84 50"+ 0"+ 1000+ s T 16

S04 ... (3.249)

The closed integration formula becomes (Problem 13)

z f(a)de = % (—4540f0 +10496(f1 + f_1) — 928(f> + f_2)
+5888(f5 + f_s)) + 989(fu + f_4)) +R, (3.2.50)
296 (10)
467775Hh1°f 19 (2y). (3.2.51)

The coefficients are first obtained in floating point representation. The trans-
formation to rational form is obtained by a continued fraction algorithm, described

49See Lemma 3.1.2 about the error estimation.

501f the integral is computed over [a,b] by means of a sequence of “bigsteps”, each of length H,
an estimate of the global error has the same form, except that H is replaced by b — a, and fo is
replaced by max,¢[4,5] |f(2)|. The exponent of AD in an error estimate that contains H or b — a,
is known as the global order of accuracy of the method, see Ch.5.

5lFormulas with n > m are rarely mentioned in the literature (except for m = 1). We do not
understand why; it is rather common that an integrand has a smooth continuation outside the
interval of integration. We shall take up this question in Ch5.

216 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

Figure 3.2.1. The coefficients |a;| of the 6*-expansions for m =2 : 14,

in Example 3.4.1. 52

It was mentioned that, if m is odd, Eq. (3.2.48) does not provide formulas
of the Newton—Cotes family, since (m — n)/2 is no integer, nor are the indices j in
(3.2.47) integers. So, the operator associated with the right hand side of (3.2.47)
is of the form ¢ (EY? + E-Y?) 4 co(E*/? + E73/?) 4 c3(E>/> + E°/?) ... If
it is divided algebraically by p = (E'Y/2 + E~1/2), however, it becomes of the
B(E)-form (say)

Vi +b(E+E)+ (B2 +E) +...+b(E* + EF).
If m is odd we therefore expand
(D2 — PR RD) = /TH S

into a §2-series, with coefficients a;, again numerically by the Cauchy+FFT method.

For each m two truncated §2-series, one for the closed an one for the open case,
are then transformed into B(FE)-expressions numerically by means of the matrix
M, as described above. The expressions are then multiplied algebraically by p =
L(EY? + E~1/%). We then have the coefficients of a Newton-Cotes formula with
m odd. This simple algebraic calculation is easily programmed in a language for
floating-point computation. Otherwise we have succeeded in avoiding extensive
algebraic calculations by using the numerical Cauchy+FFT method.

The asymptotic error is

a;n/2+1H(hD)m+1) and alm/z—lH(hD)mil)

for the closed type, and open type, respectively (2k = m — 1). The global orders
of accuracy for Newton—Cotes methods with odd m are thus the same as for the
methods, where m is one less.

521t can be shown that the exact coefficients are rational numbers, though it is sometimes hard

to estimate in advance the order of magnitude of the denominators. The algorithm must be used
with judgment. We checked our results with formulas in the Handbook [1], Sec. 25.4.

3.2. Difference Operators and Operator Expansions 217

It goes without saying that this is not how Newton and Cotes found their
methods. Our method may seem complicated, but the Matlab programs for this are
rather short, and to a large extent useful for other purpose. The whole computation
of about 150 Cotes-coefficients and 25 remainders (m = 2 : 14), including graphical
output to the screen took less than two seconds on a PC. %3 In Chapters 4 and 5
we shall look at the Newton—Cotes formulas from other points of view. There are
some tables of coefficients and remainder terms in Ch. 5.

Operator techniques can also be extended to functions of several variables.
The basic relation is again the operator form of Taylor’s formula, which in the case
of two variables reads,

0 0
u(xo + h,yo + k) = exp <h£ + k6_y> u(zo,Yo)

0 0
= exp (ha_m> exp (ka_y> (o, Yo)- (3.2.52)

There will be applications in some problems of Ch. 4.

3.2.5 Single Linear Difference Equations

Historically, the term difference equation was probably first used in connection with
an equation of the form

boAkyn + blAkilyn + ... bk—lAyn + bkyn =0, n=0,1,2,...

which reminds of a linear homogeneous differential equation. It follows, however,
from the discussion after (3.2.1) and (3.2.2) that this equation can also be written
in the form

Yntk + G1Yn+k—1 + - .-+ ary, =0, (3.2.53)

and nowadays this is what one usually means by a single homogeneous linear
difference equation of kth order with constant coefficients; a difference equation
without differences. More generally, if we let the coefficients a; depend on n; we
have a linear difference equation with variable coefficients. If we replace the zero
on the right hand side with some known quantity r,,, we have a nonhomogeneous
linear difference equation.

These types of equations are the main topic of this subsection. The coefficients
and the unknown are real or complex numbers. We shall occasionally see examples
of more general types of difference equations, e.g., a nonlinear difference equation
F(YntksYntk—1s---,Yn) = 0), and we shall, in Sec 13.9, deal with first order systems
of difference equations, i.e. yp4+1 = Apyn + o, where r,, y,, etc. are vectors while
A, is a square matrix. Finally, partial difference equations where you have two

53This includes the calculation of several alternatives for rational approximations to the floating-
point results. For a small number of the 150 coefficients the judicious choice among the alternatives
took, however, much more than 2 (human) seconds; this detail is both science and art.

218 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

(or more) subscripts in the unknown, occur often as numerical methods for partial
differential equations, but they have many other important applications too.

A difference equation can be viewed as a recurrence relation. With given
values of yo, y1,--., Yr—1, called the initial values or the seed of the recurrence,
we can successively compute yi, Yk+1, Yk+2,---; We see that the general solution of
a k’th order difference equation contains k arbitrary constants, just like the general
solution of the k’th order differential equation.

There are other important similarities between difference and differential equa-
tions, for example the following superposition result.

Lemma 3.2.8. The general solution of a nonhomogeneous linear difference equa-
tion (also with variable coefficients) is the sum of one particular solution of it, and
the general solution of the corresponding homogeneous difference equation.

In practical computing, the recursive computation of the solution of a dif-
ference equations is most common. It was mentioned at the end of Sec.3.1 that
many important functions, e.g., Bessel functions and orthogonal polynomials, sat-
isfy second order linear difference equations with variable coefficients, (although this
terminology was not used there). Other important applications are the multistep
methods for ordinary differential equations.

In such an application you are usually interested in the solution for one par-
ticular initial condition, but due to rounding errors in the initial values you obtain
another solution. It is therefore of interest to know the behaviour of the solutions
of the corresponding homogeneous difference equation. The questions are: e Can
we use a recurrence to find the wanted solution accurately?

e How shall we use a recurrence, forward or backward?

Forward recurrence is the type we described above. In backward recurrence we
choose some large integer N, and give (almost) arbitrary values of yyy4, i = 0: k—1
as seed, and compute y, forn =N —1:—-1:0.

We have seen this already in Example 1.3.3 (and in Problem 10a of Sec. 1.3)
for an inhomogeneous first order recurrence relation. It was there found that the
forward recurrence was useless, while backward recurrence, with a rather naturally
chosen seed, gave satisfactory results; (see Example 1.3.4 and Problem 10b).

It is often like this, though not always. In Problem 9 of Sec. 1.3 it is the
other way around: the forward recurrence is useful, and the backward recurrence is
useless.

Sometimes boundary values are prescribed for a difference equation instead
of initial values, (say) p values at the beginning and ¢ = k — p values at the end,
e.g., the values of yo, y1,...,Yp-1,--+, YN—qs---,YN—1, Yn are given. Then the
difference equation can be treated as a linear system with N —k unknown. This also
holds for a difference equation with variable coefficients and for an inhomogeneous
difference equation. From the point of view of numerical stability, such a treatment
can be better than either recurrence. The amount of work is somewhat larger, not
very much though, for the matrix is of a special type. It is, for obvious reasons,
called a band matrix. We shall see in Ch.6 that the amount of work is then
only proportional to the number of unknown. An important particular case has

3.2. Difference Operators and Operator Expansions 219

k =2, p=q = 1; the matrix and the linear system are then called tridiagonal,
again for obvious reasons. An algorithm is described in §4.6.3.

Another similarity for differential and difference equations, is that the general
solution of a linear equation with constant coefficients has a simple closed form.
Although, in most cases, the real world problems have variable coefficients (or are
nonlinear), one can often formulate a class of model problems with constant coeffi-
cients, with similar features. The analysis of such model problems can give hints,
e.g., whether forward or backward recurrence should be used, or other questions re-
lated to the design and the analysis of the numerical stability of a numerical method
for a more complicated problem.

We shall therefore now study how to solve a single homogeneous linear differ-
ence equation with constant coefficients (3.2.53), i.e.,

Yntk + @1Ynt+k—1 + ...+ QxYn = 0.

It is satisfied by the sequence {y;}, where y; = cu’, (u # 0, ¢ # 0), if and only if
utF 4 guntRl 4 4 apu™ = 0, that is when

p(u) = u* + a1t +.. . 4a,=0. (3.2.54)

Equation (3.2.54) is called the characteristic equation of (3.2.53); ¢(u) is called
the characteristic polynomial.

Theorem 3.2.9.
If the characteristic equation has k different roots, uy,...,ux, then the general
solution of equation (3.2.53) is given by the sequences {y,}, where

Yn = crul + coul + - - + cpuy, (3.2.55)
where c1,¢a, ..., c are arbitrary constants.

Proof. That {y,} satisfies equation (3.2.53) follows from the previous comments

and from the fact that the equation is linear. The parameters c¢y,co,..., ¢, can
be adjusted to arbitrary initial conditions yg,y1,...,yr—1 by solving the system of
equations
1 1 - 1 c Yo
Uy U2 U C2 Y1
u’fl u§71 u’,jfl Ck Yk—1

The matrix is a Vandermonde matrix and its determinant is thus equal to the
product of all differences (u; — u;), i > j, 1 <14 < k, which is nonzero. 0O

Example 3.2.13. Consider the difference equation y,,+2 — 5yn+1 + 6y, = 0 with
initial conditions yo = 0, y; = 1. Forward recurrence yields y» = 5, y3 = 19,
Ya = 65, e

220 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

The characteristic equation u? — 5u + 6 = 0 has roots u; = 3, us = 2. Hence,
the general solution is y,, = ¢13™ + ¢22". The initial conditions give the system of
equations

c1+c =0,
3c1 +2¢ =1,
with solution ¢; = 1, ¢ = —1, hence y,, = 3" — 2™.

As a check we find yo = 5, y3 = 19 in agreement with the results found by
using forward recurrence.

Example 3.2.14.
Consider the difference equation

Tnt1(x) — 22T, (z) + Th—1(z) =0, n>1, -l1<a<1,
with initial conditions Ty(z) = 1, Ty (z) = z. We obtain Ty(z) = 22? — 1, T(z) =
423 -3z, Ty(x) = 82*—82%+1, By induction, T, () is an nth degree polynomial
in z.

We can obtain a simple formula for T, (z) by solving the difference equation.
The characteristic equation is u? — 2zu + 1 = 0, with roots u = x £iv/1 — 22. Set
x=cos¢, 0 <z <m. Then u = cos¢ % isin ¢, and thus

_ i _ =i
up = €', up = e, Uy # Us.

The general solution is T),(z) = c1e"® 4 coe ? and the initial conditions give

C1 +62:1,

c1€ + ey = cos @,

with solution ¢; = ¢2 = 1/2. Hence, T, (x) = cos(ng), x = cos ¢.

These polynomials are thus identical to the important Chebyshev polynomials
(of the first kind) that were introduced in (3.1.32), and were there in fact denoted
by T, (z).

We excluded the cases =1 and z = —1, i.e.;, ¢ = 0 and ¢ = 7, respectively.
For the particular initial values of this example, there are no difficulties; the solution
Tn(x) = cosng depends continuously on ¢, and as ¢ — 0 or phi — «w, Tp(z) =
cosng¢ converges to 1 Vn or (—1)™ Vn, respectively.

When we ask for the general solution of the difference equation, the matters
are a little more complicated, because the characteristic equation has in these cases
a double root; u =1 for x = 1, u = —1 for x = —1. Although they are thus covered
by the next theorem, we shall look at them directly, because they are easy to solve,
and they give a good preparation for the general case.

If z = 1, the difference equation reads Ty, 41 — 27T, + T, 1 = 0, i.e., A%T,, = 0.
We know from before ° that this is satisfied iff T,, = an + b. The solution is no
longer built up by exponentials; a linear term is there too.

54Gee, e.g., Theorem 3.2.4.

3.2. Difference Operators and Operator Expansions 221

If z = —1, the difference equation reads T},4+1 + 27, + T),—1 = 0. Set T3, =
(—1)"V,,. The difference equation becomes, after division by (—1)"*1, V11 —2V,, +
Vi—1 = 0, with the general solution, V,, = an + b, hence T,, = (—1)"(an + b).

Theorem 3.2.10.
When wu; is an m;-fold root of the characteristic equation, then the difference
equation (12.3.3) is satisfied by the sequence {y,}, where

Yn = Pi(”)”?;

and P; is an arbitrary polynomial in Pp,,. The general solution of the difference
equation is a linear combination of solutions of this form using all the distinct roots
of the characteristic equation.

Proof. We can write the polynomial P € P,,, in the form
Pi(n) =by +ban+bgn(n—1)+---+by,n(n—1)---(n —m; + 2).

Thus it is sufficient to show that equation (3.2.53) is satisfied when

yp=n(n—1)---(n—p+ Dul = (uPOP(u")/0u’)y—u,, p=12,....,m; — 1.
(3.2.56)
Substitute this in the left-hand side of equation (3.2.53):
or or
p= n+k n+k—1 L ny_,p~ n

ues (u +aru + 4 agu) U (Pp(u)u™)
— (60 @t + (P) oD (wnur=t + -+ (P (w) 2w
= u? (67 (wpu" + < 1>¢ (wynu~" o+ <p> ou) 5 (u")).

The last manipulation was made using Leibniz’s rule.

Now ¢ and all the derivatives of ¢ which occur in the above expression are 0
for u = w;, since u; is an m;-fold root. Thus the sequences {y, } in equation (3.2.56)
satisfy the difference equation. We obtain a solution with Y m; = k parameters
by the linear combination of such solutions derived from the different roots of the
characteristic equation.

It can be shown (see, e.g., Henrici [18, p. 214]) that these solutions are linearly
independent. %° 0O

Note that the double root cases discussed in the previous example are com-
pletely in accordance with this theorem. We take one more example.

Example 3.2.15.
Consider the difference equation y,,+3 — 3yny2 + 4y, = 0. The characteristic
equation is u® — 3u? + 4 = 0 with roots u; = —1, us = uz = 2. Hence, the general
55This also follows from a different proof given in Sec. 13.8, where a difference equation of higher
order is transformed to a system of first order difference equations. This transformation also leads

to other ways of handling inhomogeneous difference equations than those which are presented in
this subsection.

222 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

solution reads

Yn = c1(=1)" + (ca + c3n)2".

For a nonhomogeneous linear difference equation of order &, one can often
find a particular solution by the use of an “Ansatz” with undetermined coefficients;
thereafter, by Lemma 3.2.8 one can get the general solution by adding the general
solution of the homogeneous difference equation.

Example 3.2.16.
Consider the difference equation y,,+1 —2y,, = a™, with initial condition yo = 1.
Try the “Ansatz” y, = ca™. One gets ca® — 2ca™ = a", ¢ = 1/(a — 2), a # 2.
Thus the general solution is y, = a"/(a — 2) + ¢12". By the initial condition,
1 =1-1/(a— 2), hence
al — 2n

When a — 2, "Hospital’s rule gives y,, = 2" + n2"~!. Notice how the “Ansatz”
must be modified when a is a root of the characteristic equation.

The general rule when the right hand side is of the form P(n)a™ (or a sum of
such terms), where P is a polynomial, is that the contribution of this term to y,, is
Q(n)a™, where @ is a polynomial. If a does not satisfy the characteristic equation
then deg) = deg P; if a is a single or a double root of the characteristic equation,
then deg @ = deg P + 1 or deg@ = deg P + 2, respectively, etc. The coefficients
of @ are determined by the insertion of y,, = Q(n)a™ on the left hand side of the
equation and matching the coefficients with the right hand side.

Another way to find a particular solution is based on the calculus of operators.
Suppose that an inhomogeneous difference equation is given in the form ¥ (Q)y, =
b, where @) is one of the operators A, ¢ and V, or an operator easily derived from
these, e.g., £62, see Problem 27.

In §3.2.2 4(Q) ! was defined by the formal power series with the same coeffi-
cients as the Maclaurin series for the function 1/¢(z), z € C, ¢¥(0) # 0. In simple
cases, e.g., if ¥(Q) = ap + a1Q, these coeflicients are easily found. Example 3.1.6
indicates how to find the coefficients in more general cases. Then ¢(Q)~'b, is a
particular solution of the difference equation ¥ (Q)y, = by; the truncated expan-
sions approximate this. Note that if = § or V, the infinite expansion demands
that b,, is defined also if n < 0.

Note that a similar technique, with the operator D, can also be applied to lin-
ear differential equations. Today this technique has to a large extent been replaced
by the Laplace transform, that yields essentially the same algebraic calculations as
operator calculus.

In some branches of applied mathematics it is popular to treat nonhomoge-
neous difference equations by means of a generating function, also called the
z-transform, since both the definition and the practical computations are analo-

3.2. Difference Operators and Operator Expansions 223

gous to the Laplace transform. The z-transform of the sequence y = {y, }&° is

Y(z) = Zynz_". (3.2.58)
n=0

Note that the sequence {Ey} = {y,+1} has the z-transform 2Y (2) — yo, {E?y} =
{Yn+2} has the z-transform 22Y (2) — yoz — y1, etc.
If Y(2) is available in analytic form, it can often be brought to a sum of functions,
whose inverse z-transforms are known, by means of various analytic techniques,
notably expansion into partial fractions, e.g., if Y(z) is a rational function.
On the other hand, if numerical values of Y (z) have been computed for complex
values of z on some circle in C by means of an algorithm, then y,, can be determined
by an obvious modification of the Cauchy+FFT method described in Sec. 3.1.3 (for
expansions into negative powers of z). More information about the z-transform can
be found in Strang [33, Sec. 6.3].

We are now in a position to exemplify in more detail the use of linear difference
equations to studies of numerical stability, of the type mentioned above.

Theorem 3.2.11.
Necessary and sufficient for boundedness (stability) of all solutions of the dif-
ference equation (3.2.53) for all positive n is the following root condition: 56

i. All roots of characteristic equation (3.2.54) should be located inside or on the
unit circle |z| < 1;

ii. The roots on the unit circle should be simple.

Proof. Follows directly from Theorem 3.2.10.

This root condition corresponds to cases, where it is the absolute error that
matters. It is basic in the theory of linear multistep methods for ordinary differential
equations; see Sec. 13.4. Computer Graphics and an algebraic criterion due to Schur
are useful for investigations of the root condition, see Sections 13.2 and 13.8.

The following example is based on a study by J.Todd ®7 [35](1950) that was
one of the first studies of the numerical stability of an algorithm for the approximate
solution of ordinary differential equations.

Example 3.2.17.
Consider the initial-value problem

y'(x) = -y, y(0)=0, y'(0)=1, (3.2.59)

with the exact solution y(x) = sinz. To compute an approximate solution y, =
y(xr) at equidistant points x;, = kh, where h is a step length, we approximate the

56'We shall say either that a difference equation or that a characteristic polynomial satisfies the
root condition; the meaning is the same.
57 John Todd, Irish-American numerical analyst.

224 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

second derivative according to (3.2.39),

Sy &
up = B0+ 2+ S),

2.
1290 (3.2.60)

We first use the first term only; the second term shows that the truncation error of
this approximation of y; is asymptotically Ry /12. We then obtain the difference
equation h~20%y, = —y;, or, in other words,

Ykta = (2= h2)Yke1 — Yk, Yo =0, (3.2.61)

where a suitable value of y; is to be assigned. In the third column of Table 3.2.2 we
show the results obtained using this recursion formula with A = 0.1 and y; = sin0.1.
We obtain about 3 digits accuracy at the end, x = 1.5.

Since the algorithm was based on a second order accurate approximation of
y"' one may expect that the solution of the differential equation is also second order
accurate. This turns out to be correct in this case, e.g., if we divide the step size
by 2, the errors will be divided by 4, approximately. We shall, however, see that
we cannot always draw conclusions of this kind; we also have to take the numerical
stability into account.

In the hope to obtain a more accurate solution, we shall now use one more
term in the expansion (3.2.60); the third term then shows that the truncation error
of this approximation is asymptotically hy(®) /90. The difference equation now
reads

. 1
Py — 750"k =~y (3.2.62)

or, in other words,
Yrt2 = 16ykp1 — (30 — 120%)yy + 16yr—1 — Yr—2, k>2, yo =0, (3.2.63)

where starting values for y1, y2, and ys need to be assigned. You see them in
Table 3.2.2, where the results from this algorithm are shown in the fourth column.
58 We see that disaster has struck—the recursion is severely unstable! Already for
x = 0.6 the results are less accurate than the second order scheme. For x > 0.9 the
errors dominate completely.

We shall now look at these difference equations from the point of view of the
root condition. The characteristic equation for Eq. (3.2.61) reads u®—(2—h?)u+1 =
0, and since |2 — h?| < 2, direct computation shows that it has simple roots of unit
modulus. The root condition is satisfied. 59

For Eq.(3.2.63) the characteristic equation reads u* — 16u® + (30 — 12h?)u? —
16u + 1 = 0. We see immediately that the root condition cannot be satisfied. Since
the sum of the roots equals 16, it is impossible that all roots are inside or on the
unit circle. In fact, the largest root equals 13.94. So, a tiny error at x = 0.1 has
been multiplied by 13.94'* ~ 10'¢ at the end.

58The letters U and S in the headlines of the last two columns refer to “Unstable” and “Stable”.
59By Example 3.2.14, the solution of (3.2.61) is yn, = Ty (1 — h2/2).

3.2. Difference Operators and Operator Expansions

225

Table 3.2.2. Integrating y"' = —y, y(0) =0, y'(0) = 1.

Tk sin Ty 2nd order 4th orderU 4th orderS

0.1 | 0.0998334166 0.0998334 0.0998334166 0.0998334166
0.2 | 0.1986693308 0.1986685 0.1986693307 0.1986693303
0.3 | 0.2955202067 0.2955169 0.2955202067 0.2955202050
0.4 | 0.3894183423 0.3894101 0.3894183688 0.3894183382
0.5 | 0.4794255386 0.4794093 0.4794126947 0.4794255305
0.6 | 0.5646424734 0.5646143 0.5643841035 0.5646424593
0.7 | 0.6442176872 0.6441732 0.6403394433 0.6442176650
0.8 | 0.7173560909 0.7172903 0.6627719932 0.7173560580
0.9 | 0.7833269096 0.7832346 0.0254286676 0.7833268635
1.0 | 0.8414709848 0.8413465 —9.654611899 0.8414709226
1.1 | 0.8912073601 0.8910450 —144.4011267 0.8912072789
1.2 | 0.9320390860 0.9318329 —2010.123761 0.9320389830
1.3 | 0.9635581854 0.9633026 —27834.59620 0.9635580577
1.4 | 0.9854497300 0.9851393 —385277.6258 0.9854495749
1.5 | 0.9974949866 0.9971245 —5332730.260 0.9974948015

It is easy to construct a stable fourth order accurate method. Just replace the
term dyy, in (3.2.62) by h%6%y} = —h?5?y;. This leads to the recursion formula

Yrt1 = (2

h2

)yk — Yk-1,

yOZO.

(3.2.64)

1+ h2/12

This difference equation satisfies the root condition if h? < 6 (Problem 20(b)). This
algorithm can be generalized to differential equations of the form y" = f(z,y). It
is known under several names, e.g., Numerov’s method. See Sec.3.3 (Problem 31)
and Ch. 13.

In the fifth column of Table 3.2.2 we show the results obtained using this
recursion formula with A = 0.1 and y; = sin0.1. The error at the end is about
21077,

If the interesting solution of the original problem is itself strongly decreasing
or strongly increasing, one should consider the location of the characteristic roots
with respect to a circle in the complex plane that corresponds to the interesting
solution. For example, if the interesting root is 0.8 then a root equal to —0.9 causes
oscillations that may eventually become disturbing, if one is interested in relative
accuracy also in a long run, even if the oscillating solution is small in the beginning.

We now confine the discussion to the cases where the original problems are
to compute a particular solution of a second order difference equation with variable
coefficients; several interesting problems of this type were mentioned above, and
we formulated the questions: can we use a recurrence to find the wanted solution
accurately, and how shall we use a recurrence, forwards or backwards. Typically the
original problem contains some parameter, and one usually wants to make a study
for an interval of parameter values.

Such questions are sometimes studied with frozen coefficients, i.e., the model

226 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

problems are in the class of difference equations with constant coefficients in the
range of the actual coefficients of the original problem; if one of the types of re-
currence is satisfactory (i.e., numerically stable in some sense) for all model prob-
lems, one would like to conclude that they are satisfactory also for the original
problem, but the conclusion is not always valid without further restrictions on the
coefficients—see a counterexample in Problem 26c.

The technique with frozen coefficients provides just a hint that should always
be checked by numerical experiments on the original problem. It is beyond the scope
of this text to discuss what restrictions are needed. (Some ideas may be found in
Sec. 13.8.) If the coefficients of the original problem are slowly varying, however,
there is a good chance that the numerical tests will confirm the hint—but again:
how slowly is “slowly”?

A warning against the use of one of the types of recurrence may also be a
valuable result of a study, although it is negative.

The following lemma exemplifies a type of tool that may be useful in such cases.
The proof is left for Problem 25a. Another useful tool is presented in Problem 26a
and applied in Problem 26b.

Lemma 3.2.12. Suppose that the wanted sequence y;, satisfies a difference equation
(with constant coefficients),

Wnt1 + BYn — V-1 =0, (a>v>0, 3>0),

and that y?, is known to be positive for all sufficiently large n. Then the characteristic
roots can be written 0 < uy < 1, us < 0 and |uz| > uy. Then y’ is unique apart
from a positive factor c; y;, = cuf, ¢ > 0.

A solution 4y, called the trial solution that is approximately of this form can
be computed for n = N : —1 : 0 by backward recurrence starting with the “seed”
yn+1 =0, yn = 1. If an accurate value of y§ is given, the wanted solution is

Yn = JnYo /Yo,
with a relative error approzimately proportional to (us/ui)"~N. (neglecting a pos-
sible error in yg).
The forward recurrence is not recommended for finding y; in this case, since

the positive term ciul will eventually be drowned by the oscillating term coul that
will be introduced by the rounding errors.

COMMENT: The proof is left for Problem 26¢c. Even if yo (in the use of the
forward recurrence) has no rounding errors, such errors committed at later stages
will yield similar contributions to the numerical results. See Problem 16d.

Example 3.2.18.
The ”original problem” is to compute the parabolic cylinder function U(a, x)
which satisfies the difference equation
(a+ HU(a+1,2) +2U(a,z) —U(a—1,z) = 0,

601f y* is defined by some other condition, one can proceed analogously.

i

Review Questions 227

see Handbook of mathematical functions [1, Ch. 19] (written by J.C.P. Miller); see
in particular Example 19.28.1.

To be more precise, we consider the case * = 5. Given U(3,5) = 5.2847107°
(obtained from a table in Handbook, p.710), ! we want to determine U(a,5) for
integer values of a, a > 3, as long as |U(a,5)| > 10715, We guess (a priori) that
the discussion can be restricted to the interval (say) a = [3,15]. The above lemma
then gives the hint of a backward recurrence, for a = @’ — 1 : —1 : 3 for some
appropriate a’' (see below), in order to obtain a trial solution U, with the seed
Uy =1, Upy1 = 0. Then the wanted solution becomes, by the Lemma, (with
changed notation),

Ula,5) = U,U(3,5)/Us.

The positive characteristic root of the frozen difference equation varies from 0.174
to 0.14 for a = 5 : 15; while the modulus of the negative root is between 6.4 and
3.3 times as large. This motivates a choice of a’ & 4+ (-9 — l0¢5.3)/In0.174 =~ 17
for the backward recursion; it seems advisable to choose a’ (say) 4 units larger than
the value where U becomes negligible. (J.C.P. Miller starts at a’ = 19 in Example
19.28.1.)

Forward recurrence with correctly rounded starting values U(3,5) = 5.2847 1076,
U(4,5) =9.17210°7, gives oscillating (absolute) errors of relatively slowly decreas-
ing amplitude (approximately 107! that gradually drowns the exponentially de-
creasing true solution; the estimate of U(a,5) itself became negative for a = 10,
and then the results oscillated with approximate amplitude 10~1!, while the correct
results decrease from the order of 107! to 1071% as a = 10 : 15. The details are
left for Problem 25b.

It is conceivable that this procedure can be used for all z in some interval around
5, but we refrain from presenting the properties of the parabolic cylinder function
needed for determining the interval.

If the problem is nonlinear, one can instead solve the original problem with
two seeds, (say) ¥, Yy, and study how the results deviate. The seeds should be so
close that a linearization like f(y.,) — f(yl) =~ rn(y,, — yh) is acceptable, but y!, —y'
should be well above the rounding error level. A more recent and general treatment
of these matters is found in [10, Ch. 6].

Review Questions

1. Give expressions for the shift operator E* in terms of A,V, and kD, and
expressions for the central difference operator 62 in terms of E and hD.

2. Derive the best upper bound for the error of A™yg, if we only know that the
absolute value of the error of y;, i = 0,...,n does not exceed e.

3. There is a theorem (and a corollary) about existence and uniqueness of approx-
imation formulas of a certain type that are exact for polynomials of certain

61y(3,5) corresponds to yg in the Lemma.

228

CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

10.

11.
12.

class. Formulate these results, and sketch the proofs.

. What bound can be given for the k’th difference of a function in terms of a

bound for the k’th derivative of the same function?

. Formulate the basic theorem concerning the use of operator expansions for

deriving approximation formulas for linear operators.

. Formulate Peano’s Remainder Theorem, and compute the Peano kernel for a

given symmetric functional (with at most four subintervals).

. Express polynomial interpolation formulas in terms of forward and backward

difference operators.

. Give Stirling’s interpolation formula for quadratic interpolation with approx-

imate bounds for truncation error and irregular error.

. Derive central difference formulas for f'(z¢) and f"(x¢) that are exact for

f € P4. They should only use function values at z;, j = 0,£1,£2,..., as
many as needed. Give asymptotic error estimates.

Derive the formula for the general solution of the difference equation y,4+ +
@1Yntk—1 + ...+ aryn, = 0, when the characteristic equation has simple roots
only. What is the general solution, when the characteristic equation has mul-
tiple roots?

What is the general solution of the difference equation A*y,, = an + b?
Prove Lemma 3.2.12; and present the main features of its application to the
parabolic cylinder function.

Problems and Computer Exercises

1.

(a) Show that (1+A)(1-V)=1, A—-V=AV=§=FE-2+FE! and
that 0%y, = Ynt+1 — 2Yn + Yn—1.

(b) Let APy, VPy,,, 6Py;, all denote the same quantity. How are n,m, k con-
nected? Along which lines in the difference scheme are the subscripts constant?

(c) Given the values of y,, Vyn,..., VFy,, for a particular value of n.
Find a recurrence relation for computing y,, yn—1,---, Yn—k, by simple addi-
tions only. On the way you obtain the full difference scheme of this sequence.

(d) Repeated summation by parts. Show that if u1 = uy = vy = vy =0, then

N-1 N-1 N-1
E up A0, = — E Au,Av,, = E U A% Upy_q.
n=1 n=1 n=1

(e)Show that if A*v,, — 0, as n — oo, then Y 0 Aky, = —Ak~1y,,.
(f)Show that (ud® +2ud)fo = fo — f o

(g) Prove, e.g., by means of summation by parts, that Y >~ u,z", |z| =
1, z # 1, is convergent if u,, — 0 monotonically. Formulate similar results for
real cosine and sine series.

Problems and Computer Exercises 229

2. (a) Prove, e.g., by induction, the following two formulas:

[T T
A = | < k
<k> (k—j)’ Ten

where A, means differencing with respect to z, with h = 1.

(=h)j!
x(x+h)-(z+jh)

Az~ =

Find the analogous expression for Viz~!.

(b) What formulas with derivatives instead of differences are these formulas
analogous to?

(c) Show the following formulas, if x, a are integers:

> ()= ()-(6)

n=a

1
x4+ 1) (x+j-—1)

5 ey
nm+1)--(n+j) j
Modify these results for non-integer z; — a is still an integer.
(d) Suppose that b # 0, —1, —2,..., and set

ala+1)...(a+n-1)

(@ b) =1, ealad) = F e T A=)

n=12.3,...

Show, e.g., by induction that (—A)*¢,(a,b) = cx(b — a,b)cn(a,b + k), hence
(=A)"¢o(a,b) = cp(b—a,b).

(e) Compute for a = e, b = 7 (say), cn(a,b), n =1:100. How do you avoid
overflow? Compute A"c¢o(a,b), both numerically by the difference scheme,
and according to the formula in (d). Compare the results and formulate your
experiences. Do the same with a = e, b = 72.

Do the same with Afz~"! for various values of z, j and h.

3. Set

YORD = (yn—ka Yn—k+15---5Yn—1, yn)7
YDIF = (kan, Vs Vi, Yn)-

Note that the results of this problem also hold if the y; are column vectors.
(a) Find a matrix PAsc, such that YDIF = YORD - PAsc. Show that

1

YORD = YDIF - PASC, hence PaAsc - = Pasc.

How do you generate this matrix by means of a simple recurrence relation?
Hint: Pasc stands for Pascal, but do not forget the minus signs in this trian-
gular matrix. Compare Problem 3 of Sec. 1.3.

230

CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

(b) Suppose that Z?:o a;E~J and Z?:o a;jV7 represent the same operator.
Set a = (ag,ag_1,...,a0)", and a = (ag,ag_1,...,a0)7, i.e., YORD - @ =
YDIF - a. Show that PASC-a =«, PASC-a=ua.

(¢) The matrix PAsC depends on the integer k. Is it true that the matrix
which is obtained for a certain k is a submatrix of the matrix you obtain for
a larger value of k7

(d) Compare this method of performing the mapping YORD + YDIF with the
ordinary construction of a difference scheme. Consider the number of arith-
metic operations, the kind of arithmetic operations, rounding errors, con-
venience of programming in a language with matrix operations as primary
operations etc.

Compare in the same way this method of performing the inverse mapping with
the algorithm in Problem lc.

. (a) Set f(z) = tanz. Compute by the use of the table of tanz in Example

3.2.3, and the interpolation and differentiation formulas given in the above ex-
amples (almost) as accurately as possible f'(1.35), f(1.322), f'(1.325), f"(1.32).
Estimate the influence of rounding errors of the function values and estimate
the truncation errors.

(b) Write a program for computing a difference scheme. Use it for computing
the difference scheme for more accurate values of tanz, = = 1.30 : 0.01 : 1.35,
and calculate improved values of the functionals in (a). Compare the error
estimates with the true errors.

(c) Verify the assumptions of Theorem 3.2.6 for one of the three interpolation
formulas in Example 3.2.9 .

(d) It is rather easy to find the values at 8 = 0 of the first two derivatives
of Stirling’s interpolation formula. You find thus explicit expressions for the
coefficients in the formulas for f'(z¢) and f”(z¢) in (3.2.43) and (3.2.39), re-
spectively. Check numerically a few coefficients in these equations, and explain
why they are reciprocals of integers. Also note that each coefficient in (3.2.43)
has a simple relation to the corresponding coefficient in (3.2.39).

. (a) Study Bickley’s table (Table 3.2.1), and derive some of the formulas, in

particular the expressions for ¢ and p in terms of hD, and vice versa.

(b) Show that h~*6* — D* has an expansion into even powers of h, when k is
even. Find an analogous result for h=*ué* — D* when £ is odd.

. (a) Compute f'(10)/12, £©)(10)/720, f°(10)/30240, by means of (3.2.20),

given values of f(z) for integer values of z. 2 Do this for f(z) = z=3/2.
Compare with the correct derivatives. Then do the same also for f(z) =
(.1'3 + 1)71/2.

(b) Study the backwards differentiation formula, see Example 3.2.6, on a com-
puter. Compute f'(1) for f(z) = 1/z, for h = 0.02 and h = 0.03, and compare
with the exact result. Make a semi-logarithmic plot of the total error after n

62This is asked for, e.g., in applications of Euler-Maclaurin’s formula, § 3.3.4.

Problems and Computer Exercises 231

terms, n = 1:29. Study also the sign of the error. For each case, try to find
out whether the achievable accuracy is set by the rounding errors or by the
semiconvergence of the series.
Hint: A formula mentioned in Problem 2(a) can be helpful. Also note that
this problem is both similar and very different from the function tan(x) that
was studied in Example 3.2.6.

(c) Set x; = xg + ih, t = £5%2. Show that

t(t—1) A2ys + tt—1)(t—2) A%y,
2 6
equals the interpolation polynomial in P4 determined by the values (z;,y;), i =
1:4. (Note that A3y, is used instead of A3y, which is located outside the
scheme. Is this OK?)

7. (a) Show the validity of the algorithm in (3.2.36).
(b) A well known formula reads P(D)(e“tu(t)) = e*P(D + «a)u(t), where
P is an arbitrary polynomial. Prove this, as well as the following analogous
formulas:

y(x) = ya + tAys +

P(E)(a"u,) = a"P(aE)uy,,
P(A/R)((1+ ah)"un) = (14 ah)"P((1 + ah)A/h + a)u,

Can you find a more beautiful or more practical variant?

8. Find the Peano kernel K (u) for the functional A® f(x). Compute [p K (u) du
both by direct integration of K (u), and by computing A% f(z) for a sultably
chosen function f.

9. Let y; = y(tj), y; = y'(t;). The following relations are of great interest in
the numerical integration of ordinary differential equations, y' = f(y), see
Sec.13.4. 63

(a) The implicit Adams formula:

Ynt1 — Yn = Maoyiy + a1 VYl + a2 Vi1 +).

Show that V = —1In(l — V) > a;V?, and find a recurrence relation for the
coefficients. The coefficients a;, i = 0 : 6, read as follows. Check a few of
them.

g 1,-t 1119 -3 863
E 27127247 7207 160’ 60480

Alternatively, derive the coefficients by means of the matrix representation, of
a truncated power series, see 3.1.11

(b) The explicit Adams formula:
Yn+1 = Yn = W(boy;, + 01 Vy,, + b V2y) +).
Show that >~ b;VIE~! =Y a;V?, and show that

bn - bn—l = Qp, (n Z].)

63The formulas can also be used for systems; just interpret y,, y!, as vectors.

232 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB
The coefficients b;, i = 0 : 6, read as follows. Check a few of them.
b 1L 3 3251 95 10087
' 772712787 7207 2887 60480
(c) Apply the the second order explicit Adams formula, i.e., Y11 — yn =
h(y,, + $Vy.,), to the differential equation y' = —y? with the initial condition
y(0) = 1 and the step size h = 0.1. Two initial values are needed for the
recurrence; yo = y(0) = 1, of course, and we choose ®* y; = 0.9090. Then
compute yy = —y, yi = —y?. Then the explicit Adams formula yields ys,
and so on. Compute a few steps, and compare with the exact solution. %3
10. Let y; = yo + jh. Find the asymptotic behavior as h — 0 of
(5(y1 — yo) + (y2 — 91))/(2h) — yo — 2y;.
Comment: This is of interest in the analysis of cubic spline interpolation in
§4.6.4.
11. Subtabulation or dense output. It sometimes happens that the values of some

function f(z) can be computed by some very time-consuming algorithm only,
and that one therefore computes it much sparser than is needed for the ap-
plication of the results. It was common in the pre-computer age to compute
sparse tables that needed interpolation by polynomials of a high degree; then
one needed a simple procedure to obtain a denser table for some section of the
table, so that linear interpolation can be used there, possibly with lower ac-
curacy. Today a similar situation may occur in connection with the graphical
output of the results of (say) a numerical solution of a differential equation.

Define the operators V and Vi by the equations

Vi) = f(z) = flx = h), Vif(z)=f(x) = flz—kh), (k<1),

and set Vi = >27 ¢p5(k)V*.
(a) In order to compute the coefficients ¢,5, 7 < s < m, you are advised to
use a subroutine for finding the coefficients in the product of two polynomials,
truncate the result, and apply the subroutine m — 1 times.

. 0 Vin Ve VP Vi
(b) Given f1 .181f269 .032£58 .005556 .001580
Compute for k = %, fn = f(z), Vifn for j =1:4.
Compute f(z, — h) and f(z, — 2h), by means of both {V7 f,} and {Vifn}
and compare the results. How big difference of the results did you expect, and
how big difference do you obtain?

64There are several ways of obtaining y; ~ y(h), e.g., by one step of Runge’s 2nd order method,
see §1.4.3, or by a series expansion, like in Example 3.1.2.

%5 For an implicit Adams formula it is necessary, in this example, to solve a quadratic equation
in each step. See in Sec. 13.2.4 how to proceed for general differential systems.

Problems and Computer Exercises 233

12.

13.

14.

(a) Find Simpson’s formula, i.e., the unique quadrature formula of the form
ffh f(z)dr ~ c_1f(—h) + cof(0) + c1 f(h) that is exact whenever f € Ps.
By symmetry it is exact even for f € Py4; recall the discussion in Example
3.2.11. Find an error estimate. Try to find several derivations of this classical
formula, with or without the use of difference operators. Is Simpson’s formula
a particular case of Newton—Cotes’s formulas?

(b) Show that a remainder functional for Simpson’s formula is of the form
Rf = |g @ (u)K (u) du, where the Peano kernel equals K (u) = —5(h —
u)?(3u+ h)? for 0 < u < h; K(u) = K(Ju|) for u < 0, K(u) = 0 for |u| > h.
Also show that the remainder equals — 25 f (&) HhY, |¢| < h. (H = 2h is the
length of the interval of integration.) If Simpson’s formula is used over the
interval [a, b] with an even number of steps of length h, s show that the error
is 5 D)0 - a)ht, € € (a,b).

(c) Find the kernel Ky(u), such that Rf = [; f"(u)K2(u)du, and find the
best constants ¢, p, such that

|Rf| < ch? max |f"(u)|, Vfe€ C*[—h,h).

If you are going to deal with functions that are not in C?, would you still
prefer Simpson’s formula to the trapezoidal rule?

(a) We shall use the notation that was introduced in connection with Eq. (3.2.45).
Show hat b = Mj1a, and show how the matrix M can be generated by a re-
currence. (Think of Pascal’s triangle.)

(b) Use the matrix M for deriving (3.2.50) from (3.2.49). How do you obtain
the remainder term? If you obtain the coeflicients as decimal fractions, mul-
tiply them by 14175/4 in order to check that they agree with (3.2.50).

(c¢) Use Cauchy+FFT for deriving (3.2.49), and the open formula and the re-
mainder for the same interval.

(d) Set z, = V" 1y, — A~lyy. We have, in the literature, seen the interpreta-
tion that z, = Z?:o y; if n > 0. It seems to require some extra conditions to
be true. Investigate if the conditions z_; = y_; = 0 are necessary and suffi-
cient. Can you suggest better conditions? (The equations AA~! =VV~! =1
mentioned earlier are assumed to be true.)

COMMENT: This formula will be used in a problem in Sec.3.3 concerning
Gregory’s Quadrature Formula.

Solve the following difference equations. A solution in complex form should
be transformed to real form. As a check, compute (say) y2 both by recurrence
and by your closed form expression.

(a‘) Ynt2 — 2Ynt1 —3Yn =0, 90 =0, y1 = 1;

(0) Yn+2 —4Ynt+1 +5yn =0, 90 = 0, y1 = 2;

(c) There exist problems with two-point boundary conditions for difference
equations, as for differential equations. yp42 — 2ypy1 — 3y, = 0, yo = 0,
Y10 =1

(d) Ynt2 +2Yny1 +yn =0,90 =1, y1 = 0;

(€) Ynt1 —Yn =27, yo = 0;

234 CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB
(£) Yn+2 = 2Yn41 — 3yn = 1+ cos 5%, yo = y1 = 0;
Hint: The right hand side is R(1 + a”), where a = e™/3.
(8) Ynt1 —Yn =n, yo = 0;
(h) Ynt1 — 2y, = n2", yo = 0;
15. (a) Prove Lemma 3.2.8 (in the beginning of Sec. 3.2.3).
(b) Consider the difference equation y,42 — 5ynt+1 + 6y, = 2n + 3(=1)".
Determine a particular solution of the form y,, = an + b+ ¢(—1)".
(c) Solve also the difference equation y,,4+2 — 6y,+1 + 5y, = 2n+3(—1)". Why
and how must you change the form of the particular solution?
16. (a) Show that the difference equation Zf:o b;A'y,, = 0 has the characteristic
equation: S3¥_ bi(u —1)7 = 0.
(b) Solve the difference equation A2y, —3Ay,, +2y,, = 0, with initial condition
Ayo =1.
(c) Find the characteristic equation for the equation Zf:o b;Viy, =07
17. The influence of wrong boundary slopes for cubic spline interpolation (with
equidistant data)—see Sec.4.6—is governed by the difference equation
enty1 +4ep+ep—1 =0, 0<n<m,
€0, em given. Show that e, ~ u"eg + u™ "epm, u = /3 — 2 ~ —0.27. More
precisely
B 2lu3™/2| max(|eo], |e
len — (u"eg + u™ "ep)| < | |1 — |u(||m b leml).
Generalize the simpler of these results to other difference and differential equa-
tions.
18. The Fibonacci sequence is defined by the recurrence relation
Yn =Yn-1+Yn—2, Y =0, y1 =1
(a) Calculate limy, o0 Yn+1/Yn-
(b) The error of the secant method (see Sec.6.4) satisfies approximately the
difference equation ¢, = Ce,_1€,_o. Solve this difference equation. Deter-
mine p, such that €,41/€? tends to a finite nonzero limit as n — oco. Calculate
this limit.
19. For several algorithms, such as the Fast Fourier Transform and some sorting

methods, one can find that the work W (n) for the application of them to data
of size n satisfies a recurrence relation of the form:

W(n) =2W(n/2) + kn,

where k is a constant. Find W (n).

Problems and Computer Exercises 235

20.

21.

22.
23.

When the recursion 42 = (32¢,4+1 — 20z,)/3, o = 3, 1 = 2, was solved
numerically in low precision (23 bits mantissa), one obtained the (rounded)
values

? 2 3 4 5 6 7 8 9 10 11 12
z; 133 089 0.59 040 0.26 0.18 0.11 0.03 -0.46 -5.05 -50.80

Explain the difference from the exact values z,, = 3(2/3)".

(a) k, N are given integers 0 < k << N. A 7discrete Green’s function”
Gnk, 0 < n < N for the central difference operator %6 —AV | is defined as the
solution u, = Gy, of the difference equation with boundary conditions,

—AVu, =0n%, uw=uy =0, (Kronecker delta).

Derive a fairly simple expression for G, -
(b) Find (by computer) the inverse of the tri-diagonal matrix

2 -1 0 0 0
-1 2 -1 0 0
A=]10 -1 2 -1 0
0 o -1 2 -1
0 0 0 -1 2

What is the relation between Probs (a) and (b)? Find a formula for the ele-
ments of A~!. Express the solution of the inhomogeneous difference equation
—AVuy, = by, up =un =0, both in terms of the Green function G, ; and in
terms of A~! (for general V).

(c) Try to find an analogous formula 7 for the solution of an inhomoge-
neous boundary value problem for the differential equation ,—u" = f(x),
u(0) = u(1) = 0. COMMENT: Since A~! is a filled matrix, it should be avoided
at the solution of the linear system Ay = b with a tridiagonal matrix A. There
exist much better procedures, see Sec. 6.4.6 for numerical work. Conceptually
Green’s function is very important, above all in connection with boundary and
eigenvalue problems for ordinary and partial differential equations, and their
discretizations.

Vacant. (The problem which was here will be moved to Ch.13.

(a) Demonstrate the formula
X oa\n S) —A)
27("Z)' ey T (Z4)%e (3.2.65)
5 !

Hint: Use the relation e %% = e~ ¢(1+A) — g—we—zA

(b) For an important class of sequences called completely monotonic, see

66together with the boundary conditions given below,

87In a differential equation, analogous to Problem 21(a), the Kronecker delta is to be replaced
by the Dirac delta function. Also note that the inverse of the differential operator here can be
described as an integral operator with the Green’s function as the “kernel”.

236

CHAPTER 3. SERIES, OPERATORS AND CONTINUED PROB

24.

25.

26.

Sec. 3.3.6, {cn} and {(—A)"¢o} are typically positive and decreasing sequences.
For such sequences, the left hand side becomes extremely ill-conditioned for
large z, (say) = 100, while the graph of the terms on the right hand side (if
exactly computed) are bell-shaped, almost like the normal probability density
with mean x and standard deviation \/z. We tentatively call such a sum a
bell sum. We shall see in Sec. 3.3 that such positive sums can be computed
with little effort and no trouble with rounding errors, if their coefficients are
accurate.

Compute the left hand side of (3.2.65), for ¢, = 1/(n + 1), = 10 : 10 : 100,
and compute the right hand side, both with numerically computed differences
and with exact differences; the latter are found in Problem(2a). (In this par-
ticular case you can also find the exact sum.)

Suppose that the higher differences {(—A)™co} have been computed recur-
sively from rounded values of ¢,,. Explain why one may fear that the right
hand side of (3.2.65) does not provide much better results than the left hand
side.

(c) Use (3.2.65) to derive the second expansion for erf(z) in Problem 10 of
Sec. 3.1 from the first expansion. Hint: Use one of the results of Problem 2a.

(d) If ¢, = cu(a,b) is defined as in Problem 2d, then the left hand side
becomes the Maclaurin expansion of the Kummer function M (a,b,—x), see
Abramowitz-Stegun, Ch.13. Show that M(a,b, —z) = e *M (b — a,b,z) by
means of the results of Problem 23a and 2d. %®

a) The difference equation vy, + 5y,—1 = n~! was discussed in Sec. 1.3.3. It
Y Y

can also be written thus: (6+ A)y,_; = n~!. The expansion of (6 +A)~1n~!
into powers of A/6 provides a particular solution of the difference equation.
Compute this numerically for a few values of n. Try to prove the convergence,
with or without the expression in Problem 2b. Is this the same as the partic-
ular solution I,, = fol z"(x + 5) " 'dz that was studied in Ch.1?

Hint: What happens as n — oo? Can more than one solution of this difference
equation be bounded as n — co?

(b) Make a similar study to the difference equation related to the integral in
Problem 9 of Sec.1.3. Why does the argument suggested by the hint of (a)
not work in this case? Try another proof.

(a) Prove Lemma 3.2.12. How is the conclusion to be changed, if we do not
suppose that v < a, though the coefficients are still positive? Show that a
backward recurrence is still to be recommended.

(b) Work out on a computer the numerical details of Example 3.2.18, and
compare with Abramowitz-Stegun, Example 19.28.1. (Some deviations are
to be expected, since Miller used other rounding rules.) Try to detect the
oscillating component by computing the difference scheme of the the computed
U(a,5), and estimate roughly the error of the computed values.

(a) For which constant real a does the difference equation y,+1—2ay,+yn—1 =

68 This formula is due to Kummer, German mathematician (1810-1893). It is well known in the
theory of the confluent hypergeometric functions, where it is usually proved in other ways.

Problems and Computer Exercises 237

0 satisfy the root condition?

For which values of the real constant a does there exist a solution, such that
lim, s00 yn = 0 7 For these values of a, how do you construct a solution
yn = Y, by a recurrence and normalization, so that this condition as well as
the condition yg + 2> °_, y3,, = 1 are satisfied. Is y} unique? Give also an
explicit expression for y.

For the other real values of a, show that ¥ does not exist, but that for any
given yg,¥y1 a solution can be accurately constructed by forward recurrence.
Give an explicit expression for this solution in terms of Chebyshev polynomials
(of the first and the second kind). Is it true that backward recurrence is also
stable, though more complicated than forward recurrence?

(b) The Bessel function Ji(z) satisfies the difference equation,
Jiy1(2) — (2k/2)Jk(2) + Jp—1(2) =0, k=1, 2, 3,...,
and the identities,
Jo(2) +2J2(2) + 2J4(2) + 2J6(2) + ... = 1;

Jo(2) = 2J5(2) + 2J4(2) — 2J5(2) + ... = cos z;

see Abramowitz and Stegun [1], 9.1.27, 9.1.46 and 9.1.47.

Show how one of the identities can be used for normalizing the trial sequence
obtained by a backwards recurrence. Under what condition does Problem
26(a) give the hint to use the backwards recurrence for this difference equation?
Study the section on Bessel functions of integer order in Numerical Recipes.
Apply this technique for z = 10, 1, 0.1 (say). The asymptotic formula [1],
9.3.1,

To(2) ~ — (ez)k k> 1, 2 fixed
(2) ~ —(=—] , , z fixed.
g V2rk \2k

may be useful for your decision where to start the backward recurrence. Use

at least two starting points, and subtract the results (after normalization).
COMMENT: The above difference equation for Ji(z) is also satisfied by a

—k
function denoted Yj(2), Yi(z) ~ \/%(%) , (k> 1). How do these two

solutions disturb each other, when forward or backward recurrence is used?

(c) A counterezample to the technique with frozen coefficients. Consider the
difference equation y,,4+1 — (=1)"yn + yn—1 = 0. The technique with frozen
coefficients leads to the consideration of the difference equations z,,+1 —2az,, +
zn—1 =0, a € [—0.5,0.5]; all of them have only bounded solutions.

Find by numerical experiment that, nevertheless, there seems to exist un-
bounded solutions y,, of the first difference equation.

COMMENT: A theoretical proof of this is found by noting that the mapping
(Y2n, Y2n+1) = (Y2n+2, Y2n+s) is represented by a matrix that is independent
of n and has an eigenvalue that is less than —1. (This type of ideas will be
elaborated more in Sec. 13.9.)

238 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

27. Let {b,}>°, be a given sequence, and consider the difference equation,

Yn—1 + 4yn + Yn+1 = bn;

which can also be written in the form (6 + 62)y,, = b,,. (a) Show that the dif-
ference equation has at most one solution that is bounded for —oco < n < 400.
Find a particular solution in the form of an expansion into powers of the op-
erator §2/6. (This is hopefully bounded.)

(b) Apply it numerically to the sequence b, = (1+n?h?)~!, for a few values of
the step size h, e.g., h = 0.1,0.2,0.5, 1. Study for n = 0 the rate of decrease(?)
of the terms in the expansion. Terminate when you estimate that the error is
(say) 1075, Check how well the difference equation is satisfied by the result.

(c) Study theoretically bounds for the terms when b,, = exp(iwhn), w € R.
Does the expansion converge? Compare your conclusions with numerical ex-
periments. Extend to the case when b, = B(nh), where B(t) can be repre-
sented by an absolutely convergent Fourier integral, B(t) = ffooo e“tB(w)dw.
Note that B(t) = (1 +¢*)7! if B(w) = 2e~/“l. Compare the theoretical results
with the experimental results in (b).

(d) Put @ = 6%/6. Show that §, = (1 - Q + Q% + ...+ Q% 1)b, /6 satisfies
the difference equation (1 + Q)(§n — yn) = Q*b,/6.

COMMENT: This procedure is worthwhile if the sequence b,, is so smooth that
(say) 2 or 3 terms give satisfactory accuracy.

3.3 Acceleration of Convergence
3.3.1 Introduction

If a sequence {s,}§° converges slowly towards a limit s but has a sort of regular
behavior when 7 is large, it can under certain conditions be transformed into another
infinite sequence {s!,}, that converges much faster to the same limit. Here s/, usually
depends on the first n elements of the original sequence only.

This is called convergence acceleration. Such a sequence transformation may
be iterated, to yield a sequence of infinite sequences, {s}, {s'} etc., hopefully with
improved convergence towards the same limit s. For an infinite series convergence
acceleration means the convergence acceleration of its sequence of partial sums.
Recall a comment in the beginning of Sec. 3.1.1. Some algorithms are most easily
discussed in terms of sequences, others in terms of series.

Several transformations, linear as well as nonlinear, have been suggested and
are successful, under various conditions. Some of them are most successful on
oscillating sequences (alternating series or series in a complex variable), see Sec. 3.3.2
(Aitken etc.), Sec.3.3.3 (repeated averages, Euler’s transformation). and Sec. 3.3.7
(Gustafson-Chebyshev). Others work primarily on monotonic sequences (series with
positive terms), see Sec.3.3.2 (variants of Aitken acceleration), Sec.3.3.4 (Euler—
Maclaurin) and Sec. 3.3.5 (Richardson etc.).

Convergence acceleration cannot be applied to “arbitrary sequences”; some
sort of conditions are necessary that restrict the variation of the future elements of

3.3. Acceleration of Convergence 239

the sequence, i.e., the elements which are not computed numerically. In this sec-
tion, these conditions are of a rather general type, in terms of higher monotonicity,
analyticity or asymptotic behavior of simple and usual types. In Sec.3.3.6 there is
an introduction to the completely monotonic functions and some related classes of
analytic functions, for which the techniques of convergence acceleration can be put
on a relatively solid theoretical basis.

Nevertheless some of these techniques may even sometimes be successfully ap-
plied to semiconvergent sequences. Several of them can also use a limited number
of coefficients of a power series for the computation of values of an analytic con-
tinuation of a function, outside the circle of convergence of the series that defined
it.

Convergence acceleration is related to the summation of divergent series em-
ployed in Pure Mathematics, but the purpose and the aspects are different. For ex-
ample, Cesaro summation, which is important in the theory of Fourier series—it can
make a divergent Fourier expansion for a non-smooth periodic function convergent—
is of little interest for our typical applications of convergence acceleration. In Exam-
ple 3.3.2; Cesaro summation would converge only like O(1/n), while the procedures
recommended in this section converge like O(a™) where |a| < . (This compari-
son holds for most slowly convergent alternating series with completely monotonic
terms.)

Some techniques for convergence acceleration transform a power series into
a sequence of rational functions. We postpone the treatment of some of these to
Sec. 3.4, e.g., continued fractions and Padé approximation, including the e-algorithm
of P. Wynn.

There are methods (due to Lindeldf, Plana and others) that transform an
infinite series to an integral in the complex plane. They can, with appropriate
numerical procedures for computing the integral, compete with the methods men-
tioned for the purposes mentioned, but they have the additional property to be
applicable to some ill-conditioned series. They will be discussed in Ch. 12, because
certain tools are needed for the explanation.

Ch. 12 also includes the Poisson summation formula, which is not “a general
purpose formula”, though it can be amazingly successful to a certain class of series
> a(n), namely if a(x) has a rapidly decreasing Fourier Transform. The Poisson
formula is also an invaluable tool for the design and analysis of numerical methods
for several problems, see Theorem 3.3.3.

In addition to the “general purpose” techniques to be discussed in this chapter,
there are other techniques of convergence acceleration based on the use of more
specific knowledge about a problem.

Irregular errors are very disturbing, when these techniques are used, and they
sometimes set the limit for the reachable accuracy. For the sake of simplicity we
therefore use high precision, macheps = 2753 ~ 107'6. in most examples, but lower
precision can often be used, if you need (say) four decimal places only in the results.

240 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

3.3.2 Comparison Series and Aitken Acceleration

Suppose that the terms in the series Z;’il a; behave, for large j, like the terms of a
series 377 | bj, i.e., limj,oo @;/bj = 1. Then if the sum s = 327, b; is known one

can write
o0 o0
Doaj=s+) (aj—by),
j=1 j=1

where the series on the right hand side converges more quickly than the given
series. We call this making use of a simple comparison problem. The same
idea is used in many other contexts—for example, in the computation of integrals
where the integrand has a singularity. Usual comparison series are Y. n~? = 72 /6,
Son~* = 7/90, etc. A general expression is found in Lemma 3.3.1. No simple
closed form is known for Y n=3.

Example 3.3.1.
The term a; = (j* + 1)7/2 behaves, for large j, like b; = 52, whose sum is
72 /6. Thus

The terms on the right hand side are easily computed; the use of five of these is
sufficient for four-place accuracy in the final result. Using the series on the left hand
side, one would not get four-place accuracy until after 20,000 terms.

This technique is unusually successful in this example. The reader is advised
to find out that and why it is less successful for a; = (j* + 5% + 1)~1/2.

A usual kind of comparison sequence is a geometric sequence y, = a + bk™,
fitted to the three most recently computed terms of a given sequence. If we put
Yn = sy for (say) n = j,j — 1,7 — 2, then Vy; = Vs;, Vy;_1 = Vs;_1, and

k:VSj/VSj_l, bkj —bkj_l =Y —Yj—1 ZVSj.

Hence

bkj _ VSJ' _ VSj _ (VS]')Q
].—1/]{)].—VSj_l/VSj VQS]')

This yields a comparison sequence for each j. Suppose that |k| < 1. Then the

comparison sequence has a limit s; (say), and we have s; = lim, 00y = a =
y; — bk7, ie.,
2
~ o ol (VSj)
SRS =85 — Vs, (3.3.1)

This is called Aitken acceleration. A variant that works with the terms of a
series instead of its partial sums is given in Problem 12.

3.3. Acceleration of Convergence 241

If {s,,} is exactly a geometric sequence, i.e., if s, = yn Vn, then s} = s Vj.
Otherwise it can be shown (Henrici [19, 1964]) that under the assumptions

lim s; =s, and lim 2L % E*, |k <1,

j—o00 S5 —Sj—1
the sequence {s’;} converges faster than does the sequence {s;}. The above as-
sumptions can often be verified for sequences arising from iterative processes and
for many other applications.

The condition |k*| < 1 is a sufficient condition only. In practice, Aitken
acceleration seems most efficient if k* = —1. Indeed, it often converges even if
k* < —1, see Problem 6. It is much less successful if k* =~ 1, e.g., for slowly
convergent series with positive terms.

The Aitken acceleration process can often be iterated, to yield sequences,
{sl}e°, {si15e, etc., defined by the formulas
V)2 ., (V)

i T8 T g % T 8% T g
j j

Example 3.3.2.
By (3.1.8), it follows for z = 1 that

1-1/3+1/5-1/7+1/9—...=arctanl = 7/4 = 0.7853981634.
This series converges very slowly. Even after 500 terms there still occur changes
in the third decimal. Consider the partial sums s; = Y7 (=1)7(2n +1)7", with

ng = 5, and compute the iterated Aitken sequences as indicated above.

The (sufficient) theoretical condition mentioned above is not satisfied, since
Vsn/Vsn—1 — —1 as n — oo. Nevertheless, we shall see that the Aitken acceler-
ation works well, and that the iterated accelerations converge rapidly. Omne gains
two digits for every pair of terms in spite of the slow convergence of the original
series. The results below were obtained using a computer with macheps ~ 10716,

The errors of s}, s, ... are denoted €, €/,

J Sj €; e e; e;’
5 | 0.744012... | —4.1387e—2
6 | 0.820935... 3.5536e—2
71 0.754268 ... | —3.1130e—2 | —1.7783e—4
8 | 0.813092... 2.7693e—2 1.1979e—4
9 | 0.760460 ... | —2.4938e—2 | —8.4457e—5 | —1.3332e—6
10 | 0.808079... 2.2681e—2 6.1741e—5 7.5041e—7
11 | 0.764601 ... | —2.0797e—2 | —4.6484e—5 | —4.4772e—7 | —1.028%e—8

Example 3.3.3.

Consider the iteration formula s,11 = ¢(s,), with so = 0.8, ¢(s,) = 1 —
0552, n = 0,1,2,.... We obtain s; = 0.68, s, = 0.7688, and s, = 0.7688 —
(0.0888)%/0.2088 = 0.73103. The error in s} is only about 3% of the error in ss.

242 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

In this example the theoretical criterion mentioned above is satisfied, since
one can show that s, — a = V3 — 1 &~ 0.73205, Vsn/Vsn_1 = ¢'(a) = —a, as
n — 0o. (See the discussion of iteration in Sec. 1.2.1.)

Iterated Aitken yields, with u = 27°% = 1.1-1071€ the results s}, = 0.73103.. .,
sy = 0.73211, etc., and the errors

ey =—101072, ¢/ =5.6107%, ¢)' =7.81077, e{*) = —2.81077,

after 2,4, 6,8 evaluations of the function ¢, respectively.

We shall see (Problem 6) that the Aitken acceleration may converge, even if
the basic iteration diverges.

When the basic sequence {s,,} is, as in this example, produced by a convergent
iterative process, one can apply Aitken acceleration in a different way that is usually
even much more efficient. We call this active Aitken acceleration, since the result
of an acceleration is actively used in the basic iterative process, i.e., one computes
s3 = @(sh), sa = ¢(s3), and makes an Aitken acceleration by means of s}, s3, s4
that yields s}. This can evidently be repeated, until some termination criterion is
satisfied. See Problem 13.

Example 3.3.4.

Set a, = e_\/m, n > 0. As before, the s, are the partial sums of 3 ay,
s = lims,, = 1.67040681796634, and use the same notations as above. Note that
V8n,/Vsn_1=apfan, 1 ~1— %n’lﬂ, (n > 1], so this series is slowly convergent.
Computations with plain and iterated Aitken, macheps ~ 107'%, gave the results
below:

62]‘ eg-)
—1.304 —1.304
—8.82e—1 | —4.10e—1
—6.40e—1 | —1.08e—1
—4.83e—1 | —3.32e—2
—3.74e—1 | —4.41e—3
—2.95e—1 | —7.97e—4
—2.37e—1 | —1.29e—4
—1.92e—1 | —1.06e—5
—1.58¢e—1 | —1.13e—5

CO 1 O U W = O,

The sequence {eg)} is monotonic until j = 8. After this |e§é)| is mildly
fluctuating around 107> (at least until j = 24), and the differences ng]]'-) = Veg]]'-)
are sometimes several powers of 10 smaller than the actual errors and are misleading

as error estimates. The rounding errors have taken over, and it is almost no use to
compute more terms.

It is possible to use more terms for obtaining higher accuracy by applying
iterated Aitken acceleration to a thinned sequence e.g., sy, sg, S12, ..., Problem 3.
69 The convergence ratios of the thinned sequence are much smaller; for the series of

69Note the thinning is performed on a sequence that converges to the limit to be computed, e.g.,

3.3. Acceleration of Convergence 243

the previous example they become approximately (1—in=1/2)* x~ 1-2n71/2 n > 1.
The most important point is, though, that the rounding errors become more slowly
amplified, so that terms far beyond the eighth number of the unthinned sequence
can be used in the acceleration, resulting in a much improved final accuracy.

How to realize the thinning depends on the sequence; a different thinning will
be used in the next example.

Example 3.3.5.
We shall compute

s =Y n7%/? =2612375348685488, ng =1, macheps=10""°.

If all partial sums are used in Aitken acceleration, it turns out that the error |e;]j)|
is decreasing until 7 = 5, when it is 0.07, and it remains on approximately this level
for a long time.

A much better result is obtained by means of thinning, but since the conver-
gence is much slower here than in the previous case, we shall try “geometric” thin-
ning rather than the “arithmetic” thinning used above, i.e. we now set S, = som.
Then

2m J
VSm= Y an, Sj=S0+ Y VS Ej=5—s
1+42m—1 m=1

(If maximal accuracy is wanted, it may be advisable to use the ”divide and con-
quer technique” for computing these sums, see Problem 2.4.1, but it has not been
used here.) By the approximation of the sums by integrals one can show that
VSn/VSm-1 = 271/2 'y > 1. The table below shows the errors of the first
thinned sequence and the results after iterated Aitken acceleration. The last result
has used 1024 terms of the original series, but since

o0
. o 2 .
sn—s=-» jn —/ t32dt = —gnfl/z, (3.3.2)
j=n "

102° terms would have been needed for obtaining this accuracy without convergence
acceleration.

Eaj+1 B
—1.61 —1.61
—-0.94 —1.85

—4.92e—1 | —5.06e—2
—2.49e—1 | —2.37e—4
—1.25e—1 | —2.25e—7
—6.25e—2 | 2.25e—10

T W N = O,

the partial sums of a series. Only in so-called bell sums, see Problem 36, we shall do a completely
different kind of thinning, namely a thinning of the terms of a series.

244 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

For sequences such that s, —s = con P +cin P 1 +0(n"?"2), p > 0, where s,
o, ¢1 are unknown, the following variant of Aitken acceleration, is more successful,
[3]:
f _p-l—l As,Vsy
" p As,— Vs,

It turns out that s!, is two powers of n more accurate than s,,

(3.3.3)

s —s=0(n "),

see Problem 14. More generally, suppose that there exists a longer (unknown)
asymptotic expansion of the form

sp=8+n"Plcg+ecin ™ +eanT +..), n— 0. (3.34)

This is a rather common case (see Problem 15). Then we can extend this to an to
an iterative variant, where p is to be increased by 2 in each iteration; ¢ = 0,1,2,...
is a superscript, i.e.,

p+2i+1 AsiVsi

Hl— gl ; — 3.3.5
on on p+2i Ast — Vs ()
If p is also unknown, it can be estimated by means of the equation,
1 As .
=—-A - O(n™?). 3.3.6
p+1 As, — Vs +0(n) ()

Example 3.3.6.

We consider the same series as in the previous example, i.e. s =) n=3/2, We
use (3.3.5) without thinning. Here p = —1/2, see Problem 15. As usual, the errors
are denoted e; = s; — s, egj = sgj —s. In the right column of the table, we show the
errors from a computation with 12 terms of the original series, macheps ~ 10716,

€2; eéi
—1.612 —1.612
—1.066 —8.217e—3

—8.52e—1 | —4.617e—5
—7.30e—1 | +2.528e—7
—6.49e—1 | —1.122e—9
—5.90e—1 | —6.34e—12
—5.44e—1 | —1.322e—-9

SO W N = OIS

From this point the errors were around 10710 or a little below. The rounding
errors have taken over, and the differences are, as in Example 3.3.4, misleading
for error estimation. If needed, higher accuracy can be obtained by “arithmetic
thinning” with more terms.

In this computation only 12 terms were used. In the previous example a less
accurate result was obtained by means of 1024 terms of the same series, but we must

3.3. Acceleration of Convergence 245

appreciate that the technique of Example 3.3.5 did not require the existence of an
asymptotic expansion for s, and may therefore have a wider range of application.

The best known extensions of Aitken acceleration are based on comparison
sequences of the form

p
Un =5+ Y amkiy; (3.3.7)
m=1

there are thus 2p+1 parameters to be determined by 2p+1 elements of the sequence,
(say) n = j : —1:j — 2p. The parameters may be complex. The first algorithms
of this type were developed by Shanks around 1950, and a few years later a very
elegant solution was found in the e-algorithm of Wynn [39]. Since

P
Vyn = Z al k. al = an(l—k.'), (3.3.8)
m=1

can be interpreted as the n’th coefficient of the power series for a rational function,
with poles at (the unknown points) k,,, m = 1,2, ...p, we postpone the discussion
till Sec. 3.4, where the related subject of Padé approximation is treated.

We have seen that iterated Aitken accelerations work excellently for oscillat-
ing sequences but, without modification, they are not so efficient for monotonic
sequences.

There are not yet so many theoretical results that give justice to the practically
observed efficiency of iterated Aitken accelerations for oscillating sequences. One
reason for this can be that the transformation (3.3.1), which the algorithms are
based on, is nonlinear). We shall in the following subsections study methods of
convergence acceleration that are based on linear transformations, where theoretical
estimates of convergence rates and errors are closer to to the practical performance
of the methods.

3.3.3 Alternating Series and Complex Power Series

Example 3.3.7.
Consider again the same series as in Example 3.3.2, i.e..

;(—1)1(21' +1)t=1- % + - -

— = % — (.7853981634.

O =

+

| =
~| =

We shall now apply another method of acceleration that is based on repeated
averaging of the partial sums. Let Sy be the sum of the first N terms. The
columns to the right of the Sy-column in the scheme given in Table 3.2.1 are
formed by building averages.

Each number in a column is the mean of the two numbers which stand to the
left and upper left of the number itself. In other words, each number is the mean

246 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

of its “west” and “northwest” neighbor. The row index of M tells how many terms
are used from the original series, while the column index -1 equals the number of
averagings. Ounly the digits which are different from those in the previous column
are written out.

Table 3.3.1. Summation by repeated averaging.

SN Mo, Ms; M, Ms Mg M;
0.744 012
0.820 935 782 474
0.754 268 787 602 5038
0.813092 783680 5641 340
0.760 460 786 776 5228 434 387
0.808 079 784270 5523 376 405 396
12 0.764 601 786340 5305 414 395 400 398

== RN CREN JS >

Notice that the values in each column oscillate. In general, for an alternating
series, it follows from the next theorem together with (3.2.4) that if the absolute
value of the jth term, considered as a function of j, has a kth derivative which
approaches zero monotonically for j > Ny, then every other value in column M1
is larger than the sum, and every other is smaller. The above premise is satisfied
here, since if f(j) = (2j +1)~! then f*)(5) = ¢x(2j + 1)~**, which approaches
zero monotonically.

If round-off is ignored, it follows from column Mg that 0.785396 < 7/4 <
0.785400.

To take account of round-off error, we set 7/4 = 0.785398 = 3 - 1075. The
actual error is only 1.610~7. In Example 3.3.2 iterated Aitken accelerations gave
about one decimal digit more with the same data.

It is evident how the above method can be applied to any alternating series. It
is often, though not always, equally successful. It is equivalent to a particular case
of the Euler transformation, which is defined for the convergence acceleration of
the following general complex power series.

S(z) = Zujzjfl, (3.3.9)
j=1

The alternating series obtained for z = —1. Other applications include Fourier
series. They can be brought to this form, with z = ¢?, —1 < ¢ < 7, see Problem 16
and Example 3.3.9. The irregular errors of the coefficients play a big role if |¢| < m,
and it is important to reduce their effects by means of a variant of the thinning
technique, described (for Aitken acceleration) in the previous subsection. Another
interesting application is the analytic continuation of the power series outside its
circle of convergence, see Example 3.3.10.

Theorem 3.3.1.

3.3. Acceleration of Convergence 247

The tail of the power series in Eq.(3.3.9) can formally be transformed into the
expansion, (z #1).

n 4 00 4 on 00
S(z) — ZUij_l = Z ujz’ ™t = 1> ZPsun-‘rl: (3.3.10)
j=1 j=n+1 5=0

where P =1, P = f_Az. For n =0, this is the classical Euler transformation.

Set N=n+k—1, and set

n n k—2
My, = ;szjfl; Myg=Mp1+ 11— ;Psunﬂ; n=N-k+1. (3.3.11)

These quantities can be computed by the following recurrence formula that yields
several estimates based on N terms from the original series. ™ This is called the
generalized Euler Transformation.

My g—1—2My_1,k—1
1—=2

My = k=2,3,4...,N. (3.3.12)

For z = —1, this is the repeated average algorithm described above, and P = —%A.
Assume that |z| < 1, that Y u;z7~' converges, and that ASuy —0,s=0:k
as N — 0o. Then My — S(z), as N — oo.
If, moreover, A¥=1u; has a constant sign for j > N —k + 2, then strict error
bounds are obtained:

|MN,I<: — S(Z)| S |Z(MN,I<: — MN_17]€_1)| = |MN,I<: — MN,k—1|; (k Z 2) (3313)

Proof. We first note that, as N — oo, P’uy — 0, s = 0 : k, and hence, by
(3.3.11), lim My = lim My = S(z).
Euler’s transformation can be formally derived by operators as follows:

00] 2
S(Z) - Mn,l =2z" ;(ZE)ZU»”_H = 1— zEun+1
2" P
== n = — _F)s n .
l—z—zAUJr1 l—zg Unt1

In order to derive (3.3.12), note that this relation can equivalently be written
thus,

Myir—Mygp-1=2MnNgr— Mn_1%-1), (3.3.14)
Myg—1—My_1p-1 =1 —2)(Mngr — Mn_1,5-1). (3.3.15)
Remembering that n = N — k + 1, we obtain, by (3.3.11),
SN—k+1
My =My 1p1 = 7 P"2un jya, (3.3.16)

70See Algorithm 3.3.1 for an adaptive choice of a kind of optimal output.

248 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

and it can be shown (Problem 19) that

MNchl — MN,kal = ZnPk72’U,n+1 = ZN7k+1Pk72’U,N,k+2. (3317)

By (3.3.16) and (3.3.17), we now obtain (3.3.15) and hence also the equivalent
equations (3.3.14) and (3.3.12).

Now substitute j for N into (3.3.17), and add the p equations obtained for j =
N+1, ..., N+p. Weobtain: My pp—1—Myj-1 =3 3 2 FFIPE=2u; s,
Then substitute k£ + 1 for k, and N + 1+ ¢ for j. Let p — oo, while k is fixed. It
follows that

o0 - GN—k+1 | k=1 .
e -
S(z) = Myy= Y 2 FPFlu 4= T > FAFuN gy,
j=N+1 i=0

(3.3.18)
hence [S(2) — My x| < |(z/(1—2))k= 12N =k 572 JARTun_g1o1i]. We now use
the assumption that A¥~1u; has constant sign for j > N — k + 2.

Since Y oo AR un 0 = —AF2un_j1o, it follows that

N—k+1

k=1 Ak—2
A uN,kH‘_‘z-z

S(2) — M < | N-k+1Z
| (Z) N7k| > |% (1 —Z)kfl 1_ 2

PkiZUN_k_i_Q .
Now, by (3.3.16), |S(2) — Mn x| < |z|- |Mnr — Mn_1k—1|- This is the first part of
Eq.(3.3.13). The second part then follows from (3.3.14). O

COMMENTS:

e The elements My ; become rational functions of z for fixed IV, k.

e If the term w,, as a function of n, belongs to Py, then the classical Euler
transformation (for n = 0) yields the exact value of S(z) after k terms, if |z| < 1.
This follows from (3.3.10), because Y u;z’ is convergent, and Pu,11 = 0 for
s > k. In this particular case, S(z) = Q(2)(1 — z)~*, where @ is a polynomial;
in fact the Euler transformation gives S(z) correctly for all z # 1.

The advantage of the recurrence formula (3.3.12), instead of a more direct use
of (3.3.10), is that it provides a whole lower triangular matrix of estimates, so that
the following algorithm can, by means of a simple test, decide when to stop. That
is what we call the generalized Euler Transformation.

This yields a result with strict error bound, if A¥~!u; has a constant sign (for
all j with a given k), and if the effect of rounding errors is evidently smaller than
ToL. If these conditions are not satisfied, there is a small risk that the algorithm
may terminate if the error estimate is incidentally small, e.g., near a sign change of
Akil’U,j.

The irregular errors of the initial data are propagated to the results, in a way
that is discussed in Ch.11, see in particular Example 11.1.2. In the long run, they
are multiplied by approximately |z/(1 — z)| from a column to the next—this is less
than one if Rz < 1/2—but in the beginning this growth factor can be as large as
(14 |2]|)/|1 — #|. It plays no role for alternating series; its importance when |1 — z|
is smaller will be commented in Example 3.3.9.

3.3. Acceleration of Convergence 249

The following algorithm is mainly based on the above theorem, but the pos-
sibility for the irregular errors to become dominant has been taken into account
(somewhat) in the third alternative of the termination criterion.

Algorithm 3.3.1 |

The Generalized Euler Transformation]

This algorithm is based on Theorem 3.3.1, with a tolerance named ToL, and a
termination criterion based on (3.3.13), by the computation and inspection of the
elements of M in a certain order, until it finds a pair of neighboring elements that
satisfies the criterion.

The classical Euler Transformation would only consider the diagonal elements My,
N =1,2,... and the termination would have been based on |[Myyn — My_1,n-1].
The theory in Sec. 3.3.6 will explain why the strategy used in this algorithm is
superior for an important class of series.

Give: maxN and the coefficients uj;, j = 1: mazN.

N :=0; errest:=1000; allocate storage for M;

while(errest > ToOL)& (N < Nmax)&(errest < olderrest)
N := N + 1;o0lderrest := errest;
if N=1, M;:=u;

else My :=My_11+un* szl;
end
for k=2:N,

Myg = (Myg—1—2x My 151)/(1=2);
temp := |Mn, — My k—1|/2;
if temp < errest, kk:=k; errest:=temp; end
end
end
sum = (My gx + MN kk—1)/2; NN := N,

Output: sum, errest, N,kk, and perhaps a few rows with My ;.

An oscillatory behavior of the values |My y — My ;—1 in the same row, indi-
cates that the irregular errors have become dominant. The smallest error estimates
may then become unreliable.

The above algorithm gives a strict error bound if, in the notation used in
the theorem, A*~'u; has a constant sign for i > N — k + 2 (in addition to the
other conditions of the theorem). It may seem difficult to check if this condition
is satisfied. A sequence, for which this condition is satisfied for every k, is called
completely monotonic.

Properties of such sequences, and simple criteria related to them will be given
in §3.3.6. It turns out that many sequences that can be formed from sequences
like {n=?}, {e~*"} by simple operations and combinations, belong to this class.
The generalized Euler transformation yields a sequence that converges at least as

250 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

0 0
i52
4
6 8
= _ 10 =
5 S 12, i
5] 1 s 14
- / 618 L 16
o 20 o 18
= 22 = (i}
2 10 24) 22
= 726 £ 24 6
i
\6/ N
-15 -14
0 10 20 30 0 10 20 30

i i

Figure 3.3.1. Logarithms of the actual errors and the error estimates
for My in a more extensive computation for the alternating series in Ezxample
3.3.7. These graphs are typical for alternating series with completely monotonic
terms. The tolerance is here set above the level, where the irreqular errors become
important; for a smaller tolerance parts of the lowest curves may become less smooth
in some parts.

fast as a geometric series. The convergence ratio depends on z; it is less than one
in absolute value for any complex z, except for z > 1 on the real axis. So, the
generalized Euler transformation often provides an analytic continuation of a power
series outside its circle of convergence.

For alternating series, with completely monotonic terms i.e., for z = —1, the
convergence ratio typically becomes % This is in good agreement with Fig. 3.3.1.
See Theorem 3.3.9 in §3.3.6 that also explains why the minimum points for the
errors lie almost on a straight line in Fig. 3.3.1 , and why the optimal value of
k/N is approximately %, if N > 1, and if there are no irregular errors. Hopefully
this optimum is close to the ratio is close to the ratio kk/N that is found by the
termination criterion. In practice it is usually successful, unless the irregular errors
have become dominant.

Example 3.3.8. A program, essentially the same as Algorithm 3.3.1, is applied to
the series

= , 1 1 1 1

Z(—l)jj_1 =1l—-—-4+-—-+4+—-—...=1n2=0.6931471805599453.
= 273 45

with ToL = 1075, macheps ~ 107!¢. It stops when N = 12, kk = 9. The errors

er = My, —In2 and the differences %VkMN,k along the last row of M read:

k 1 2 3 .. 8 9 10 11 12
ex -3.99e-2 | 1.73e-3 | -1.64e-4 | ... | 5.35e-7 | -4.51e-7 | 5.35e-7 | -9.44e-7 | 2.75e-6
V/2 2.03e-2 | -9.47e-4 | ... | 7.05e-7 | -4.93e-7 | 4.93e-7 | -7.40e-7 | 1.85e-6

Note that |errest| = 4.931077 and sum —In2 = J(eg + es) = 4.21075.

3.3. Acceleration of Convergence 251

Almost full accuracy is obtained for ToL = 10716, maxzN = 40. The results
are N = 32, kk = 22, errest = 10716, |error| = 2107!°. Note that errest <
|error|; this can happen when we ask for such a high accuracy that the rounding
errors are not negligible.

Example 3.3.9. Application to Fourier series. Consider a complex power series
S(z) =Y 00 upz™"t, 2z =e". A Fourier series that is originally of the form) >
or in trigonometric form, can easily be brought to this form, see Problem 16. As
we shall see, the results can often be improved considerably by the application of
thinning. Let THIN be a positive integer. The thinned form of S(z) reads

%] thin

* _THIN-(p—1 * j—1

S(z) = E Uz (p=1), uy = E Wjtthin-(p—1) 2° -
p=1 j=1

For example, if z = ¢"™/3 and THIN =3, the series becomes an alternating series,
perhaps with complex coefficients. It does not matter in the numerical work that
uy, depends on z.

We consider the case S(z) = —In(1 —z)/z = 3. 2"~!/n, which is typical for a
power series with completely monotonic terms. Numerical computation, essentially
by the above algorithm, gave the following results. The coefficients u; are computed
with macheps=10"1¢. We make the rounding errors during the computations less
important by subtracting the first row of partial sums by its last element; it is, of
course, added again to the final result. 7' The first table shows, for various ¢, the
most accurate result that can be obtained without thinning. These limits are due
to the rounding errors; we can make the pure truncation error arbitrarily small by
choosing N large enough.

%) w 2w /3 | w/2 w/3 | w/4 | w/6 | w/8 | w/12 | /180
lerror| | 2e-16 | 8e-16 | le-14 | 6e-12 | 1e-9 | 7e-8 | 5e-7 | 3e-5 2e-1

N 30 33 36 36 36 36 40 40 100

kk 21 22 20 21 20 14 13 10 (3)

Note that a rather good accuracy is obtained also for ¢ = 7/8 and ¢ = 7/12,
where the algorithm is “unstable”, since || > 1. In this kind of computations
“instability” does not mean that the algorithm is hopeless, but it shows the impor-
tance of a good termination criterion. The question is to navigate safely between
Scylla and Charybdis. For a small value like ¢ = 7/180, the sum is approximately
4.1 + 1.5i. The smallest error with 100 terms (or less) is 0.02; it is obtained for
k = 3. Also note that kk/N increases with ¢.

By thinning, much better results are obtained for ¢ < =, in particular for
¢ = w/180. This series that has “essentially positive” terms originally can become
“essentially alternating” by thinning. We present the errors obtained for four values
of the parameter THIN, with different amount of work. Compare |error|, kk, etc.
with appropriate values in the table above. We see that, by thinning, it is possible
to calculate the Fourier series very accurately also for small values of ¢.

"I Tricks like this can often be applied in linear computations with a slowly varying sequence of
numbers. See e.g., the discussion of rounding errors in Richardson extrapolation in Sec. 3.3.5.

252 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

THIN 180 120 90 15
thin - ¢ T 2m/3 w/2 | w/12
lerror]| 2e-14 | le-14 | 3e-13 | 3e-5

N 28 31 33 41

kk 20 22 18 10

total no. terms | 5040 3720 2970 615

Roughly speaking, the optimal convergence rate of the Euler Transformation
depends on z in the same way for all power series with completely monotonic coef-
ficients; independently of the rate of convergence of the original series. The above
tables from a particular example can therefore—with some safety margin—be used
as a guide for the application of the Euler transformation with thinning to any series
of this class.

Say that you want the sum of a series > u,2" for z = €, ¢ = /12, with
relative |error| < 107!° You see in the first table that |error| = 61072 for
¢ = n/3 = 4w /12 without thinning. The safety margin is hopefully large enough.
Therefore, try Thin = 4. We make two tests with completely monotonic terms:
un, = n~! and u, = exp(—+/n). Tol = 10710 is hopefully large enough to make
the irregular errors relatively negligible. In both tests the actual |error| turns out
to be 4107, and the total number of terms is 4 - 32 = 128. The values of errest
are 610711 and 7107!!; both slightly overestimate the actual errors and are still
smaller than TOL.

Example 3.3.10. Application to a divergent power series, (analytic continuation).
Consider a complex power series S(z) = Y7 up2™ !, |z| > 1. As in the previous
example we study in detail the case of u,, = 1/n. It was mentioned above that the
generalized Euler transformation theoretically converges in the z-plane, cut along
the interval [1,00]. The limit is —2~!In(1 — z), a single-valued function in this
region. For various z outside the unit circle, we shall see that rounding causes
bigger problems here than for Fourier series. The error estimate of Algorithm 3.3.1,
usually underestimated the error, sometimes by a factor of ten. The table reports
some results from experiments without thinning.

z —2 —4 —10 | —100 | —1000 21 81 1+4 | 241
lerror| | 2e-12 | 2e-8 | 4e-5 | 3e-3 5e-2 8e-11 | 1le-3 | 1le-7 | 2e-2
N 38 41 43 50 51 40 39 38 39
kk 32 34 39 50 51 28 34 22 24

Thinning can be applied also in this application, but here not only the ar-
gument ¢ is increased (this is good), but also |z| (this is bad). Nevertheless, for
z = 1 44, the error becomes 10~7, 31079, 1079, 41078, for thin = 1, 2, 3, 4,
respectively. For z = 2 + ¢, however, thinning improved the error only from 0.02 to
0.01. All this is for macheps= 10716,

Finally, we mention an application of the generalized Euler transformation to
a semiconvergent expansion.

3.3. Acceleration of Convergence 253

Example 3.3.11. Recall Example 3.1.15 with the semiconvergent expansion Z;’il (j—
1)!(—z)~/. For x = 5 the first terms decrease, but after the fifth term they increase;
the error of the average of the fifth and the sixth term is 1.8 1074,

We now compute ten terms and apply repeated averaging. My 7 and My s
are the best values, their errors are, respectively, —2.4107% and 2.6 10~%; we thus
gain two decimal digits. The error estimation and the termination criterion must
be modified, but that is outside the scope of this text.

We shall encounter several other methods for alternating series and complex
power series, which are even more efficient than the generalized Euler transfor-
mation, see the GCA method in §3.3.7, the epsilon algorithm in §3.4.4, and the
methods of Plana and Lindeldf in Ch.12.

3.3.4 Euler—Maclaurin’s Formula with Applications

In the summation of series with essentially positive terms the tail of the sum can
be approximated by an integral by means of the trapezoidal rule.

Example 3.3.12.

Consider the sum S = 2;11 j 2. The sum of the first nine terms is, to four
decimal places, 1.5398. It immediately occurs to one to compare the tail of the series
with the integral of 72 from 10 to co. We approximate the integral according to
the trapezoidal rule, see Sec. 1.2 and Fig. 3.3.2:

< 1. . .
/ rlde e Ty +To+Ts+...= 5(10*2+11*2)
10
+ 1(11*2 +127%) + 1(12*2 +13 3 +...= f: i - Lip-2
5 5 B> 5 :

Hence it follows that

o'} 9 o'}
DO RED DAt D
j=1 j=1

=10
~ 1.5398 + [—z 155 + 0.0050 = 1.5398 + 0.1050 = 1.6448.

The correct answer is 72/6 = 1.64493406684823. We would have needed about
10,000 terms to get the same accuracy by direct addition of the terms!

The above procedure is not a coincidental trick, but a very useful method. A
further systematic development of the idea leads to the important Euler—-Maclaurin
summation formula. We first derive this heuristically by operator techniques and
exemplify its use, including a somewhat paradoxical example that shows that a
strict treatment with the consideration of the remainder term is necessary for very
practical reasons. Since this formula has several other applications, e.g., in numer-
ical integration, we formulate it more generally than needed for the summation of
infinite series.

254 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Figure 3.3.2. Comparison with an integral

Consider to begin with a rectangle sum on the finite interval [a, b], with n steps
of equal length h, a + nh = b; with the operator notation introduced in Sec. 3.2.2.

n—1 n—1

hy fla+ih)=h> E'f(a)=h

i=0 =0

E"—1, . (E"—1) hD
E—1 f(a)_ D ehD—]_f(a)‘

We apply, to the second factor, the expansion derived in Example 3.1.6, with the
Bernoulli numbers B,. (Recall that a +nh = b, E™ f(a) = f(b), etc.)

Y fatih) = (En,%l) <1 £y W) f(a) (3.3.19)
1=0 v=1)

b " B
= / fla)de +) T”(f”*”(b) — V(@) + Ryy1.
a v=1 ’

Here Rjy; is a remainder term that will be discussed thoroughly in Theorem 3.3.3.
Set h = 1, and assume that f(b), f'(b), ... tend to zero as b — co. Recall that
B; = —%, Bsji1 = 0for j > 0, and set k = 2r+1. This yields Euler—-Maclaurin’s
summation formula footnoteL.Euler (1707-1783), incredibly prolific Swiss math-
ematician. He gave fundamental contributions to many branches of mathematics
and to the mechanics of rigid and deformable bodies as well as to fluid mechanics.
C.Maclaurin (1698-1764), British mathematician. They apparently discovered the
summation formula independently, see Goldstine [, p.84]. Euler’s publication came
1738.

3] o a r » (25-1) a
> fla+i)= / fyde+ 19D 5 Bl 2 @) b (33.90)

2“2 @)
N fla) fl(a) | f®(a)
_/a fla)de+ == = o=+ 0= =

in a form suitable for the convergence acceleration of series of essentially positive
terms. We tabulate a few coefficients related to the Bernoulli and the Euler numbers.

There are some obscure points in this operator derivation, but we shall consider
it as a heuristic calculation only and shall not try to legitimate the various steps of

3.3. Acceleration of Convergence 255

Table 3.3.2. Bernoulli and Euler numbers; By = —1/2,E, = 1.

2j) 4 6 8 10 12
1 1 1 1 5 691
B‘. 1 _ - P —_— _ —_—
% 6 30 42 30 66 2730
By | Lo _ 1 1 o1 1
@))! 12 720 30240 1209600 47900160
Ba, , L1 1 1 1 691
2j(2j-1) 12 360 1260 1680 1188 360360
B 1 -1 5 —61 1385 50521 2702765

it. With an appropriate interpretation, a more general version of this formula will
be proved by other means in Theorem 3.3.3. A general remainder term is obtained
there, if you let b — oo in (3.3.26). You do not need it often, because the following
much simpler error bound is usually applicable—but there are exceptions.

The Euler-Maclaurin expansion (on the right hand side) is typically semicon-
vergent only. Nevertheless a few terms of the expansion often gives startlingly high
accuracy with simple calculations. If, e.g., f(z) is completely monotonic ™ | i.e.,
if (=1)7fW) () >0 for x > a, j > 0, the partial sums oscillate strictly around the
true result; the first neglected term is then a strict error bound. (This statement
also follows from the Theorem below.)

Before we prove the theorem we shall exemplify how the summation formula
is used in practice.

Example 3.3.13.

We return to the case of Example 3.3.12 with f(z) = 272, a = 10, and treat
it with more precision and accuracy. We find [° f(z)dz = a™*, f'(a) = —2a73,
F"(a) = —24a=5, ... By (3.3.20), (r = 2),

o] 9 00

Zx—2 - Z 2 + 2(10 +4)72

z=1 z=1 =0
=1.53976 7731+ 0.1 4+ 0.005 + 0.00016 6667 — 0.00000 0333 + R
= 1.64493 4065 + Rg.

Since f(x) = 272 is completely monotonic, the first neglected term is a strict error
bound; it is less than 7201077/30240 < 3 - 10~ °. (The actual error is approxi-
mately 2-1077.)

Although the Euler—Maclaurin expansion, in this example, seems to converge
rapidly, it is in fact, only semi-convergent for any a > 0, and this is rather typical.
We have namely f*"=Y(a) = —(2r)la=>"~!, and, by Example 3.1.6, By,/(2r)! ~
(=1)"*+12(27)=2". The ratio of two successive terms is thus —(2r + 2)(2r + 1)/(27a)?,
hence the modulus of terms increase when 2r + 1 > 27a.

72See Sec. 3.3.5 for properties, criteria etc. for complete monotonicity, and for the extension to
the case when f can be expressed as the difference of two completely monotonic functions.

256 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

The “rule” that one should terminate a semiconvergent expansion at the term of
smallest magnitude, is in general no good for Euler—Maclaurin applications, since
the high order derivatives (on the right hand side) are typically much more difficult
to obtain than a few more terms in the expansion on the left hand side. Typically,
you first choose r, r < 3, depending on how tedious the differentiations are, and
then you choose a in order to meet the accuracy requirements.

In this example we were lucky to have access to simple closed expressions for
the derivatives and the integral of f. In other cases, one may use the possibilities
for the numerical integration on an infinite interval mentioned in Chapter 5. See
also Problem 28. In Problem 22(a) you find two formulas that result from the
substitution of the formulas (3.2.44) that express higher derivatives in terms of
central differences into the Euler—Maclaurin expansion.

An expansion of f(z) into negative powers of z is often useful both for the
integral and for the derivatives.

Example 3.3.14.
We consider f(z) = (z° + 1)~ /2, for which the expansion

I 45,3 75

2x + 8:c

was derived and applied in Example 3.1.7. It was found that fli)o f(z)dz = 0.632410375,
correctly rounded, and that f"/(10) = —4.1310~* with less than 1% error. The
f"(10) term in the Euler-Maclaurin expansion is thus —5.73 107, with absolute
error less than 6 107°. Inserting this into Euler-Maclaurin’s summation formula,
together with the numerical values of 3" _, f(n) and & f(10) — &5 f'(10), we obtain
Yoo o f(n) =3.79411570 + 10~ ®. The reader is advised to work out the details as

an exercise.

fz) = :v_3/2(1 +x_3)_1/2 — 5

Example 3.3.15. Let f(z) = e=®", a = 0. Since all derivatives of odd order vanish
at a = 0, then the expansion (3.3.20) may give the impression that Z;io e’ =

fooo e~ dx + 0.5 = 1.386 2269, but the sum (that is easily computed without any
convergence acceleration) is actually 1.386 3186, hence the remainder R, 2 cannot
tend to zero as r — oo. The infinite Euler—-Maclaurin expansion, where all terms
but two are zero, is convergent but is not valid. Recall the distinction between the
convergence and the validity of an infinite expansion, made in Sec. 3.1.2.

In this case f(x) is not completely monotonic; for example f”(z) changes sign
at z = 1. With appropriate choice of r, the general error bound (3.3.26) will tell that
the error is very small, but it cannot be used for proving that it is zero—because
this is not true.

The mysteries of these examples have hopefully raised the appetite for a more
substantial theory, including an error bound for the Euler—-Maclaurin formula. We
first need some tools that are interesting in their own right.

The Bernoulli polynomial B,,(t) is an n'th degree polynomial defined by the
symbolic relation By, (t) = (B + t)", where the exponents of B become subscripts

3.3. Acceleration of Convergence 257

after the expansion according to the binomial theorem. The Bernoulli numbers B;
were defined in Example 3.1.6. Their recurrence relation (3.1.11) can be written in

the form
n—1

Z(’})szo, n>2,

7=0
r “symbolically” (B + 1) = B" = B,, (for the computation of B,,_1), n # 1,
hence
Bn(1) = By(0) = B,, for n>2,
Bo(t)=1, Bi(t)=t+ B =t—1/2.

The Bernoulli function Bn(t) is a piecewise polynomial defined for ¢t € R by the
equation B, (t) = B, (t — [t]). (Note that B,,(t) = B,(t) if 0 <t < 1.)

Lemma 3.3.2.

(2) By (t)/(n+1)! = Ba(t)/nl, (n>0),
B,(0) = B,,. (Forn =1 this is the limit from the right.)

/1 Bu(t) , _ { 1, ifn=0;
0

n! 0, otherwise.

(b) The piecewise polynomials B,(t) are periodic; B (t +1) = By(t). Bi(t) is
continuous, except when t is an integer. For n > 2, B, € C" 2%(—00,00).
(¢) The Bernoulli functions have the following (modified) Fourier expansions, (1 >

D),

By (t) >, sin2nwt BZr(t) 1 cos 2nmt
— L = (=1)"2 =)2 .
(2r —1)! (=1) 21 (2nm)2r=17 (2r)! Z (2nm)2r

Note that B, (t) is an even (odd) function, when n is (even odd).
(d) [Bar(t)] < |Bar|-

Proof. Statement (a) follows directly from the symbolic binomial expansion of the
Bernoulli polynomials.

The demonstration of statement (b) is left for a problem. The reader is advised
to draw the graphs of a few low order Bernoulli functions.

The Fourier expansion for B (t) follows from the Fourier coefficient formulas
(3.1.30), (modified for the period 1 instead of 27). The expansions for B,(t), are
then obtained by repeated integrations, term by term, with the use of (a).

Statement (d) then follows from the Fourier expansion, because By,.(0) = B,..

O CoMMENTS: For t = 0 we obtain an interesting classical formula, together with

a useful asymptotic approximation that was obtained in a different way in Sec. 3.1.

2 IBzrl(%) |Bar| 2
Zn S@rl @~ G (3.3.21)

258 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Also note, how the rate of decrease of the Fourier coefficients is related to the type
of singularity of the Bernoulli function at the integer points. (It does not help that
the functions are smooth in the interval [0, 1].)

The Bernoulli polynomials have a generating function that is elegantly ob-
tained by means of the following “symbolic” calculation.

o o0

2 : 2 : B + y e(B+y)z = eBweyz = weyml. (3322)
er —
0 0

If the series is interpreted as a power series in the complex variable z, the conver-
gence radius is 2.

Theorem 3.3.3. The Euler—Maclaurin Formula. .
Set x; = a +ih, z,, = b, suppose that f € C*"*2(a,b), and let T(a : h: b)f be
the trapezoidal sum

n—1

Pla:h:b)f = 2 i)+ fla) = h(Zf(wiH%(f(b)—f(a)))- (3.3.23)

i=0

b 2
Tazh: 07— [S de =25 (70) - 1/@) - 15 (70) - 17@) 3329

+...+

" (FE 1) = f2 1 (a)) + Raria(a, h,b) f.

The remainder Ro.i2(a,h,b)f is O(h*"+2). It is represented by an integral with a
kernel of constant sign in (3.3.25). An upper bound for the remainder is given in
(3.3.26).

The estimation of the remainder is very simple in certain important particular cases:
If fPr+2)() does not change sign in the interval [a,b] then Rapio(a,h,b)f has the
same sign as the first neglected ™ term.

If fPr+2)(z) and f@7)(z) have the same constant sign in [a,b], then the value of the
left hand side of (3.3.24) lies between the values of the partial sum of the expansion
displayed in (3.3.24) and the partial sum with one term less. ™. In the limit,
as b — oo, these statements still hold—also for the summation formula (3.3.20)—
provided that the left hand side of (3.3.24) and the derivatives f*)(b) (v =1:2r+1)
tend to zero, if it is also assumed that

/ 17242 ()| dir < oo,

a

731f r = 0 all terms of the expansion are “neglected”.

7 Formally this makes sense for 7 > 2 only, but if we interpret f(-1) as “ the empty symbol”,
it makes sense also for r = 1. If f is completely monotonic the statement holds for every r > 1.
This is easy to apply, because simple criteria for complete monotonicity etc. are given in §3.3.6.

3.3. Acceleration of Convergence 259

Proof. To begin with we consider a single term of the trapezoidal sum, and set
x = xi_1 + ht, t € [0,1], f(z) = F(t). Suppose that F' € CP[0,1], where p is an
even number.

We shall apply repeated integration by parts, Lemma 3.1.12; to the integral
fol fo t)dt. Use statement (a) of Lemma 3.3.1 in the equivalent
form fB /]'dt (H_l(t)/(]-l-l).

Consider the first line of the expansion in the next equation. Recall that
B, =0if vis odd and v > 1. Since Bj;1(1) = B;41(0) = Bjy1, j will thus be odd
in all non-zero terms, except for j = 0. Then, with no loss of generality, we assume
that p is even.

' B, (t)

dt
p!

/ =S 220
0 =0

_1\p ' (p)
i 1)/0F (t

=0

_ + Z j+1 F(] (1) — FU) (0)) + /01 jalf2 (t)%@ dt

:F(1)+F(O)_p73 Bisr (1) (1) — poy) — [o () Be=Belt)
2 ;(a‘ﬂ)!(F (1) = F72(0) /OF ()= de.

The upper limit of the sum is reduced to p — 3, since the last term (with j =p—1)
has been moved under the integral sign, and all values of j are odd. Set j +1 = 2k
and p = 2r + 2. Then £ is an integer that runs from 1 to r. Hence

p—3 r
; a+1 F(J (1) —) (0)) = kz::l (52’)“!(}7(2#1)(1) — F(2k71)(0)).

Now set F(t) = f(x;_1+ht), t € [0,1]. Then FZF=1 () = p2k=1 fCk=1 (g, | + ht),
and make abbreviations like f; = f(z;), f-(j) = fU)(z;) etc..

h(fi- 1+fz) = Baht k1) k-
/fdw—/th ;(2)“ ~fY) R,

where R is the local remainder that is now an integral over [z;_1, z;]. Adding these
equations, for i = 1 : n, yields a result equivalent to (3.3.24), namely

’ a - B2kh2k (2k—1)
/ f(m)dm:T(a:h:b)f—kg 25)] f (z)
a k=1

b

- R2r+2 (aa h; b)f;

T=a

b R (2r+2) T
Rayia(a, h,b) f = h?7+2 / (Bgr+2 — Barpa((z — a)/ h))) f(%i”(),)

By Lemma 3.3.1, | By, 2(t)| < |Bayia|, hence the kernel By, o — Bo,io((x — a)/h)
has the same sign as By, ;2. Suppose that f(?"+2)(z) does not change sign on (a, b).
Then

dz. (3.3.25)

sign £ (2) = sign (FEr TV (b) — FE) (a)),

260 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

hence Ry, 42(a,h,b)f has the same sign as the first neglected term.
The second statement about “simple estimation of the remainder” then follows from
Theorem 3.1.3, since the Bernoulli numbers (with even subscripts) have alternating
signs.

If sign f(>"+2)(z) is not constant, then we note instead that

|Baria — Borya((— a) /h)| < |2Bar),

and hence

2B,, .
|Royy2(a, h,b)f| < h?"+2 |2 jf;' / |22 ()| dae

zz(%)m / £+ (2)|d. (3.3.26)

If [|f(2rJr2 (z)|dz < oo this holds also in the limit as b — oo.

Note that there are (at least) three parameters here that can be involved in
different natural limit processes: For example, one of the parameters can tend to its
limit, while the two others are kept fixed. The remainder formula (3.3.26) contains
all you need for settling various questions about convergence.

e b — 00; natural when Euler—-Maclaurin’s formula is used as a summation for-
mula, or for deriving an approximation formula valid when b is large.

e h — 0; natural when Euler-Maclaurin’s formula is used in connection with
numerical integration. You see how the values of derivatives of f at the end-
points a,b can highly improve the estimate of the integral of f, obtained by
the trapezoidal rule with constant step size. Euler—-Maclaurin’s formula is also
useful for the design and analysis of other methods for numerical integration,
see Romberg’s method in the next subsection.

e 7 — 00; lim, o Rorqa(a, h,b)f = 0 can be satisfied only if f(z) is an entire
function, such that |f™ (a)|= o((27/h)") as n — oco. Fortunately, this type of
convergence is rarely needed in practice. With appropriate choice of b and h,
the expansion is typically rapidly semiconvergent. Since the derivatives of are
typically more expensive to compute than the values of f, one frequently reduces
h (in integration) or increases b (in summation or integration over an infinite
interval), and truncates the expansion several terms before one has reached
the smallest term that is otherwise the standard procedure with alternating
semiconvergent expansion, cf Sec. 3.1.8.

Variations of the Euler—-Maclaurin summation formula, with finite differences
instead of derivatives in the expansion, are given in Problem 22, where you also
find a more general form of the formula, and two more variations of it.

Euler—Maclaurin’s formula can also be used for finding an algebraic expression
for a finite sum, see Problem 35 or, as in the following example, for finding an
expansion that determines the asymptotic behavior of a sequence or a function.

3.3. Acceleration of Convergence 261

Example 3.3.16. An expansion that generalizes Stirling’s formula.
We shall use Euler—-Maclaurin formula for f(z) = lnz, a = m > 0, h = 1,
b =n > m. We obtain

T(m:1:n)f = Z Ini—fInn+ $lnm=I(n!) — Linn—In(m!) + ;Inm.
i=m+1

FEED (1) = (2k — 2)1at 2k, / f@)de =nlon—n —mlonm + m.

Note that T(m : 1 : n)f and fTZ f(z)dz are unbounded as n — oo, but their
difference is bounded. Putting these expressions into (3.3.24), and separating the
terms containing n from the terms containing m gives

T

By,

k=1
_ | 1 - Bok L1
=In(m!) = (m+ 5)Inm+m — Z 2@k = m T Ropya(m:1:n).
k=1

By (3.3.26), after a translation of the variable of integration,

" |2B2r+2| dz |2BZ1-+2| (27‘)'
Ry 11 < < ~
| Rara (m)| < /m (2r 4+ 2)a?t2 = (2r +2)(2r + 1)|m? Y 7|27m|?r 1

(3.3.28)
Now let n — oo with fixed r, m. First, note that the integral in the error bound con-
verges. Next, in most texts of calculus Stirling’s formula is derived in the following
form:

1
n! ~ V2" T2e7" (n = o0) (3.3.29)

If you take the natural logarithm of this, it follows that the left hand side of (3.3.27)
tends to £ In(27) ™ , and hence

By,
22k — 1ym2h—1

,
In(m!) = (m+ 1) Inm —m+ % In(27) + Z +R, (3.3.30)
k=1

where a bound for R is given by (3.3.28). The numerical values of the coefficients
are found in Table 3.3.4.

Almost the same derivation works also for f(z) = In(z+%), m = 0, where zis a
complex number, not on the negative real axis. A few basic facts about the Gamma
function are needed, see details in Henrici [21, Vol. 2, Sec. 11.11, Example 3].

75You may ask why we refer to (3.3.29). Why not? Well, it is not necessary, because it is easy
to prove that the left hand side of (3.3.27) increases with n and is bounded; it thus tends to some
limit C (say). The proof that C = In V27 ezactly is harder, without the Wallis product idea
(from 1655) that is probably used in your calculus text, or something equally ingenious or exotic.
However, if you compute the right hand side of (3.3.27) for m = 17, r = 5 (say), and estimate the
remainder, you will obtain C to a fabulous guaranteed accuracy, in invisible computer time after
a rather short programming time. And you may then replace %ln 2w by your own C in (3.3.30),
if you like.

262 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

The result is that you just replace the integer m by the complex number z
in the expansion (3.3.30). According to [1, Sec. 6.1.42] R is to be multiplied by
K (z) = upper bound,~q|2%/(u?+2?)|. For z real and positive, K(z) = 1, and since
f'(z) = (z + x)~! is completely monotonic, it follows from Theorem 3.3.3 that, in
this case, R is less in absolute value than the first term neglected and has the same
stgm.

It is customary to write InI'(z + 1) instead of In(z!). The Gamma function
is one of the most important transcendental functions. See, e.g., Handbook [1,
Chapter 6] and Lebedev[24].

This formula (with m = z) is useful for the practical computation of In I'(z+1).
Its semiconvergence is best if Rz is large and positive. If this condition is not
satisfied, the situation can easily be improved by means of logarithmic forms of the

e reflection formula: T'(2)I'(1 — z) = n/sinnz,
o recurrence formula: T'(z + 1) = zI'(2).

By simple applications of these formulas the computation of InT'(z + 1) for
an arbitrary z € C is reduced to the computation of the function for a number z’,
such that |2/| > 17, Rz' > %, for which the total error, if 7 = 5, becomes typically
less than 1074, See Problem 25.

Although, in this section, the main emphasis is on the application of the Euler—
Maclaurin formula to the computation of sums and limits, we shall comment a little
on its possibilities for other applications 76 .

e It shows that the global truncation error of the trapezoidal rule for f: flz)dz
with step size h, has an expansion into powers of h?. Note that although
the expansion contains derivatives at the boundary points only, the remainder
requires the integrability of | f(>*+2)| in the interval [a, b]. The Euler-Maclaurin
formula is thus the theoretical basis for the application of repeated Richardson
extrapolation to the results of the trapezoidal rule, known as Romberg’s method,
see Sec. 3.3.5. Note that the validity depends on the differentiability properties
of f.

e The Euler-Maclaurin formula can be used for highly accurate numerical inte-
gration when the values of some derivatives of f are known at = a and = = b.
More about this in Chapter 5.

e Theorem 3.3.3 shows that the trapezoidal rule is second order accurate, unless
f'(a) = f'(b), but there exist interesting exceptions. Suppose that the function
f is infinitely differentiable for x € R, and that f has [a,b] as an interval of
periodicity, ie., f(x +b—a) = f(z),Yz € R. Then fB(b) = f*(a), for
k=0,1,2,..., hence every term in the Fuler—Maclaurin expansion is zero for

76 As you may have noted, we write “the Euler-Maclaurin formula” mainly for Eq. (3.3.24) that
is used in general theoretical discussions, or if other applications than the summation of an infinite
series are the primary issue. The term “the Euler—-Maclaurin summation formula” is mainly used
in connection with Eq. (3.3.20), i.e. when the summation of an infinite series is the issue. “The
Euler-Maclaurin expansion” denotes both the right hand side of (3.3.24), except for the remainder,
and for the corresponding terms of (3.3.20). These distinctions are convenient for us, but they are
neither important nor in general use.

3.3. Acceleration of Convergence 263

the integral over the whole period [a,b]. One could be led to believe that the
trapezoidal rule gives the exact value of the integral, but this is usually not
the case; for most periodic functions f, lim, ,o Rorqof # 0; the expansion
converges, of course, though not necessarily to the correct result.

e On the other hand, the convergence as h — 0 for a fixed (though arbitrary)

r is a different story; the error bound (3.3.26) shows that |Ra,y2(a,h,b)f| =
O(h?>"*2). Since r is arbitrary, this means that for this class of functions,
the trapezoidal error tends to 0 faster than any power of h, as h — 0 . We
may call this superconvergence. In such cases Romberg’s method yields no
improvement; actually the excellent results become worse.
Suppose that this periodic function f(z), z = z + iy, is analytic in a strip,
ly| < ¢, around the real axis. It can then be shown that the error of the
trapezoidal rule is O(e~"/") as h | 0; 7 is related to the width of the strip. A
similar result was obtained in Example 3.1.6, for an annulus instead of a strip.
As a rule, this discussion does not apply to periodic functions which are de-
fined by periodic continuation of a function originally defined on [a, b] (like the
Bernoulli functions). They usually become non-analytic at a and b, and at all
points a+ (b—a)n, n=0,+1,£2

e The application of the trapezoidal rule to an integral over [0,00) of a function
f € C*(0,00) often yields similar features, sometimes even more striking.
Suppose that, for k = 1,2,3,..., f2*~1(0) = 0 and f*~V(z) = 0, as x — oo,
and [° [fCR) (2)]dz < 00. 77
Then all terms of the Euler-Maclaurin expansion are zero, and one can be
misled to believe that the trapezoidal sum gives fooo f(z)dz exactly for any
step size h! We have already seen an example of this in Example 3.3.15. See
also Theorem 3.3.4 and Problem 34.

The explanation is that the remainder Ro,12(a, h,00) will typically not tend to
zero, as — oo for fixed h. On the other hand: if we consider the behavior of
the truncation error as h — 0 for given r, we find that it is o(h*") for any 7,
just like the case of a periodic function.
For a finite subinterval of [0, o), however, the remainder is still typically O(h?),
and for each step the remainder is typically O(h®). So, there is an enormous
cancellation of the local truncation errors, when a C'*°-function, with vanishing
odd-order derivatives at the origin, is integrated by the trapezoidal rule over
[0, 00).
The Poisson summation formula is, however, even better than the Euler—
Maclaurin formula for the quantitative study of the trapezoidal truncation error
on an infinite interval. For convenient reference we now formulate the following

surprising result, although the proof, by means of the Poisson formula, comes in
Ch.12.

Theorem 3.3.4. Suppose that the trapezoidal rule (or, equivalently, the rectangle
rule) is applied with constant step size h to ffooo f(t)dt. The Fourier transform of

""Note that for any function g € C*°(—00,o0) the function f(x) = g(x) + g(—x) satisfies such
conditions at the origin.

264 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

f reads f(w) = [*_ f(t)e= ™! dt.
Then the integration error decreases like 2f(2r/h) as h 1 0.

Example 3.3.17.
For the normal probability density, we have

1 —l 02 —l w02
J(t) = —s=eT2 WD flw) = T2

The integration error is thus approximately 2 exp(—2(wo/h)?). Roughly speaking,
the number of correct digits is doubled if h is divided by /2, e.g., the error is
approximately 5.4 107 for h = o, and 1.41077 for h = o /V/2.

We shall illuminate these amazing properties of the trapezoidal rule from
different points of view in several places in this book. First, See examples in Prob-
lem 34, and applications to the so-called bell sums in Problem 36.

3.3.5 Repeated Richardson Extrapolation and Related
Algorithms.

Let F(h) denote the value of a certain quantity obtained with step length h. In
many calculations one wants to know the limiting value of F'(h) as the step length
approaches zero. However, the work to compute F(h) often increases sharply as
h — 0. In addition, the effects of round-off errors often set a practical bound for
how small h can be chosen.

Often, one has some knowledge of how the truncation error F'(h) — F(0) be-
haves when h — 0. If

F(h) =ao+aih? + O(h"), h—0,r > p,

where ag = F(0) is the quantity we are trying to compute and a; is unknown, then
ap and a; can be estimated if we compute F' for two step lengths, h and gh, ¢ > 1:

F(h) = ap+ arh? + O(h"),
F(qh) = ag + ai1(gh)” + O(R"),

from which eliminating a; we get

F(h) — F(qh)

F(O):CLOZF(h)+ qp—].

+O(h"). (3.3.31)

This formula is called Richardson extrapolation, or the deferred approach to the
limit. Examples of this were mentioned in Chap. 1—the application of the above
process to the trapezoidal rule for numerical integration (where p = 2, ¢ = 2), and
for differential equations—p = 1, ¢ = 2 for Euler’s method, p = 2, ¢ = 2 for Runge’s
2nd order method.

3.3. Acceleration of Convergence 265

The term is called the Richardson correction. It is used in in

(3.3.31) for improving the result. Sometimes, however, it is used only for estimat-
ing the error ® F(h) — ag. If the irregular errors are negligible, this error estimate
is asymptotically correct. More often, the Richardson correction is used as er-
ror estimate for the improved (or extrapolated) value F'(h) + W, but this
is typically a strong overestimate; the error estimate is O(h?), while the error is
O(h"), (r>p).

Suppose that a more complete expansion of F'(h) in powers of h, is known to
exist,

F(h)—F(qh)
1

F(h):ao-l-alhpl+a2hp2+a3hp3-|-... O0<pr<pr<ps<..., (3332)

where the exponents are typically known, while the coefficients are unknown. Then
one can repeat the use of Richardson extrapolation in a way described below. This
process is, in many numerical problems—especially in the numerical treatment of
integral and differential equations—one of the simplest ways to get results which
have tolerable truncation errors. The application of this process becomes especially
simple when the step length form a geometric series H, H/q, H/q?, ..., where ¢ > 1
and H is the basic step length, or shorter the bigstep.

Theorem 3.3.5. Suppose that an expansion of the form of (3.3.32), where 0 <
p1 < p2 < p3 < ..., holds for F(h), and set

qP* Fy(h) — Fi(qh) Fy.(h) — Fi(qh)

Fi(h) = F(h), Fua(h) = — Fi(h) +

qpk -1 qpk -1 ’
(3.3.33)
fork=1:(n—1), where ¢ > 1. Then F,(h) has an expansion of the form
(n) qpk — qpu
F,(h) = ag + ay/hP" + a hpn+1 + ... H pr—) ——a,. (3.3.34)

k=1

Note that a,(,n) =0 for v <n.

Proof. Set temporarily Fy(h) = ag + agk)hpl + agk)hp"‘ + ...+ a,(,k)th +.... Put
this expansion into the first expression on the right hand side of (3.3.33), and,
substituting k + 1 for k, put it into the left hand side. By matching the coefficients
for h?» we obtain a(k+1) alk) (¢"* — q*)/(¢'») —1). By (3.3.32), the expansion
holds for £ = 1, with a,(,) = a,. The recursion formula then yields the product
formula for a’. Note that a("H) =0, hence a{™” =0,Yv <n. O

The product formula is for theoretical purpose. The recurrence formula is for
practical use. If an expansion of the form of Eq. (3.3.32) is known to exist, the above
theorem gives a way to compute increasingly better estimates of ag. The leading

78This can make sense, e.g., if the values of F' are afflicted by other errors, usually irregular,
suspected to be comparable in size to the correction.

266 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

term of F, (h) — ag is a%n)hp", the exponent of h increases with n. A moment’s

reflection on equation (3.3.33) will convince the reader that (using the notation of
the theorem) Fj,y1(h) is determined by the &k + 1 values

Fl(H)aFl(H/Q)aaFl(H/qk)

With some changes in notation we obtain the following algorithm.
Algorithm 3.3.2 Repeated Richardson extrapolation

Form =1:N,set T,,1 = F(H/q™ '), and compute, form =2: N, k=1:m—1,

Tm,k - Tm—l,k

P (3.3.35)

Tm,k+1 = Tm7k: +

It is sometimes advantageous to write

qpk Tm,k - Tm—l,k
qpk -1 :

Tm,k-{—l =
The computations can be set up in a scheme, where an extrapolated value in the

scheme is obtained by using the quantity to its left and the correction diagonally
above.™

Table 3.3.3. Scheme for repeated Richardson extrapolation

A A A
qu—l qu_]_ qp3_1
T
T5 T5
Ts1 Tso T3
T41 T42 T43 T44

Suppose that ToL is the permissible error. Then, according to the argument
above, one continues the process, until two values in the same row agree to the
desired accuracy, i.e., [Tk — T k—1| < Tol — CU, where CU is an upper bound
of the irregular error, (see below). (ToL should, of course, be larger than CU.) If
no other error estimate is available, ming [T, x — Tim k—1| + CU is usually chosen as
error estimate, even though it is typically a strong overestimate.

Typically k = m, and T,,,, is accepted as the numerical result, but this is not
always the case. For instance, if H has been chosen so large that the use of the basic

79This is for small hand-computed examples and for the explanation of the method. In a
computer the results are simply stored in a lower triangular matrix.

3.3. Acceleration of Convergence 267

asymptotic expansion is doubtful, then the uppermost diagonal of the extrapolation
scheme contains nonsense and should be ignored, except for its element in the first
column. Such a case is detected by inspection of the difference quotients in a
column. If for some k, where T} ; has been computed and the modulus of the
relative irregular error of Tyyo p —Tk+1, is less than (say) 20%, and, most important,
the difference quotient (Ty+1.6 — Th.k)/ (Th+2,6 — Tht1,%) 18 is very different from its
theoretical value ¢P*, then the uppermost diagonal is to be ignored (except for its
first element). In such a case, one says that H is outside the asymptotic regime. 89
In this discussion a bound for the inherited irregular error is needed. We shall
now derive such a bound. Fortunately, it turns out that the numerical stability of
the Richardson scheme is typically very satisfactory, (although the total error bound
for Typ, will never be smaller than the largest irregular error in the first column).
Denote by €; the the column vector with the irregular errors of the initial data.
We neglect the rounding errors committed during the computations. 8' Then the
inherited errors satisfy the same linear recursion formula as the 1), x, i.e.

qr* €m,k — €m—1,k

€m,k+1 = qP’f]
Denote the k’th column of errors by eg, and set ||ex]| = maxy, |em k|, |le1]] = U.
Then |lep41]] < Z:zﬂﬂekﬂ Hence, for every k, ||ex+1]] < Clle1]|| = CU, where C is
the infinite product
a g + 1 1+4qP»
H qpk — H 1-— q—pk

k=1
that converges as fast as > ¢~ P*; the multiplication of ten factors are thus more
than enough for obtaining a sufficiently accurate value of C.

Example 3.3.18. Values of the infinite product C for a few common cases with
q=2.
The most common special case is an expansion where p, = 2k,

F(h) = ao + a1h® + ash® + azh® + . .. (3.3.36)

All the three Examples 3.3.19-3.3.21, are of this type. The headings of the columns
of Table 3.3.5 then become A/3,A/15,A/63,.... In this case we find that C =

2. L ... <2 (after less than 10 factors).

For (systems of) ordinary differential equations there exist some general the-
orems, according to which the form of the asymptotic expansion (3.3.32) of the
global error can be found. References to the literature are given in Example 3.3.24.

80Sometimes several of the uppermost diagonals are to be ignored. It was mentioned at the end
of §3.3.4 that the trapezoidal rule is superconvergent in some common and important cases. Then
all the difference quotients in the first column are much larger than ¢P! = ¢2. So, according to
the rule just formulated, every element of the Romberg scheme, outside the first column should
be ignored. It is all right; in superconvergent cases Romberg’s method is of no use; it deteriorates
the excellent results that the trapezoidal rule has produced.

81They are usually for various reasons of less importance. One can also make them smaller,
in floating-point computation, by subtracting a suitable constant from all initial data. This is
applicable to all linear methods of convergence acceleration.

268 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

For Numerov’s method for ordinary differential equations, discussed in Exam-
ple 3.2.17 and Problem 31, one can show that we have the same exponents in the
expansion for the global error, but a; = 0. (and the first heading disappears). We
thus have the same product as above, except that the first factor disappears, hence

c<2. % =1.2.
For Euler’s method for ordinary differential equations, presented in Sec. 1.4.2.,
pr = k; the headings are A/1,A/3,A/7,A/15,.... Hence C =3 - % . % .- = 8.25.

For Runge’s 2nd order method, presented in Sec.1.4.3, the exponents are the
same, but a; = 0 (and the first heading disappears). We thus have the same product
as for Euler’s method, except that the first factor disappears, hence C = 8.25/3 =
2.75.

Ifpj=37-p, j=1,2,3,...1in (3.3.32), i.e. for expansions of the form
F(h) = ag + aih? + ash® + azh™ + ...,

it is not necessary that the step sizes form a geometric progression. Choose any
increasing sequence of integers g1 = 1,¢a,...,q; and set h; = H/q;.

We can then use an algorithm that looks very similar to repeated Richardson
extrapolation. In cases where both are applicable, i.e. if p, = p-k, ¢; = ¢*, they are
identical, otherwise they have different areas of application. See Example ex33.ode.

Note that the expansion is a usual power series in the variable x = h?, which can be
approximated by a polynomial in z. Suppose that k+1 values F(H), F(H/q2), ..., F(H/qx)
are known. Then by the corollary to Theorem 3.2.1, a polynomial) € Py, is uniquely
determined by the interpolation conditions

Q(z;) = F(H/q;), ;= H/q)?, i=1:k.

Our problem is to find @(0). Many interpolation formulas can be used for this
extrapolation. Newille’s algorithm, which is derived in Sec.4.2, is particularly con-
venient in this situation. Eq.(4.2.27) yields, after a change of notation, the following
recursion.

Algorithm 3.3.3 Neville’s algorithm
Form=1:N,set Tp,1 = F(H/qy), where 1 =¢; < g2 < ¢3..., is any increasing
sequence of integers, and compute, form=2: N, k=1:m — 1,

Tm,k - Tm—l,k . (Qm/(Jm—k)me,k - Tm—l,k

Trkt1 =T + =
ok " (g qm—k)? — 1 (@m/@m—k)? — 1

(3.3.37)

The computations can be set up in a triangle matrix as for repeated Richardson
extrapolations, without headings.

Example 3.3.19. Computation of m by means of regular polygons.
The ancient Greeks computed approximate values of the circumference of
the unit circle, 27, by inscribing a regular polygon and computing its perimeter.

3.3. Acceleration of Convergence 269

Archimedes considered the inscribed 96-sided regular polygon, whose perimeter is
6.2821. In general, a regular n-sided polygon inscribed in a circle with radius 1 has
circumference ¢, = 2nsin 7. If we put h = 1/n, then

3 5

2 «
C(h):Cl/hZﬁsinwh:27r_7r_h2+7r_h4_”.,

3 60
so c¢(h) satisfies the assumptions for repeated Richardson extrapolation with p; =
2k. In order to use this with ¢ = 2 we first try to find a recursion formula that
leads from ¢,, to cay,.

Con :4nsin% :4"\/m=2"\/2— m

(Derive this! The last transformation is made to avoid cancellation and conse-
quential round-off errors.) The following table gives the Richardson scheme using
values ¢, n = 6,12,...,96 computed to nine decimals using this recursion (see also
Problem 29).

m n k=1 k=2 k=3 k=4

1 6 6.000000000

2 12 6.211657083 6.282209444

3 24 6.265257227 6.283123942 6.283184908

4 48 6.278700406 6.283181466 6.283185301 6.283185307
5 96 6.282063902 6.283185068 6.283185308 6.283185308

The rounding errors set the limit for the accuracy of 1, , when m +k > 8. A
correctly rounded value of 27 reads 6.2831853071. Note that, although = was men-
tioned in the analysis above, it was never used in the computation of the initial
data for the algorithm. 2

We shall also make a short calculation with Newille’s algorithm, based on
three simple polygons, with n = 2,3 and 6 sides, not in geometric progression.
We can interpret a 2-sided polygon as a diameter described up and down. Its
“circumference” is thus equal to 4.

2 4
3 3v3 6.15307
6 6 6.26795 6.2823

82 An extension of this example was used as a test problem for a package for (in principle)
arbitrarily high precision floating point arithmetic in Matlab for a PC. For instance, = was obtained
to 203 decimal places with 22 polygons and 21 Richardson extrapolations in less than half a minute.
The extrapolations took a small fraction of this time. Nevertheless they increased the number of
correct decimals from approximately 15 to 203.

270 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

This is even a little better than the result (6.2821) obtained for the 96-sided polygon
without extrapolations.

Example 3.3.20. Application to numerical differentiation.
By Bickley’s table for difference operators, i.e., Table 3.2.1 in Sec. 3.2.2, we
know that

§ 2sinh(hD/2 A
E:w:D—f—azth?’—}—mh‘le’%—...,
p = cosh(hD/2) = 1+ byh?D? + byh*D* + ...,

where the values of the coefficients are now unimportant to us. Hence

fla+h)—fl@z—h) pé f(x)
2h —Df(l')_ h and

5 f(z)

fl(@) - 12

f(x) =

have expansions into even powers of h. Repeated Richardson extrapolation can thus
be used with step sizes H, H/2, H/4, ... and headings A/3, A/15, A/63,.... For
numerical examples, see Problems of this section.

Richardson extrapolation can be applied in the same way to the computation
of higher derivatives. Because of the division by h* in the difference approxima-
tion of f(¥), irreqular errors in the values of f(x) are of much greater importance
in numerical differentiation than in interpolation and integration. It is therefore
important to use high order approximations in numerical differentiation, so that
larger values of h can be used.

Suppose that the irregular errors of the values of f are bounded in magnitude
by ERB, these errors are propagated to udf(z), 62f(z),...with bounds equal to
ERB/h, 4ERB/h?,.... As mentioned earlier, the Richardson scheme (in the version
used here) is no rascal; it multiplies the latter bounds by a factor less than 2.

Example 3.3.21. Application to numerical integration. Romberg’s method. Set
z; = a+ th, also for non-integer subscripts, =, = b. Denote by T'(a : h : b)f,

R(a,h,b)f the trapezoidal and the midpoint sum, respectively.

n

Ma:h:0)f =Y o () + f@)): Rlahb)f= > wiage):

i=1

We know by Euler-Maclaurin’s formula that
A b «
T(a:h:b) —/ f(@)dz = coh® + csh* + cgh® + ...,

where ¢, = 0 if f € P. Repeated Richardson extrapolation can thus be used
with ¢ = 2, pr = 2k, i.e., with step sizes H, H/2, H/4,... and headings A/3,
A/15, A/63,.... H is called the bigstep. In this section (except for Problem 28)
we consider just one bigstep, i.e., b = a + H. The important question about the
control of step size and order over a long interval is postponed to Ch. 5.

3.3. Acceleration of Convergence 271

This application of repeated Richardson extrapolation is known as Romberg’s
method, after a publication of Rombergin 1955. A thorough analysis of the method
was carried out by Bauer, Rutishauser and Stiefel [2, 1963] that we shall refer to
for proof details.

For practical numerical calculations the values of the coefficients ¢; are not
needed, but they are used, e.g., in the derivation of an error bound, see Theorem
3.3.6. It is also important to remember that the coefficients depend on derivatives of
increasing order; the success of repeated Richardson extrapolations is thus related
to the behavior in [a,a + H] of the higher derivatives of the integrand.

One easily shows the following simple and useful relation of the trapezoidal
rule to the midpoint rule (Problem 37),

T(h)2) = %(T(h) + R(h)) (3.3.38)

that makes it possible to reuse the function values that have been computed earlier.

Example 3.3.22. A numerical illustration to Romberg’s method. The integral

0.8
sinx
dx
0 .CL'

is to be computed to at least eight correct decimals.
As an exercise the reader is advised to check some of the midpoint and trape-
zoidal sums given below, which are correct to ten decimals. Use (3.3.38).

h R(f T(h)f

0.8 0.77883 66846 0.75867 80454
04 0.77376 69772 0.76875 73650
0.2 0.77251 27162 0.77126 21711
0.1 0.77188 74437

The correct value, to ten decimals, is 0.7720957855. The trapezoidal sums are
now copied to the first column of the Richardson (Romberg) scheme, i.e., k = 0 for
improving the value of the integral.

m Tm1 A/?) ng A/15 ng T44
1 0.7586780454
33597732
2 0.7687573650 0.7721171382
8349354 13355
3 0.7712621711 0.7720971065 0.7720957710
2084242 826
4 0.7718874437 0.7720958678 0.7720957853 0.7720957855

Since none of the differences |T5,; — T5,;-1| < 5107, the termination criterion
mentioned above requires that the row with m = 4 must be computed. Then, the

272 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

termination criterion is satisfied with a wide margin, since [Tyq — Tys| = 2 10~19,
and the irregular errors are less than 10710, T}, is even better than this error bound
indicates; the correct result agrees with 7y4 to all the displayed decimal places.

Romberg’s method has been one of the most widely used methods, since,
among other things, it gives a simple strategy for the automatic determination of a
suitable step size and order. One begins with a fairly large step hy = H, and then
repeatedly halves the step size h; = h;—1/2,1=2,3,....

Theorem 3.3.6. Error bound for Romberg’s method.

The items T,y are estimates of the integral f:“b f(x) dz that can be expressed
as a linear functional,

J

Tk = HZagi?jf(a +jh), where n =2""' h=H/n. (3.3.39)
j=1
ot =1, ol >0 (3.3.40)

1

If the magnitude of the irregular error in f(a+jh) is at most %U, then the magnitude
of the inherited irreqular error in Ty is at most H%U.

The remainder functional for Ty, is zero for f € Pop, and its Peano kernel is
positive in the interval (a,a + H). The truncation error of T,y reads

a+H
Tk — / f(@)de = rgh* HfCR) (o + LH) + O(h*+2H f(2k+2) (3.3.41)

=rh®*HfCR (&), €€ (a,a+ H), (3.3.42)
rp = 28| Byy|/(2k)!, h=2'""H. (3.3.43)

SKETCH OF A PROOF: Eq.(3.3.39) follows directly from the construction of
the Romberg scheme. It is for theoretical use only; the recursion formulas are better
for practical use.

The first formula in (3.3.40) holds, because Ty, is exact if f = 1. The second
formula is easily proved for low values of k. The general proof is more complicated,
see [2, Theorem 4].

The Peano kernel for m = k = 1 (trapezoidal rule) was constructed in Sec. 3.2.
For m = k = 2 (Simpson’s rule), see Problem 3.2.12. The general case is more
complicated. Recall that, by the corollary of Theorem 3.2.7, a remainder formula
with a mean value £ € (a,a + H), exists iff the Peano kernel does not change sign.
Bauer, Rutishauser and Stiefel [2, pp. 207-210], constructed a recursion formula for
the kernels, and succeeded in proving that they are all positive, by an ingenious
use of the recursion. The expression for rj is also derived there, although with a
different notation. See also Problem 30. 0O

3.3. Acceleration of Convergence 273

COMMENTS: In an error estimate of the form ch? H f(*)(-), p is called the order
of accuracy or order. c is called the error constant. Note also that the integration
formula is exact in P,, but not in P, if ¢ > p. Suppose that an integration formula
is used with constant step size and order over the interval [a,b], a so-called “long
formula”. The error estimate (or bound) becomes ch?(b — a)f?)(-), ie., b — a is
substituted for H. 83

Example 3.3.23. Comparison and combination of Romberg’s and Newton—Cotes’s
methods.
By working algebraically in the Romberg scheme, we obtain

T = 3H (f(a) + fla+ H)),
Ty, = iH (F(a) + fla+ LH) + f(a+ LH) + f(a+ H))

= 3H (5f(a) + fla+ 3H) + 5f(a+ H)),

T = %(4T21 =Tn) = éH (fla) +4f(a+3H)+ fla+ H)). (3.3.44)

We see that Th, is the same as Simpson’s formula, see Problem 3.2.12.

This can also be proved by a more “philosophical” argument. Recall that, by
the corollary of Theorem 3.2.4, there is only one linear combination of the values
of the function f at n + 1 given points that can yield faa+H f(x) dx exactly for all
polynomials f € Pp41.

Recall also the closed Newton—Cotes formulas (for numerical integration) that
we here shall denote by C,,. See Example 3.2.12 and Problem 12.2.13. In the appli-
cation to faHH f(x)dx, Cy, uses n + 1 equidistant points, including the endpoints
x = a and £ = a + h, and its order is n + 2. ('} is the trapezoidal rule, hence
Cy = T1;. For even values of n, the order of accuracy is equal to n + 2. The
remainder of C,, reads rnh"+2Hf("+2). Cs, Cy, Cg uses the same function values
as by, T33, Ty, respectively. Some data concerning these formulas are given in
Table 3.3.23. Note that, by the corollary of Theorem 3.2.4,

02 = T22 = Simpson, 04 = T33, but Cg 75 T44,

because Cg and Ty4 have different order.

Note that the remainder of Tyy is r4h8H f®) (&) ~ ryHAS f(a), where A®f(a)
uses the same function values as Tyy and Cs. So we can use r4HASf(a) as an
asymptotically correct error estimate for Ty4.

More interesting: Tys — 4 HA® f(a) is an estimate of the integral that is exact
in Py at least, and Cg is another estimate that has the same property and is based
on the same 9 function values. By the same argument as before,

Cs =Ty — raHA® f(a), ry = 16/4725. (3.3.45)

The term 74 H A8 f(a) can still be used as an error estimate for Cs, usually a
strong overestimate. Note, however, that cs HA' f(z) is an asymptotically correct

837 his is one of the reasons for our definition of “error constant”. You may find other definitions
and other values in other texts.

274

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Table 3.3.4. Data concerning some Romberg and Newton—Cotes formulas.

order order | error const. error const.
m = n T Ch Tk Cn
1 1| 2 2 1/12 1/12
2 2| 4 4 1/180 1/180
3 4 6 6 2/945 2/945
4 8 8 10 16/4725 296/467775

error estimates for Cg if & a. It requires extra function evaluations, unless (in
a long computation) e.g., the actual bigstep has neighboring bigsteps, where the
required function values are available.

The appearance of the eighth difference may seem frightening, when we think
about the amplification of the irregular errors of the 1st column. It is, however,
harmless. A bound for the inherited irregular errors of Cg in this representation
reads $HU + 2% - H - 256 - $U < 0.93HU.

A slightly lower bound for the irregular errors is obtained for Cs in the representation
>_jajf(a+ jh), see (3.2.49). Although three of the nine coefficients are negative,
the bound is as low as Y- |oj|H3U < 0.73HU.

It is a little disappointing that something that should have become a super-
improvement of Romberg’s method turns out to be a special case of Newton—Cotes’s
method. A tenth order method is most interesting when high accuracy is needed. A
feature of the Romberg algorithm is that it also contains exits with lower accuracy
at a lower cost, but this is more of a topic for Chapter 5.

Example 3.3.24. Applications to differential equations. Under reconstruction.

3.3.6 Complete Monotonicity and Related Concepts.

A sequence {u,} is completely monotonic, (c.m.) for n > a iff

up >0, (=AY wu, >0, Vj>0, n>a, (integers).

The abbreviation c.m. will be used, both as an adjective and as a noun, and both
in singular and in plural. The abbreviation d.c.m. will similarly be used for the
difference between two completely monotonic sequences. (These abbreviations are
not generally established.)

A c.m. sequence {u,}° is minimal iff it ceases to be a c.m. if ug is decreased,
while all the other elements are unchanged. This distinction is of little importance
to us, since we usually deal with a tail of some given c.m., and it can be shown
(Problem 47) that if {u,}5° is a c.m. then {u,}5° is a minimal c.m.. Note, e.g.,
that the sequence {1,0,0,0,...} is a non-minimal c.m.,while {0,0,0,0,...} is a
minimal c.m..

3.3. Acceleration of Convergence 275

Unless it is stated otherwise we shall only deal with minimal c.m. without
stating this explicitly all the time.
Similarly a function u(s) is c.m. for s > a,s € R, iff

u(s) >0, (~1)9 fU(s) >0, s>a,Vj>0 (integer), Vs > a, (real).

u(s) is d.c.m if it is difference of two c.m. on the same interval.

We also need variants with an open interval. For example, the function u(s) =
1/sis c.m. in the interval [a, co) for any positive a, but it is not c.m. in the interval
[0, o0].

The simplest relation of c.m. functions and c.m. sequences reads: if the
function wu(s) is c.m. for s > so then the sequence defined by u, = u(sg + hn),
(h > 0),n=0,1,2,...is also c.m. since, by (3.2.4), (=A)u, = (=hD)Iu(§) > 0
for some & > sp.

A function is absolutely monotonic in an (open or closed) interval, if the
function and all its derivatives are non-negative there.

The main reason why the analysis of a numerical method is convenient for c.m.
and d.c.m. is that the they are “linear combinations of exponentials”, according
to the theorem below. The more precise meaning of this requires the important
concept of a Stieltjes integral, f: f(z)da(z), which is defined as the limit of sums
of the form), f(fi)(a(mz-ﬂ)—a(mi)) wherea=xg <11 <29 <...<xzny=0b,& €
[zi,ziy1]. Here f(z) is bounded and continuous, and a(zx) is of bounded variation
in [a,b], i.e. the difference between two non-decreasing and non-negative functions.
The extension to improper integrals where, e.g., b = oo, a(b) = oo, is made in
a similar way as for Riemann or Lebesgue integrals. The Stieltjes integral
is much used also in Probability and Mechanics, since it unifies the treatment of
continuous and discrete (and mixed) distributions of probability or mass. If a(z) is
piecewise differentiable, then da(z) = o/ (z)dz, and the Stieltjes integral is simply
f f@)d (x)dx. If ax) is a step function, with jumps (also called point masses) m;
at x = :c,, then

da(x;) —hrna(:c,-l-e) —a(z; — €) =my, / f(z)da(z Zmzf Ti)-

Integration by parts is as usual; the following example is of interest to us. Suppose
that a(0) = 0, a(z) = o(e*) as — oo, and that Rs > ¢. Then

/000 e *¥da(z) = S/OOO a(x)e**dz, (3.3.46)

The integral on the left side is called a Laplace—Stieltjes transform, while the
integral on the right side is an ordinary Laplace transform. Many properties of
power series, though not all, can be generalized to Laplace—Stieltjes integrals—set
z = e %. Instead of a disk of convergence, the Laplace—Stieltjes integral has a
(right) half-plane of convergence. A difference is that the half-plane of absolute
convergence may be different from the half-plane of convergence.

276 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

We shall be rather brief and concentrate on the applicability to the study
of numerical methods. We refer to Widder [37], [38], for proofs and more precise
information concerning both Stieltjes integrals, Laplace transforms and complete
monotonicity. Dahlquist [9] gives more details about applications to numerical
methods.

The sequence defined by

1
Up :/ t"dp(t), n=0,1, 2,..., (3.3.47)
0

is called a moment sequence if §(t) is non-decreasing. We make the convention
that t° = 1 also for t = 0, since the continuity of f is required in the definition of
the Stieltjes integral.

Consider the special example, where 8(0) = 0,5(t) = 1 if ¢ > 0. This means
a unit point mass at ¢ = 0, and no more mass for ¢t > 0. Then ug = 1, u, = 0
for n > 0. It is then conceivable that making a sequence minimal just means to
remove a point mass from the origin; thus minimality means to require that 5(t) is
continuous at t = 0. (For a strict proof, see [37, § 4.14],)

The following theorem combines parts of several theorems in the books of
Widder. It is important that the the functions called a(z),(t) in this theorem
need not to be explicitly known for an individual series, for applications of an error
estimate or a convergence rate etc. of a method of convergence acceleration. Some
criteria will be given below that can be used for simple proofs that a particular
series is (or is not) c.m. or d.c.m..

Theorem 3.3.7.

1. The sequence {up} is a c.m., iff it is a moment sequence; it is minimal if in
addition B(t) is continuous at t = 0, i.e., if there is no point mass at the origin.
It is a d.c.m., iff (8.3.47) holds for some B(t) of bounded variation.

2. The function u(s) is a c.m. for s > 0, iff it can be represented as a Laplace—
Stieltjes transform,

u(s) = /000 e *da(z), s>0, (3.3.48)

with a non-decreasing and bounded function a(x). For the open interval, s > 0
we have the same, except for the boundedness of a(x). For a d.c.m. the same
is true with a(x) of bounded variation, (not necessarily bounded as © — o).
The integral representation provides an analytic continuation of u(s) from a
real interval to a half-plane.

3. The sequence {u,}&° is a minimal c.m., iff there exists a completely monotonic
function u(s), such that u,, = u(n), n=0,1,2,....

4. Suppose that u(s) is c.m. in the interval s > a. Then the Laplace-Stieltjes
integral converges absolutely and uniformly if Rs > a’, for any a’' > a, and
defines an analytic continuation of u(s) that is bounded for Rs > a' and analytic
for Rs > a. This is true also if u(s) is a d.c.m..

3.3. Acceleration of Convergence 277

COMMENTS: The “only if” parts of these “iff” statements are deep results
mainly due to Hausdorff and Bernstein, and we omit the rather technical proofs.
The relatively simple proofs of the “if” parts of the first three statements will be
sketched, since they provide some useful insight.

1. Assume that u, is a moment sequence, 5(0) = 0, § is continuous at t = 0
and non-decreasing for ¢ > 0. Note that multiplication by E or A outside the
integral sign in (3.3.47) corresponds to multiplication by t or t — 1 inside. Then, for
jin=0,1,2,..,

(=1) Adu,, = (=1)! /1(t —1)It"dB(t) = /1(1 —t)9t"dpB(t) > 0

hence u,, is c.m.

2. Assume that u(s) satisfies (3.3.48). It is rather easy to legitimate the
differentiation under the integral sign in this equation. Differentiation j times with
respect to s yields, for j =1,2,3,...

<—nw@@)=edvﬁmemwa”mmazﬁmw%S%mu>zm

hence u(s) is c.m.
3. Assume that u,, = u(n fo e "da(z). Definet = e~ %, 5(0) = 0, S(t)
B(e™*) = u(0) — a(zx), and note that

t=12z=0, t=0&2=0o,

and that «(0) = lim,_ o a(z). It follows that S(¢) is non-negative and non-
decreasing, since x decreases as ¢ increases. Note that §(t) | 5(0), as ¢t | 0. Then

%z—lﬂwmnzlﬂwmm

hence {uy} is a minimal c.m.

4. The distinction is illustrated for o/(z) = €2, u(s) = (s — a)~!, for a real
a. u(s) is analytic for Rs > a and bounded only for Rs > a' for any o’ > a.

The basic formula for the application of complete monotonicity to the sum-
mation of power series reads

Zu,z —Z/ 2t dp(t) / Zzitidﬂ(t) :/01(1—zt)_1dﬂ(t).

(3.3.49)
The inversion of the summation and integration is legitimate when |z| < 1. Note
that the last integral exists for more general z; a classical principle of Complex
Analysis then yields the following interesting result.

Lemma 3.3.8. If the sequence {u;} is d.c.m., then the last integral of formula
(3.3.49) provides the unique single-valued analytic continuation of S(z) to the whole
complex plane, save for a cut along the real axis from 1 to co.

278 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

COMMENT: When z is located in the cut, (1 — 2¢)~! has a non-integrable
singularity at t = 1/z € [0, 1] unless, e.g., B(t) is constant in the neighborhood of
this point. If we remove the cut, S(z) will not be single-valued. Check that this
makes sense for B(t) = ¢.

Next we shall apply the above results to find interesting properties of the
(generalized) Euler Transformation. For example, we shall see that, for any z outside
the cut, there is an optimal strategy for the generalized Euler Transformation that
provides the unique value of the analytic continuation of S(z). We shall see in
§ 3.3.7 that this also holds for Gustafson’s Chebyshev acceleration. The classical
Euler Transformation, however, reaches only the half-plane Rz < %

After that we shall see that there are a number of simple criteria for finding
out whether a given sequence is a c.m., a d.c.m. or neither. Many interesting
sequences are c.m., e.g., U, = e ¥ wu, = (n+¢)~* (k> 0, ¢ > 0), all products
of these and all linear combinations (i.e., sums or integrals) of such sequences with
positive coefficients.

The convergence of a c.m. towards zero can be arbitrarily slow, but an alter-
nating series with c.m. terms will after Euler’s transformation converge as rapidly
as a geometric series. More precisely, the following will be shown.

Theorem 3.3.9. On the optimal use of a generalized Euler Transformation.

We use the notation of Theorem 3.8.1 and Eq. (8.3.18). Suppose that the
sequence {u;} is either c.m. or d.c.m. Consider S(z) = Z;io u;z9, z € C, and its
analytic continuation (according to the above lemma). Then:

e If 2 = —1, a sequence along a descending diagonal of the scheme M or (equiva-
lently) the matriz M, i.e., { My, 1}52 o for a fized ng, converges at least as fast
as 27k,

e More generally: the error behaves like (2=)*, (k > 1). Note that |2=| < 1 iff

1—z 1—z
Rz < % The classical Euler transformation diverges outside this half-plane.

If z = e*®, % <t <, it converges as fast as (2sin %)’k.

The results above are for the classical Euler transformation. For the general-
ized Fuler transformation we have the following:

e If 2 = —1 the smallest error in the i’th row of M, is O(37%), as i — oo.

ﬁ)’), hence the smallest error converges
exponentially, unless z — 1 is real and positive, i.e., the optimal application
of the generalized Euler’s transformation provides the analytic continuation,
whenever it exists according to Lemma 3.3.8. If N > 1, the optimal value of

k/N is %.84 If = eX,0 < t <, the error is O((1 + 2sin §)).

e More generally: this error is O((

841n practice this is approximately found by the termination criterion of the algorithm in Sec
3.2.3.

3.3. Acceleration of Convergence 279

Proof. Sketch: The results of the generalized Euler transformation is in Sec. 3.3.3
denoted by M, ;(z). The computation uses N = n + k terms (or partial sums)
of the power series for S(z); n terms of the original series—the head—are added,
and Euler’s transformation is applied to the next k terms—the tail. Set n/N = p,
ie, n=pN, k= (1-p)N, and denote the error of M, ; by Rn ,(z). Euler’s

transformation is based on the operator P = P(z) = ZA . A multiplication by the

operator P corresponds to a multiplication by Z (t 1) 1n51de the integral sign fo
First suppose that |z| < 1. By the deﬁmtlons of S(z) and M,, x(2) in Theorem
3.3.1,

= — :L S SU, :L ' M sn
RN,M(’Z) =S Mn,k (1—2) gP n (1—2’)/0 ‘g((].—Z)) t dﬂ(t)a

7 Lozt —1)* t"dp(t)
B u(2) = /0 (1=2)) - St—1)/(1=2) (3.3.50)

ZN !
— (_1)k)k /0 (1 —t) 1dﬁ_(z)t (3.3.51)

(3.3.52)

We see that the error oscillates as stated in Sec. 3.3.2. Again, by analytic
continuation, this holds for all z save for the real interval [1,00]. Then

' 1dp()]
1 —zt]

Ry < [z = 2) 0] ma (1= 1))Y, e = /

te[0,1]

The first part of the theorem has n = 0, hence p = 0. We obtain limy_, |R11V/J(;]| <
|2/(1 — z)| as N — oo, as stated. This is less than unity if |2| < |1 — 2|, i.e., if

Now we consider the second part of the theorem. The maximum occurring in
the above expression for |Ry ,(2)|'/N (with N, fixed) takes place at ¢ = y. Hence

R ()N < 2/ (1= 2) 71N (L=) .

An elementary optimization shows that the value of p that minimizes this

bound for |Ry.,(2)|Y/N is p = ﬁ, ie, k=(1—-p)N = ‘Ilv_llzﬁ‘l, and the mini-

mum equals ﬁ The details of these two optimizations are left for Problem 41.
This proves the second part of the theorem. 0O

This minimum turns out to be a rather realistic estimate of the convergence
ratio of the optimal generalized Euler-transformation for power series with d.c.m.
coefficients, unless §(t) is practically constant in some interval around ¢ = pu; the
exception happens, e.g., if u, = a", 0 < a <1, a # u, see Problem 40.

Example 3.3.25. Criteria for higher monotonicity.
We shall here list a few criteria, by which one can often answer the question whether

280 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

a function is a c.m or a d.c.m or neither. When several c.m. or d.c.m. are involved,

the intervals should be reduced to the intersection of the intervals involved. By

Theorem 3.3.7, the question is then settled also for the corresponding sequence. In

simple cases the question can be answered directly by means of the definition or the

above theorem, e.g., for u(s) = e7*%, s7* (k > 0), for $s > 0 in the first case, for

Rs > 0 in the second case.

The problems of Sec.3.3. contain many interesting examples that can be
treated by means of these criteria, one of the most important is Problem 42: every
rational function that is analytic and bounded in a half-plane is a d.c.m. there.

Sometimes a table of Laplace transforms, see e.g., Abramowitz and Stegun,
can be useful in combination with the criteria below.

(A) If u(s) is c.m., and a,b > 0, then g(s) = u(as +b) and (—1)7u'9)(s), are c.m.,
=123, ... f:o u(t) dt is also c.m., if the integral is convergent. (The interval
of complete monotonicity may not be the same for g as for f). Analogous
statements hold for sequences.

(B) The product of two c.m. is c.m. Similarly, the product of two d.c.m. is d.c.m.
This can evidently be extended to products of any number of factors, and hence
to every positive integral power of a c¢.m. or d.com.. The proof is left for
Problem 43.

(C) A uniformly convergent positive linear combination of c.m. is itself c.m.. The
same criterion holds for d.c.m., without the requirement of positivity. The term
”positive linear combination” includes sums with positive coefficients and, more
generally, Stieltjes integrals [u(s;p)dy(p), where v(p) is non-decreasing.

(D) Suppose that u(s) is a d.c.om. for s > a. F(u(s)) is then a d.c.m for s > a,
if the radius of convergence of the Taylor expansion for F(z) is greater than
max |u(s)|.

Suppose that u(s) is a c.m. for s > a. We must then add the assumption
that the coefficients of the Taylor expansion of F(z) are non-negative, in order
to make sure that F(u(s)) is c.m for s > a. These statements are important
particular cases of (C). We also used (B), according to which each term wu(s)*
is a c.m. (or a d.c.m. in the first statement).

Two illustrations: g(s) = (1 —e *)"!is a c.m. for s > 0;

h(s) = (s2+1)7! a d.c.m at least for s > 1 (choose z = s72). The expansion
into powers of s~2 also provides an explicit decomposition h(s) = (572 + 576 +
) —(s7*+58+..) = 5 — =5 where the two components are ¢.m.for
s > 1. See also Example 3.3.26.

(E) If ¢'(s) is c¢.m. for s > a, and if u(z) is c.m. in the range of g(s) for s > a,
then F(s) = u(g(s)) is e.m. for s > a. (Note that g(s) itself is not c.m.)

For example, we shall show that 1/Ins is c.m. for s > 1. Set g(s) = Ins,
u(z) = 271, a = 1. Then u(z) is c.m. for z > 0, and ¢'(s) = s~! is c.m. for
s > 0, a fortiori for s > 1 where Ins > 0. Then the result follows from (E).

Another set of criteria is related to the analytic properties of the c.m and
d.c.m.. Let u(s) be a d.c.m for s > a. According to statement 4 of Theorem 3.3.7,
u(s) is analytic and bounded for s > a’ for any a’ > a. The converse of this is not

3.3. Acceleration of Convergence 281

unconditionally true. If, however, we add the conditions that

/ lu(o + iw)|dw < 00, u(s) =0, as|s| — oo, 0 >d, (3.3.53)

—0Q

then it can be shown that u(s) is a d.cm. for s > a. This condition is rather
restrictive; there are many d.c.m. that do not satisfy it, e.g., functions of the form
e * ork+b(s—c)™, (k>0,b6>0,c>a,0<v<1). The following, however, is
a reasonably powerful criterion: u(s) is a d.c.m. for s > a, e.g., if we can make a
decomposition of the form u(s) = fi(s) + f2(s) or u(s) = f1(s) f2(s), where fi(s) is
known to be d.c.m for s > a, and f2(s) satisfies the conditions in (3.3.53).

Theorem 3.3.10.

Suppose that u(s) is c.m. for some s though not for all s. Then a singularity
on the real azis, at (say) s = a, must be among the rightmost singularities; u(s) is
c.m. for s > a, hence analytic for Rs > a.

This is not generally true if u(s) is only a d.c.m.. Suppose that u(s) is d.c.m
for s > a, though not for any s < a. Then we cannot even be sure that there exists
a singularity s* such that Rs* = a.

The first statement is analogous to a familiar theorem about power series with
positive coefficients, but the statement about the d.c.m. contrasts with the situation
for power series; the latter always have a singularity on the boundary of the region
of convergence.

Example 3.3.26.

This theorem can be used for finding that a given function is not a c.m., e.g.
u(s) = 1/(1 + s?) is not a c.m., since the rightmost singularities are s = i, while
s = 0 is no singularity. u(s) is a d.c.m for s > 0, however, since it is analytic and
bounded, and satisfies (3.3.53), for any positive a’. This result also comes from the
general statement about rational functions bounded in a half-plane, see Problem 42.

Another approach: in any text about Laplace transforms you find that, for
§>0, 2 = [e T sinzdr = [e (1+sinax)de— [;* e dx. Now o (z) >0
in both terms. Hence the formula (% + 521+1
of two c.m. for s > 0.

The easy application of criterion (D) above gave a smaller interval (s > 1),
but a faster decrease of the c.m. terms as s — oo.

Another useful criterion for this kind of negative conclusion is that a c.m.
cannot decrease faster than every exponential as s — 400, for s € R, unless it is
identically zero. For there exists a number ¢ such that a(£) > 0, hence u(s) =
I e da(x) > f(f e=sda(x) > e *€a(¢). For example, e=** and 1/I'(s) are not
c.m..

Why does this not contradict the fact that s e * is a c.m.?

) — % expresses 521—1 as the difference

+

These ideas can be generalized. Suppose that {¢;}:°, is a given sequence, such
that the sum C(t) = Y ;2 ¢;t" is known, and that u; is c.m. or d.c.m.. (¢; and C(t)

282 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

may depend on a complex parameter z too.) Then

Se —chul Zc,/ tidp(t) /C)dp(t)

It is natural to ask how well S, is determined if uw; has been computed for
i < N, if {u,}° is constrained to be a c.m.. In Ch.9 we shall find a simple
characterization of the monotonic functions S(¢) which give the best upper and
lower bounds of S, in the case that C(™)(t) has constant sign for ¢ € [0, 1]—for
C(t) = (1 — 2t)~! this is applicable iff z < 1, (z € R).

Another systematic way to obtain very good bounds, with less restrictions, is
to search a polynomial Q € Py, such that |C(t) — Q(t)| < en,Vt € [0,1]. Then

15— Q uo|—|/ (1)) st |<eN/ 480

Note that Q(E)ug is a linear combination of the computed values u;, i < N, with
coefficients independent of {u,}. For C(t;z) = (1 — tz)~! the generalized Euler-
transformation (implicitly) works with a particular array of polynomial approxima-
tions, based on Taylor expansion, first at ¢ = 0, then at t = 1.

Can we find better polynomial approximations? In its general form, this
question also belongs to Ch.9., but for C(t;z) = (1 — tz)~!, an algorithm will be
described in the next subsection, which is, in most respects, superior to the optimal
Euler-transformation.

3.3.7 Gustafson’s Chebyshev acceleration (GCA).

Gustafson’s Chebyshev acceleration, Gustafson (1979), (short GCA) is like Euler’s
Transformation based on linear transformations of sequences and it has the same
range of application as the optimal Euler Transformation.

We shall study GCA for power series with d.c.m. coefficients.®> In this rather
general case it is superior to the optimal Euler Transformation, because it is related
to a better sequence of polynomial approximations to (1 —t2)~!, ¢t € [0,1),(cf. the
end of the previous subsection). The superiority is greatest for small values of arg z,
see Example 3.3.27. ,

Set, as in Sec. 3.3.6,

= . Ldp(t
S(z)EZuiz’:/O l[i(z)t’

i=0

where §(t) is of bounded variation. Recall Lemma 3.3.8 concerning the analytic
continuation of S(z). First, compute

-n n— : - £
In70 =z (U0+U12+...+Un_1z 1), n=1 :N, 1.e., In70 = ﬁ
(3.3.54)

Uug-

85d.c.m. is defined in the beginning of the previous subsection.

3.3. Acceleration of Convergence 283

The basic idea of Gustafson’s acceleration algorithms is to construct a sequence of
polynomials ¢ (t), degiyr = k with unit leading coefficients, such that
maxeo,1) |%x ()| /| (£)| decreases rapidly when k increases. These polynomials
should satisfy a three term recursion formula. Define

27" (2) — E"Yp(E)

Lug = e Uo. (3.3.55)
Since M € Pryi[t], In,k is alinear combination of uj, j = 0: n+k—1.

By means of a recursmn formula given below, we eventually obtain Iy, K =1: N.
Note that

Lok _ 1-yw(B)/Y(/2) k — S(2) — Re(z
ve(3) 1-2E 0_/0 1—zt /wk 1—zt)‘5() k().
(3.3.56)

ie., Io’k/’(bk(%), k=1: N, is a sequence of estimates of S(z), and Ry(z) are the
remainders. Note that

|Ri(2)] <

(3.3.57)

¢ - maxee(o,] |9k (t)] [1dB@)
o1z c‘/ 11—zt

In GCA,®® one chooses 9y (t) = a; Ty (2t — 1), where Tk () is the Chebyshev polyno-
mial defined in Sec. 3.1.5. (Note that [0, 1] — [—1, 1] by the substitution z = 2t —1.)
Then it can be shown (Problem 48) that

k
2 1 1
S+ 5 -
z z z

C
Ru(2)| € g~

L k> L (3.3.58)
|T(2 — 1)

(The branch of the square root is chosen so that it is positive for z < 1.) It can be
shown, Problem 49, that the process converges exponentially to S(z) for every z in
the complex plane with a cut from 1 to +o00 along the real axis.

We have assumed that the leading coefficient of 9 (¢) is unity. Since the
leading coefficient of Ty (x) is 281 if k > 0, and 1 if k = 0, it follows that aj = 2172
if k>1,and a9 = 1.

The recursion formula (difference equation) for Ty (x) given in Sec. 3.1.5 be-
comes, after an elementary transformation, Problem 49,

i (t) = (t = 5)Pe—1(t) = bpthr—2(t), (k>1), o(t) =1, Y_1(t) =0, (3.3.59)

where by, = ap_o2/ag, i.e. by = 7= 1f k>3, by = 8, by is arbitrary. It can then be
shown that the quantities I,, j satlsfy the recursion formula, (Problem 49),

Lok = Tn1 gt — 3Tnpes — belnga, (k> 1). (3.3.60)

Note that this is a kind of vector version of the difference equation in (3.3.59), if
the operator E is substituted for ¢.

86 Gustafson also considers other families of polynomials for special purpose.

284 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Initial conditions: I, ¢ is obtained by (3.3.54), and I,,,_; = 0.
The results are I x(2)/¢r(%), k = 1: N, where we obtain 1;(<) by setting t = £

in the above recursion formula for 14 (¢). An experimental study of the numerical
stability of this algorithm is left for Problem 50.

Example 3.3.27.
This study is concerned with power series with d.c.m. coefficients. By (3.3.58).

By (3.3.58), the convergence ratio for GCA is naca & |2 —1+2y/ & — 1|, if k> 1.
The approximate number of decimal digits gained per term equals —log;, ngca.

For an alternating series, i.e., if z = —1, we have ngca = 3 — V8 ~ 0.1716,
—log;onaca = 0.766, hence the number of terms needed for “full accuracy” (16
decimal digits) is at most 16/0.766 = 21.

By Theorem 3.3.9, the convergence ratios for the optimal Euler Transforma-
tion and the classical Euler Transformation are, for z = —1, nog = % and nocg = %,
respectively. We similarly find that the number of terms needed for “full accuracy”
are at most 34 and 53, respectively.

We see that GCA, for z = —1, is log(3 — v/8)/log 2 ~ 1.6 times as fast as
the optimal Euler transformation, which is log3/log2 = 1.6 times as fast as the
classical Euler transformation. For z = ei?, |¢| < 1, its superiority is much greater,
but the rounding errors may cause trouble. This trouble can be reduced by the use
of thinning, see Problem 51.

These figures agree rather well with experimental results for alternating series
with c.m. and d.c.m. terms, irrespective of the rate of convergence of the original
series. If you want (say) 8 decimals accuracy, you need (approximately) only half the
number of terms etc. The results are asymptotic (valid for £ > 1). For moderately
large k, it may be advisable to count k from the left bound of the half-plane of
analyticity for u(s), unless u(s) is an entire function.

Review Questions

1. Describe three procedures for improving the speed of convergence of certain
series. Give examples of their use.

2. (a) What pieces of information appear in the Euler—Maclaurin formula? Give
the generating function for the coefficients. What do you know about the
remainder term?

(b) Give at least three important uses of the Euler-Maclaurin formula.

Problems and Computer Exercises

Problems and Computer Exercises 285

1. (a) Compute > | (n+1)"2 to 4 decimal places 87 by using Y>> m,
for a suitable x as a comparison series. Estimate roughly how many terms you
would have to add without and with the comparison series. Hint: You find
the exact sum of this comparison series in Problem 3.2.2.

(b) Compute the sum also by Euler—-Maclaurin’s formula or one of its variants
in Problem 22(a).
2. Study, or write yourself, programs for some of the following methods ®8:
o iterated Aitken acceleration
e modified iterated Aitken, according to (3.3.5) or an a-version.
e generalized Euler transformation
GCA, (see Sec. 3.3.7)
€ algorithm, (see Sec. 3.4.4)

one of the central difference variants of Euler-Maclaurin’s formula, given

in Problem 22(a)
The programs are needed in two slightly different versions:
VERSION 1: for studies of the convergence rate, for a series (sequence) where
one knows exa = a sufficiently accurate value of the sum (the limit). The risk
of drowning in figures becomes smaller, if you make graphical output, e.g. like
Fig. 3.3.1.
VERSION 1I: for a run controlled by a tolerance, like in Algorithm 3.3.1, appro-
priately modified for the various algorithms. Print also ¢ and, if appropriate,
jj. If exa is known, it should be subtracted from the result, because it is of
interest to compare errest with the actual error.
CoMMENT: If you do not know exa, find a sufficiently good exa by a couple
of runs with very small tolerances, before you study the convergence rates (for
larger tolerances).

3. (a) Try iterated Aitken with thinning for 325° e~ V", according to the sugges-
tions after Example 3.3.4.

(b) Study the effect of small random perturbations to the terms.
4. Oscillatory series.

Suggested series of the form »_ 7 | ¢,2™.

cn=e V2 1/(1+n?),1/n, 1/2n —1), n/(n*> +n+1), 1/\/n, 1/In(n + 1);

z=—1,—0.9, eB7/4 j ¢in/4 cin/16,

for the appropriate algorithms mentioned above. Apply thinning. Try also

classical Euler transformation on some of the cases.

Study how the convergence ratio depends on z, and compare with the theo-

retical results in § 3.3.6. Compare the various methods with each others.
5. Essentially positive series. n=3/2 n=3/2 logn;
87This is for a handheld calculator; choose a smaller tolerance on a computer.
88G.D. has had Matlab in mind, and hopes that, in the future, some Matlab programs can
be electronically available, under certain conditions. You are, of course, welcome to use another
language that is also convenient for numerical experiments of this sort, with complex arithmetic
and graphical output, etc.

286

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Suggested series of the form

o 2™, ey = e V™ 1/(14n2),1/(5 4 2n +n?)),

(n-In(n +1))72, 1/v/n® +n, n=4%, 1/((n + 1)(In(n + 1))?);

z=1,0.99, 0.90.7, e7/16 ein/4 ;.

for the appropriate algorithms, see Problem 2.

Try also Euler—-Maclaurin’s summation formula, or one of its variants, if you
can handle the integral with good accuracy. Also try to find a good comparison
series; it is not always possible.

Study the convergence rate. Try also thinning to the first two methods.

. Divergent series. Apply Aitken acceleration, the generalized Euler Transfor-

mation and GCA to the following divergent series > |° ¢,z". One of them is
impossible. Can you tell in advance which? If possible, compare the numerical
results with the results obtained by analytic continuation, using the analytic
expression for the sum as a function of z. See also Lemma 3.3.8, and other
results in §3.3.6.

(a)cpn=1,2=-1; (b)ecp,=n,z=-1; (c) ¢, is an arbitrary polynomial
in n;

Den=1z2=14 (€cn=1,2=2; {)ep,=1,2=-2.

. Let y, be the Fibonacci sequence defined, in Problem 3.2.17 by the recurrence

relation,
Yn =Yn-1+Yn-2, Y =0, y1 =1
Show that the sequence {ynt1/yn }§° satisfies the sufficient condition for Aitken

acceleration, given in the text. Compute a few terms, compute the limit by
Aitken acceleration(s), and compare with the exact result.

. When the current through a galvanometer changes suddenly, its indicator

begins to oscillate toward a new stationary value s. The relation between the
successive turning points vg, v1, v2, ...i8 v, — s & A (=k)", 0 < k < L.
Determine from the following series of measurements, Aitken extrapolated
values vh, v}, v} which are all approximations to s:

Vo = 659, v = 236, Vg = 463, V3 = 340, Vg = 406.

. The a-version of Aitken acceleration If you want the sum of slowly convergent

series, it may seem strange to compute the sequence of partial sums, and the
compute the first and second differences of rounded values of this sequence in
order to apply Aitken acceleration.

The a-version of Aitken acceleration works on the terms aj, j = 1,2,3,... of
an infinite series. The previous version may be called the s-version, since it
works on the sequence of its partial sums s;.

Given 55, j =1: N, sy = a1. Set ap = 0. Then a; = Vs;, j =1: N. The
Aitken acceleration thus reads s = s; —a3/Va;, j =1: N.

a) We want to determine @', so that 37« = s, j =1: N. Show that
j k=13 = Sj

aj =0, aj=a;—-V(a}/Va;), j=2:N, sy=sy—ay/Van.

Problems and Computer Exercises 287

10.

11.

13.

Show that this can be iterated, for i = 0: N — 2,
ai =0, o =af) -V ((@")?/va)), j=i+2:N,
sy = s = (@) /Vay.

(Note that a;o) = aj, s = sj.) We thus obtain N estimates of the sum s.

j
We cannot be sure that the last estimate S%V*” is the best, due to irregular

errors in the terms and during the computations. Accept instead, e.g., the
average of a few estimates that are close to each other, or do you have a
better suggestion? This also gives you a (not quite reliable) error estimate.

(b) Although we may expect that the a-version handles rounding errors better
than the s-version, the rounding errors may set a limit for the accuracy of the
result. It is easy to combine thinning with this version. How?

(c) Study or write yourself a program for the a-version, and apply it on one
or two problems, where you have used the s-version earlier. Also use thinning
on a problem, where it is needed. We have here considered N as given. Can
you suggest a better termination criterion, or a process for continuing the
computation, if the accuracy obtained is disappointing?

(d) Design an a-version of the modified Aitken acceleration (3.3.5), or look up
in [3].

A function g(t) has the form

o0
g(t) =c—kt+ Z ane Mt
n=1

where ¢, k, a,, and 0 < A; < A2 < ... < A, are unknown constants and g(t) is
known numerically for t, = vh, v =0,1,2,3,4.

Find out how to eliminate ¢, in such a way that a sufficient condition for
estimating kh by Aitken acceleration is satisfied. Apply this to the following
data, where h = 0.1, g, = g(t,).

go = 2.14789, g; = 1.82207, g¢» = 1.59763, g3 = 1.40680, g4 = 1.22784.

Then, estimate also c.
The formula for Aitken acceleration is sometimes given in the forms

(Asy)? As, Vs,

Sn - or 8§, — —————.
AZs,, As, — Vs,

Show that these are equivalent to s;,,, or s, respectively, in the notations
of (3.3.1). Also note that the second formula is lim,_,), (not s, ;) in the
notation of (3.3.3).

Apply active Aitken acceleration, as described in Example 3.3.3, to the itera-
tion formula s,,11 = ¢(s,), where ¢(s) = 1 — 0.5s%, until either you have 10
correct decimals, or there are clear indications that the process is divergent.
(a) with sg = 0.8; (b) with sg = —2.7.

288 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

14. Suppose that the sequence {s,} satisfies the condition s,, — s = con P +
ein P14+ 0(mP2), p>0,n— oo, and set

o — g _p-l—l AspVsy

" n p As,—Vs,’
It was stated without proof in Sec. 3.3.2 that s, — s = O(n"?2).
Since the difference expressions are symmetrical about n one can conjec-
ture that this result would follow from a continuous analogue with deriva-
tives instead of differences. It has been shown [3] that this conjecture is
true, but we shall not prove that. Our (easier) problem is just the continu-
ous analogue: suppose that a function s(t) satisfies the condition s(t) — s =
cot P+t P+ Ot P72), p>0,t— oo, and set

1(4\2

) = s(t) - 22
Show that y(t) —s = O(t"?~2). Formulate and prove the continuous analogue
to (3.3.6).

15. (a) Consider as in Example 3.3.6, 3" n /2. Show that the partial sum s,, has

an asymptotic expansion of the form needed in that example, with p = —1/2.
Hint: Apply Euler-Maclaurin’s formula (theoretically).
(b) Suppose that > a, is convergent, and that a, = a(n). a(z) is analytic
function at z = oo (for example a rational function), multiplied by some power
of z — ¢. Show that such a function has an expansion like (3.3.4), and that the
same holds for a product of such functions.

16. Rewriting a Fourier series for convergence acceleration.

Consider a real function with the Fourier expansion F(¢) =Y 7 ¢,e™?.
(a) Set z = €'?, and show that F(¢) = co + 2R > | cnz™.

Hint: Show that c¢_,, = G,.

(b) Set ¢, = a,, — ib,, where a,, b, are real. Show that Zzozo(an cosng +
bpsinng) = I ez

(c) How would you rewrite the Chebyshev series Y T, (z)/(1 + n*)?

(d) Consider also how to handle a complex function F(¢).

17. Compute and plot F(z) = > ° f:gg, z € [-1,1]. Find out experimentally
or theoretically how F’(z) behaves near £ =1 and z = —1.

18. Compute to (say) 6 decimal places the double sum

0 %0 {ym+n
=X e

Set f(m) =37 (=1)"(m*+n?)"t. Then S =) >, (—=1)" f(m). Compute,
to begin with, f(m) for m = 1: 10, by the generalized Euler Transformation

or CGA or what have you? Do you need more values of f(m)?

COMMENT: There exists an explicit formula for f(m) in this case, but you
can solve this problem easily without using that.

Problems and Computer Exercises 289

19.

20.

21.

22.

We use the notation of § 3.3.2 (the generalized Euler transformation). Assume
that N >k > 1, and set n = N — k + 1. A sum is equal to zero, if the upper
index is smaller than the lower index.

(a) Prove Eq.(3.3.17) that was given without proof in the text, i.e.,
My g1 — My_1 -1 = 2"P*upiq, (k> 2).
Hint: By subscript transformations in the definition of My, prove that

k—3

Z(zE — D P%upqq.

5=0

n

1—=z

n
Myg—1—MN—15—1=Upt12" +

Next, show that zE—1 = (1—2)(P—1), and use this to simplify the expression.
(b) Derive the formulas

n—1

k—2

1 Pk

Mi—1k =7 . Zpsul; My = Mg—1 + ZzJP’” Y.
5=0

=0

COMMENT: The first formula gives the partial sums of the classical Euler
transformation. The second formula relates the k’th column to the partial
sums of the power series with the coefficients P*=1u ;4.

(a) If uj = @/, z = €', ¢ € [0, 7], for which real values of a € [0, 1] does the
series on the right of (3.3.10) converge faster than the series on the left?

(b) Find how the classical Euler transformation works if applied to the series
2"z =1, 2z#1L

Compare how it works on > u,2", for u, = a”, z = 2z, and for u, = 1,z =
azy.

Consider similar questions for other convergence acceleration methods, that
are primarily invented for oscillating sequences.

Compute Y po, k'/2/(k* + 1) with an error of less than 1076,

Hint: Sum the first ten terms directly and then expand the summand in
negative powers of k and use Euler—Maclaurin’s summation formula. Or try
a central difference variant of Euler—-Maclaurin’s summation formula given in
the next problem; then you do not have to compute derivatives.

Variations on the Euler—-Maclaurin Theme

Set z; = a + ih, also for non-integer subscripts, z,, = b.

(a) TWO VARIANTS WITH CENTRAL DIFFERENCES INSTEAD OF DERIVATIVES.
These are interesting alternatives, if the derivatives needed in the Euler—
Maclaurin Formula are hard to compute. Check a few of the coefficients on
the right hand side of the formula

i": Boj(hD)¥ =" s 11pé® 191p6° 2497pd" | 14797pd°
(25)! 12 720 60480 3628800 = 95800320
(3.3.61)

Jj=1

290

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Use the expansion for computing the sum given in the previous problem.
COMMENT: This formula is given by Froberg [11], who attributes it to Gauss.
Compare the size of its coefficients with the corresponding coefficients of the
Euler—-Maclaurin Formula.

Suppose that h = 1, and that the terms of the given series can be evaluated
also for non-integer arguments. Then another variant is to compute the central
differences for (say) h = 1/2 in order to approximate each derivative needed
more accurately by means of Eqn. (3.2.44). This leads to the formula 3°

o0

Z B, D*~1 po Tué® T1ud® 3 521u6”
(29)! 6 180 7560 226800

(3.3.62)

j=1

(h = 1/2 for the central differences; h = 1 in the series.) Convince yourself
of the reliability of the formula, either by deriving it or by testing it for (say)
fla) = 0=,

Apply it also to some of the series suggested in Problem 5.

Show that the rounding errors of the function values cause almost no trouble
in the numerical evaluation of these difference corrections.

(b) A VARIANT WITH UNCENTERED DIFFERENCES, KNOWN AS GREGORY’S
QUADRATURE FORMULA. %0 Derive the following formula, in which the op-
erator expansion must be truncated at V¥y, and Alyy, where k < n, [< n.
Apply the formula to some integral of your own choice

xo+nh n
0 _ E" -1 _ Yn Yo
/ ydr =h=75 yo_h(—ln(l—V) 1n(1+A)>

Zo

where 7' is the trapezoidal sum, as defined in the Euler—-Maclaurin Formula.
Explain why the coefficients a;j4+1, j > 1, occur in the implicit Adams formula
too, see Problem 3.2.9(a). Concerning the interpretation of V—! and A=, see
Problem 3.2.13(d).
Is it true that (the short version of) Simpson’s formula is a particular case of
Gregory’s formula? (Simpson lived 1710-1761.)
(c) A MIDPOINT VARIANT. Let R(a,h,b)f be the midpoint sum R(a, h,b)f =
> iy hf(z,_1). Recall that

2

R(a,h,b)f = 2T(a : th:b)f — T(a : h : b)f. Prove the following expan-
sion that has the same relation to the midpoint sum as the Euler—-Maclaurin
Formula has to the trapezoidal sum.

89The formula is probably very old, but we have not found it in the literature.

90 James Gregory (1638-1675), Scotch mathematician. This formula was discovered long before
the Euler-Maclaurin formula, and seems to have been primarily used for numerical quadrature.
It can be used also for summation, but the variants with central differences are typically more
efficient.

Problems and Computer Exercises 2901

23.

. b 2 4
Rl h0)f = [fla)dn = 3 (70) - (@) + oo (70) - £7(a)
et (22}—1 - 1) B(Z:;!T (f(w_l)(b) - f(w_l)(a)) NERE

(d) A VARIANT FOR ALTERNATING SERIES. Derive formally in a similar way
the following formula for an alternating series. Set x;, h =1, b = oo, assume
that lim, o f(z) = 0.

;(_1)if(ll+i) = %f(a)—if/(a)_f_%fm(a)_. . ._%Jf@rl)(a)_‘ o

Of course, the integral of f is not needed in this case °! . Compare it with

some of the other methods for alternating series on an example of your own
choice.

() A MORE GENERAL FORM OF THE EULER-MACLAURIN FORMULA.
Derive, e.g. by operators (without the remainder R), the following formula,
[1], Formula 23.1.32.

m—1 b p
> hfatkhroh) = [fOdte > 03B 0 - D @)+
k=0 @ j=1

m—1

R= —(hp/p!)/ol By(w—1) Y fP(a+kh+th)dt.

k=0

If you use this formula for deriving the midpoint variant in (c), you will find
a quite different expression for the coeflicients; nevertheless it is the same
formula. Tell how this is explained by Formula 23.1.10 in Handbook [1], i.e.,
by the “Multiplication Theorem” 92

m—1
Bn(mm):mnflan(x+k/m), n=0,1,2,..., m=1,2.3,...
k=0

COMMENT: See also Problem 38; a summation formula based on the Euler
numbers.

Prove statement (b) of the Lemma3.3.1. (concerning the periodicity and the
regularity of the Bernoulli functions).

91Note that the right hand side yields a finite value if f is a constant or, more generally, if f
is a polynomial, although the series on the left hand side diverges. The same happens to other
summation methods; see comments in the last example of §3.3.2.

92That formula and the remainder R are derived in Nérlund, [27], p. 21 and p. 30, respectively.

292

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

24. Euler’s constant is defined by v = limy_,o, F(N), where

25.

(a) Use the Euler-Maclaurin formula with f(z) = 7!, h = 1, to show that,
for any integer M

B 1. ., 6 ., 120
V= EOD 4 M = g Mt g™ T
where every other partial sum is larger than -, and every other is smaller.

b) Compute v to seven decimal places, using M = 10, R T 2.92896825,
(Y g n=1
In 10 = 2.30258509.

(c) Show how repeated Richardson extrapolation can be used to compute
from the following values:

M 1 2 4 8
F(M) 0.5 0.55685 0.57204 0.57592

(d) Extend (c) to a computation, where a larger number of values of F(M)
have been computed as accurately as possible with the normally used precision
of your computer, and so that the final accuracy of ~ is limited by the effects
of rounding errors. Check the result by looking up in an accurate table of
mathematical constants, e.g., in Handbook [1].

(e) Set

S(r) = Z z:(m2 +n?)7L

m=1n=1

By a continuous analog, with a double integral instead of a double sum, you
may conjecture that S(R) ~ aln R+ b as R — co. You may even suggest a
value of the parameter a. Investigate the conjecture, by computing S(R) for
a suitable sequence of values of R. If you find support for it, try to estimate
a and b.

A digression about the Gamma function.

(a) Handbook [1] gives an expansion for InI'(z) that agrees with our formula
(3.3.30) for In z! (if we substitute z for m), except that the handbook writes
(z — 1)Inz, where we have (m + 1)Inm. Explain concisely and completely
that there is no contradiction here.

(b) An asymptotic expansion for computing InI'(z+1), € C is derived in Ex-
ample 3.3.16. If r terms are used in the asymptotic expansion, the remainder
reads:
K(z)(2r)! |22
—_ here K(z) =sup ——-—;.
r2maPret Y B = e

Problems and Computer Exercises 293

26.

Set z = x + iy. Show the following more useful bound for K(z), valid for
z >0,

1, if © > yl;
K(z) < { (@/ly| + |y|/x), otherwise.

Find a uniform upper bound for the remainder if r = 5, z > %, |z| > 17.

(c) Write a program, e.g., in Matlab, for the computation of In I'(2+1). Use the
reflection and recurrence formulas to transform the input value z, to another
z = x + iy that satisfies z > %, |z| > 17, for which this asymptotic expansion
is to be used with r = 5.

Test the program, e.g., by computing the following quantities, and compare
with their exact values, e.g.,

n!, T(n+1/2)/v7, n=0,1,2,3,10,20.

™

IT(5 +iy)|* = .y = +10,£20.

cosh(my)
If the original input value has a small modulus, there is some cancellation,
when when the output from the asymptotic expansion is transformed to In(1+
Zinput), Tesulting in a loss of (say) 1 or 2 decimal digits.
(d) It is often much better to work with lnI'(z) than with I'(z). For example,
one can avoid exponent overflow in the calculation of a binomial coefficient or
a value of the beta function, B(z,w) = I'(2)T'(w)/T(z + w), where (say) the
denominator can become too big, even if the final result is of a normal order
of magnitude.
Another context where the logarithms are much preferable is in connection
with interpolation, numerical differentiation etc.; for |z| > 1 InT'(2) is locally
approximated by a polynomial much better than I'(z). The following is an
example (for a handheld calculator).
Given 10! = 3628800; compute I'(x) for z = 11 : 15. Compute I''(13) by using
either repeated Richardson extrapolation or the central difference expansion,
in two ways:

e Use the values of InT'(z), (and multiply the logarithmic derivative by

(13)).

e Use directly the values of I'(x).

The first alternative requires a few more operations. Were they worthwhile?

(a) Show that

2n 22n
<n> ~ = o,
and give an asymptotic estimate of the relative error of this approximation.
Check the approximation as well as the error estimate for n = 5 and n = 10.
(b) Random errors in a difference scheme. We know from Example 3.2.2 that
if the items y; of a difference scheme are afflicted with errors less than € in
absolute value, then the inherited error of A™y; is at most 2"e in absolute

294

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

27.

28.

29.

30.

31.

value.

If we consider the errors as independent random variables, uniformly dis-
tributed in the interval [—e, €], show that the error of A™y; has the variance
93 (*")Le2, hence the standard deviation is approximately 2"e(9rn) /%, if

n> 1.
Check the result on a particular case by a Monte Carlo study.

Hint: It is known from Probability theory that the variance of Z?:o aje; is
equal to 0% 37" a?, and that a random variable, uniformly distributed in
the interval [—e, €], has the variance 0? = €?/3. Finally use (3.1.15) with
p=q=n.

(a) The following table of values of a function f(z) is given:

T 0.6 0.8 0.9 1.0 1.1 1.2 1.4
f(z) 1.820365 1.501258 1.327313 1.143957 0.951849 0.752084 0.335920

Compute using repeated Richardson extrapolation f'(1.0) and f(1.0).
(b) Use Romberg’s method to compute the integral f04 f(z)dz, using the fol-
lowing (correctly rounded) values of f(z). Need all the values be used?

T 0.0 0.5 1.0 1.5 20 25 3.0 3.5 4.0
f(z) —4271 —-2522 —499 1795 4358 7187 10279 13633 17247

(a) Compute [°(1+ x?)"*dz. In the notation of Example 3.3.21, compute

flz, f;, ff, ...; choose yourself where to stop. Use, e.g., Aitken acceleration
to find floo. Compare with the exact result; and think of an error estimate
that can be used if the exact result is not known.

(b)Romberg+Aitken Treat in the same way [, ﬁ Compare the compu-
tational effort for the computation of the tail [130 by acceleration and by series
expansion with the same accuracy.

(a) Run Example 3.3.19 on a computer with macheps~ 107!¢, until £ = 10.
(Subtract all results by the most accurate value of 27 that you can obtain
with your software, so that you do not drown in a see of digits.)

(b) Do the same computation, but use this time co,, = 2n\/2 — /4= (cp/n)?,
and study the effect of the cancellations.

(a) Suppose that form of the error of Romberg’s method is known, but the
error constant ry is not known. Determine rj numerically for K = 3 and
k = 4, by computing the Romberg scheme for f(z) = 22*.

(b) Prove the formula for the error constant of Romberg’s method.
Numerov’s method ** with Richardson extrapolations. Let y; = y(t;), yj =
y"(t;). (a) Show that the formula

n

B (Ynt1 = 2yn + Yn—1) = Yy + a(ypiy — 2yn + Y1)

93Variance is the square of the standard deviation.
94Gee also Example 3.2.17.

Problems and Computer Exercises 295

is exact for polynomials of as high degree as possible, if a = 1/12. Show
that the error has an expansion into even powers of h, and determine the first
(typically non-vanishing) term of this expansion.

(b) This formula can be applied to the differential equation, y"” = p(z)y, with
given initial values y(0), y'(0). Show that this yields the recurrence relation

2 2
(2 + %)yn - (1 - %)yn—l

_ Pny1h?
1 12

Ynt+1 =

This formula, which can be traced back at least to B. Numerov 1924, requires
Yo, Y1 = y(h) as seed. y(h) can be obtained, for a small value of h, from a few
terms of the Taylor expansion of the solution, the coefficients of which can be
computed in the style of Example 3.1.2.

COMMENT: If h is small, information about p(t) is lost by outshifting in the
factors 1 — % etc. We shall see in Sec. 13.6 how to rewrite the formulas in
order to reduce the loss of information. In the application below this causes
no trouble with the step sizes suggested, if macheps = 2753, If you must use
macheps = 272% (say), however, the outshifting may set a limit to the accu-
racy in the repeated Richardson extrapolation.

(c) We shall now apply this method, together with two Richardson extrapo-
lations in (d), to the problem of Example 3.1.2, i.e., " = —zy with initial
values y(0) = 1, y'(0) = 0, this time over the interval 0 < z < 4.8. Denote the
numerical solution by y(x; h), i.e., y, = y(zn; h).-

Compute the seeds y; = y(h,h) by the Taylor expansion in Example 3.1.2.
The error of y(0.2,0,2 should be less than 10710, since we expect that the
(global) errors after two Richardson extrapolations can be of that order of
magnitude.

Compute y(z;h), z =0: h : 4.8, for h = 0.05, h = 0.1, h = 0.2. Store these
data in a 100 x 3 matrix (where you must put zeros into some places). Plot
y(2;0.05) versus « for z = 0:0.05 : 4.8.

(d) You proved in (a) that the local error has an expansion containing even
powers of h only. It can be shown that the same is true for the global error
too. Assume (without proof) that

y(x, h) = y(z) + c1(x)h* + ca(x)h® + c3(x)h® + O(h'0).

Perform the adequate repeated Richardson extrapolations to your stored re-
sults.

Make semi-logarithmic plots of (the modulus of) the 4th order Richardson
corrections for & = 0: 0.1 : 4.8, obtained by means of y(x;0.05) and y(z;0.1).
Plot in the same fashion the 6’th order corrections for z = 0 : 0.2 : 4.8, ob-
tained in the second Richardson extrapolation. The 6th order corrections are
used as error estimates for the results from both these Richardson extrapola-
tions. %%

95 Although the 6th order correction yields an 8th order accurate result, it is hard obtain an error

296 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

(e) Express, e.g., by the aid of Handbook [1], Sec.10.4, the solution of this
initial value problem in terms of Airy functions, %6

(z) = Ai(—z) + Bi(-z)/V3
) = T 0.3550280539

Check a few of your results of the repeated Richardson extrapolation by means
of Table 10.11 in the Handbook that, unfortunately, gives only 8 decimal
places.

COMMENT: Your results should be more accurate than that. If they are not,
the reason can be that the rounding errors have a large influence, but that
is not the most probable reason in this case, if macheps = 27%3, Experience
shows that it is hard to avoid programming blunders in this problem. So do not
consider the theory or the rounding errors as the primary suspects. Program-
ming errors do not always yield results that are obviously crazy; sometimes
the results look reasonable, although the accuracy is much lower than it should
be.

(f) Dense output. How do you obtain results on the fine grid z = 0: 05 : 4.8
with an accuracy that is comparable to the results on the coarse grid x =0 :
0.2:48.

Hint: This question is discussed for another method in Example ex33.ode.

32. Compute the integral

1 27 1

- 7 sin zd
27 /. e i
by the trapezoidal rule, using h = 7/2 and h = 7 /4 (for handheld calculator).
Continue on a computer with smaller values of h, until the error is on the level
of the rounding errors. Observe how the number of correct digits vary with
h? Notice that Romberg is of no use in this problem.

33. (a) Show that the trapezoidal rule, with h = 27/(n + 1), is exact for all
trigonometric polynomials of period 27 and degree < n—i.e., for all functions

of the type
n
Z crettt, i?=—1.
k=—n

—when it is used for integration over a whole period.

(b) Show that if f(¢) can be approximated by a trigonometric polynomial of
degree n so that the magnitude of the error is less than e, in the interval
(0,2m), then the error with the use of the trapezoidal rule with h = 27/(n+1)

on the integral (27)~! 0277 f(t)dt is less than 2e.

(c) Use the above to explain the sensationally good result in Problem 2 above,

estimate of that order without extra assumptions or extra computation. Recall the discussion at
the end of §3.3.5. G.D. also computed 8th order corrections, based on y(x;0.4). They were about
one tenth of the 6th order corrections; G.D had expected smaller values.

96 Airy functions are special functions (related to Bessel functions) with many applications to
Mathematical Physics, e.g., the theory of diffraction of radio waves around the earth’s surface.

Problems and Computer Exercises 297

34.

35.

36.

when h = 7/4. Hint: First estimate how well the function g(z) = */V2 can
be approximated by a polynomial in Ps for € [—1,1]. The estimate found
by the truncated Maclaurin expansion is not quite good enough. Theorem
3.1.5 provides a sharper estimate with an appropriate choice of R; remember
Scylla and Charybdis.

Compute by the Euler-Maclaurin formula, or rather the trapezoidal rule,

@ [et w) [T

as accurately as you can with the normal precision of your computer (or soft-
ware). Then find out empirically how the error depends on h. Make semi-
logarithmic plots on the same screen. How long range of integration do you
need?

a) Determine the Bernoulli polynomials By (z) and Bs(z), and find the values
and the derivatives at 0 and 1. Factorize the polynomial Bs(z). Draw the
graphs of a few periods of Bi(:c), 1=1,2,3..

b) In an old Cours d’Analyse, we found a “symbolic” formula, essentially

h%igﬁr+ﬂ0:g®+hB)—ﬂa+hB) (3.3.63)
j=0

After the expansion of the right hand side into powers of hB, has been followed
by the replacement of the powers of B by Bernoulli numbers, the resulting
expansion is not necessarily convergent, even if the first power series converges
for any complex value of hB.

Show that the second expansion is equivalent to the Euler—Maclaurin formula,
and that it is to be interpreted according to Theorem 3.3.3.

If g is a polynomial, the expansion is finite. Show the following important
formulas, and check them with known results for £ =1: 3.

n—1

e B+n)* - B* By(n)-B
Eyklz(; = “L k. (3.3.64)
j=0

Also find that (3.3.63) makes sense for g(xz) = e®”, with the “symbolic” in-
terpretation of the power series for eP?, if you accept the formula e(F+t®)* =
eBxeaw

A bell sum is a series) a,,, where a,, as a function of n has a bell-shaped
graph, and where you must add many terms to get the desired accuracy. Under
certain conditions you can get an accurate result by adding (say) every tenth
term, and multiply this sum by 10, because both sums can be interpreted
as trapezoidal approximations to the same integral, with different step size.
Inspired by Euler—-Maclaurin’s formula or, even better, by Theorem 3.3.4 we
may hope to be able to obtain high accuracy using an integer stepsize h that
is (say) one quarter of the half-width of “the bell”. In other words, we do not

298

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

have to compute and add more than every h’th term.
We shall study a class of series

St) = cat"/nl, t>1, (3.3.65)
n=0

where ¢, > 0, log ¢, is rather slowly varying for n large; (say that) A?logc,, =
O(n~P). Let ¢(-) be a smooth function such that ¢(n) = ¢,. We consider S(t)
as an approximation to the integral fooo c¢(n)t"/I'(n + 1)dn, with a smooth
and bellshaped integrand, almost like the normal frequency function, with
standard deviation o ~ kv/t..

(a) For p=1:5,t = 4P, plot y = v/2wte~t"/n! versus x = n/t, 0 < z < 3;
all 5 curves on the same picture.

(b) For p = 1: 5, t = 47, plot y = In(e'"/n!) versus z = (n — t)/V/1,
max(0,t —8vt) < n < t+8v/¢; all 5 curves on the same picture. Give bounds
for the error committed if you neglect the terms of the series e~ * " /nl,
which are cut out in your picture.

(c) With the same notation as in (b), show theoretically that

et B 6712/2 (1-}-0(1/\/5))
n! V2t ’

for t — oo, where the O(1/+/t)-term depends on z. Compare this with the
plots. Hint: Use Stirling’s asymptotic expansion.

(3.3.66)

COMMENT: If you are familiar with Probability, you recognize that this is
related to the normal approximation to the Poisson distribution. It is well
known that the mean is ¢, and the standard deviation is v/%.

If you are familiar with Mathematical Physics, you see the resemblance to the
saddle point method, if you interpret the sum of terms like the left hand side
(from n = 0 to co) as an approximation to an integral with stepsize An =1,
ie., et fooo t"/T(n + 1)dn ~ ffooo exp(—22/2)/v2rdx = 1, as t — oo. (Note
that dz = dn/\/z?)

A crude approximation for (3.3.65) is S(t) ~ c(t)e!.

We aim, however, at higher accuracy than is common when these approxi-
mations are used in Probability and Mathematical Physics, but who can be
interested in high accuracy?

We think for example, of a situation, where the result is to enter a calculation
of cancellation type, such that (say) the first ten digits will be lost, and we
need a decent relative accuracy in what will be left. It has been emphasized
on several pages of this book that such a situation should be avoided. Well,
but there must exist alternatives for the cases, where one has not been able to
avoid it, and there is no time to wait for a better theory. Then, high accuracy
is needed in intermediate results.?”

97G.D. has recently encountered just this situation in a problem of financial mathematics ().

Problems and Computer Exercises 299

37.

38.

(d) Test these ideas by making numerical experiments with the series

et Z t" /nl,

neN

where N = {round(¢ — 8/%) : h : round(t + 8y/1)}, for some integers h in the
neighborhood of suitable fractions of v/¢, inspired by the outcome of the ex-
periments. Do this for ¢ =1000, 500, 200, 100, 50, 30. Compare with the exact
result, and see how the trapezoidal error depends on h, and try to formulate
an error estimate that can be reasonably reliable, in cases where the answer
is not known. Does the behavior of the error resemble what you would have,
according to Theorem 3.3.4, for the normal frequency function (3.3.66)7 How
large must ¢ be, in order that it should be permissible to choose h > 1 if you
want (say) 6 correct decimals?

(e) Compute, with an error estimate, e * Y>> ¢"/(n-n!), with 6 correct dec-
imals for the values of ¢t mentioned in (d). You can also check your result with
tables and formulas in Handbook, [1, Ch. 5]. See also Handbook, Introduction,
Sec.3.

(f)An alternative approach to the bell sum technique. Let h be a natural
number, and assume that x > 1, ToL < 1. Show that the power series for
Z:l_:lo F(zexp(2mim/h)) equals the sum that consists of every h’th term from
the power series for F'(x), multiplied by h. Hint: Recall Lemma 3.1.9.
Consider, e.g., the case F(z) = e¢*. Find a simple sufficient condition on
x, h for the inequality | Zfr;ll F(zexp(2mim/h))| < TOLF(z) to be approxi-
mately true. Compare it with a condition, which can be conjectured by means
of (3.3.66) and Theorem 3.3.4. Hint: |e*~%| = ¢R(:=2),

If you have a good program for generating primes, denote the n’th prime by
Pn, and try convergence acceleration to series like

-1)" 1
Z(" v

Pn P2’

or what have you? Due to the irregularity of the sequence of primes, you
cannot expect the spectacular accuracy of the previous examples, but it can be
fun to see how these methods work, e.g., in combination with some comparison
series derived from asymptotic results about primes. The simplest one reads
pn ~nlnn, (n — o). %

A SUMMATION FORMULA BASED ON THE EULER NUMBERS

(a) The Euler numbers E, were introduced by Equation (3.1.14). The first
values read Ey = 1, E;, = -1, By, = 5, Eg = —61. They are all integers
(Problem 3.1.7¢). E,, = 0 for odd n, and the sign is alternating for even n.
Their generating function reads

00 .
coshz 4 J!
Jj=0

98This is equivalent to the classical prime number theorem.

300

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

39.

40.
41.
42,

43.
44.

45.
46.

47.
48.
49.
50.

51.

(a) Show, e.g., by means of operators the following expansion

0 1. B, f2p)(m -1

STD R 2 Y Z”;M—((%)!?) (3.3.67)

k=m p=0
CoMMENT: No discussion of convergence etc. is needed; the expansion be-
haves much like the Euler—Maclaurin expansion, and so does the error estima-
tion, see, e.g., [9].
The coefficient of f(*?)(m — 1) is approximately 2(—1)?/7?**! when p > 1,
e.g., for p = 3 the approximation yields —6.622 10~*, while the exact coeffi-
cient is 61/92160 ~ 6.619 10,
(b) Apply (3.3.67) for explaining the following curious observation, reported
by Borwein et al. [4].

4(=1)*
Z ()1 = 3.12159465259 . ..

(r = 3.14159265359 . .).

Note that only three digits disagree. There are several variations on this
theme. Borwein et al. actually displayed the case with 40 decimal places
based on 50,000 terms. Make “an educated guess” concerning how few digits
disagreed.

Find out, by Stirling’s formula, the accuracy that can be obtained by the
Euler—Maclaurin expansion with a terms of the original series of Example
3.3.3.

What is 3(t) (in the notation of (3.3.47)), if u,, = a", 0 <a < 1?
Work out the details of the two optimizations in the proof of Theorem 3.3.9.

Show that every rational function f(s) that is analytic and bounded for ®s > a
is d.c.m for s > a.

Show criterion (B) for higher monotonicity (concerning products).

Which of the coefficient sequences {c,} mentioned in Problems 4 and 5 are
c.m.?” Which are d.c.m.?

Show criterion (E) for higher monotonicity ()

Suppose that u,, = fol t"dp(t), where (t) is of bounded variation in [0, 1].
Show that limu, = 0 if (¢) is continuous at ¢ = 1, but it is not true if 5(t)
has a jump at t = 1.

Show that if {uy}§° is c.m. then {u,}$° is a minimal c.m.

Prove the remainder formula for GCA, (3.3.58).

Prove the recursion formula (3.3.60) for GCA.

Make an experimental stability analysis for GCA, in the style of Example 3.2.1
for difference schemes.

Make a study of GCA, analogous to Example3.3.9, Application to Fourier
series. Compare with the generalized Euler transformation, in particular the
effect of thinning.

3.4. Continued Fractions and Padé Approximants 301

3.4 Continued Fractions and Padé Approximants
3.4.1 Continued Fractions

Some functions cannot be well approximated by a power series, but can well be
approximated by a quotient of power series. In order to study such approximations
we first introduce continued fractions. Let

ay ay az ag
_ . =bpt+ — —— — ..
as 0 b1+ ba+ b3+
b+ — 2

by + —2
2 b3+

z =by + - (3.4.1)

where the second expression is a convenient compact notation. If the number of
terms is infinite, z is called an infinite continued fraction, and the terminating
fraction » w a
n 1 2 n

¢ bt bt by (3:42)
is called the nth convergent (or approximant) of the continued fraction. A termi-
nating fraction can be evaluated backwards by the recurrence relations,

Ln

Y1 = bnfl + an/bna Y2 = bn72 + anfl/yla e Tp = Yn = bO + al/ynfl- (343)

It can happen that y; = oo for some ¢. That does no harm. In next step you divide
by y;; set the result of this division equal to 0.

The following theorem shows how a continued fraction can be evaluated for-
wards, and tells two other important facts about continued fractions. If it happens
in the last step, the result is oco.

Theorem 3.4.1.
Consider the continued fraction (3.4.1). Forn > 1, x,, = p,,/qn, where, Dy, qn
satisfies the recursion formula
Pn = bppPn_1 +anpn—2, p-1 =1, po= by,
Gn = bp@n—1 + angn—2, q-1 =0, g =1

Two other useful formulas read

PnGn-1—Pn-1qn = (=1)"tajay - - - an, (3.4.4)
4 2 a3 kiai kiksas kzksas (3.4.5)
b1+ by+ b3+ kibi+ kaobo+ ksbs+ o

The last of the formulas is known as an equivalence transformation. where the
k; are any non-zero numbers.

Proof. We prove the first pair of formulas by induction. First, for n = 1, we obtain

P _ bipo + a1p—1 _ bibo + a1 _ ay
@ bigo+aiq by +0 by

302 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Next, assume that the formulas are valid up to p,_1,¢n,_1, for every continued
fraction. Note that p, /g, can be obtained from p,,_1/g,—_1, by the substitution of
bp—1+ a, /by, for b,_1. Hence

Pn (bn—l + an/bn)pn—Q + an—1Pn—3 bn(bn—lpn—2 + an—lpn—3) + anpn—2
an B (bn—1+ an/bp)gn—2 + an1qn-3 B bn(bn—1qn—2 + Gn—1qn—3) + angn—2
_ bnpnfl + apPn—2
B bngn—1 + angn—2 ’

This shows that the formulas are valid also for p,, ¢,.
The proofs of equations (3.4.4) and (3.4.5) are left for Problems 2 and 5,
respectively. 0

COMMENTS. It is sometimes convenient to write the recursion formulas in
matrix form, see Problem 2.

It is often useful to speed up the convergence of the sequence {p,/q.}, e.g.,
by means of Aitken acceleration. On the other hand, the transformation of a slowly
convergent or a divergent power series to a continued fraction, see §3.4.4, often
yields an efficient convergence acceleration.

There is a risk of overflow or underflow with these formulas. We are usually
not interested in the p,,, ¢, themselves, but in the ratios only. Then we can normalize
pn and g, by multiplying them by the same factor after they have been computed.
If we shall go on and compute pp+1, gnt1, however, we have to multiply pp—1,qn-1
by the same factor also!

One must also be careful about the numerical stability of these recurrence
relations, see a discussion in Sec. 3.2.4.

Example 3.4.1. Best Rational Approximations to a Real Number.
Every positive number z can be expanded into a continued fraction of the
form,

1 1 1
r=byg+ ————---. 3.4.6
© byt bot byt (3.46)
Set ro =z, p_.1 = 1,q_1 = 0. Forn = 0, 1, 2,... we construct a sequence of
numbers,
1 1 1

T, =b, +

bn+1+ bn+2+ bn+3+ o

Evidently % b,, = |z, Tni1 = = ib . Compute p,,, g, according to the recursion

formulas of Theorem 3.4.1, which can be written in vector form,

(pn:(Jn) = (pn—?:Qn—Q) + bn(pn—la Qn—l);

(since an = 1). See Fig.4.3.1. Stop when |z — p,/qn| < Tol or n > nmaz. The
details are left for Problem 1.

This algorithm has been used several times in the previous sections, e.g., in
Example 3.2.12, where some coefficients, known to be rational, had been computed
by the Cauchy+FFT method in floating point.

99|y | denotes the integer part of .

3.4. Continued Fractions and Padé Approximants 303

Figure 3.4.1. Illustration to Example 3.4.1. The dashed line is {(p,q) :
rg=p} for v = LV +1).

The German mathematician Felix Klein [22] gave the following illuminating
description of the sequence {(pn,¢q,)} obtained by this algorithm (adapted to our
notation):

“Imagine pegs or needles affixed at all the integral points (py, g,), and wrap
a tightly drawn string about the sets of pegs to the right and to the left of
the ray, p = zq. Then the vertices of the two convex string-polygons which
bound our two point sets will be precisely the points (p.,¢n) - .., the left
polygon having the even convergents, the right one the odd.”

Klein also points out that “such a ray makes a cut in the set of integral
points” and thus makes Dedekind’s definition of irrational numbers very concrete.
This construction, see Fig. 3.4.1, illustrates in a concrete way that the successive
convergents are closer to than any numbers with smaller denominators, and that
the errors alternate in sign. We omit the details of the proof that this description
is correct.

Note that, since a; = 1, Vj, equation (3.4.4) reads pngn—1—pn—1¢n = (—1)
This implies that the triangle with vertices at the points (0, 0), (¢n, Pn); (¢n—1,Pn—1)
has the smallest possible area, among triangles with integer coordinates, and hence
there can be no integer points inside or on the sides of this triangle.

Fig. 3.4.1 corresponds to the example, (see also Problem 3),

n—1

r=14-—— - (3.4.7)

Assume that the continued fraction is convergent. 1°° Then, note that z = 1+ 1/,

x > 0, hence z = @
Note also that, by (3.4.4) with a; =1,

S U S TR

an qn+1 qn dn+19n dn+19n Q%
100The convergence follows from a theorem of Seidel mentioned below.

<

304 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

COMMENT: If we know or guess that a result z of a computation is a rational
number with a reasonably sized denominator, although it was practical to compute
it in floating point arithmetic (afflicted by errors of various types), we have a good
chance to reconstruct the exact result by applying the above algorithm as a post-
processing.

If we just know that the exact x is rational, without any bounds for the number
of digits in the denominator and numerator, we must be conservative in claiming
that the last fraction that came out of the above algorithm is the exact value of z,
even if |z — pyp/qyn| is very small.

In fact, the fraction may depend on TOL that is to be chosen with respect
to the expected order of magnitude of the error of x. If ToL has been chosen
smaller than the error of x, it may, e.g., happen that the last fraction obtained at
the termination is wrong, while the correct fraction (with smaller numerator and
denominator) may have appeared earlier in the sequence (or it may not be there at
all).

So a certain judgment is needed at the application of this algorithm. The
smaller the denominator and numerator are, the more likely it is that the fraction
is correct. In a serious context, it is advisable to check the result(s) by using exact
arithmetic. If z is the root of an equation (or a component of the solution of a system
of equations), it is typically much easier to check afterwards that a suggested result
is correct than to perform the whole solution process in exact arithmetic.

More information about arithmetic continued fractions, from a computational
point of view is found in Riesel [30]. Continued fractions have also important
applications in Anaysis; some of the best algorithms for the numerical computation
of important analytic functions are based on continued fractions. We shall not give
complete proofs but refer to classical books of Perron [29], Wall [36] and Henrici [20,
21]. Codes and further references are given in Numerical Recipes, Press et al., [28,
Sec. 6.2].

A Theorem of Seidel, see Cheney [7, p. 184], tells that a positive continued
fraction of the form of (3.4.6) converges if and only if the series > by, diverges.
(This makes sense also for a finite fraction, if we set b, 1 = 00.)

It is typically easy to construct i.e., for a power series, such that suppose that
c; #0, Vj > 1.

A continued fraction is said to be equivalent to a given series, iff the sequence
of convergents is equal to the sequence of partial sums. There is typically an infinite
number of such equivalent fractions. The construction of the continued fraction is
particularly simple if we require that the denominators q, =1, Yn > 1. For a power
series we shall thus have p, = cg + c1 + 22> + ... c,x", n > 1: We must assume
that c; #0, Vj > 1.

We shall determine the the elements ay,, b, by means of the recursion formulas
of Theorem 3.4.1 (for n > 2) with initial conditions. We thus obtain the following
equations,

DPn = bpPn_1 + anpn—2; po=bo, p1=bobs+as,
1 =0, + ap; by = 1.

3.4. Continued Fractions and Padé Approximants 305

The solution reads by = pg = ¢, by = 1, a1 = p1 — po = c1x, and for n > 2,

apn = (pn _pn—l)/(pn—Q _pn—l) = _fccn/cn—l;
bp=1—a, =1+2C,/C_1;

zcy xea /e xepn[Cn-1

+ +...+ "= cot
Co c1T CnT Co 1— 1-}—1'02/01_ 1+.Z'Cn/cn71_

Of course, an equivalent continued fraction gives by itself no convergence ac-
celeration, just because it is equivalent. We shall therefore leave the subject of con-
tinued fractions equivalent to a series, after showing two instances of the numerous
pretty formulas that can be obtained by this construction.

For
f@)=e" =1+z+2?/20+2%/31+ ...
and
t
f(x): aerI%\/__l_x/3+x2/5_$3/7+
we obtain for © = —1 and x = 1, respectively, after simple equivalence transforma-
tions,
1 1 1 2 3 4 5
-1
e =1l-——=— = e=2+y, here =——— ..
+1+y 24y Yo WA o 3Y 4t 5t

m 1 1 9 25 49

47 1+ 2+ 24 24 21
The latter formula needs convergence acceleration as much as the equivalent series
T=1- % + % — % + ... that was used in §3.3.3 to demonstrate the efficiency of
Euler’s Transformation (repeated averaging).

There exist, however, other methods to make a correspondence between a
power series and a continued fraction. Some of them lead to a considerable con-
vergence acceleration that often makes continued fractions very efficient for the nu-
merical computation of functions. We shall return to such methods in §3.4.4, and
shall here only show examples of continued fractions for the efficient computation
of some important functions.

T 1-3—-5-— 7— 9- 7
z 22 422 922 1622

Ly (Ltz) 2 2 28 428 927 1627
2 1-=2

t =— — — — ... 3.4.9

arctanz = = o = oo ()
oo 22
1- 3-5-7-

These expansions can be used also for complex values of z. In fact the fraction
for the logarithm can be used in the whole complex plane except in the intervals
(—o00,—1] and [1,00). For arctan z, there are similar branch cuts on the imaginary
axis. The convergence is slow, when z is near a cut. For an elementary function

306 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

like these, a program can use some properties of the functions for moving z to a
domain, where the continued fraction converges rapidly.

The expansion for tan z is valid everywhere, except in the poles. In all these
cases the region of convergence as well as the speed of convergence is considerably
larger than for the power series expansions. For example, the 6’th convergent for
tan7 /4 is almost correct to 11 decimal places.

These continued fractions and several others are found in Abramowitz and
Stegun [1]. Codes and some theoretical background are given in Numerical Recipes,
Press et al., [28], Chapters 5 and 6. The following example contains a different type
of continued fraction.

Example 3.4.2. Continued fractions for the incomplete gamma function.

A collection of formulas concerning this important function is found in Abramowitz
and Stegun [1, Sec. 6.5]. For the sake of simplicity we assume that z > 0, although
the formulas can be used also in an appropriately cut complex plane. The parameter
a may be complex in I'(a,z). 1

I'(a,z) = / ettt dt, I'(a,0) =I(a),
v(a,z) =T(a) — T'(a,z) = / e 't""dt, Ra >0,
0

11-a 1 2-a 2
a a) (3.4.10)

M) et (L 120 L22a 2
(a,2) = ez z+ 1+ a2+ 1+ x+

n

Y(a,z) = e *z*T(a) Z;) m.

We mention these functions, because they have many applications. Several
other important functions can, by simple transformations, be brought to particular
cases of this function, e.g., the normal probability function, the chi-square proba-
bility function, the exponential integral, the Poisson distribution. Codes and some
theoretical background are given in Numerical Recipes, Sec.6.2. The continued
fraction is used for x greater than about a + 1. For z less than about a + 1 the
power series for y(a,) is used.

By the following division algorithm, a rational function can be expressed as
a continued fraction that can be evaluated by relatively few arithmetic operations,
see Cheney [1966], p.151. Let Ry, R; be polynomials, and set R = Rg/R;. The
degree of a polynomial R; is denoted by d;. By successive divisions (of R;_1 by

R;) we obtain quotients); and remainders R; 1 as follows. For j =1,2,..., until
dj+1 =0,
Ri_1 =RjQ; + Rj+1, djt1 <dj, (3.4.11)
hence
Ry 1 1 1 1
R=—=Qh+5—5=..=01+— e 3.4.12
Ry o R/ R» O Q2+ Q3+ Q ()

101There are plenty of other notations for this function.

3.4. Continued Fractions and Padé Approximants 307

By means of (3.4.5), this fraction can be transformed into a slightly more economic
form, where the polynomials in the denominators have leading coefficient unity,
while the numerators are in general different from 1.

3.4.2 The Padé Table.

Let f(z) be a function defined by a power series,

2)=> az. (3.4.13)
=0

The (m,n) Padé approximant associated with f(z) is, if it exists, defined to be a
rational function
Prn(2) _ Zﬁopizi

m.n(2) = : = =r — =1, 3.4.14
fm, (2) van(z) ijo ;7 do ()

that satisfies
fmn(2) = f(2) + R2™T" L+ Oz 2), 2 = 0. (3.4.15)

The Padé table 192 is a table of the expressions for the functions fp, ,(z), m,n =
0,1,2,.... For example, the following is a part of the Padé table for f(z) = e*.

1 1+2 1+z+%z2
1 1 1
1 1—}—%2 1+%z+%22
1—=z2 1- % 1—%2
1 1+1 37 1+ iz 4 522
1—z+4122 1—§z+§z2 1—1z4 522

Theorem 3.4.2.
Set ¢; =0 for 1 <0, cg #0. The coefficients of the denominator of the Padé
approzimant fu, n(z) are determined by the solution of the linear system,

n
Zci,jqj +¢i =0, it=m+1:m+n, (3.4.16)

if this system has a unique solution.
The coefficients of the numerator read p; = Z;ﬂ:o ¢i—jqj, t =0:m, k = min(i,n).

The error constant R in (3.4.15) reads R = — 2520 Ci—jqj, it =m+n+1.

Proof. Insert (3.4.13) and (3.4.15) into (3.4.14) and multiply both sides by the
denominator:

(chz + Rz™T L L O(zm)) Zq 2d = Zp,
; 7j=0
102padé (1863-1953), French mathematician. Note that the items of the table are not ordered in
the same way as in matrices. For f(z) = e*, there exist general expressions for the coefficients,
see e.g., Gautschi [13].

308 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Match the coefficients of 2%, i =0,1,2,...,m+n + 1, and remember that gy = 1:

n pi, H0<i<m;
Zcijqj:{o, ifm+1<i<m+mn;
=0 —R, ifi=m+n+1.

The statements follow from this.
a

Note that f,, , uses ¢; for I = 0: m + n only; R uses ¢;4n41 also. So, if ¢ is
given for [= 0: f then f,,, is defined for m+n <r, m >0, n > 0.

Example 3.4.3. Padé approximations of the exponential function. The Padé
approximations fp, n(z) were computed by a program using the formulas of Theo-
rem 3.4.2 for f(z) = €*, with 0 < m <4, n =4 —m. In the Padé table these
will be on the fourth diagonal, perpendicularly to the main diagonal. The results
were first obtained in floating point arithmetic, but they were then converted into
rational form by the algorithm described in Example 3.4.1. The results are exact.
(It was numerically verified that the floating point results differed from the rational
”approximations” by less than 1071°.)

The coeflicients p; of the numerators P, 4, and g¢; of the denominators
Qm,4—m are given in the following tables:

|m\i |0 1 2 3 4 | |m\jlo 1 2 3 4 |
0 [T 0 0 0 0 0 [1 -1 1/2 -1/6 1/24
1 |1 174 0 0 0 1 |1 -=3/4 1/4 -1/24 0
2 (1 1/2 1/12 0 0 2 |1 -1/2 1/12 0 0
3 /1 3/4 1/4 1/24 0 3 /1 -1/4 0 0 0
4 |1 1 1/2 1/6 1/24 4 |1 0 0 0 0

We find, for example that

1432+ 122 + 128
f31(2) = 11
e

The program also computed the error term and the error at z = 1. For f3 1, these
are, respectively, .0021z° and .0039. For comparison, for the Maclaurin expansion
f1,0, the corresponding values are —.0083z5 and —.0099. Note that the coefficients
of fi0 were the input of the computation of the other Padé approximants.

For m = n = 4 the program computed the exact rational values for all coeffi-
cients of fy4, and found that the error term is —4 107829, while the error term of
the Maclaurin expansion fs o is 310752%. The Padé approximant thus yields some
convergence acceleration, but this effect is much more pronounced for functions
where the Maclaurin coefficients decay slowly.

When m = n = 10 the program gave warnings about divisions by zero, and
it estimated the condition number of the linear system (3.4.16) to be 10?2, The
reciprocal of this number is a measure of how close the matrix of the system is
to a singular matrix, (see Theorem 6.5.3).The computed coefficients of the Padé

3.4. Continued Fractions and Padé Approximants 309

approximant had large errors. Nevertheless e was computed with full machine
accuracy (for z = 1), and the error term was estimated to be less than 1072522,
This indicates that it may be possible to obtain full machine accuracy with smaller
values of m, n.

There is an 7if” in the theorem. There are in fact simple exceptional situations,
where the linear system (3.4.16) is singular or almost singular. We shall indicate,
how such situations can often be avoided by a more reasonable formulation of the
request. These matters are discussed more thoroughly in Cheney [7, Chap. 5].

Example 3.4.4. Try to find

fi1(z) = (o +p12)/(q0 +q12), qo =1,

for f(z) = cosz = 1 — 322 The coefficient matching according to the theorem,

yields the equations, po = ¢ = 1, p1 = q1, —%qg = 0. The last equation contradicts
the condition that gy = 1. This single contradictory equation is in this case the
“system” (3.4.16).

If this equation is ignored, we obtain f11(z) = (1 + q12)/(1 + q12) = 1, with
error ~ 122, in spite that we asked for an error that is O(z™+"*1) = O(z%). If we

2
instead allow that go = 0, then py = 0, and we obtain the same final result, since

f11(2) = qz/(qz) = 1.

In a sense, this singular case corresponds to a rather stupid request: we ask
to approximate the even function cos z by a rational function where the numerator
and the denominator end with odd powers of z. One should, of course, ask for the
approximation by a rational function of 22. What would you do, if f(z) is an odd
function?

Example 3.4.5.

Imagine a case where f,—1 ,—1(2) happens to be a more accurate approxima-
tion to f(z) than usual, say that f,_1,-1(2) — f(z) = O(z™F"*1). (For instance,
let f(z) be the ratio of two polynomials of degree m — 1 and n — 1, respectively.)
Let b be an arbitrary number, and choose

Qm,n(z) = (Z + b)mel,nfl(z)a Pm,n(z) = (Z + b)mel,nfl(Z)-
Then
fm,n(z) = Pm,n(z)/Qmm(z) = melmfl(z)/mel,nfl(z) = fmfl,nfl(z)a

which is an O(z™ " t1)-accurate approximation to f(z). Hence our request for this
accuracy is satisfied by more than one pair of polynomials, P, (%), Qm.n(2), since
b is arbitrary. This is impossible, unless the system (3.4.16) (that determines Q)
is singular.

This example illustrates another type of situations where the singular case
occurs. Numerically, a similar situation occurs in a natural way, when one wants to
approximate f(z) by fum n(2), although already f,,—1 n—1(2) would represent f(z)
as well as possible with the limited precision of the computer. In this case we must

310 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

expect the system (3.4.16) to be very close to a singular system. Actually, such a
case was encountered in Example 3.4.3 when m =n = 10. A reasonable procedure
for handling this is to compute the Padé approximants for a sequence of increasing
values of m, n, to estimate the condition numbers (see Sec. 6.5.5), and to stop
when it approaches the reciprocal of the machine unit. This illustrates a fact of
some generality. Unnecessary numerical trouble can be avoided by means of a well
designed termination criterion.

For f(z) = —In(1 — 2), we have ¢, = 1/1,1 > 0. When m = n the matrix of
the system (3.4.16) turns out to be the notorious Hilbert matrix (with permuted
columns), for which the condition number grows like 0.014 10*°". (The elements of
the usual Hilbert matrix are a;; = 1/(i +j — 1).)

3.4.3 The Epsilon Algorithm.

We shall here briefly introduce the important e-algorithm, and indicate the connec-
tions between Padé approximation, Aitken acceleration, linear difference equations
and this algorithm.

If n is large, the heavy part of the computation of a Padé approximant

fmn(2) = Prn(2)/Qm,n(2)

is the solution of the linear system (3.4.16). We see that if m or n is decreased
by 1, most of the equations of the system will be the same. There are therefore
relations between the polynomials @, () for adjacent values of m,n, which have
been subject to intensive research that has resulted in several interesting algorithms.
See, e.g., the monographs of Brezinski [5, 6] and the literature cited there.

An extension of the Aitken acceleration, due to Shanks, which uses a compar-
ison series with terms of the form

n
a=Y aykl, 1=012 .k #0, (3.4.17)
v=1

was mentioned at the end of Sec. 3.3.2. !, and k, are 2n parameters, to be deter-
mined, in principle, by means of ¢;, [= 0 : 2n — 1. The parameters may be complex.
If The power series becomes

[e's) n [e's} p I
S(z) = chzl = Za:,Zk,l,zl = Z I _a']; ~
=0 v=1l =0 v=1 v

This is a rational function of z, and the “Ansatz” of Shanks is thus related to
Padé approximation, but note that the poles at k! should be simple and that
m < n for S(z), because S(z) = 0, as z — oo. Recall that the calculations for the
Padé approximation determines the coefficients of S(z) without calculating the 2n
parameters o), and k,. It can happen that m becomes larger than n, and if o/, and
k, are afterwards determined, by the expansion of S(z) into partial fractions, it can
turn out that some of the k, are multiple poles.

3.4. Continued Fractions and Padé Approximants 311

This suggests a generalization of the Shanks approach but how? If we consider
the coefficients ¢;, j = 1 : n, occurring in (3.4.16) as known quantities then (3.4.16)
can be interpreted as a linear difference equation '°® . The general solution of this is
given by (3.4.17), if the zeros of the polynomial Q(z) := 1+ 2?21 g;z? are simple,
but if multiple roots are allowed, the general solution reads, by Theorem 3.2.10
(after some change of notation),

a=Y p)k},

where k, runs through the different zeros of Q(z), and p, is an arbitrary polynomial,
the degree of which equals the multiplicity —1 of the zero k, .

Essentially the same mathematical rlations occur in several areas of numer-
ical analysis, such as interpolation and approximation by a sum of exponentials
(Sec.4.9), and in the design of quadrature rules with free nodes (Ch. 5).

In this chapter we are primarily interested in the use of Padé approximants as
a convergence accelerator in the numerical computation of values of f(z) for (say)
z = €' in particular for z = £1. A natural question is whether it is possible
to omit the calculation of the coefficients p;,q; and find a recurrence relation that
gives the function values directly. A very elegant solution to this problem, called
the e-algorithm, was found in 1956 by P. Wynn [39], after complicated calculations.
We shall present the algorithm, but we refer to the original paper of Wynn for the
proof.

A two-dimensional array of numbers eip) is computed by the recurrence rela-
tion,
1
+1
€k %
For even subscripts this yields
€5 = fprnn(2), (34.19)

if the following boundary conditions are used:

p
(r) _ _ . __ 1 ® _0. (3420
€ fpo(2) lgoclz, €5, fon(z) TR el =0. (3.4.20)

The polynomials fy ,(z) are thus obtained from the Taylor expansion of ﬁ Sev-

eral procedures for obtaining this were given in Sec. 3.1. The values of eip) with odd
subscripts are auxiliary quantities only.

This algorithm is usually described in a rhombus scheme. It seems easier to
program it after a slight change of notation. We introduce an r x 2r matrix A =
lai;], aij = eip), where k = j—2,p=14i—j+1. Conversely,i = k+p+1,j = k+2.
The e-algorithm, together with the boundary conditions now takes the form:

fori=1:r

103 This can also be expressed in terms of the z-transform, see S 3.2.3.

312 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

a1 =0; a2 =fic1,0(2); @iz = fo,i—1(2);
for j=2:2%¢—2
Qij1 = @i-1,j-1 + 1/(ai; — ai—1,5)-
end
end
Results: fmn(2) = @Gmint1,2n4+2, (m >0, n > 0,m+n+1 < r). The above

program sketch must be improved for practical use, e.g., something should be done
about the risk for a division by zero.

Example 3.4.6. Not yet written The typical convergence rates of the e-algorithm
observed in numerical experiments are about the same as for GCA, Sec. 3.3.7.

3.4.4 More about Continued Fractions and the Padé Table.
** A plan:

* Toeplitz (look at Recipes Sec. 6.2) and Hankel Matrices, related to a power
series, H ,gn) Hankel determinant; H;cn) Hankel matrix.

HRD,) HELEEY
Hr(;:l)Hr(:jf) A gty

* quotient-difference algorithm, ¢d algorithm; bf rhombus rules refer to
Henrici, vol 1,§7.6.

) =

m =

1
e%’) :q%’“) —q%’) +e£:;j1); m=12...,n=0,1,2,...,
+1
(n) e (n+1).
qm-l,-l (n) qm ’
€m
e e - (n) _ A _ _
with initial conditions ey’ = 0;¢1(n) = cpy1/cn, n=0,1,2,....
* Correspondence of formal power series co + c1z + 222 +...; ¢o # 0 and a

continued fraction

00 0 0 0 0
ZCj{Ej —co— qi)JJ eg)ZE qé)Jf eg)ZE
7=0

1- 1- 1- 1-

* Quote Henrici vol II, p. 518, Thm 12.4c +

* qd-algorithm (see §7.6) (and determinant formulas Thm 7.6a).

* Example {ex34.dise} , Henrici vol I, p. 610, and qdalgl.dia.

* Series in powers of z~!, Henrici vol II, p. 525.....

* incomplete gamma, different type of cf: S fraction, Henr.II, p. 561.

* Ref. to odd functions (3.4.9) in the text, divide f by z, and put 2% = .

* Example {ex34.logcf} ,Henrici vol 11, p. 534, and logcf.dia.

* The convergents of the corresponding continued fractions are equal to the
sequence of Padé approximants with

[m,n] =[0,0],[0,1],[1,1],[1,2],[2,2],[2,3],[3, 3],[3,4], . ..

Review Questions 313

Review Questions

1. Define a continued fraction, and show how the convergents can be evaluated
backwards and forwards.

2. Show how any positive number can be expanded into a continued fraction with
integer elements. In what sense are the convergents the best approximations?
How accurate are they?

3. What is the Padé table? Describe how the Padé approximants can be com-
puted. Tell something about singular and almost singular situations that can
be encountered, and how to avoid them.

4. Describe the e-algorithm, and tell something about its background and its
efficiency.

Problems and Computer Exercises

1. Write a program for the algorithm of Example3.4.1. Apply it to find a few co-
efficients of the continued fractions for 1(v/5+1), V2, e, 7, log2/log3, 2i/12
for a few integers j, 1 < j < 11.

Check the accuracy of the convergents. What happens when you apply your
program to a rational number, e.g., 729/768 ? 104

2. A matrix formalism for continued fractions.

(a) We use the same notations as in Sec.3.4.1, but we set, with no loss of
generality, bg = 0. Set

Pn-1 Pn 0 an
P(n) = , A(n) = .
() <(Jn—1 (Zn) () <1 bn)

Show that P(0) = I, P(n) = P(n—1)A(n), P(n) = A(1)A(2)--- A(n—1)A(n),
n>1

COMMENT: This does not minimize the number of arithmetic operations but,
in a matrix-oriented programming language, it often gives very simple pro-
grams.

(b) Write a program for this with some termination criterion, and test it on a
few cases, e.g.,

+111_ 1 1 1 1 1 2+234
1+ 1+ 1+ 7 24 34+ 44+ 7

= =

+ ..
3+ 2+ 34+ 24 3+
As a post-processing, apply in the first two cases, e.g., Aitken acceleration in
order to obtain a very high accuracy. Does the result look familiar in the last

case? See Problem 4 concerning the exact results in the two other cases.

1040ne of the convergents for log 2/ log 3 reads 12/19. This is in a way basic for Western Music,
where 13 quints make 7 octaves, i.e. (3/2)1% ~ 27.

314

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

(c) Write a version of the program with some strategy for scaling P(n) in
order to eliminate the risk of overflow and underflow. Hint: Note that the
convergents x,, = p,, /¢, are unchanged if you multiply the P(n) by arbitrary
scalars.

(d) Use this matrix form for working out a short proof of (3.4.4). Hint: What
is the determinant of a matrix product?

. (a) Explain that « = 14 1/X for the continued fraction in (3.4.7)?

(b) Compute the periodic continued fraction

3+ 2+ 3+ 2+ 3+

exactly (by paper and pencil). The convergence is assured by a theorem of
Seidel, mentioned in §3.4.1.
(c) Suggest a generalization of (a) and (b), where you can always obtain a
quadratic equation with a positive root.
(d) Show that

1 13

—_—= where y =
2-1 z—z—y

RS
E? ‘%I»—'
T e-

(a) Prove the equivalence transformation (3.4.5). Show that the errors of the
convergents have alternating signs, if the elements of the continued fraction
are positive.

(b) Show how to bring a general continued fraction to the special form of
equation (3.4.6).

. (a) Write a program for computing a Padé approximant and the error term.

Apply it (perhaps after a transformation), for various values of m, n to, e.g.,
105 o2 arctanz, tanz. Use the algorithm of Example 3.4.1 for expressing
the coefficients as rational numbers. For how large m,n can you (in these
examples) use your program without severe trouble with rounding errors.
Hint: Matlab is rather convenient for this.

(b) The part of the Padé table for e* shown in the text, indicates a kind of
symmetry of the Padé table for this particular function. Formulate and prove
this, and try to determine for which other functions the Padé table has a

similar symmetry.

. (a) Show that there is at most one rational function R(z), where the degrees

of the numerator and denominator do not exceed, respectively, m and n, such
that f(z) — R(z) = O(z™*t"1), as 2 — 0, even if the system (3.4.16) is
singular. (Note, however, that P, and @,, are not uniquely determined, if the
system is singular; they have common factors.)

(b) Is it true that if f(z) is a rational function of degrees m', n', then fp, ,,(z) =
f@),Ym>m' n>n"?

105 Note that two of these examples are odd functions.

Problems and Computer Exercises 315

8. Apply the e-algorithm to some of the examples and problems of Sec. 3.3, where
other methods for convergence acceleration have been used. Compare the
efficiency of the methods (in particular the CGA method.)

9. Check that the program sketch for the e-algorithm is equivalent with the
scheme with the quantities egf) given earlier in the text. How do you obtain
the boundary values?

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Na-
tional Bureau of Standards, Dover Publications, New York, NY, 1965.

[2] F. L. Bauer, H. Rutishauser and E. Stiefel, New aspects in numerical quadra-
ture. Proc. of Symposia in Appl. Math., 15, Amer. Math. Soc. 1963, pp. 199—
218.

[3] P. Bjgrstad, G. Dahlquist, and E. Grosse, Euztrapolations of asymptotic ex-
pansions by a modified Aitken §2-formula. BIT, 21 (1981), pp. 56-65.

[4] J. M. Borwein, P. B. Borwein and K. Dilcher, Pi, Euler numbers and asymp-
totic expansions, Amer. Math. Monthly, 96 (1989), pp. 681-687.

[5] C. Brezinski, Padé-Type Approzimations and General Orthogonal Polynomi-
als, Birkhauser Verlag, Basel, 1980.

[6] C. Brezinski, History of Continued Fractions and Padé Approximants,
Springer Verlag, Berlin, 1991.

[7] E. W. Cheney. Introduction to Approximation Theory. McGraw-Hill, New
York, NY, 1966.

[8] R. Courant. Differential and Integral Calculus. Vol. I. Blackie & Son, London,
1934. Reprinted 1988 in Classics Library, Wiley.

[9] G. G. Dahlquist. On Summation Formulas due to Plana, Lindeldf and Abel,
and Related Gauss—Christoffel Rules, II. BIT 37:4, 804-832, 1997.

[10] P. Deuflhard and A. Hohmann, Numerical Analysis, A First Course in Sci-
entific Computation. Walter de Gruyter & Co., Berlin, 1995.

[11] C- E. Froberg Ldrobok i numerisk analys. (In Swedish.) Svenska
Bokférlaget /Bonniers, 1962.

[12] C- E. Froberg Numerical Mathematics. Benjamin/Cummings Publ. Co.,
Menlo Park, CA, 1985.

[13] W. Gautschi Numerical Analysis, an Introduction Birkhduser, Boston, MA,
1997.

[14] H. H. Goldstine. The Computer from Pascal to von Neumann. Princeton
University Press, Princeton, NJ, 1972.

[15] A. Griewank and G. F. Corliss, eds. Automatic Differentiation of Algorithms:
Theory, implementation and Application . STAM Proc. Ser., STAM, Philadel-
phia, PA, 1991.

[16] A. Griewank, D. Juedes and J. Utke, eds. ADOL-C: A package for the auto-
matic differentiation of algorithms written in C/C++ . ACM Trans. Math.
Software, 1997.

[17] S. A. Gustafson, Convergence acceleration on a general class of power series.
Computing, 21, 53-69, 1978.

316

CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]

33]
[34]
[35]
[36]
[37]

[38]

P. Henrici, Discrete Variable Methods in Ordinary Differential Equations.
John Wiley, New York, 1962.

P. Henrici. Elements of Numerical Analysis. John Wiley, New York, NY,
1964.

P. Henrici. Applied and computational complex analysis. John Wiley, New
York, NY, vol. 1, 1974.

P. Henrici. Applied and computational complex analysis. John Wiley, New
York, NY, vol. 2, 1977.

F. Klein. Elementary Mathematics from an Advanced Standpoint, Dover
Publications, New York, 1945. (Translation from German original, 1924.)

D. E. Knuth. The Art of Computer Programming, Vol. 2. Seminumerical
Algorithms. 2nd ed. Addison-Wesley, Reading, MA, 1981.

N. N. Lebedev. Special Functions and Their Applications. Dover Publica-
tions, New York, 1972. (Translation from Russian original.).

C. C. Lin and L. A. Segel, Mathematics Applied to Deterministic Problems
in the Natural Sciences. Macmillan Publ. Co, Inc, New York, 1974.

B. Lindberg, A simple interpolation algorithm for improvement of the numer-
ical solution of a differential equation. SIAM J. Numer. Anal., 9, pp. 662-668,
1972.

N. E. Norlund, Vorlesungen iiber Differenzenrechnung. Springer-Verlag,
Berlin, 1924, or Chelsea Publ.Co, New York, 1954.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes; The Art of Scientific Computing, 2nd ed. Cambridge University
Press, Cambridge, GB, 1992.

O. Perron. Die Lehre von den Kettenbriichen,. 3rd ed., Teubner, Stuttgart,
1957.

H. Riesel. Prime Numbers and Computer Methods for Factorization. 2nd ed.,
Progr. Math.,v. 126, Birkhiuser, Boston, MA, 1994.

J. F. Steffensen. Interpolation. , 2nd ed., Chelsea, New York, 1950.

F. Stenger. Numerical Methods Based on Sinc and Analytic Functions.
Springer-Verlag, Berlin, 1993.

G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
Wellesley, MA, USA, 1986.

E.C. Titchmarsh. The Theory of Functions. 2nd. edition, Oxford University
Press, London, 1939.

J. Todd. Notes on numerical analysis I, Solution of differential equations by
recurrence relations. Math. Tables Aids Comput 4, 39-44, 1950.

H. S. Wall. Analytic Theory of Continued Fractions. Van Nostrand, Prince-
ton, NJ, 1948.

D. V. Widder. The Laplace Transform. Princeton University Press, Prince-
ton, NJ, 1941.

D. V. Widder. An Introduction to Transform Theory. Academic Press, New
York, 1971.

Problems and Computer Exercises 317

[39] P. Wynn. On a device for computing the e,,(s,) transformation. M.T.A.C.,
10, pp. 91-96, 1956.

318 CHAPTER 3. SERIES, OPERATORS AND CONTINUED FRACTIONS

Chapter 4

Interpolation and Related
Subjects

4.1 The Interpolation Problem
4.1.1 Introduction

We have previously encountered two types of interpolation

e Piecewise linear interpolation that is commonly used in tables, when the re-
quirements of accuracy are modest. A more modern application is in Computer
Graphics.

e Interpolation of the values of a function in n equidistant points by a function
in P,,. Recall that in Sec. 3.2.2, P,, was defined as the space of polynomials in
one variable of degree less than n; n is the number of data required to specify
a polynomial in P,,; the dimension of the linear space P,, is n.!

The first type of interpolation will be generalized in Sec.4.6 where we shall
study interpolation by piecewise polynomials, in particular by splines, which
are piecewise polynomials, where a few derivatives are required to be continuous at
the knots, i.e., the joints of the pieces.

In the first two sections we shall go deeper into the following polynomial
interpolation problem for non-equidistant, distinct points: Find a polynomial
p* € Py, such that

p*(z;) = f(x;), i=1:m, m;#ax;fori#j. (4.1.1)

Recall that, by the corollary of Theorem 3.2.1, p*(x) is uniquely determined for a
given grid, (z1,x,...,Ty). This theorem is general, although the rest of Sec. 3.2
dealt with interpolation polynomials in the equidistant case only, and their appli-

1Some authors use similar notations, e.g., Py, or II,, to denote the n 4 1-dimensional space of
polynomials of degree less than or equal to n.

319

320 Chapter 4. Interpolation and Related Subjects

cation to numerical differentiation and integration.? Also note that the formulation
and the solution of this problem are independent of the ordering of the points x;.

A set of polynomials {p;(z),p2(z),...,pm(z)}, such that any polynomial p €
Pm can be expressed as a linear combination

p(x) =cpi(z) + ... + cmpm(),

is called a basis in P,,. The coefficients make a column vector ¢ = (c1, ¢z, ...cp)T

that can be viewed as a coordinate vector of p in the space P,, with respect to
this basis. The power basis, where p;(z) = 277!, i.e., p(z) = 2?21 cjai=t, is the
simplest basis, though not always the best.

The interpolation problem (4.1.1) leads to a linear system of equations

ap1(x;) + copa (i) + . oo + (i) = fx), i=1:m. (4.1.2)

or if we introduce the matrix M, = [p;(;)]7%_;, and the column vector® f =

(F(21), F (@), -y F@m))

Myc = f. (4.1.3)

The proof of Theorem 3.2.1 was based on the fact that this matrix is non-singular in
the case of the power basis; in this case it is the Vandermonde matrix [w]_l]"

i lig=1-
In any basis {qi(z),q2(x),...,gn(z)}, the ¢; must be linear combinations of

the pg, kK = 1:n. This can be expressed in vector-matrix form:
(ql (CU), q2 (CE), R 7q’n(x)) = (pl (CE),])Q(CE), s 7p’n(x))A7 (414)

where A is a constant matrix. A must be non-singular. For, if it were singular then
there would exist a non-trivial vector v such that Av = 0, hence

(ql(m)JqZ(x)a v ,qn(.CL'))U = (p1($)7p2($)7 v ,pn(iL'))A’U =0 Ve,

and (q1(z),q2(x), ..., ¢n(x)) would thus not be a basis.

Similarly set M, = [g;(2:)]};=,- By putting z = ;, i = 1: m into (4.1.4), we
see that M, = M,A. M, is non-singular for every basis. If we set p(z) =) d;q;(z),
the system (4.1.2) becomes for this basis M,d = f. Then M,yc = f = M,d = M, Ad,
hence ¢ = Ad; the matrix A is thus like a coordinate transformation in Geometry.
We collect the recent formulas for convenient reference:

Myc=f=M,d, c=DM*f, MyA=DM, c=Ad (4.1.5)

Example 4.1.1. An application to numerical integration. We shall find a formula
for integrals of the form I = fol /2 f(z)dr that is exact for f € P, and uses
the values f(x;), ¢ = 1 : m. Such integrals need a special treatment, due to the
integrable singularity at = 0.

2Tt is de facto so, although the polynomials were invisible in the derivations of formulas by

operator methods.
3We try to make a distinction between f that is an element in some function space and f € R™.

4.1. The Interpolation Problem 321

Set pj = fol 212 p;(x) dr, and introduce the row vector u” = (1, 2, - - - , fin)-
Then

1 m
I~ [Co i ipw)de = 3 ey = pte = G (@L0)
0 -

where it is emphasized in the last expression that p’ depends on the basis. In
fact u”(q) = p* (p)A, and M ' = A~ M !; we see that the approximation to I is
independent of the basis, as it should, in view of Theorem (3.2.1).

Another approach is the method of undetermined coefficients, i.e., to
seek a formula I ~ Y7 b;f(z;) = b7 f, which is exact when f(z) = p;(z), j =
1 : m; then it is exact for all p € P, These conditions lead to the linear system
bI'M, = pt'* Thus b1 = ;LTMIjl, the final result of this approach becomes [=~

bI'f = ,u(p)TMp_lf, which is the same as (4.1.6), although interpolation was not
mentioned in this approach. In view of Theorem (3.2.1) this is no surprise, since
the same values of f are used, and both formulas are exact for all f € P,,.

See numerical applications (for the power basis) in Problem 2. Evidently these two
approaches can be used for any linear functional.

A variant of this interpolation problem is to find a polynomial p € P, where
n < m that, in some sense, fits to the data x;, f(x;), 1 = 1 : m. We obtain, in this
case too, a system of the form Mpc = f, but this is said to be overdetermined;
there are m rows but only n columns. An overdetermined system can typically be
satisfied only approximately; see Example 1.2.5, where a straight line could not be
made to pass through the five points. This is not interpolation, but it is mentioned
here, since it is a natural extension of interpolation, and in some mathematical
software packages these two problems can easily be treated by the same commands.

Overdetermination can be used to attain two different types of smoothing:

(a) to reduce the effect of random or other irregular errors in the values of the
function;

(b) to give the polynomial a smoother behaviour between the grid points.

One of several possible methods for the treatment of overdetermined linear
systems is the important the method of least squares, see Chapter 8. Its appli-
cation to the approximation of functions leads to rather simple computations. In
many applications it can be motivated by statistical arguments. In this case we
shall find the vector ¢ that minimizes S(c), where (see Problem 5)

S(c) = zm:(zn: ¢jpj(wi) — f(ivi))2- (4.1.7)

i=1 j=1

4.1.2 Various bases for P,

How to choose the basis, depends on the purpose. If the purpose is to compute
derivatives or integrals of the interpolation polynomial, the power basis is a conve-

4This may be called the adjoint to the system Mpc = f

322 Chapter 4. Interpolation and Related Subjects

nient choice, and the shifted power basis, where g;(z) = (x—a)/ ™1, is sometimes also
convenient. Convenience is, however, not all that matters, when n is large. Math-
ematically, the choice of basis (for a finite-dimensional space) makes no difference.
Computationally, working with rounded values of the coefficients, the choice of basis
can make a great difference. If a shifted power basis is to be used for polynomial
approximation on a certain interval, it is often good to choose a near the midpoint
of the interval.

Other bases are often more advantageous.

A cardinal basis of P, is generated by a polynomial

O, () =(z—21)(z —22) - (T — Tp), (4.1.8)
where z;, © = 1: m are m distinct real numbers. The basis reads,

() — o, (z) C1.m
pJ() - (CE —l'j)q)l(.fj), J= 1: . (419)

By L’Hospital’s rule p;(x;) = d;;, (Kronecker’s delta). (This is the property
that in a more general context characterizes a cardinal basis.)

It follows that Z;”:l p(z;)pj(x) = p(x;), for £ = z;, 4 = 1 : m, hence this is a
basis that directly displays the solution of the interpolation problem for m distinct
points. This is Lagrange’s interpolation formula, but it seems to be relatively
hard to compute the value of a basis function. We shall see in §4.2.3 that this basis
is more practical than it looks.

A sequence of polynomials g1, ¢, g3, . .. (finite or infinite),

q1 (ZC) = a1
¢2(2) = a2 + agex
¢3(z) = a13 + agzx + az3r?

U (2) = a1 + Gom® + azma® + ... + Qg™

where a;j; # 0 for all j, is defined to be a triangle family of polynomials, i.e., g;(z)
is of (j — 1)’th degree with a non-zero leading coefficient.>.

Conversely, for any j, pj, where p;(z) = 271 can be expressed recursively
and uniquely as linear combinations of ¢i (), ¢2(),...,g;j(z), so that we obtain a
triangular scheme also for the inverse transformation. So every triangular family
{1 (x), g2(x), ..., qm ()} is a basis for Ppy,.

What we has just seen, is indeed a proof of the well known fact that the inverse
of a triangular matrix, (with no zeros in the main diagonal) is also triangular.
Among interesting triangle families we can mention the families where ¢;y1(z) is

defined by (2 — ¢)’, Tj(z), and many other families of orthogonal polynomials.

5In the terminology used in the previous subsection, this triangular matrix equals AT; this
explains the notation for the elements

4.1. The Interpolation Problem 323

Example 4.1.2. A suitable basis for polynomial interpolation. Suppose that
T1,%2,...,Tm, are m distinct points. The formulas

pi(z) =1, pj@)=(@—-—z1)(x—22)...(x —2j_1), j=1:m,

define a triangle family with unit leading coefficients, hence a basis. The represen-
tation

p(x) =c1+ oz —x) +es(z—x1)(x —a2) + ... (4.1.10)

+em(x —x1)(x — x2) -+ (¥ — Typ—1)

is often very convenient. If a polynomial is given in this form then p(z) can be
evaluated using only m multiplications and 2m additions, for a given numerical
value z, from the nested form

p(x) = (- (cm(®—2m 1) +Cm1)(T — T 2) +
ot e3)(w—x2) +e)(w— 1) + -

Notice that the case, where all the z; = 0, gives Horner’s rule, see Sec. 1.4.2. We
have p(z) = by, where b; is computed using the recursion formula:

bm = cm, bi_1:= bZ(ZE - '132‘_1) +c¢i—1, t=m:—1:2. (4111)

We leave the proof to Problem 4.

Note that, by (4.1.10), ¢1 = p(x1), (x2 —x1)c2 = p(x2) —¢1, This indicates
that the coefficients ¢; can be computed recursively, by much less work than the
linear system (4.1.3) would require for the power basis, by standard methods for
linear algebra. In next section we shall see how this basis leads to Newton’s inter-
polation formula, which belongs to the best interpolation formulas, with respect to
computational economy and numerical stability.

The matrix approach described in the previous subsection are convenient;
a Vandermonde matrix is easily generated, when you work in a matrix-oriented
command language. If you deal with a modest number of polynomials of low degree,
(say) less than 10, convenience can be given a larger weight than the optimal number
of arithmetical operations and a minimized effect of rounding errors. In the latter
respects, the matrix approach is inferior to Newton’s interpolation formula and the
other formulas and algorithms to be discussed in the next section, in particular if
m is large.

The main reason why we started with such non-optimal procedures, is that
they are easily generalizable to other interpolation problems, e.g., interpolation in
other function spaces than P,, (see Problem 3), or interpolation with other condi-
tions on the function f in addition to function values (see later sections). For such
a non-standard interpolation problem—problems like that occur in practice—the
matrix approach is helpful also for finding out under what conditions the problem
has a unique solution.

324 Chapter 4. Interpolation and Related Subjects

Problems

1. Study experimentally interpolation in Pp,, m = 2 : 2 : 16 for f(z) = (34 2)~",
z € [—1,1]. Use the linear system Myc = f and the power basis. Study both m
equidistant points and m Chebyshev points, i.e.,

i —1
zi=—14+22""

2i—17r)
PY A

Zi ZCOS(B

m—1
respectively. Plot the error curve, y = |f(z) — p(z)| in semi-logarithmic scale. For
the larger values of m, make also experiments to illuminate the effects from random
perturbations of the function values to the values of p(z).

Make also a few experiments with a random vector f, for m = 16 and m = 8, in
order to compare the grid data and the order of magnitude of p(z) between the grid
points.

2. Write a program for the derivation of a formula for integrals of the form I =
fol =% f(x)dx that is exact for f € P, and uses the values f(z:), i = 1 : m,
by means of the power basis, according to Example 4.1.1.

(a) Compute the coefficients b; for m = 6 : 8 with equidistant points, z; = (i —
1)/(m —1), i =1:m. Apply the formulas to the integrals

1 U e 1
“1/2,=% g0, . 1— 312 g
[eveeran [A [aer

In the first of the integrals compare with the result obtained by series expansion in
Problem 3.1.1. In the last integral a substitution is needed for bringing it to the
right form.

(b) Do the same for the case, where the step size x;+1 — x; grows proportionally to
i; 1 = 0; £, = 1. Is the accuracy significantly different compared to (a), for the
same number of points?

(c) Make some very small random perturbations of the z;, i = 1:m in (a), (say) of
the order of 107*%. Of which order of magnitude are the changes in the coefficients
b; , and the changes in the results for the first of the integrals?

3. A little about two-dimensional interpolation problems.

Much of the theory of the introduction can be generalized to other interpolation
problems than problems with polynomials in one variable, but one cannot be sure
that there is unconditionally a unique solution to the problem. It may not be enough
to require that the points are distinct.

(a) For the interpolation by a linear function in two variables, p(z,y;c) = c1 + cox +
csy, characterize triples of triples (z;, v, fi), such that the interpolation problem
problem p(zi,yi;¢) = fi, ¢ = 1 : 3 has exactly one solution. When does it have
infinitely many solutions, and when is there no solution?

(b) Set
c=(c1,ca,¢3,¢0,¢5,¢6)"; plx,y;c) = 1 + cax + c3y + cax® + cszy + oy’
Consider the interpolation problem: Given z;, y;, fi, ¢ =1 : 6, try to find ¢, so that

p(xs,yi;¢) = fi,i=1:6.
Choose i, yi, fi, ¢ = 1 : 6 by 18 independent random numbers, solve the linear

Problems 325

system p(zi,yi;¢) = fi, i = 1 : 6, look at max|c;|. Repeat this (say) 25 times. You
have a fair chance to avoid singular cases, or cases where max |c;| is very large.

(c) Now choose (zi,;) as 6 distinct points on some circle in R?, and choose f; at
random. This should theoretically lead to a singular matrix. Explain why, and find
experimentally the rank (if your software has convenient commands or routines for
that). Find a general geometric characterization of the sextuples of points (zi,yi),
i =1:6, that lead to singular interpolation problems. Hint: Brush up your knowl-
edge of conic sections.

4. Prove the validity of (4.1.11).

5. A little about least squares approximation. The sum S(c) was defined in (4.1.7).
Show that

m n

6(;90(:) = 1 2pk(.’L‘i)(Zl cipj () — f(xi)),

= j=

and show that the equations for the minimization can be written in the form
M"Mc=M"f. (4.1.12)

in the notations of §4.1.1, (but M = M,). Show that MT M is a symmetric n x n
matrix.
COMMENT: This linear system is called the normal equations. If m = n it is
mathematically equivalent to the system Mc = f , but the condition number may be
much larger. It will be shown in Ch.7 that the matrix M M is non-singular, and
that the system yields the minimum of S(c), unless the columns of M are linearly
dependent. The matrix is, however, sometimes very ill-conditioned, and we shall
in Chapter 8 see better methods for handling the least squares problems in such
situations.

6. A warning for polynomial extrapolation of empirical functions, or... 7
(a) Write a program ¢ = polyapp(z,y,n) that finds the coeflicient vector ¢ for a
polynomial in p € P, in a shifted power basis, such that y; =~ p(z;), 1 = 1 : m,
m > n, in the least squares sense, or study a program that does almost this.®
(b) The following data shows the development of the Swedish GDP, quoted (with
permission) from a table made by a group associated with the Swedish Employer’s
Confederation. (The data are expressed in prices of 1985 and scaled so that the
value for 1950 is 100.) (a) For the upper pairs of data, compute and plot p(z),z €

1950 1955 1960 1965 1970 1975 1980 1985 1990
100.0 117.7 139.3 179.3 2193 249.1 2675 291.5 3264
1952 1957 1962 1967 1972 1977 1982 1987 1992
104.5 1246 153.5 189.2 226.4 247.7 2702 307.6 316.6

[1950, 2000] (say). Mark the given data points. Do this for m = 9, and for (say)
n =9, and then for n = 8 : —2 : 2. Store the results, so that comparisons can be
made afterwards.

Hint: Subtract 1970 from the years.
(b) Do the same for the lower pairs of data. Organize the plots, so that interesting

6The Matlab command polyfit does almost this.

326 Chapter 4. Interpolation and Related Subjects

comparisons become convenient, e.g. how well were the data points of one of the
sets interpolated by the results from the other set?

(c) Make forecasts for 1995 and 2000 with both data sets. Then, use a reduced
data set, e.g., for the years 1982 and earlier (so that m = 7), and and compare the
forecasts for 1987 and 1992 with the given data. (Isn't it a reasonable test for every
suggested forecast model to study its ability to predict the present from the past?)
See if you obtain better results with the logarithms of the GDP values.

Try to draw general conclusions about this type of prediction, and—if you have
time—see if they still hold, when you make similar computations with data from
another model.

4.2 Interpolation Formulas and Algorithms

4.2.1 Divided Differences and Newton’s Interpolation Formula

Let the unique solution p* in P, of the interpolation problem be expressed with
the basis of Eq.(4.1.10). Suppose that

f@)=a+cz-—z)+...+epn(z—x1)(x—22) - (& —Tpp—1) (4.2.1)
TAn(2) (@ —2)(2 - 22) - - (2 — Zm),

If f € P, we know from Sec. 4.1.2 that such a formula holds with 4,,(z) = 0,

otherwise we do not know yet that this Ansatz is correct, but we shall see that it is

so.
For x = x1 we get ¢; = f(x1). Set

Wlf = f2), [on,a)f = L@ =S

r — I
Then

[z1,2]f =co+cz(@—za) + ...+ ez —22) - (T — Typp—1)
TAn(z)(z —23) - (& — 2m),

and ¢y = [z1,22]f. We now define recursively, for k > 1, divided differences”
T1,Z9, .., Tp_1,Z|f — [T1,Z2,. .., Z_1,T
[z1,22,...,Tk—1, %k, 2] f = 1,225 5 Thon, 2l 7 o0, 255 T, k]f. (4.2.2)
r — Tk
We obtain, for k = 2,
[z1,z0,z]f =cs+calz —x3)+ ... +epm(x—23) - (T — Typ—1)
TAn(2) (@ —23) -~ (2 = Tm),
and ¢z = [z1,x2, 23] f. By induction it follows that
cr = [T1, T2, ..., Tr_1, Tk f, k=1:m. (4.2.3)
“We now prefer the modern notation [...]f to the older notations f[...] or f(...), since it
emphasizes that [...] is an operator. Note that the interpretation [z]f = f(z) is consistent with

this.

4.2. Interpolation Formulas and Algorithms 327

For k = m we obtain, A,,(z) = [z1, 22, ... Tm,x]f.
We now introduce a new notation that is convenient in the following. For
k=1:m, set

Do(z) =1, Pp(z) =Pr_1(x)(z —2xk) =(x —21)(T —22) -+ (T —3p). (4.2.4)

For f € P,, we know that the Ansatz is correct, hence we can trust the coeffi-
cients ¢, Moreover, since p*(z;) = f(x;), j = 1 : m, it follows that [z, z2, ... 2;]p* =
[1,22,...2;]f. Hence

plz) = i[xl, il @5 (@)
= f}[xl,...,xj]p~ (@—21) (@ —2j_1) VpE P,
p(z) = i[%) f R ()
= i[xl,...,xj]f-(:I:—xl)-~-(x—:cj_1).

For a general function f we do not yet know that the Ansatz is correct, but
after inserting the only possible values of ¢, and A, (z) in (4.2.2), together with
the notation with ®4(z), we can conjecture that the following is an identity:

flz) = Z[:cl, v @ f @i (2) + [T, @2, - T, @] f P ().
j=1
We prove this by induction. For m = 1, it is true, because the right hand side
becomes f(z1) + [z1,z]f - (x — x1)= f(x) =the left hand side. Next suppose that
it is true for m = n. The difference between the right hand side for m = n + 1 and
m = n reads

[1, -y Tpg1]f Pnla) — [21, T2, . .. Tp, 2] f P (@) + [21, T2, - - g1, 2] f Ppga ()
= ([@1, - @1]f — [@1, T2, 2, 2] f + [21, 22, - - Tng1, 2] f (@ — Tpg1)) P ()
= ([#1, -y Tng1, 2 f (@ngr — @) + [21, T2, - Tpg1, 2] f (T — Tpgr)) B (2) = 0,

hence the conjecture is true. We summarize the results in a theorem.

Theorem 4.2.1. Newton’s Interpolation Formula with exact remainder.
The interpolation problem of determining the polynomial p* € P,, such that
pr(zi) = flzi), i=1:m,
where the xz; are distinct points, has the solution

m

pr(x) =) [w1,. w5 f 5 (2), (4.2.5)

j=1
flz) = p*(z) = [x1, 22, . .. Ty,] f P (). (4.2.6)

328 Chapter 4. Interpolation and Related Subjects

These formulas are valid also for complex x;, x.

In particular, if f € P, then, for all z, [x1,za,...,Zy,z]f = 0. For z =
Tm+1, this equation is, by Theorem 3.2.1, the only non-trivial relation of the form
7" a; f(x;) = 0 that holds for all f € Pp,,.

Do not forget the simple Horner-like scheme (4.1.11) for the computation of
p*(z); it is less obvious in the new notation.

Theorem 4.2.2.

For every m, the divided difference [x1, 22, ..., xy]f is the coefficient of x™ =1
in the interpolation polynomial p* € Py,. A divided difference is a symmetric func-
tion of its arguments.

PRrROOF: The first statement follows from (4.2.3). The second statement then
holds, because the interpolation polynomial is independent of how the points are
ordered. 0O

If we use (4.2.2), but call the first point z;11 instead of z; we get

[$i+1;-~-;ﬂ7k71;$]f - [$i+1;-~-;$k71;$k]f
T — Ty '

[Tiv1se- Th1, T, 2] f =

Now set = z; and use the symmetry property (Theorem 4.2.2). We obtain the
formula

Tiy Tig1se e Tho1)f = [Tig1seeosTho1,
[Tiy Tit1s ooy Tho1, T f = 20, @it1y -y Bomalf = @ity T, k]f. (4.2.7)
Ly — T

This formula can be used recursively to compute the divided differences. The com-
putation is conveniently arranged in a table (recall that [z;]f = f(z;)).

zy [m]f
[xhx?]f
zy [z2]f [z1, 22, m3]f
[l'z,l'g]f [$1,$2,$3,$4]f
T3 [w3]f [$2,$3,$4]f
[1‘3,11)4]f
zy [za]f

This table is called a divided-difference table. Fach entry in the table is
computed from the two entries immediately to the left and above and below. Hence
the complete table can be constructed, for example, column by column.

The divided differences which occur in Newton’s interpolation formula (4.2.6)
are those in the upper diagonal of the table. However, since the points x1, zo,. .., Z,,
can be arbitrarily ordered, we can also introduce the points in Newton’s interpo-
lation formula in backward order x,,,...,x;. This gives the backward form for the
interpolating polynomial

m—1
p*(x) = f(zm) + Z [T, Tt - T f - (& = Tp—j1) - (@ —T). (4.2.8)

j=1

4.2. Interpolation Formulas and Algorithms 329

The divided differences in this formula lie on the upward diagonal starting at f,, in
the table.

Example 4.2.1. Compute the interpolation polynomial for the following table
using (4.2.6).

1‘1:1 0
2
£C2:2 2 1
) 0
r3 =4 12 1
8
11,'4:5 20

(The entries appearing in the Newton interpolation formula are boldface.) We get
two alternative representations

p() =042z —-1)+1(z—1)(z—2)+0(z—1)(x — 2)(z — 4)
=20+8(z—5)+1(z—5)(z—4)+0(x—-5)(z—4)(z—2) =2" — 2,
where the last is obtained from (4.2.8).
Example 4.2.2. Set f(z;z) = 1/(z — z); x is the variable, z is a parameter; both

may be complex. The following elementary, though remarkable, expansion can be
proved directly by induction (Problem 3a).

11 T —x (x—z1)(x—22) - (T — Tpp—1)
z—:c_z—:cl+(z—:c1)(z—x2)+'”+ (z—x1)(z—22) (2 —)
(x—x) - (x—zp) i D, (ac @, (z) (4.2.9)

(z—x1) (2 —2m)(z — 2) ®,(z) @m(z)(z—x)'

j=1
When we match this with Newton’s interpolation formula we find that

1 1
[®1, 22, ..., z]f(x;2) = y [ml,xz,...,:c],x]f(x,z)—‘I)j(z)(z_w).
(4.2.10)

These formulas can also be proved by induction, by working algebraically with
1/(z —) in the divided difference table (Problem 3b).

An interesting feature is that these formulas do not require that the points
x; are distinct. (They are consistent with the extension to non-distinct points that
will be made in Sec.4.3.) Everything is continuous except if the parameter z = z;,
i =1:m, or, of course if z = z, see Sec. 4.3. If all the z; coincide, we obtain a
geometric series with a remainder.

This is more than a particular example. Since 1/(z — z) is the kernel of
Cauchy’s integral (and several other integral representations), this expansion is
easily generalized to arbitrary analytic functions, see Sec. 4.4.

Theorem 4.2.3. Lagrange’s Remainder Term for Interpolation

330 Chapter 4. Interpolation and Related Subjects

Let f be a given real function, f € C™[int(z,x1,x2,...,Z,)]. Denote by p*
the solution of the interpolation problem (4.1.1). Then

o)) = L)) (2.11)
for some point &, € int(x,x1,T2, ..., %), and
(m)
[€1, %2, ... Tm, Tm1]f = ! m!(f) , &eint(zy,. .., Tpy1). (4.2.12)

PRrROOF: Introduce a new variable z, and set

G(z) = f(2) = p*(2) — [z1,22, . .. T, 2] [Pp(2).
We know by Theorem 4.2.1 that

f@) —p*(z) = [z1, 22, ... Ty, | f P p(2). (4.2.13)
hence G(x) = 0. Then G(z) = 0 for z = z,x1,%2...,%,. From repeated use of
Rolle’s theorem it follows that there exists a point &, € int(x,x1, %2, .., %mn), such

that G (&,) = 0. Since p™(z) = 0 and @%n)(z) = m! for all z, G (z) =
FU(2) = [x1, T2, ... 2m, 2] f m!. If we now put z = &, we obtain

(m)
[€1,Za,...¢m,x]f = fT('ﬁ) (4.2.14)
Put this into the definition of G(z), and set z = z. Since G(z) = 0, the first
statement follows. The second statement follows from (4.2.14) for = zy,41. 0O

In this theorem z;, x, f(z), etc. must be real, while (4.2.13), i.e., Newton’s
interpolation formula with the exact remainder term, is valid also in the complex
plane.

Notice the similarity to the remainder term in Taylor’s formula. We shall see
that this can be considered as a limiting case when all the points x; coincide. Notice
also that the right hand side of (4.2.11) is zero at the grid points—as it should be.

Example 4.2.3. Use the same notations as before. For f(z) = ™ the interpolation
error becomes f(z) — p*(z) = ®,,(z), because £ (x)/m! = 1. Fig.4.2.1 shows the
interpolation error with m equidistant points on [—1,1] and with m Chebyshev
points on the same interval, i.e.,

22’—17r)

1—1
T = —1+2m, T; :COS(2

respectively, for mm = 6 and m = 12. The behaviour of the error curves are rather
typical for functions where f(™)(z) is slowly varying. Also note that the error
increases rapidly, when x leaves the interval int(z;, zo,...,Z,,). In the equidistant
case, the error is quite large also in the outer parts of the interval.

4.2. Interpolation Formulas and Algorithms 331

Figure 4.2.1. Error of interpolation in P, for f(z) = x™*. Equidistant

points (upper part), Chebyshev points (lower part); m = 6 and m = 12 (to be made).

To form the Newton interpolation polynomial we only need one diagonal of
the divided-difference table, and it is not necessary to store the entire table.

Algorithm 4.2.1 Computing the Newton Coefficients

The following program replaces (overwrites) the function values fi, fo,..., fm,
where f; = f(x;), i = 1 : m. by the diagonal f; = [z1,22,...,25]f, i =1 :m
of the divided difference table. At step j the jth column of the table is computed.
Note that it is necessary to proceed from the bottom of each column to avoid over-
writing data needed later! The algorithm uses m(m — 1)/2 divisions and m(m — 1)
subtractions.

forj=1:m—-1
fori=m:-1:5+1
fir=(fi = fis1) /(@i — @i j);
end

end

The Newton interpolation polynomial is then given by (4.2.8), and can be evaluated
using the recursion (4.1.11).

Algorithm 4.2.2 Divided Difference Table

The following algorithm computes the difference table one diagonal at a time. In
the ith step the entries f;,[z;—1,%]f,...,[x1,Z2,...,2;]f on the upward diagonal
of the divided-difference table overwrites the function values f;, fi—1,..., fi.

332 Chapter 4. Interpolation and Related Subjects

fori=2:m
for j=i:-1:2
== fi-)/(@i—zj_1);
end

end

Theorem 4.2.4. If x;, = x1 + (k — 1)h, fir = f(zr), then

A
o ORI

[Ti, Tig1s- - Tigs)f (4.2.15)

Proof. By induction, with the use of equation (4.2.7). The details are left to the
reader. 0O

We are now in a position to give a short proof of the important formula (3.2.4)
that we formulate as a theorem.

Theorem 4.2.5. Assume that f € C*. Then
AFf(z) =hF R), ¢ €lx,xz+ kR (4.2.16)

If f € Py then A¥ f(x) = 0. Analogous results hold, mutatis mutandis, for backward
and central differences.

PRrOOF: Combine the result in Theorem 4.2.4 with (4.2.12), after appropriate
substitutions. 0O

4.2.2 Scaled Divided Differences

We have noted above that, in the notation for the equidistant case, V¥ f,, & h* f(¥)
while in the divided difference notation f[,,Zn 1,...,2,] ~ f* /k!. For the
basis functions of the interpolation formulas, we have, respectively,

<Z> - 0(1)7 (.Z' - wn)(w - ﬂ?n,1) T (117 - wn*kJFl) = O(hk)’

provided that « — z,_; = O(h), j =0,1,...,k — 1.

For many applications the quantities used in the equidistant case have a more
appropriate order of magnitude. F. Krogh[16] introduced a scaling for the divided
differences with the same advantage; in the equidistant case these scaled divided

4.2. Interpolation Formulas and Algorithms 333

differences are identical to V¥ f,,.8 The main known applications so far has been to
multistep methods for ordinary differential equations.

We shall introduce some new notions and notations. Let X = (zg, 1, 2, .. .),
and Y = (yo,91, 42, - -.), be two given sequences, and set

o(z;n, k) =(x —zp)(x —Tp_1) - (T — Tp_p).

(Note that the degree of the polynomial ¢ is k + 1.)

We first introduce an operator notation for the usual divided differences. Let
[X;n,k]Y be the k’th order backward divided difference of the sequence Y with
respect to the sequence X at x,, i.e. if y; = f(x;) Vj then, in the notation of
Sec. 4.1,

[X;n, k)Y =[zn, Tn-1,-. -, Tn_k]f.

The argument X can be omitted in the divided difference, if there is no doubt
about the sequence. The basic recurrence relation (4.2.7) for divided differences
now reads?®

[n+1,5]Y —[n,j]Y

n,0)Y =yn, [n+1,5+1Y = . (4.2.17)
Tpt1l — Tp—j

Let P(x;n, k)Y be the interpolation polynomial of degree k that assumes the values
Yn—jforz =xz,_;,5 =0,1,..., k. Newton’s interpolation formula for the kth degree
polynomial then reads

A
P(z;n, k)Y =[n,0Y + > ¢(x;n,i —1)[n,i]Y. (4.2.18)

i=1
The scaled divided differences (n, k)Y are defined as follows,
(1,00 = [0,0]Y =y, (mai)Y = b(@asn — 1,5 — Dn,jlY, (4.2.19)

and we set ¢5(z;n, j) = ¢(x;n, j)/¢(x,;n—1, 7). The basic recurrence relation now
reads,

(n+ 1,5+ 1Y = (n+1,1)Y = by (enri3n,j — 1){n, j)Y. (4.2.20)

Note that in the equidistant case, (n,j)Y = VJy,. In this notation Newton’s
interpolation formula reads

k
P(z;n, k)Y = (n,0)Y + Z ¢s(z;n, i — 1) {n,1)Y. (4.2.21)

i=1

Algorithm 4.2.3 Given a backward (upward))diagonal in the difference scheme,
(X;n,4)Y,i=0:k, computed by means of (4.2.20). The value of the interpolation
8The notation and the algorithm below are due to L. O. Eriksson and G. Dahlquist.

97This formula, and several formulas below, can be written as a pure operator relation, without
Y.

334 Chapter 4. Interpolation and Related Subjects

polynomial P(z;n,k)Y and its derivative can be computed simultaneously by the
following algorithm that also shows how to compute ¢,(z;n,k — 1) by a recurrence
relation.

p:=1; p:=(n,k)y; pl:=0;
fori=k—1:-1:0
ti=(—2p-i)/(Tn — Tp-i-1);
pi=pxt;
pi=(n, i)y + pxt;
pli=p/(xy —xpi1) +plxt;
end
ds(zyn, k—1) = ¢;
P(z;n, k)Y :=p; P'(z;n,k)Y = pl;

4.2.3 Lagrange’s Interpolation Formula
We here consider an alternative construction of the unique interpolation polynomial.
Theorem 4.2.6. Lagrange’s interpolation formula.

The unique interpolation polynomial p* € Py, interpolating the function f(x)
at the distinct points x;, 1 = 1 : m can be written

p*(z) = Z f(@i)Li(w), (4.2.22)
where .
Liz) =[] % i=1:m, (4.2.23)

are the Lagrange polynomials.

PRrooOF: The Lagrange polynomials are exactly of degree m — 1 and satisfy

1 ifi=j;
Li(ws) = 01 = {0 if i # j.

It follows that p* € Py, and that p*(z;) = f;, j=1:m. 0O

The expression (4.2.22) is not as efficient for the calculation of a sequence of
interpolating values as the Newton formula, since the functions L;(x) have to be
recomputed for each new value of . However, we can write

Ai
Li@) = mi@)®n(e), pile) = —, (4.2:24)

r — T

4.2. Interpolation Formulas and Algorithms 335

where

A= 1/H(m,~—mj), () = [[(@ - 2)). (4.2.25)
i =
Here the support coefficients A; depend only on the given points z;, ¢ = 1 : m,

and can be computed in m(m + 1) operations, or even $m(m + 1) (see Schwarz

[21, Sec. 3.2.1]). Since the interpolation formula is exact for f(z) = 1, we have
ity Li(z) = 1. Then, by (4.2.22) and (4.2.24),
ST Li@) ST ()

Now, for each new value of z we only need to evaluate the coefficients p;(x), which
requires m+1 divisions, and then we compute p*(z) by means of the last expression.

(4.2.26)

4.2.4 Neville’s and Aitken’s algorithms

There are other recursive algorithms for interpolation. Of interest are those based
on successive linear interpolations. The basic formula is given in the following
theorem.

Theorem 4.2.7.
Assume that the two polynomials p,,—1(z) and gn,—1(x), both in P,,_1 inter-

polate f(z) at the points x1,...,Ty_1, and Ta, ..., Ty, respectively. If the m points
T1,T2,. .., Tm_1,Tm are distinct then
T — T Ty —
)= ———qm-1(x) + —————pm-1(x).
pm() mm_mlfhn 1() -Tm_-rlpm 1()
is the unique polynomial in P, that interpolates f(x) at the m points x1,Ta, ..., Tym—1,Tm.

PROOF: Since ¢p—1(x) and pp,—1(x) both interpolate f(z) at the points

T2y, Tm—1 and
T — T T — T
+ =1

Ty — X1 Ty — T1 ’

it follows that also p,,(x) interpolates f(z) at these points. Further, p,(z1) =
Pm—1(x1) and hence interpolates f(x) at ;. A similar argument shows that, p,, ()
interpolates f(z) at x = x,,. Hence py,(x) is the unique polynomial interpolating
f(z) at the distinct points z1,Z2,...,Zy. 0O

Neville’s and Aitken’s algorithms both use Theorem 4.2.7 repeatedly to con-
struct successively higher order interpolation polynomials. In Neville’s interpolation
algorithm one puts

Di,o = f(xz), t=1:m
and defines recursively for i =2 : m
(= zi—k)pik — (T — T)pi—1,k

Piki1 = . k=1:i-1, 4.2.27
b Ti— Tip ()

336 Chapter 4. Interpolation and Related Subjects

where p; 41 interpolates at the points x;_,...,z;—1,2;. Note that it is easy to
add new interpolation points in this scheme. Aitken’s scheme is similar, but more
adapted to the case when the number of points is fixed, see Isaacson and Keller [15,
1966, Chapter 6.2]. These formulas are better than Newton’s only in the case that
f(z) is to be evaluated for the same values of x — x; for several functions (sequences)
f. In this case one should compute t;;, = (¢ — z;_1)/(z; — z;—k) once and for all.
We saw in Sec. 3.3.5 its application to the extrapolation to = 0 of a polynomial
given at a few positive arguments, a typical example, where it is efficient and widely
used.

4.2.5 Miscellaneous Questions about Interpolation

We discuss here some miscellaneous questions about interpolation and applications.

Example 4.2.4. Error in linear interpolation. Suppose we want to compute by
linear interpolation the value f(z) at a point & = xg + 6h, 0 < 6 < 1, where we
have put h = z; — x¢. (6 is called the normalized interpolation argument.)
Assume that |f"(z)] < My Vo € int(x;,22). Then from (4.2.11) it follows that the
remainder R(z) = f(z) — p(z) satisfies

1, ,, h? h?
IR@)| = 317" — zo)(w — 2| ~ 01 My < TMy, (4228)

where we have used that #(1—6) takes on its maximum value 1/4 for § = 1/2. If the
values fp and f; are given to ¢ correct decimal digits the round-off errors in these
values € and € satisfy |¢;] < £107*. In linear interpolation p(z) = (1 —6)fo + 0 f1,
so for 0 < § <1 the round-off error Ry in p(z)

1
|Rr| = [(1 = 0)eo + Oex| < 510_t.

Thus if h?M, < 4-107¢, then |R(z)| < 4 - 107" and so the total error in p(z) is
bounded by 107, twice the round-off errors in the given values of f. Hence higher
order interpolation is not necessary in this case.

A rule of thumb is that linear interpolation can be used if |62 f,,|/8 is a toler-
able error; it is wise to put a safety margin on this to allow for an irregular error
component.

Example 4.2.5. Inverse interpolation. It often happens that one has a sequence of
pairs {(x;,y;)} and want to determine a point where y(z) = ¢. We saw an example
as early as in the simulation of the motion of a ball (Sec. 1.4), when we computed
the landing point. We there used linear interpolation.

In general a natural approach is to reverse the roles of x and y, i.e., to compute
the inverse function z(y) for y = ¢, by means of Newton’s interpolation formula with
the divided differences [y;, Yit1,...Yit+j]2 (unscaled or scaled). It is convenient to
order the points so that ... < ys <y3 <y; <c <y <ys <... This approach is
successtul if the function z(y) is suitable for local approximation by a polynomial.

4.2. Interpolation Formulas and Algorithms 337

Sometimes, however, the function y(z) is much better suited for local approx-
imation by a polynomial than the inverse function z(y). Then we can instead, for
some m, solve the following equation,

m—1

Y1+ [z, 2y - (2 —2) + Z[$1;$2;-~-$j+1]y¢’j($) =

=2

Again it is convenient to order the points so that the root comes in the middle, e.g.,
sothat ... < x5 <z3 <z <Toot < Ty < x4 <....
We write the equation in the form z = z; + F(z), where

(c—y1) = X705 [en, @2, . w4]y @ ()

['rlv xQ]y

F(z) =

Then we can use iteration. We ignore the sum to get the first guess z°; this means
the same as linear inverse interpolation. We then iterate, z° = x; + F(2'~!), until
z' and z'~! are close enough. A more careful termination criterion will be suggested
in Ch. 5, where the effect on the result of errors like the interpolation error is also
discussed.

Suppose that x; — 1 = O(h), i > 1, where h is some small parameter in
the context (usually some step size), then ®;(x) = O(h?), ®(x) = O(h/~*). The
divided differences are O(1), and we assume that [z1, 2]y is bounded away from
zero. Then the terms of the sum decrease like h7.

By the discussion of iteration in Sec.1.2, the convergence ratio is F'(z), and
this is here approximately ®4(z)[z1, 22, z3]y/[z1,22]y = O(h). So, if h is small
enough, the iterations converge rapidly. If more than two iterations are needed,
Aitken acceleration (Sec. 3.3.2) may be practical.

Example 4.2.6. On numerical differentiation We shall study the computation of
f'(zo) by (3.2.19), i.e., set

T — flxp- 52 o 56
9n = K n+1)2hf(= 1); f'(z0) = (1 ~% T30 110 +-~-)go-

Suppose that the irregular errors of the function values are bounded by U, and
denote their effect on f'(x¢) by Rxr. It has been mentioned several times—see, e.g.,
Example 3.3.15 in connection with the use of Richardson extrapolation for numerical
differentiation— that irregular errors in the values of f(z) are of much greater
importance in numerical differentiation than in interpolation and integration.

The formula above is used to compute f’(3), where f(x) = Inz. The trunca-
tion error (called R7) is approximately ud?**! fo ~ h2k+1 fC+1)(3) = (2k)!(h/3)%F !,
where k is the number of terms.

k 1 2 3

Ry 0.012h2 0.0033h* 0.0024A°
Rxg U/h 15U/h 11U/(6h)

338 Chapter 4. Interpolation and Related Subjects

In a log-log diagram the plots of Ry and Rxp versus h, are six straight lines
that illustrate quantitatively the Scylla and Charybdis situation (see explanation
in Sec.3.1.4); the truncation error increases, and the effect of the irregular error
decreases with h. One sees how the choice of h, which minimizes the sum of the
bounds for the two types of error, depends on U and k, and tells what accuracy can
be obtained. The optimal point is a little above and to the left of the intersection
of the Ryp-line and the Ry p-line for the same k. (Why?)

The effect of the pure rounding errors is important, though it should not be
exaggerated. When macheps= 1071, one can obtain the first two derivatives very
accurately by the optimal choice of h.

For U = %10’6 the authors found that for £k = 2, h = 0.2, the error bound is
nearly 9-107%, and not much better with the best choice of h for k = 3. For k = 1,
h = 0.03 is a good choice—the error bound is about 310>, It is left to the user
(Problem 8) to check and modify the experiments and conclusions indicated in this
example. See also the appendix of Ch. 12, where similar questions are discussed in
a more general context, namely differentiation for vectorvalued functions of vector-
valued arguments.

4.2.6 The Runge Phenomenon

Even equidistant interpolation can give rise to convergence difficulties, when the
number of interpolation points becomes large. This difficulty is often referred to
as Runge’s phenomenon, and we illustrate it in the following example. A more
advanced discussion is given in Sec.4.5.2, by means of complex analysis.

Example 4.2.7. The function f, whose graph is the continuous curve shown in
Fig. 4.2.1, is approximated in two different ways by a polynomial of degree 10 in
[-1,1].

The dashed curve has been determined by interpolation on the equidistant
grid with 11 points (m = 10)

x; = —1+2i/m, i=0,1,...,m. (4.2.29)

The graph of the polynomial so obtained has—unlike the graph of f—a disturbing
course between the grid points. The agreement with f near the ends of the interval
is especially bad, while near the center of the interval [~ 1, 1] the agreement is fairly
good. Such behavior is typical of equidistant interpolation of fairly high degree, and

can be explained theoretically.

The dotted curve in Fig. 4.2.6 has been determined by interpolation at the
so-called Chebyshev abscissae
2i+1mw
m+12’

T; = COS

i=0,1,...,m, (4.2.30)

(m = 10). This procedure is studied more closely in the next section. The agreement
with f is now much better than with equidistant interpolation, but still not good.

4.2. Interpolation Formulas and Algorithms 339

Figure 4.2.2. Polynomial interpolation of 1/(1 + 25z%) in two ways by
the use of 11 points: equidistant points (dashed curve), Chebyshev abscissae (dotted
curve).

The function is not at all suited for approximation by one polynomial over the
entire interval. Here one would get a much better result using approximation by
rational functions (somewhat of a trick, since the curve shown is the graph of
f(z) =1/(1+252?)), or with piecewise polynomials— see Sec. 4.6 and Chapter 12.

Notice that the difference between the values of the two polynomials is much
smaller at the grid points of the equidistant grid than in certain points between
the grid points, especially in the outer parts of the interval. This intimates that
the values which one gets by equidistant interpolation with a polynomial of high
degree can be very sensitive to disturbances in the given values of the function.
Put another way, equidistant interpolation using polynomials of high degree is in
some cases an ill-conditioned problem, especially in the outer parts of the interval
[0, Zm]. The effect is even worse if one extrapolates—i.e., if one computes values
of the polynomial outside the grid. However, equidistant interpolation works well
near the center of the interval.

Even with equidistant data one can often get a more well-behaved curve by —
instead of interpolating—fitting a polynomial of lower degree (e.g., n = 6) using the
method of least squares. Generally, if one chooses n < 24/m, then the polynomial
fit is quite well conditioned, but higher values of n should be avoided. In the above
example, however, the agreement would still be quite bad, even at the grid points,
when the degree is chosen to be so low.

If one intends to approximate a function in the entire interval [—1, 1] by a poly-
nomial and can choose the points at which the function is computed or measured,
then one should choose the Chebyshev abscissae. Using these points, interpolation
is a fairly well-conditioned problem in the entire interval and one can conveniently
fit a polynomial of lower degree than m, if one wishes to smooth errors in measure-
ment; see the next section. The risk of disturbing surprises between the grid points
is insignificant.

Example 4.2.7 shows how important it is to study the course of the approxi-

340 Chapter 4. Interpolation and Related Subjects

mating curve p*(z) between the points which are used in the calculation before one
accepts the approximation. When one uses procedures for approximation for which
one does not have a complete theoretical analysis, one should make an experimental
perturbational calculation. In the above case such a calculation would very probably
reveal that the interpolation polynomial reacts quite strongly if the values of the
function are disturbed by small amounts, say +£1072. This would give a basis for
rejecting the unpleasing dashed curve in the example, even if one knew nothing
more about the function than its values at the equidistant grid points.

Review Questions

1. Prove the theorem which says that the interpolation problem for polynomials has a
unique solution.

2. When is linear interpolation sufficient?

w

. Derive Newton’s interpolation formula.

4. Derive Newton'’s interpolation formula for the equidistant case, starting from New-
ton’s general interpolation formula. How is this formula easily remembered?

5. Discuss how various sources of error influence the choice of step length in numerical
differentiation.

6. Derive the Lagrange interpolation formula.

Problems
1. (a) Compute f(3) by quadratic interpolation in the following table:

c 1 2 4 5
fl@) 0 2 12 21

Use the points 1,2, and 4, and the points 2,4, and 5, and compare the results.
(b) Compute f(3) by cubic interpolation.
2. Compute f(0) using one of the interpolation formulas treated above on the following

table:
T 0.1 0.2 0.4 0.8

f(z) 0.64987 0.62055 0.56074 0.43609
The interpolation formula is here used for eztrapolation. Use also Richardson ex-
trapolation.
3. Work out the details of Example 4.2.2 (about divided differences etc. for 1/(z —z)).
4. (a) Consider the two polynomials p(z) and g(z), both in P,,, which interpolate f(x)
at the points x1, ..., Zm, and @2, ..., Tm41, respectively. Assume that {z;}7" is an
increasing sequence, and that f(™ () has constant sign in the interval [z1, Zm11].
Show that f(x) is contained between p(z) and ¢(z) for all z € [z1, Zm41].
(b) Suppose that f(z) = fi(z) — fo(z), where both ™ (z) and f{™ () have the
same constant sign in [z1,Zm+1]. Formulate and prove a kind of generalization of
the result in (a).

5. An example with inverse interpolation. Not complete!!!

43.

Interpolation where values of derivatives are used. 341

11.

4.3

. Derive an approximate formula for f’'(z¢) when the values f(z_1), f(zo), f(z1) are

given at three nonequidistant points. Give an approximate remainder term. Check
the formula and the error estimate on an example of your own choice.

Given a sequence of function values fi, f2, f3... at equidistant points z; = xo + jh.
min f; takes place at j = n. Let p*(x) be the quadratic interpolation polynomial
determined by fn—_1, fn, fn+1. Show that

(nd fn)? pd fr

202f, "’ 0 fn’

Show that the error of the maximum value can be estimated by max |A®f;]/1/243,
where j is in some neighborhood of n. Why and how is the estimate of z less
accurate?

Write a handy program that includes the search all local maxima and minima.
Sketch or work out improvements of this algorithm, perhaps with ideas of inverse
interpolation and with cubic interpolation. And perhaps for non-equidistant data.

minp”(z) = a — is obtained at z =z, —h

. Check the table and the conclusions in Example 4.2.6, and see how the attainable

accuracy varies with U. Draw the log-log diagram mentioned in the text.

What is the best accuracy one can hope for (with the optimal choice of h, for these
three values of k, if U = 107¢. Study also the analogous question for f”(xo).

. Prove the validity of Algorithm 4.2.3
10.

Given a backwards (upwards) diagonal in the table of divided differences (scaled
or unscaled), (X;m,4)Y, 0,1,...,k. Find a recurrence formula for the computa-
tion of the next diagonal of the difference scheme for the interpolation polynomial
P(z;m, k)Y ie, if (X;m+1,k)Y = (X;m, k)Y (why?), find (X;m+1,9)Y,i = k-1,
k—2,...,0.

Hint: Look up the equidistant case in Example 3.2.6.

Show that, if the points x; are distinct,

[$1,I2,...71m]f22 f(zz)

where ®,,(z) is defined in (4.2.25).

Hint: Compare the coefficients of ™! in Newton’s and Lagrange’s expressions for
the interpolation polynomial.

Interpolation where values of derivatives are
used.

4.3.1 Hermite Interpolation

The osculating polynomial is a generalization of the interpolation polynomial,
where at n different points of interpolation {z;},, we require agreement also with
the first r; — 1 derivatives of f(z); r; > 1, Y.;', r; = m. This polynomial arises
as the result of passages to the limit in n groups of points, where in a group 7;
distinct interpolation points coalesce into one point z;. We say that the point x;
has multiplicity r;. The polynomial in (4.1.8) becomes

Bp(e) = I, (& —).

342 Chapter 4. Interpolation and Related Subjects

This is also described as Hermite interpolation (or osculatory interpolation)
in P, with a sequence of m (non-distinct) interpolation points, where a point of
multiplicity r; occurs r; times.

For example, the Taylor polynomial in P,

M=l () (o ,
pe) = 3 L) gy (13.)

!
=0 7

interpolates f(z) at the point x¢ with multiplicity m (or x¢ is repeated m times).
We use here, and in the following, the notation f()(z) for f(z).

Theorem 4.3.1.
The problem of finding a polynomial p € Py, that satisfies the Hermite inter-
polation conditions

P (i) = f(x;), i=1:n, j=0:r—1, (r>1, Y ri=m), (43.2)
has a unique solution.

PROOF: The conditions are expressed by a system of m linear equations for
the coefficients of p, with respect to some basis. This has a unique solution for any
right hand side, unless the corresponding homogeneous problem has a non-trivial
solution.

Suppose that a polynomial p € P, comes from such a solution of the homo-
geneous problem, i.e., p)(z;) =0,9i=1:n, j = 0:r; — 1. Then, z; must be a zero
of multiplicity r; of p(x), hence p(z) must have at least Y r; = m zeros (counting
the multiplicities), but this is impossible, because the degree of p is less than m.
This contradiction proves the theorem. [

4.3.2 The Divided Difference Table in Multiple Points

An interpolation problem that contains multiple points is obtained by a passage to
the limit from a case with (say) m distinct points. Due to the symmetry property
of divided differences, we can permute the arguments, before we go to the limit, so
that the arguments that make a group come together. We can therefore without
loss of generality assume that equal arguments are placed together, and that the
values z; for different groups are different.

Assume that f € C"!. By Theorem 4.2.3,

[€1,@9. ... 2,)f = fO7VE)/(r = 1)), € €int(xy,ms,...,2,).

Now let z; — x1, i = 2 : 7. Then [z1,29....2,]f = fO " Y(21)/(r — 1)!, so the
natural definition of a divided difference with r equal arguments reads

[w1,@1....21]f = fO7Y(z1)/(r — 1)!, r equal arguments. (4.3.3)

4.3. Interpolation where values of derivatives are used. 343

This definition and the usual recurrence formula for the divided differences are,
under the above assumptions, sufficient for the construction of a table of divided
differences in the case of multiple points, e.g.,

L F) = fo)

= f' (o),
T1—T0 1 — To

20, %0, 21]f = [z0, z0]f — [z0, :1]f _ f'(z0) — [xo,m]f'
To — T1 To — T

[T0, zo] f =

It can be shown that if f € C*, the divided differences belong to Ck+1—maxri
and that the interpolation polynomial has this kind of differentiability with respect
to the z;, nota bene if the “groups” do not coalesce further.

Example 4.3.1. To interpolate the function f and its first derivative f’ at the two
points xg and 1, and also its second derivative at xy we construct the generalized
divided-difference table, where x1 # xq.

o fo
fo
zo fo % (’)’
f(IJ [w07m07m07'r1]f
zo fo [xo, o, x1]f [%0, o, To, @1, 21] f
[0, x1]f (%o, xo, x1,x1) f
T f1 [xo,xl,xl]f
fi
Ty fi

The interpolating polynomial now reads

V(@) = fo + fole = w0) + A e — w0
+ [mo,mo,mo,l'l]f(l' - wO)B + [mo,mg,mg,xl,wl]f(m - wO)B(w - 1‘1).

f(z) — p*(x) = [20, %0, T0, T1, 21, 2] f(T — $0)3(5U - $1)2

= fO(&) (@ — x0)* (x — 21)?/5!

For the simplest Hermite interpolation problem, i.e., cubic interpolation
and interpolation in Py, the given data are f; = f(x;), f] = f'(z:), i =0,1;21 =
xo + h. Set x = o + th, and denote the remainder f(x) — p*(z) by Rr. One can
show (Problem 1) that

P (@0 +th) = fo+ Afo + (1 =)(Afo — hf'fo) = (1 = (R S] — 2Afs +)
= (1=)fo + tfi + 1= D[(L= (1S5 = Afo) — t(hf{ — Afo)].
h4

Ry = Itz(t - 1)2f(4)(§);

344 Chapter 4. Interpolation and Related Subjects

We get the error bound

h4
|[Ral < o7 max | @ ()| (4.3.4)

€lzo,z1]

In particular, putting p = 1/2, we get the useful formula
1 1 , ,
fip2 = §(f0+f1)+gh(fo—f1)+RT- (4.3.5)

4.3.3 Other Interpolation Problems with Derivatives

Sometimes there are gaps in the sequence of derivatives that are numerically known
at a point. The problem is then called Birkhoff interpolation or lacunary in-
terpolation. We illustrate by two examples that such problems can either have a
unique solution or lead to a singular system of linear equations. See also Problems.
We use the notation of Sec. 4.1.1.

Example 4.3.2. Given f = (f(—l), £'(0), f(l))T. Try to find a polynomial p € Ps
that satisfies such data. The new feature is that f(0) is missing.
Set up (4.1.3), i.e., Mpc = f, in the power basis.

1 -1 1
M,=10 1 0

1 1 1
The determinant is evidently zero, so there is no solution for most data. An expla-
nation is that hf' = pdf for all f € Ps.

Example 4.3.3. Given f = (f(1), F(=1), (1), f”(—l))T. Try to find a poly-
nomial p* € P, that satisfies such data. The new feature is that there are no first
derivatives. In this case, we obtain for the power basis,

1 1 1 1
1 -1 1 -1
M, = 0O 0 2 6
0 0 2 -6

The determinant is 48, and this interpolation problem is uniquely solvable. The
coeflicient vector of p* is ¢ = Mljlf.
ef ¢, i.e., the 1st coordinate of ¢, is an approximation to f(0); this is also a lin-
ear functional of f. Denote by Rf the remainder functional for this approximation,
ie.,
Rf =f(0)—ef M, 'f. (4.3.6)

Example 4.3.4. Asymptotic error estimation for an approximation to a linear
functional. We shall now find an approzimate estimate of the remainder functional

4.3. Interpolation where values of derivatives are used. 345

Rf, defined in (4.3.6). The main purpose of this example is to present a tech-
nique that is simple and generally applicable to all linear functionals Rf such that
Rp = 0,VYp € Pp,. There exist also methods to obtain rigorous bounds for Rf, see
Chapter 12, but they are more complicated.

In this example m = 4. Denote by Ty f the sum of the first four terms of the
Maclaurin series of f(z) into powers of x, and insert the basis notations ps(z) = z*,
pe(z) = 2° etc. By Taylor’s formula

AIC) (0

Here RT,f = 0, because Ty f € P,. Hence
(0 ®)(0
Rf = f 4'()Rp5+ / 5'()Rp6+...,

By (4.3.6),
Rps = el M, p5 = (1,0,0,0)M, *(1,1,12,12) = 5.

after the solution of a linear system. (Rpg can be computed similarly, but we do
not need this below.)

We now modify the problem a little, so that it becomes more like typical
applications. Set f(xz) = F(hx), where h is some small step size parameter. Then
the given data are F(h), f(—=h, W2 F"(h), h>F"(=h), and f*(0) = k*F®(0), Rf =
Ry F, etc. and we finally obtain the asymptotic error estimate (recall that
Rps =5),

5

Rthﬂ

RAEW(0), (h—0).

4.3.4 Leibniz Formula for Differences

Another property of divided differences will be needed in developing spline functions
in Sec. ?77.

Theorem 4.3.2. A Difference Analogue to the Leibniz formula
Let f(z) = g(z)h(z), and ; < zi41 < ... < ziyr. Then

i+k

[Tiye @ik f =D [wis s wlg - [T, iy, (4.3.7)

provided that g(x) and f(z) are sufficiently many times differentiable so that the
divided differences on the right hand side are defined for any coinciding points x;.

346 Chapter 4. Interpolation and Related Subjects

ProOF: Note that the product polynomial

i+k
P(z) = Z(x —x;) (@ —zp_1)[Tiy- .-, TG
r=i
i+k
Y (@ = za) (@ = i) [T, - iga]h
s=1
agrees with f(z) at z;,..., x4, since by Newton’s interpolation formula the first

factor agrees with g(z) and the second with h(z) there. If we multiply out we can
write P(x) as a sum of two polynomials

i+k
=) =)y) + Py(x).
T,8=1 r<s r>8

Since in P»(x) each term in the sum has HZJr (z — z;) as a factor it follows that
Py (z) will also interpolate f(z) at x;,...,%;+x. The theorem now follows since the
leading coefficient of P (x), which equals > +k[:c,, ces Zplg e [T, oo Tigg | b, must

equal the leading coefficient of the unique interpolation polynomial of degree k,
which is [z;,...,zisk]f. O

Review Questions

1. What is meant by Hermite interpolation (osculatory interpolation) ? Prove the
uniqueness result for the Hermite interpolation problem.

Problems

1. (a) Construct the divided difference scheme (unscaled or scaled) for the simplest
Hermite interpolation problem, where the given data are f(wz;), f'(z:), i = 0,1;
1 = xo + h. Prove all the formulas concerning this problem that are stated at the
end of Sec. 4.3.2.

(b) For f(z) = (1+x)"'),z0 = 1, &1 = 1.5, compute by Hermite interpolation
f(1.25). Compare the error bound and the actual error.
(c) Show that

3

|f,() — (< 72\/_(906 xo,m]

£ @)+ OhlF) @)))-

Hmt =lwo, xo, x1, 21, x]f = [wo, xo, w1, 21, 3, 2] f < ..

4 4. Spline Functions 347

2. Given z;,y(z:),y (x:), i = zo +ih, i = 1,2,3. Let p € Ps be the Hermite interpo-
lation polynomial to these data.

(a) Find the remainder term, and show that the interpolation error for = € [z1, z3]

h8 max| (9 ()]
does not exceed ——ge5——

(b) Write a program that computes p(z1 + 2jh/k), j =0: k.

COMMENT: This is one of several possible procedures for starting a multistep method
for an ordinary differential equation ' = f(z,y). Two steps with an accurate one-
step method, provide values of y,%’, and this program then produces starting values
(y only) for the multistep method.

in magnitude.

3. Derive the usual formula of Leibniz for the k’th derivative from (4.3.7) by a passage
to the limit.

4. Give a short and complete proof of the uniqueness of the interpolation polynomial
for distinct points, by the use of the ideas of the proof of Theorem 4.3.1.

5. Modify the integration formula in Example 4.1.1 to a formula for foh o Y2 f () da,
and derive an asymptotic error estimate (h — 0), by means of the technique of
Example 4.3.4.

6. (a) Derive an asymptotic error estimate for one step of length h with the midpoint
rule, ff,ijz f(z)dz =~ hf(0). Derive also a strict local error bound, by integrating a
Taylor expansion of f(x) with remainder, on the assumption that |f"(z)| < M.

(b) Derive an asymptotic global error estimate for the trapezoidal rule over the in-
terval [a, b], with step size h = (b —a)/n, n — co.

Hint: " hf"(z:) — fab f'(z)dz, etc.

(c) Derive also a strict global error bound on the assumption that |f’'(z)| < M for
x € [a,b] . Compare these results with results that can be derived from the analysis
of the Euler-Maclaurin formula.

Hint: Recall the relation of the midpoint rule (rectangle rule) to the trapezoidal rule
that was mentioned in Sec.3.3.

4.4 Spline Functions
4.4.1 Introduction

Before the computer age ship builders and others in engineering design used a spline
to draw smooth curves. A spline is a thin elastic ruler, which can be bent so that
it passes trough a given set of points, see Fig. 4.4.1.

The curvature of a spline y = s(x), « € [a,b] in the plane is given by

S”(HJ)
(1+ (s'(2))?)3/>

By Hamilton’s principle the shape the spline will take is such that the strain energy

k(x) =

b b
/ k(z)? dz ~ const - / s"(z)* dz,

is minimized, where the approximation holds for slowly varying deflections, i.e.,
when (s'(z))? is approximately constant. Under this assumption, according to

348 Chapter 4. Interpolation and Related Subjects

Figure 4.4.1. The original spline.

elasticity theory, s(x) is built up of piecewise third degree polynomials (cubic
polynomials) in such a way that s(x) and its two first derivatives are everywhere
continuous. Let z;, i = 0 : m be the points the spline is forced to interpolate.
Then the third derivative can have discontinuities at the points z;. Such a func-
tion is called a cubic spline function, or shorter, a cubic spline The points x;,
i =0 :m, are called breakpoints or knots.

The mathematical concept of spline functions was introduced by Schoenberg
[19] in 1946. In computer aided design (CAD), where curves and surfaces have
to be represented mathematically, so that they can be manipulated and visualized
easily, spline functions are now used extensively. Important applications occur in
computer-aided design, analysis and manufacturing. in the aircraft and automotive
industries.

With the use of splines, there is no reason to fear equidistant data, as opposed
to the situation with higher-degree polynomials. Also, if the function to be approx-
imated is badly behaved somewhere then, using spline approximation with properly
chosen knots, the effect of this can be confined locally, allowing good approximation
elsewhere in the interval.

Spline functions can also be used in the numerical treatment of boundary-
value problems for differential equations, and for surface fitting. In the following
we restrict ourself to consider curves in the plane. For more information on spline
approximations of curves and surfaces the reader is referred to de Boor [3], where
also FORTRAN programs for computations with spline functions can be found, and
and Dierckx [8]. A more geometric view is taken in Farin [10]. Several packages exist
for computing with splines; see, e.g., the spline toolbox in MATLAB and FITPACK
Dierckx [6]-[7] available through netlib.

4.4.2 Piecewise Affine and Cubic Interpolation

We have seen that it is often not efficient to approximate a given function by a
single polynomial over its entire range. On the other hand, polynomials of low
degree can give good approximations locally in a small interval. Therefore it is
natural to consider approximations by piecewise polynomials of different degrees of
global continuity.

4 4. Spline Functions 349

We first consider the simplest case of interpolating given values y; = f(x;) on
a grid
A:{a:$0<.fl71 <"'<£L'm:b}
in the interval [a,b] by a piecewise affine function s(z). This interpolating
function is uniquely determined and equal to the broken line

qi(z) = yi—1 +di(x — x;), € [xi—1,2;), i=1:m, (4.4.1)

where

hi =2 — x4-1, di = [xi—1, 2 f(x) = (yi — Yi—1)/ - (4.4.2)
i.e. d; is the divided difference of f at [z;_1,2;]. If f € C?[a,b] then the error
satisfies (see Example 4.2.4)

1£(z) — s(x)| < * max (hg max | f”(ac)|). (4.4.3)
8 i TE[Ti—1,24]

Hence, we can make the error arbitrary small by decreasing max; h;. An impor-

tant property of interpolation with a piecewise affine function is that it preserves

monotonicity and convexity of the interpolated function.

The broken line interpolating function has a discontinuous first derivative at
the knots, which makes it unsuitable for many applications. To get better smooth-
ness piecewise polynomials of higher degree need to be used. Although piecewise
quadratic approximation is sometimes useful, piecewise cubic polynomials with con-
tinuous second derivatives are by far the more important (see Figure 4.4.2.

X0 Xl X2 X3 X4

Figure 4.4.2. Broken line and cubic spline interpolation.

A cubic polynomial ¢;(x) on the interval [z;_1, ;) is uniquely determined by
the values of the function and its first derivative at the end points of the interval.
This follows from the more general result on Hermite interpolation in Theorem 4.3.1.
By (4.3.4), translated to the notation in (4.4.2), the cubic g;(z) can be written in
the form

350 Chapter 4. Interpolation and Related Subjects

gi(z) =ty + (L= t)yi1 + hit(L —t) (ki1 —ds)(1 —t) — (ki —di)t], i=1:m,

(4.4.4)
where h;, d; are as in (4.4.2), t is a local variable
t= x_hﬁ S [0, 1), ze€ ['131‘_1,331‘), (4.4.5)
i

and k; = q¢j(z;), j =1 — 1,4, is the derivative of the spline function.
If the interpolating spline s(x) is to be evaluated at many points, a form more
efficient to use than (4.4.4) is the piecewise polynomial (pp) form

%(x) =Yi-1+ ali(x - sz‘—l) + an‘(CC — 331‘_1)2 + a3i($ — :c,-_l)3. (446)
From (4.4.4) we obtain after some calculation

ari = qi(xi—1) = ki1, a2 = 347 (i-1) = 3y — 2ki—1 — ki) [hi,
asi = 54" (wi—1) = (kio1 + ki — 2d;) /3. (4.4.7)

Using Horner’s scheme ¢;(x) can be evaluated from (4.4.6) using only four multipli-
cation.

With piecewise cubic polynomials we can interpolate given function values and
first derivatives on the grid A. By construction the interpolating piecewise cubic
function s(z) will have continuous first derivatives. If f € C*%[a,b] then it follows
from the remainder term (4.3.4) that the error satisfies

1 .
- < — 4 (i) : 4.
£ = ()| < gggmax (bf_max 10 (z)]) (448)
It can be shown (Problem lc of Sec. 4.3) that also the first derivative of s(z) is a
good approximation to f'(x). If f € C®[a,b] we have

! ——max (h max () (g O (2))]). 4.
£/@) = @) € o (1 max (75@) + O fO @), (149)

Sometimes it is useful to consider the values k;, i = 0 : m, as parameters which
are used to give the interpolating function the desired shape. In the next section
we show that it is possible to choose these parameters such that the interpolating
function s(z) also has a continuous second derivative.

We shall now formally define a spline function of order k£ > 1.

Definition 4.4.1.

Let A={a=x¢ < x1 <+ <z = b} be a subdivision of the interval [a,b].
A spline function on A of order k > 1 (degree k — 1> 0), is a real function s with
properties:

(a) For x € [x;,xit1], i =0:m —1, s(z) is a polynomial of degree < k.

4 4. Spline Functions 351

(b) For k =1, s(z) is a piecewise constant function. For k > 2, s(z) and its first
k — 2 derivatives are continuous on [a,b], i.e., s(x) € C*~2[a,b].

We denote by Sa i the set of all spline functions of order £ on A. From the
definition it follows that if s1(z) and sy(z) are spline functions of the same degree,
0 is ¢151(x) + c252(z). Thus Sa is a linear space.

Examples of elements of Sa . are the truncated power functions

(z—a)bt, j=1l:m-1,
and all their linear combinations. Moreover, Py, is linear subspace of SAJc.lO Con-
versely, together these functions span Sa . All we need for the first subinterval
is a basis of Py, e.g., the power basis {1,z,...,2*71}. Further, all we need for
each additional subinterval [z;,2;4+1), § = 1 : m — 1, is the new basis function
(x — :cj)i_l. One can show that these k +m — 1 functions are linearly independent.
The dimension of the linear space thus is k +m — 1.

4.4.3 Cubic Spline Interpolation

In the following we shall first study cubic spline functions which interpolate a given
function f(z) at the grid A, i.e., the space Sa 4. By definition a cubic spline consists
of cubic polynomials pieced together in such a way that their values and first two
derivatives coincide at the knots. In contrast to Hermite interpolation, the cubic
polynomial in each subinterval will now depend on all data points.

Theorem 4.4.2.
Every cubic spline function, with knots a = zo < x1 < --- < &, = b, which
interpolates the function y = f(x),
s(zi) = f(zi)) =i, 1=0:m,
equals for © € [x;_1,x;), 1 = 1 : m a third degree polynomial of the form (4.4.4).

The m + 1 parameters k;, i = 0 : m, satisfy m — 1 linear equations

h,’+1k2‘_1 + Q(hz + h,'_H)ki + hiki—i-l = 3(h2‘d2‘+1 + h,’_Hdz‘), (4.4.10)

i=l:m—1,
where hz =i — Lij—1, d, = (yz — yz—l)/hz

PRrOOF: We require the second derivative of the spline s(z) to be continuous
at z;, 2 =1:m — 1. We have

_ S (=), x € [Ti-1,24),
s(@) = {qz’+1(w)a T € [2i,Tiy1),

10Recall the notation (z — u)ﬂ_ = max{z — u,0} that was introduced in Sec. 3.2.3 in connection
with the Peano kernel.

352 Chapter 4. Interpolation and Related Subjects

where ¢;(x) is given by (4.4.6)—(4.4.7). Differentiating twice we get 1¢/(z) = a,; +
3as,;(x — x;_1), and letting z — =;

%q;l(l‘,‘) =az,;+ 30,372‘}1,' = (ki_l + 2k; — 3d,)/h,
Replacing ¢ by 7 + 1 we get
501 (@) = az.i11 = (3d; — 2k; — kiy1)hig.

These last two expressions must be equal, which gives the conditions

1 1
_(ki—l + 2](?2 - 3d2) = —(3di+1 - le - ki—i—l): t=1:m—1. (4411)
hz' hi+1

Multiplying both sides by h;h;+1 we get (4.4.10). 0O

The conditions (4.4.10) are (m — 1) linearly independent!! equations for the
(m + 1) unknowns k;, i = 0 : m. Two additional conditions are therefore needed to
uniquely determine the interpolating spline. The four most important choices are
discussed below.

(i) If the derivatives at the end points are known we can take

The corresponding spline function s(z) is called the complete cubic spline in-
terpolant. If ky and k,, are determined by numerical differentiation with a trun-
cation error that is O(h*), we call the spline interpolant almost complete. For
example, k,, may be the sum of (at least) four terms of the expansion D f(x,,) =
—% In(1—V)y,, into powers of the operator V; see Example 3.2.6. Similarly ko may
be the sum of four terms of the expansion D f(zo) = fIn(1 4+ A)yo into powers of
the operator A; see (3.2.20).12

(ii) A physical spline is straight outside the interval [a, b], i.e. s"(z) =0 for z < a
or x > b. Thus ¢} (zo) = ¢}, (zy,) = 0. From (4.4.7) we obtain

2q (1) = azi = 3d; — 2k;—1 — ki) /hi.
Setting ¢ = 1,m gives the two conditions

ko + ki = 3d, (4.4.13)
Fem—1 + 2km = 3d.

The corresponding approximating spline is called the natural spline interpolant.
It should be stressed that when a cubic spline is used for the approximation of a
smooth function, these boundary conditions are not naturall

1 The equations are strictly row diagonally dominant (see Sec. 7.4.1) and therefore linearly
independent

12Two terms of the central difference expansion in (3.2.43) or one Richardson extrapolation, see
(3.3.20), give higher accuracy, but need extra function values outside the grid A.

4 4. Spline Functions 353

(iii) If the end point derivatives are not known, a convenient condition is to require
that s"'(z) be continuous across the first and last interior knots z; and z,,,—;. Hence
q¢1(z) = ¢2(z) and @y—1(z) = g (x). Then z; and z,,_1 are no longer knots, and
these conditions are known as “not a knot” conditions. From (4.4.7) we obtain,

t0" () = ag; = (kic1 + ki — 2d3) /13, x € [vi1,2;), i=1:m.
Hence the condition ¢}’ = ¢4’ gives (ko + k1 — 2d1)/h3 = (k1 + ko — 2d2)/h3, or
h3ko + (h3 — h3)ki — hiks = 2(h3dy — hidy).

Since this equation would destroy the tridiagonal form of the system, we use (4.4.10),
for © =1 to eliminate ky. This gives the equation

hi(hadi + hids)

hoko + (ha + h1)ki = 2hod; + 44.14
2ko + (ha k1 2d1 A ()
If the right boundary condition is treated similarly we get

(Bt 4 hon) ka1 4 hon—1km = 2hom—1dym + fom (=1 + o 1) (4.4.15)

hmfl + hm
(iv) If the spline is used to represent a periodic function, then yo = y,, and the

boundary conditions
s'(a) = s'(b), s"(a) = s"(b), (4.4.16)

suffice to determine the spline uniquely. From the first condition it follows that
ko = kum,, which can be used to eliminate kg in the equation (4.4.10) for £k = 1. The
second condition in (4.4.16) gives using (4.4.11) (ko + 2k1 — 3dy)/h1 = —(2kp—1 +
km — 3d,,) /i, or after eliminating ko,

2hmks + 2hi k1 + (b1 + hon)kom = 3(Aondy + hidn,),

The spline interpolant has the following best approximation property.

Theorem 4.4.3.
Among all functions g which are twice continuously differentiable on [a,b] and
which interpolate f at the points a = xg < x1 < -+ < &y, = b, the natural spline

function minimizes
b
/ (s (1)) dt.
a

The same minimum property holds for the complete spline interpolant, if the func-
tions g satisfy g'(a) = f'(a), and g'(b) = f'(b).

PROOF: See de Boor [3, 1978, Chapter5]. 0O

Due to this property spline functions yield smooth interpolation curves, except
for rather thin oscillatory layers near the boundaries if the “natural” boundary

354 Chapter 4. Interpolation and Related Subjects

conditions s'(a) = s"(b) = 0 are far from being satisfied. For the complete or
almost complete cubic spline and for cubic splines determined by the “not-a-knot”
conditions, these oscillations are much smaller; see Sec. 4.4.4.3

Equations (4.4.10) together with any of these boundary conditions give rise
to a well-conditioned system of linear equations for determining the derivatives
k;. For the first three boundary conditions the system is tridiagonal Such systems
can be easily solved by Gaussian elimination without pivoting. (Methods for solving
general banded linear systems will be studied in more detail in Sec. 6.4.)

Consider the tridiagonal system of linear equations Tz = g, where

b1 C1
ap by C2
T = . (4.4.17)

Ap—2 bnfl Cpn—1
Ap—1 by

The following algorithm performs Gaussian elimination without pivoting on 7" and
computes the solution z:
Put 8, = by, and compute recursively

Yk = ak /B, Br41 = bgt1 — ek, k=1:n—1.

Compute the vector y and the solution x by

Y1 =91, Yk+1 = Gk+1 — VeYk, k=1:m—1,
fﬂn:yn/ﬁn; mk:(yk—0k$k+1)/ﬁk, k=n-1:-1:1.

This algorithm requires only about 5n multiplications and additions.
It can be proved that a sufficient condition for this algorithm to be stable is
that T is diagonally dominant, i.e.,

|bi] > lerl, |bk] > lak—1] +lck], k=2:n—1, |by|> |an_1].

It is also stable for the system resulting from the not-a-knot boundary condition
although this is not diagonally dominant in the first and last row; see Problem 2b.

Example 4.4.1. In the case of spline interpolation with constant stepsize h; = h
equation (4.4.10) becomes

ki1 +4k; + kz'+1 = 3(dz + dz'+1), 1=1:m—1. (4418)
The “not a knot” boundary conditions (4.4.14)—(4.4.15) become

ko + 2k, = %(5(11 + dz), 2kpy—1 + kpy = %(dm—l + 5dm) (4419)

I3When a spline is to be used for the approximate representation of a smooth function, the
natural spline is not a natural choice.

4 4. Spline Functions 355

We obtain a tridiagonal system Tk = g, where,

1 4 1 ky dy +ds
1 4 1 km—l dm—l + dm
2 1 km (dm—1 + 5dy,)/6

except for the first and last row, the elements of T' are constant along the diagonals.
The condition number of T increases very slowly with m; for example, x(T") < 16
for m = 100.

Consider now the periodic boundary conditions in (iv). Setting k., = ko in

the last equation we obtain a linear system of equations Tk = g for ki,...,km_1
where
by «a am
aj bz Co 0
T= T & - : . (4.4.20)
G —3 bm72 Cm—2 0
A —2 bmfl Cm—1
cm O e 0 Am—-1 | bm

Here T is tridiagonal except for its last row and last column, where an extra nonzero
elements occur. Such systems, called arrowhead system, can be solved with about
twice the work of a tridiagonal system; see further Chapter 7.

In some applications one wants to smoothly interpolate given points (x;,y;),
j = 0 : m, where a representation of the form y = f(x) is not suitable. Then
we can use a parametric spline representation = = z(d), y = y(6), where the
parameter values 0 = 6y < #; < --- < 6, correspond to the given points. Using
the approach described previously two spline functions s,(t) and s, () can then be
determined, that interpolate the points (6;,z;) and (6;,y;), i = 0 : m, respectively.
The parametrization is usually chosen as 6; = d;/d, i =1 : m, where dy = 0,

di = dio1 + /(2 —2im1)? + (i —yio1)?, i=1:m

are the the cumulative distance and d = 377_, d;.

For boundary conditions we have the same choices as mentioned previously.
In particular, using periodic boundary conditions for s, (t) and s,(t) allows the
representation of closed curves (see Problem 5).

4.4.4 Error in Cubic Spline Interpolation

We will now derive estimates of the error in cubic spline interpolation of a function
with good smoothness properties, f € C° (say). Let z € I; = [z;_1,%;], and set

t=(r—wi1)/hi, yi=Ff(xi), wi=Ff(zi)-

The error can be expressed as the sum of two components:

356 Chapter 4. Interpolation and Related Subjects

i. The error Ey(z) due to Hermite interpolation with correct values of f'(z;_1),
f'(i).
ii. The error Eg(x) due to the errors of the slopes e; = k; —y}, i =0:m.

We shall see that the first part is typically the dominant part. For the error Ey(z)
we have from equations (4.4.8)—(4.4.9)

1
max By (x)| < —max|h4 @) ()], (4.4.21)

By (4.4.4) the second part of the error is
Es(z) =hit(1 —t)[e;i_1(1 —t) —eit], =1 +th;, te€[0,1).

Since |1 — | + |t| = 1, it follows easily that

|Es(z)] < Zlmax lhiej|, j=i—1,i. (4.4.22)

We shall estimate |e;| in the case of constant step size. Set
li=3(di + dis1) — Wi + Wi+ yipa), i=1:m—1
Then by (4.4.10) (ey, ..., em—1) satisfies

4 1 el Ly)
1 4 1 es ly 0
14 1| emes s 0

1 4 €m—1 lm—l €m

or Ae =1 —b. We write e = e¢; — eg, where Ae; = [, Aeg = b. These two systems
will be treated differently.

We first estimate ey and note that, since the matrix A is diagonally dominant,
we can use Lemma 6.4.1 to obtain'4

1
max ler;| < — max |l;|, where «a =min <|a,-,~| - Z|GU|> =2.
1<i<m a 1<i<m i vy

j

In order to estimate maxj<j<y, |l;|, note that the defining relation for /; can be
rewritten as

h h ! ! !

gli =Yir1 —Yio1 — g(yi_l +4y; + i)

The right hand side here equals the local error of Simpson’s formula for computing
the integral of y’ over the interval [z;_1,x;41], which according to Problem 3.2.12
approximately is h° f(®) (z;)/90. It follows that'®

L 4| £(0)
1I<nlaéx ler,:| < @maxh | £ ()]

14This is typically an overestimate, almost by a factor of 3, see Problem 3.3.37.
15Notice that, if f € Ps, the slopes k; becomes exact in complete cubic splines interpolation.

4 4. Spline Functions 357

By (4.4.22) this shows that the contribution of e; to Eg is O(h®) if f € C®, while
Ey(z) is O(h*). For complete splines ey = e,,, = 0, and for almost complete splines
e = O(h*), em = O(h*). Hence ep; = O(h*), and its contribution to Eg is O(h®).
So if h is sufficiently small, the Hermite interpolation error is, in the whole interval
[a, b], asymptotically, the dominant source of error for complete and almost complete
splines. 16

-0.051

-0.151

Figure 4.4.3. Boundary slope errors ep ; for a cubic spline, ey = e,, = —1;
m = 20.

Similar conclusions seem to hold also in the case of variable step size, under the
reasonable assumption that h, 41 — h, = O(h%), see Sec. 13.1 (in particular Prob-
lem 11), where variable step size is discussed in the context of ordinary differential
equations.

Finally we discuss the effect of the boundary slope errors for other boundary
conditions. The equation Aeg = b can be written as a difference equation

eB,i+1 +4ep;+epi-1 =0, 1=1:m—1
see Sec. 3.4. One can show (Problem 3.4.5) that, for any boundary condition,

€B,;i N uleg +um ey, u=+V3—2~ —0.268,

if u™ is negligible. (Here u and u~!

u?+4u+1=0.)

Fig. 4.4.3 shows (for m = 20, ¢y = €,, = —1) how rapidly this error component
dies out, e.g., u* = 0.005. At the midpoint = 0.5 the error is 0.3816 - 107°.

Ifm > 1, e # 0, and e, # 0 it follows that ep is negligible outside thin
oscillatory boundary layers near x = x9 and ¢ = z,,. The height and thickness

are the roots of the characteristic equation

161p the literature the usual (rigorous) error bound for a perfect spline, due to Hall and Meyer,
is five times as large as the bound for the Hermite error. It is valid with A = max h;, independent
of the position of the knots, for all f € C%, while we require f € C5.

358 Chapter 4. Interpolation and Related Subjects

of the layers depend on eg and e,,,. We discuss the left boundary; the right one is
analogous. Assume that

eo =¢epo # 0, €1 R €eB,1 R UEB o A UEQ.
We then estimate eg by putting
ko = y§ + eo, k1 =y} + el = y) + ueg,

into the boundary condition at xg, i.e. the first equation of (4.4.13) for the natural
splines and (4.4.14) for the “not a knot” splines. (Complete splines have no oscil-
latory boundary layers; eg = 0.) The peak of the contribution of ep to the spline
interpolation error is then obtained by (4.4.4) for i = 1, and equals

heg oréltagxl [t(1 —¢(1 —t — ut)| ~ 0.17hey. (4.4.23)
For the natural splines, this procedure leads to

1
(2+wu)eg = 3E(y1 — o) — 2yg — y1 — O(h*)

1 1
:3(y6+§hy6'+...) —3yp —hyy +...~ Ehyg.

Since 2 + u = /3, we obtain ey ~ 0.29hy/, and, by (4.4.23), the peak near = =
T becomes approximately 0.049h2|y"|, i.e. 40% of the linear interpolation error
(instead of cubic), often clearly visible in a graph of s(x).

For the “not a knot”-splines the procedure leads to

3
(14 2u)eo = %(yl — o) + %(yz —y1) = Yo — 2y1 — O(h4) ~ %y(4)'
see Problem 3.2.10. We thus obtain ey ~ 0.180h%y(*), and hence by (4.4.23) the
peak near zo becomes 0.031h*yY) | typically very much smaller than we found for
natural splines. Still it is about 11.5 times as large as the Hermite interpolation
error, but since the oscillations die out by the factor v = 0.29 in each step, we
conclude that the Hermite interpolation is the dominant error source in cubic “not
a knot”-spline interpolation in (say) the interval [a + 3h,b — 3h] .

For natural splines the boundary layers are much thicker, because the peaks
are much higher.

Example 4.4.2.

For the function f(z) = 1/(1 + 252?), = € [—1,1], the maximum norm of the
error is 0.022, in interpolation with a natural cubic spline function at the eleven
equidistant points x; = —1 4 0.2¢, ¢ = 0 : 10. This good result contrasts sharply
with the unpleasant experience near the boundaries of interpolation with a tenth-
degree polynomial shown in Fig. 4.2.6. An (almost) perfect cubic spline or a “not
a knot”-spline gives even better results near the boundaries.

4 4. Spline Functions 359

4.4.5 Approximation with B-Splines

It was shown in the beginning of Sec. 4.4.3 that the set of spline functions of order
k, Sa.k, on the grid

A={a=zo<z1 <+ <y =0}
is a linear space of dimension k + m — 1. A basis was shown to be
{Lz,....2" " u{@@-a) (@ —2) Y (@ —2m)E) (4.4.24)
which is the truncated power basis.

Example 4.4.3. For k = 2 the space Sa j consists of continuous piecewise affine
(linear) functions also called linear splines. Then a basis is

{Lz}U{li(x),....,lm-1(2)}, lLi(z) = (z — 24)+-

Another basis for Sa » is obtained by introducing an artificial exterior knot x_; <
xo. Then it is easy to see that using the functions /;(x), i = —1 : m — 1 every linear
spline on [zg, z,,] can also be written as

m—1

s(z) = Z cili(x).

i=—1

The truncated power basis has several disadvantages. The basis functions are
not local; e.g., the monomial basis functions 1, z, ..., 2*~! are nonzero on the whole
interval [a, b]. Also the basis functions (4.4.24) are almost linearly dependent when
the knots are close. Therefore this basis yields an ill-conditioned linear systems for
various tasks and is not suited for numerical computations. In the following we will
construct a more satisfactory basis for Sa .

In anticipation of the fact that it may be desirable to interpolate at other
points than the knots we consider from now on the sequence of knots

A={ro <7 < < T} (4.4.25)

where 7; < Tiyk, ¢ = 0 : m — k, i.e., at most k successive knots are allowed to
coincide.

We start by considering £ = 1. The space Sa,1 consists of piecewise constant
functions. As a basis for Sa 2 we can simply take the functions

Nii(z) = {1 v €)1, (4.4.26)
’ 0 otherwise.

The functions N, ;(x) are arbitrarily chosen to be continuous from the right, i.e.,
Ni,l(Ti) = Ni,l (Tz‘ + O)

360 Chapter 4. Interpolation and Related Subjects

For k = 2 we define the hat functions'” by

(z = 1)/ (Tig1 — 7i), T € [7i, Tiy],
Nz"g(iIJ) = (Ti+2—$)/(TZ’+2—Ti+1), S [Ti+1,7','+2), 1=—1:m—1. (4427)
07 T g (TiaTi+2)7
where we have introduced two exterior knots 7 ; < 79 and 7,41 > 7, at the
boundaries. (In the following we refer to the knots 79, ..., 7, as interior knots.)

Note that for ¢ € (7;,7;41) we have N;o(z) = 0, j # i — 1,i. Hence, for a fixed
value of x at most two hat functions will be nonzero. The exterior knots can be put
arbitrarily near the end points 79 and 7,,; Indeed they are usually taken to coincide
with the boundary so that 71 = 79 and 7,41 = 7,; see Fig. 4.4.5. In this case
N_1,1 and Ny,—1,1 become “half-hats” with a singularity at 79 and 7,,, respectively.

1.4

1

rZ N
4
z
z
z
z

-1,2 0,2 1.2 2,2 3,2 4.2

o8

Figure 4.4.4. The siz hat functions N;2(x), i=—-1:4 (m+k—1=6).

The (m + 1) functions N;2(x), ¢ = —1 : m — 1, are B-splines of order two
(degree one). At a distinct knot 7; just one hat function is nonzero, N;;1(z) = 1.
It follows that the spline function of order k¥ = 2 interpolating the points (7, y;),
i = 0: m, can uniquely be written as

s(x) = 2 ¢ilNi 2 (). (4.4.28)

i=—1

(4.4.28) with ¢; = y;41. This shows that the restriction of the functions N;»(z),
i = —1:m — 1, to the interval [r9, 7,,] are (m + 1) linearly independent functions
in Sa » and form a basis for Sa .

If we allow two interior knots coalesce, 7; = 741, 0 < @ < m — 1, then
Ni_1,2(x) and N, »(x) will have a discontinuity at 7;. This generalizes the concept
of a B-spline of order 2 given in Definition 4.4.1 and allows us to model functions
with discontinuities at certain knots.

It is easily verified that the functions N; 2(z) can be written as a linear com-

bination of the basis function

li(z) =(z—7i)y, i=1:m+1,

17The generalization of hat function to two dimensions is often called tent function. This concept
is very important in, e.g., in finite element methods;, see Chap. 14.

4 4. Spline Functions 361

and it holds that

Nz',2(37) = ((37 = Tit2)+ — (T — Ti+1)+)/(Ti+2 — Tiy1)
—((& = 7ig1)y — (@ — 1) 4) /(Tig1 — T3)
= ([Ti+1> Titat(t — @)+ — [1i, Tig1]e (t — @)+ (4.4.29)

= (Tixe — 7)[7i, Tig1, T2t (t —)4, i=1:m.

Here [7i, Tit1, Ti+2]¢+ means the second order divided difference functional'® oper-
ating on a function of ¢, i.e., the values 7; etc. are to be substituted for ¢ not
for z. Recall that divided differences are defined also for coincident values of the
argument, see Sec. 4.2.

From the definition of the Peano kernel and its basic properties, given in
Sec. 3.2.3 it follows that the last expression in (4.4.30) tells us that N; » is the Peano
kernel of a second order divided difference functional multiplied by the constant
Ti+2 — T;- This observation suggests a definition of B-splines of arbitrary order k
and a B-spline basis for the space Sa .

Definition 4.4.4. Let A = {10 <11 < --- < 7,,} be an arbitrary sequence of knots
such that 7; < Tj+x, 0 =0:m — k. Then a B-spline of order k equals (apart from a
stepsize factor) the Peano kernel of a k-th order divided difference functional; more
precisely we define (with the notations used in this chapter)

Nig () = (Tixk = 70)[Ti Tigt, - Tig sl —)57, (4.4.30)
where [T;, Tiy1, ..., Tivx)I¥ 1 denotes the k-th divided difference of the function [¥~1(-)
with respect to the set of points T, Tix1, . s Titk-

Since divided differences are defined also for coalescing points (see Sec. 4.3),
Definition 4.4.4 remains valid for knots that are not distinct.

Example 4.4.4. For k =1 (4.4.30) gives (1; # Tit+1)

Nii(x) = (tixa = 70)[mi; i e (8 — 2) 5.
If 7, < < Tig1, then (riy1 —)% = 1 and (1 — 2)% = 0 and hence N;; = 1;
otherwise V; 1 = 0. This coincides with the piecewise constant functions in (4.4.26).

It can be shown that NN; ;(x) is defined for all « and is a linear combination
of functions (7; — a:)ff__l. If the knots are distinct then by Problem 4.2.11,

i+k (r; —)k=1 i+k
Nia(e) = (ive =) g @) = [[@-m) (@as
J= ’ J=1
This shows that Nj is a linear combination of functions (7; — a:)ff__l, j=1:1+k,
and thus a spline of order k (as anticipated in the terminology).

18The notation is defined in Sec. 4.2.1

362 Chapter 4. Interpolation and Related Subjects

The B-spline for equidistant knots is related to the probability density of the

sum of k uniformly distributed random variables on [—%, %] This was known already
to Laplace.'® Their importance for spline approximation was first appreciated by

Schoenberg [19].

Theorem 4.4.5. The B-splines of order k has the following properties:
(i) Positivity: Nig(z) >0, € (7, Titr)-
(i) Compact support: Nig(x) =0, & [m, Titi]-

(i) Summation property: Y. Nix(x) =1, Vx € [10,Tm].

Proof. A proof can be based on the general facts concerning Peano kernels found
in Sec. 3.2.3, where also an expression for the B-spline (k = 3) is calculated for the
equidistant case. (Unfortunately the symbol z means opposite things here and in
Sec. 3.2.3.)

(i) By (4.2.12) Rf = [1i,Tir1, .-, Trklf = FP(E)/R), € € (7i,Tiys), and
Rp = 0, for p € Pg. It then follows from the corollary of Peano’s remainder
theorem that the Peano kernel does not change sign in [7;, 7i+]. It must then have
the same sign as [K(u)du = R(z — a)*/k! = 1. This proves a somewhat weaker
statement than (i) (IV; x(x) > 0 instead of N, ;(x) > 0).

(ii) This property follows since a Peano kernel always vanishes outside its
interval of support of the functional; in this case [r;, T;+%]. (A more general result
concerning the number of zeros is found, e.g., in Powell [17, Theorem 19.1]. Among
other things this theorem implies that the jth derivative of a B-spline, j < k — 2,
changes sign exactly j times. This explains the “bell-shape” of B-splines.)

(iii) For a sketch of a proof of the summation property 2°, see Problem 8. 0

To get a basis of B-splines for the space Sax, A ={p <7 <+ <y},
(m+ k—1) B-splines of order k are needed. We therefore choose 2(k — 1) additional
knots 7_gy1 < --- < 71 < 719, and Typqg—1 > - > T4l > Tm, and B-splines
Nig(z),i=—-k+1:m—1.

It is convenient to let the exterior knots coincide with the end points,

Tk+1="""=T-1=To, Tm = Tm+1 = " = Tm+k—1-

It can be shown that this choice tends to optimize the conditioning of the B-spline
basis. Figure 4.6.4 shows the first four cubic B-splines for k¥ = 4 (the four last
B-splines are a mirror image of these). We note that N_s 4 is discontinuous, N_ 4
has a non-zero first derivative, and N_» 4 a non-zero second derivative at the left
boundary.

9Pjerre Simon Laplace (1749-1827), French mathematician and astronomer, has also given

important contributions to, e.g., mathematical physics and probability theory.
20The B-splines M; j, originally introduced by Curry and Schoenberg were normalized so that

2 Migdz=1.

4 4. Spline Functions 363

0.8

0.4

0.2

oc

t =t =t =ty t, t, ty t,

3 1

Figure 4.4.5. The four cubic B-splines nonzero for x € (to,t1) with coa-
lescing exterior knotst_s =t o =1_1 = tg.

Interior knots of multiplicity » > 1 are useful when we want to model a
function, which has less than k& — 2 continuous derivatives at a particular knot. If
r < k interior knots coalesce then the spline will only have £k — 1 — r continuous
derivatives at this knot.

Lemma 4.4.6. Let 7; be a knot of multiplicity r <k, i.e.,
Tim1 < Tg == Titr—1 < Titr-

Then N;y is at least (k —r — 1) times continuously differentiable at ;. For r =k,
the B-spline becomes discontinuous.

Proof. The truncated power (t —7;) i‘l is (k — 2) times continuously differentiable
and [7;,...,Tit+k]g contains at most the (r — 1)st derivative of g. Hence the lemma
follows. O
Consider the spline function
m—1
s(@)= Y ciNip(a). (4.4.32)
i=—k+1

If s(x) =0, z € [10, 7], then s(19) = s'(10) = --- = s* "V (r9) = 0, and s(7;) = 0,

i =1:m — 1. From this it can be deduced by induction that in (4.4.32) ¢; =0, i =
—k+1:m—1. This shows that the (m+%k—1) B-splines N, (z), i = —k+1:m—1,
are linearly independent and form a basis for the space Sa . (A more general result
is given in de Boor [3, Theorem IX.1].) Thus any spline function s(z) of order k
(degree k — 1) on A can be uniquely written in the form (4.4.32). Note that from
the compact support property it follows that for any fixed value of € [1g, ;] at

364 Chapter 4. Interpolation and Related Subjects

most k terms will be nonzero in the sum in (4.4.32), so we have

J
s(x) = Z ¢iNi p(x), T € [T, Tjt1)- (4.4.33)
i=j—hk+1

B-splines were not used in practical calculations for general knot sequences
until the early seventies, when a stable recurrence relation was established indepen-
dently by de Boor [1] and Cox [4].

Theorem 4.4.7. The B-splines satisfy the recurrence relation

N%k(iv) = gNM_l(ZE) + MN¢+1,1¢—1($)- (4434)
Titk—1 — Tq Titk — Tit+1

Proof. (de Boor [3, pp.130-131]) The recurrence is derived by applying Leibniz’
formula for the k-th divided difference (Theorem 4.3.2) to the product

(t— m)ﬁ__l =(t—z)(t— m)ﬁ__Q.

This gives
[Ti e Tinle(t =)57 = (i = @), Tinle (8 — 2)57°
+ 1 [Tigrs Tl —2)5770 (4.4.35)
since [Ti]t(t - iIJ) = (Ti - iIJ), [TiaTi+1]t(t - iIJ) =]., and [Ti;- . -;Tj]t(t — .CI?) = 0 for

j > i+ 1. By the definition of a divided difference

Ti —

(i = 2)[Tiy ooy Tigrt = ([Tistrs - s ikt = [Tis ooy Tin—1]t) -

Titk — Ti
Substitute this in (4.4.35), simplify and apply the definition of B-splines. This yields
(44.34). O

Note that with k£ multiple knots at the boundaries the denominators in (4.4.34)
can become zero. In this case the corresponding nominator also is zero and the term
should be set equal to zero.

From Property (ii) in Theorem 4.4.5 we conclude that only k& B-splines of
order k may be nonzero on a particular interval |7}, 7j41]. Starting from N; 1 (z) =
1, z € [r;,7i+1) and 0 otherwise, cf. (4.4.26), these B-splines of order k can be
simultaneously evaluated using this recurrence by forming successively their values
for order 1 : k£ in only about %kQ flops. This recurrence is extremely stable, since
it consists of taking positive (nonnegative) combinations of positive (nonnegative)
numbers.

Suppose that x € [7;,Ti41], and 7; # Ti41. Then the B-splines of order k =
1,2,3, ..., nonzero at x can be simultaneously evaluated by computing the triangular

4 4. Spline Functions 365

array
0
0
0 Ni_34
0 Ni_23
Ni_12 Ni_24
Nis Ni1s o (4.4.36)
Nis Ni_14
0 Nis
0 Ni4
0
0

The boundary of zeros in the array is due to the fact that all other B-splines not
mentioned explicitly vanish at =. This array can be generated column by column.
The first column is known from (4.4.26), and each entry in a subsequent column can
be computed as a linear combination with nonnegative coeflicients of its two neigh-
bors using (4.4.34). Note that if this is arranged in a suitable order the elements in
the new column can overwrite the elements in the old column.

To evaluate s(z), we first determine the index i such that « € [, 7;11) using,
e.g., a linear search or bisection (see Sec. 6.1). The recurrence above is then used
to generate the triangular array (4.4.36), which provides N; x(z), j =i —k+1:1.
in the sum (4.4.33).

Using the B-spline basis we can formulate a more general interpolation prob-
lem, where the n = m + k — 1 interpolation points, or nodes, z; do not necessarily
coincide with the knots 7;. We consider determining a spline function s(z) € Sa x,
such that

s(z;)=1f;, j=1l:m+k-1

Since any spline s(xz) € Sa x can be written as a linear combination of B-splines,
the interpolation problem can equivalently be written

m—1
> aNigle)=f, j=l:m+k-1 (4.4.37)
i=—k+1

These equations form a linear system Ac = f for the coefficients, where
aij = Ni—pr(zj), i,j=1:m+k-1, (4.4.38)

and
C:(ka+17"'acmfl)T7 f:(f17"'7fm+k71)T-

The elements a;; = N;—g (x;) of the matrix A can be evaluated by the recurrence
(4.4.34). The matrix A will have a banded structure since a;; = 0 unless z; €
[7i, Ti+k]. Hence at most k elements are nonzero in each row of A. (Note that if
xj = 7; for some ¢ only k—1 elements will be nonzero, which explains why tridiagonal
systems were encountered in cubic spline interpolation in earlier sections.)

366 Chapter 4. Interpolation and Related Subjects

Schoenberg and Whitney [20, 1953] showed that the matriz A is nonsingular
if and only if its diagonal elements are nonzero,

a;jj :Nj,mk(l’j)#o, j:l:n,
or equivalently if the nodes x; satisfy
Ti—k <x; <Tj, j=1:n (4439)

Further, the matrix can be shown to be totally nonnegative, i.e., the determinant
of every submatrix is nonnegative. For such systems, if Gaussian elimination is
carried outwithout pivoting, the error bound is particularly favorable. This will also
preserve the banded structure of A during the elimination.

When the B-spline representation (4.4.32) of the interpolant has been deter-
mined it can be evaluated at a given point using the recursion formula (4.4.34). If it
has to be evaluated at many points it is more efficient to first convert the spline to
its polynomial representation (4.4.6). For hints on how to do that see Problem 9 (b)
and (c).

Unless the Schoenberg-Whitney condition (4.4.39) is well-satisfied the system
may become ill-conditioned. For splines of even order k the interior nodes the

To =To, Tj+1 = Tjype, J=0:n—k—1, 7Tp =mn,

is a good choice in this respect. In the important case of cubic splines this means
that knots are positioned at each data point except the second and next last (cf.
the “not a knot” condition in Sec. 4.4.3.

0

5

10

15

20

251

30
15

35

20
40 o

451+

50 .
0

Figure 4.4.6. Structure of the matrices A and AT A arising in cubic spline
approzimation of Titanium data.(nonzero elements showed).

4 4. Spline Functions 367

In some application we are given function values f; = f(z;), j = 1 : n,
that we want to approximate with a spline functions with much fewer knots so
that m + k —1 < n. Then (4.4.37) is an overdetermined linear system and the
interpolation conditions cannot be satisfied exactly. We therefore consider the linear
least squares spline approximation problem

- 2
mlnz < Z ¢iNip(zj) — fj> . (4.4.40)
= i=—k+1
Using the same notation as above this can be written in matrix form

min ||Ac — f||3. (4.4.41)

The matrix A will have full column rank equal to m + k — 1 if and only if there
is a subset of points 7; satisfying the Schoenberg—Whitney conditions (4.4.39). If
A has full column rank then the least squares solution ¢ is unique and is uniquely
determined by the normal equations AT Ac = AT f. The matrix AT A is symmetric
and positive definite and hence the normal equations can be solved using Cholesky
factorization of ATA. A will have at most k nonzero elements in each row; see
Fig. 4.4.5. Advantage should be taken of the banded form of the matrix A7 A. More
stable methods for solving linear least squares problems (4.4.41) will be introduced
in Sec. 8.5.7.

Example 4.4.5. (de Boor [3]) Consider experimental data describing a property
of titanium as a function of temperature. Experimental values for ¢; = 585 + 104,
t = 1:49, are given. We want to fit this data using a least squares cubic spline
Figure 4.4.7 shows results from using a least squares fitted cubic spline with 9 and
17 knots, respectively. The spline with 9 knots shows oscillations near the points
where the curve flattens out and the top of the peak is not well matched. Increasing
the number of knots to 17 we get a very good fit.

We have in the treatment above assumed that the set of (interior) knots {79 <
71 <+ < Ty} is given. In many spline approximation problems it is more realistic
to consider the location of knots to be free and try to determine a small set of knots
such that the given data can be approximated to a some preassigned accuracy.
Several schemes have been developed to treat this problem.

One class of algorithms start with only a few knots and iteratively add more
knots guided by some measure of the error; see de Boor [1, Chapter XII]. The
placement of the knots are chosen so that the Schoenberg—Whitney conditions are
always satisfied. The iterations are stopped when the approximation is deemed
satisfactory. If a node 7 € [7;, 7j41) is inserted then the B-spline series with respect
to the enlarged set of nodes can cheaply and stably be computed from the old one
(see Dierckx [8]).

Other algorithms starts with many knots and successively remove knots, which
are not contributing much to the quality of the approximation. In these two classes
of algorithms one does not seek an optimal knot placement at each step. This is
done in a more recent algorithms; see Schwetlick and Schiitze [22].

368 Chapter 4. Interpolation and Related Subjects

08F

0.6

04 1 L L L L L L | L L 04 1 L L L L L 1 | L &
550 600 650 700 750 800 850 900 ~ 950 1000 1050 1100 550 600 650 700 750 800 850 900 ~ 950 1000 1050 1100

Figure 4.4.7. Least squares cubic spline approzimation of Titanium data;
the knots are marked on the azes by a “o”; left: 9 knots;left: 17 knots.

Review Questions

1. What is meant by a cubic spline function? Give an example where such a function
is better suited than a polynomial for approximation over the whole interval.

2. (a) What is the dimension of the space Sa, of spline functions of order k on a grid

A ={xo,21,...,2m}? Give a basis for this space.
(b) Set up the linear system for cubic spline interpolation in the equidistant case for
some common boundary conditions. What does the unknown quantities mean, and
what conditions are expressed by the equations? About how many operations are
required to interpolate a cubic spline function to m + 1 , m > 1, given values of a
function?

3. What error sources have influence on the results of cubic spline interpolation? How
fast do the boundary errors die out? How do the results in the interior of the
interval depend on the step size (asymptotically)? One of the common types of
boundary conditions yield much larger error than the others. Which one? Compare
it quantitatively with one of the others.

4. Approximately how many arithmetic operations are required to evaluate the function
values of all cubic B-splines that are nonzero at a given point?

5. Express the restrictions of f(z) = 1 and f(z) = = to the interval [zo, zm] as linear
combinations of the hat functions defined by (4.4.27).

6. The Schoenberg-Whitney conditions give necessary and sufficient conditions for a
certain interpolation problem with B-splines of order k. What is the interpolation
problem and what are the conditions?

Problems and Computer Exercises

1. Suppose that f(z) and the grid A are symmetric around the midpoint of the interval
[a,b]. You can then considerably reduce the the amount of computation needed for

Problems and Computer Exercises 369

the construction of the cubic spline interpolant by replacing the boundary condition
at x = b by an adequate condition at the midpoint. Which?

(a) Set up the matrix and right hand side for this in the case of constant step size h.
(b) Do the same for a general case of variable step size.

2. (a) Write a program for solving a tridiagonal linear system by Gaussian elimination
without pivoting. Assume that the nonzero diagonals are stored in three vectors.
Adapt it to cubic spline interpolation with equidistant knots with several types of
boundary conditions.

(b) Counsider the triadiagonal system resulting from the not-a-knot boundary con-
ditions. Show that after eliminating ko between the first two equations and k,
between the last two eqiuations the remaining tridiagonal system for ki,...,km—1
is diagonally dominant.

(c) Interpolate a cubic spline s(x) through the points (zi, f(x;)), where

fl@)=(1+252")"", @i=-1+ %(i 1), i=1:11L

Compute a natural spline, a complete spline (here f'(z1) and f'(z11) are needed) and
a “not a knot” spline. Compute and compare error curves (natural and logarithmic).
(c) Similar runs as in (b), though for f(z) = 1/z, 1 < z < 2, with h = 0.1 and
h = 0.05. Compare the “almost complete”, as described in the text, with the
complete and the natural boundary condition.

3. If f' is known at the boundary points, then the boundary conditions can be chosen
so that f” = s” at the boundary points. Show that this leads to the conditions

2ko + k1 = 3dy — h1f”($0),
kmfl + 2k'm = 3dm + hmf”(xm)

4. Show that the formula

/’”m s(z)dx = Z(%hi(yi—l +yi) + 11—2(7%—1 - ki)h?):

o i=1
is exact for all cubic spline functions s(z). How does the formula simplify if all
h; = h?
Hint: Integrate (4.4.4) from z;_1 to x;.

5. In (4.4.4) the cubic spline g;(z) on the interval [z;—1, ;) is expressed in terms of
function values y;_1,y:, and the first derivatives k;_1, ki.

(a) Show that if M; = s"(z;), ¢ = 0,m, are the second derivatives (also called
moments) of the spline function then

ki —di = %(ZMi+Mi—1)7 ki—l_di:_%(Mi‘l‘ZMi—l)-

Hence g;(z) can also be uniquely expressed in terms of y;—1,y; and M;_1, M;.

(b) Show that, using the parametrization in (a), the continuity of the first derivative
of the spline function at an interior point z; gives the equation

hiMi—1 + 2(h; + hig1)M; + hiv1 M1 = 6(dit1 — di).

370

Chapter 4. Interpolation and Related Subjects

. (a) Develop an algorithm for solving the arrowhead linear system Tk = g (4.4.20),

using Gaussian elimination without pivoting. Show that about twice the number of
arithmetic operations are needed compared to a tridiagonal system.

(b) At the end of Sec. 4.4.3 parametric spline interpolation to given points (i, y:),
i =0:m, is briefly mentioned. Work out the details on how to use this to represent
a closed curve. Try it out on a boomerang, an elephant, or what have you?

. (a) Compute and plot a B-spline basis of order k = 3 (locally quadratic) and m = 6

subintervals of equal length.

Hint: In the equidistant case there is some translation invariance and symmetry, so
you do not really need more than essentially three different B-splines. You need one
spline with triple knot at z¢ and a single knot at x1 (very easy to construct), and
two more splines.

(b) Set up a scheme to determine a locally quadratic B-spline, which interpolates
given values at the midpoints ©; = (i1 + 73)/2 (Tig1 # 1), 1 = 0 : m — 1, and
the boundary points 79, 7. Show that the spline is uniquely determined by these
interpolation conditions.

. Use the recurrence (4.4.34)

r —T;
le(a:) = %Ni,k,l(w) + -]
Ti+k—1 — Ti Ti+k — Ti+1

Ti — T
LNHMA(Q;)

to show that

ZNHC(QU) = ZNi,k—1(fL‘), 70 L < T,

where the sum is taken over all nonzero values. Use this to give an induction proof
of the summation property in Theorem 4.4.5.

. (a) Using the result %(t — ac)ﬁ__l =—(k-=1)(t— k)’j__2, k > 1, show the formula for

differentiating a B-spline

Ni — Nz _
diNi,k(a:)=(k—1)< ko1(2) Nigig 1(w)>_
t Ti+k—1 — Ti Titk — Tit+1

Then use the relation (4.4.34) to show

+1

d - : Ci —Ci—1

% ZC¢NL[¢($) = (k — 1) Z mNiykfl(IL
=1 i=r ’ B ¢

where ¢,_1 := cs41 := 0.

(b) Given the B-spline representation of a cubic spline function s(z). Show how to
find its polynomial representation (4.4.6) by computing the function values and first
derivatives s(;),s (1), i = 0 : m.

(c) Apply the idea in (a) recursively to show how to compute all derivatives of s(x)
up to order k — 1. Use this to develop a method for computing the polynomial
representation of a spline of arbitrary order k from its B-spline representation.

4.5 Polynomial Interpolation of Analytic Functions

In this section we make a more detailed theoretical and experimental study of
interpolation of an analytic function f(z) on a real interval. including an analysis

4.5. Polynomial Interpolation of Analytic Functions 371

of the Runge phenomenon. We then study interpolation at an infinite equidistant
point set from the point of view of Complex Analysis. This interpolation problem,
which was studied by Whittaker and others at the beginning of the century, became
revived at the middle of the century under the name of the Shannon sampling
theorem, with important applications to Communication Theory.

We shall encounter multi-valued functions: the logarithm and the square root.
For each of these we choose that branch, which is positive for large positive values
of the argument. They will appear in such contexts that we can then keep them
non-ambiguous by forbidding z to pass the interval [—1, 1]. (We can, however, allow
z to approach that interval.)

4.5.1 Chebyshev Interpolation

We first consider the general problem of polynomial interpolation of an analytic
function, at an arbitrary sequence of distinct points in C. We let

Q(z) =(z—2)(2 —22)...(z —2,), 2€C, z;€C,

where z; # x;, © # j. The following theorem is valid, when the interpolation points
z; are in the complex plane, although we shall here mainly apply it to the case,
when they are located in the interval [—1,1].

Theorem 4.5.1.

Assume that f(z) is analytic in a domain D that contains the points 1,2, . . . Ty,
as well as the point u € C. Let L,f be the solution of the interpolation problem
(Lnf)(z;) = f(zj), j =1,2,...,n. Then the interpolation error can be expressed as
a complex integral, f(u) — (L, f)(u) = I,,(u), where

_ 1 [Wit .
In(w) = 55 /m ez —w) &

PROOF: By the residue theorem,

) = 3 2w,

2 (=) ® ()

where the sum, with reversed sign, is Lagrange’s form of the interpolation polyno-
mial. 0O

(Note the relation between the Lagrange interpolation formula and the expan-
sion of f(z)/®(z) into partial fractions, when, e.g., f(z) is a polynomial).

We now proceed to Chebyshev interpolation, i.e., interpolation at the the zeros
of the Chebyshev polynomials. We shall show that it is almost as efficient as the
truncation of a Chebyshev expansion. In this case, ®(z) = 2! 7"T,,(z). Let D = &g,
z € [-1,1], z € Ofr. Consider the integral in Theorem 4.5.1 and assume that

372 Chapter 4. Interpolation and Related Subjects

|f(2)] < M for z € 0Eg. It can be shown (Problem 2) that |7, (z)| <1 and

T0(2)] 2 L(R" —R™), |z—2|>a—1, / \dz| < 27a,
OER

where a is the major semi-axis of £, i.e. a = %(R + R1). Then, by a straightfor-

ward calculation,

2M R ™a
£@) = L@ € T prme—T

This is somewhat less sharp than the result obtained by the Chebyshev expansion,
in particular when R = 1. The details are left for Problem 2.

Note, however, that f(z) is allowed to have a singularity arbitrarily close to
the interval [—1,1], and the convergence of Chebyshev interpolation will still be
exponential. Of course, the exponential rate will be very poor, when R = 1.

(4.5.1)

4.5.2 Analysis of The Runge Phenomenon

It is well known that the Taylor series of an analytic function converges at an expo-
nential rate inside its circle of convergence, while it diverges at an exponential rate
outside. We shall see that a similar result holds for certain interpolation processes.
In general, the domains of convergence are not disks but bounded by level curves of
a logarithmic potential, related to the asymptotic distribution of the interpolation
points.

For the sake of simplicity, we now confine the discussion to the case, when the
points of interpolation are located in the standard interval [—1, 1], but we are still
interested in the evaluation of the polynomials in the complex domain. Part of the
discussion can, however, be generalized to a case, when the interpolation points are
on an arc in the complex plane.

Let ¢ : [a,b] — [—1,1] be an increasing and continuously differentiable func-
tion. Set t,; =a+(b—a)j/n,j=0,1,2,...,n, and let the interpolation points be
Tnj, J = 1,2,...,n, where q(t, j—1) < & ; < q(tn,;), i.e. one interpolation point
in each of n subintervals of [—1,1]. In the definition of ®, we now write x, ;, ®,
instead of z;, ®. Note that, as n — oo,

n b
%lnén(z’) = %Zln (2= xnj) = Y(z):= ﬁ/ In(z —q(t)dt, =z¢][-1,1].
j=1 @

(4.5.2)
Put z = ¢(t), and introduce a density function w(z),z €]—1, 1] that is the derivative
of the inverse function of ¢, i.e., w(z) = 1/(¢'(t(x))(b — a)) > 0. Then
1

1
P(z) = / In(z — 2)w(x)dz, w(xz) >0, / w(z)dr =1, (4.5.3)
—1 —1
and ¢(z) is analytic in the whole plane outside the interval [—1,1]. Its real part
P(z) is the logarithmic potential of a weight distribution,
1
P(z) =R(z) = / In|z — z|w(z)dz, w(z) > 0. (4.5.4)

-1

4.5. Polynomial Interpolation of Analytic Functions 373

Figure 4.5.1. Figure to be made.

The function L In |®,,(2)] is itself the logarithmic potential of a discrete distribution
of equal weights %, at the interpolation points z;,. This function is less pleasant
to deal with than P(z), since it becomes —oco at the interpolation points while,
according to classical results of potential theory, P(z) is continuous everywhere,
also on the interval [—1,1]. If we set z = x + iy, OP(z)/0x is also continuous for
z €] — 1,1[, while 9P(z)/0y has a jump there. We write it thus,

' (x = 0i) — Y (z + 0i) = 2miw(x). (4.5.5)

By (4.5.3), 9(z) =In2+0(271), |2| = oo, or even O(z2), if the weight distribution
is symmetric around the origin.
We make the definition

D(w) ={z€ C:P(z) < P(v)}.

and set P* = max,c[_1,1] P(z). It can be shown that D(v) is a simply connected
domain if P(v) > P*. The level curve 9D(v) = {z : P(z) = P(v)} then encloses
[—1,1]. Alevel curve {z : P(z) = a} is strictly inside the level curve {z : P(z) = a'}
if a < P* < a'. (The proof of these statements essentially utilizes the minimum
principle for harmonic functions and the fact that P(z) is a regular harmonic func-
tion outside [—1,1] that grows to co with |z|.)

We now consider two examples.

Example 4.5.1. Equidistant interpolation In this case we may take ¢(t) = t,
€ [-1,1], hence w(z) = 1/2. For the equidistant case we have if z ¢ [-1,1],

P(z) = %gfe/ll In(z — 2)dz = 5R((1 - 2)In(z = 1) + (1 + 2) In(z + 1)) — L.

The upper half of the level curves may look something like Fig.4.4.1.:
On the imaginary axis,

P(iy) =+ In(1+¢°) + y(i7 — arctany) — 1.

374 Chapter 4. Interpolation and Related Subjects

When z — z € [—1, 1], from any direction, P(z) tends to
Pz)=1((1-2)In(l-2)+(1+z)In(1+x)) — 1. (4.5.6)

P'(z) is continuous in the interior, but becomes infinite at £ = £1. The imaginary
part of 1(z) has, however, different limits, when the interval is approached from
above and below: S(¢(z £0i)) = £7(1 — z).

The level curve of P(z) that passes through the points %1, intersects the
imaginary axis at the points iy, determined by the equation P(iy) = P(1) =Iln2—
1, with the root y = 0.5255. Theorem 4.5.2 (below) will tell us that L, f(z) — f(x),
Vz €] —1,1], if f(2) is analytic inside and on this contour.

In the classical example of Runge, f(z) = 1/(1 + 252%) has poles inside this
contour at z = £0.2i. Proposition 4.5.3 will tell us that the level curve of P(z) that
passes through these poles will separate between the points, where the interpolation
process converges and diverges. Its intersections with the real axis is determined
by the equation P(z) = P(0.2i) = —1.41142. The roots are = £0.72668.

Example 4.5.2. Chebyshev interpolation
In this example we have

1 oL
a(t) = cos(m(l—1)), t€[0,1], w(x)=(1-a*)F
Moreover (see Sec. 3.5.1) substitute s for w,
®,(2) =2"""T,(2) =27"(s" + 5 "),

where z = L(s +s7!), s = z + V22— 1. Note that |s| > 1, according to our
convention about the choice of branch for the square root. Hence,

P(z) = lim%ln|<1>n(z)| —In2=1In % =lnlz+vz2—-1—-In2.
Therefore, the family of confocal ellipses O€g introduced in Sec.3.5.1 (see eq.
(3.1.30) are, in this example, the level curves of P(z). In fact, by Eq. (1.3’) and
the formula for P(z), the interior of £ equals D(In R — In2). The family includes,
as a limit case (R = 1), the interval [—1, 1], in which P(z) = —In2.

Our problem is related to a more conventional application of potential theory,
namely the problem of finding the electrical charge distribution of a long insulated
charged metallic plate in the strip

{(z,y) eR*: —l<a<l, -L<y<L, L>1}.

Such a plate will be equipotential. The charge density at the point (z,y) is then
proportional to w(z) = (1 — x2)~1/2; a fascinating relationship between electricity

and approzimation.

Note that if z ¢ [—1,1], we can, by the definition of P(z) as a Riemann sum
(see (4.1)) find a sequence {e,} that decreases monotonically to zero, such that

%| In®,(2) — ¥(2)| < en, z¢[-1,1]. (4.5.7)

4.5. Polynomial Interpolation of Analytic Functions 375

It is conceivable that the same sequence can be used for all z on a curve that does
not touch the interval [—1,1]. (The proof is omitted.)
We can only claim a one-sided inequality, if we allow that u € [—1,1].

%(?Rln @, (u) —¢Y(u)) <€, ue€C. (4.5.8)

(Recall that R1n ®,(u) = —oo at the interpolation points.) We can use the same
sequence for z and u. We can also say that |®,(u)| behaves like exp((P(u) + &)n)
outside the immediate vicinity of the interpolation points.

Theorem 4.5.2.

Assume that [—1,1] is strictly inside a simply connected domain D D D(v). If
f(C) is analytic in the closure of D, then the interpolation error (L f)(u) — f(u)
converges like an exponential to 0 for any u € D(v).

PrOOF: By Theorem 4.5.1, f(u) — (Lypf)(u) = I,(u), where

RNV X0
L(w) = 5 /8 S G—a% (4.5.9)

Note that P(z) > P(v), because D D D(v). Then, by (4.5.7) and (4.5.8), |®,,(u)/P,(2)| <
expn(P(u) — P(v) + 2¢,) Let |f(2)] < M. For any u € D(v), we can choose § > 0,

such that P(u) < P(v) — 30, |z — u| > d. Next, choose n large enough so that

€, < 6. Then

1 |dz| = K exp(—nd)
£(0) = (Luf)w)] < 5-Mespn(=33-+25) | oy s

where K = K (v) does not depend on n, and u, hence the convergence is expo-
nential. 0O

REMARK If u is away from the boundary 0D(v), more realistic estimates of
the interpolation error and the speed of convergence is for n > 1 given by

K1 (0)|8, (u)[e"P@+I < | (1)eP@=P@)+0)n,

where K (v) is another constant. The latter estimate is realistic outside the imme-
diate vicinity of the interpolation points.

It seems, as if one should choose |v| as large as possible, in order to increase
P(v). A bound for P(v) is usually set by the singularities of f(z). If f(z) is an
entire function, the growth of the maximum modulus of |f(z)|, |z| € D(v), hidden
in Kj(v), sets a bound for P(v) that usually increases with n.

We shall now derive a complement and a kind of converse to Theorem 4.5.2,
for functions f(z) that have simple poles in D(v).

Proposition 4.5.3.

376 Chapter 4. Interpolation and Related Subjects

Assume that [—1,1] is strictly inside a domain D D D(v), and that f(() is
analytic in the closure of D, except for a finite number of simple poles p in the
interior, all with the same value of P(p).

Outside the interval [—1,1], the curve OD(p) then separates the points, where
the sequence {(Lyf)(u)} converges, from the points, where it diverges. The behavior
of |(Lnf)(u) — f(u)|, when u € D(v), n > 1 is roughly described by the formula,

(= Luf)(@)] & K| (w)le =P / max(1/|p — ul). (4.5.10)

This can be further simplified, if u is not in immediate vicinity of the interpolation
points, see (4.5.11).

PROOF SKETCH: At the application of the residue theorem to the integral
I,(u), see (4.5.9), we must this time also conider the poles of f(z). We obtain

In(uw) _ (f = Lnf)(w) >y rest (p)
@, (u) @, (u) @, (p)(p —u) ’
where res¢(p) is the residue of f at the pole p € D(v). Roughly speaking, for n > 1,

I(u) = O(e~PFIn), Z = O(e(_P(p)i‘s)"/mI?«X(lﬂp —ul), P(v)> P(p).

p

It follows that |[,,| < >, unless there is a cancellation of terms in). For fixed
n, »_. = 0 is equivalent to an algebraic equation of degree less than the number of
poles, and the roots will depend on . We conclude that the case of cancellation can
be ignored, and hence we obtain Eq. (4.5.10), and the following simplified version,
valid if w is not in the immediate vicinity of the interpolation points. |®,(u)| behaves
like exp(P(u) £ d)n.

I(f = Lnf)(u)| = KePW=P@EIR) max(1/p — ul). (4.5.11)
P
The separation statement follows from this. O

There are several interpolation processes with interpolation points in [—1,1]
that converge for all u € [—1,1], when the condition of analyticity is replaced by
a more modest smoothness assumption, e.g., f € CP. This is the case, when the
sequence of interpolation points are the zeros of the orthogonal polynomials which
belong to a density function that is continuous and strictly positive in | —1,1[. We
shall prove the following result.

Proposition 4.5.4.
Consider an interpolation process where the interpolation points has a (perhaps
unknown) asymptotic density function w(zx), x € [—1,1]. Assume that

(Lnf — f)(x) =0, Vze[-1,1), VfeCk-1,1],

4.5. Polynomial Interpolation of Analytic Functions 377

asn — oo, for some k > 1. Then the logarithmic potential P(z) must be constant in

[—1,1], and the density function must be the same as for Chebyshev interpolation,
ie., w(z) = L(1- x?)~1/2,

PROOF: Let f(z) be analytic in some neighborhood of [-1,1], e.g. any func-
tion with a pole at a point p (arbitrarily) close to this interval. A fortiori, for
such a function our interpolation process must converge at all points u in some
neighborhood of the interval [-1,1].

Suppose that P(z) is not constant, and let z1, 2 be points, such that P(z1) <
P(x2). We can then choose the pole p so that P(z1) + < P(p) < P(x2) —d. By
Proposition 4.5.3, the process would then diverge at some points w arbitrarily close
to 2. This contradiction shows that P(z) must be constant in [—1,1], P(z) = a,
(say).

This gives a Dirichlet problem for the harmonic function P(z), z ¢ [—1,1].
This has a unique solution, and one can verify that the harmonic function P(z) =
a+ Rln(z + /22 — 1) satisfies the boundary condition. We must also determine a.
This is done by means of the behaviour as z — co. We find that

P(z)=a+RIn(z+2(1 -2 =a+ RIn(2z — O(z"Y)
=a+Rlnz+1n2-0(z"?).

This is to be matched with the result of the discussion of the general logarithmic
potential in the beginning of Sec.4.5.2. In our case, where we have a symmetric
distribution, and fll w(z)dr = 1, we obtain P(z) = R¢Y(z) = Rlnz + O(272). The
matching yields a = —In 2.

Finally, by (4.5.5), we obtain after some calculation, w(z) = (1—x2)~/2. The
details are left for Problem 3. O

Compare the above discussion with the derivations and results concerning
the asymptotic distribution of the zeros of orthogonal polynomials, given in the
standard monograph G. Szegé [24].

Related ideas were applied around 1980 in the NADA thesis of L. Reichel.
His problem was the Helmholtz equation in 2D, with a regionally constant complex
coefficient, with potential applications (excuse my pun!) to the microwave heating
of cheeseburgers etc.. Since one can find nice bases of particular solutions of the
Helmholtz equation in different regions, i.e. bread, meat and cheese, one may try
boundary collocation, to express the appropriate continuity conditions at the
interfaces between meat and cheese etc. in a finite number of points. It turned
out that a good allocation of these collocation points is crucial. It depends on the
geometry, and this question became, for some choices of bases, similar to polynomial
interpolation.

4.5.3 The Sampling Theorem

The ideas of this paper can be applied to other interpolation problems than polyno-
mial interpolation. We shall apply them to a derivation of the celebrated sampling

378 Chapter 4. Interpolation and Related Subjects

theorem which is an interpolation formula that expresses a function that is band-
limited to the frequency interval [—-W, W], i.e., a function that has a Fourier
representation of the following form (see also Strang [23, p. 325].

| LU .
f(z) = ﬂ/W f(k)e*=dk, |f(k)] < M, (4.5.12)

in terms of its values at all integer points. The Shannon Sampling Theorem

reads,
Z f (”) % (4.5.13)

Jj)

j=—00
This is, like Lagrange’s interpolation formula, a so-called cardinal interpolation for-
mula. As Wz /m tends to an integer m, all terms except one on the right hand side
become zero; for j = m the term becomes f(mmx/W).

We shall sketch a derivation of this for W = #. The details are left for Problem
9. We first note that Eq. (4.5.12) shows that f(z) is analytic for all z. Then we
consider the same Cauchy integral as many times before,

e
Infu) = 2mi /m)n D(2)(z —u) 4z, € D

Here ®(z) = sin 7wz, which vanishes at all integer points, and D,, is the open rectangle
with vertices at £(n + 1/2) & bi. By the residue theorem, we obtain after a short
calculation,

L(u) = f(u) + Y M Z fszn—i(!;)—u)

j=—n j=—n

Set z = « + iy. Note that

[my| _ o—lmyl
Me_kydk < M{e e’ ™)

B(z)| > el
|_27T 2] » 2(2) > e

7 (2)

These inequalities, applied for y = b, allow us to let b — oo; (2b is the height of the
symmetric rectangular contour). Then it can be shown that I,,(u) — 0 as n — oo,
which establishes the sampling theorem for W = w. The general result is then
obtained by "regula de tri”, but it is sometimes hard to get it right, see Problem 9.
OStrang, loc.cit., gives an entirely different derivation, based on Fourier analysis.

Problems

1. We use the notations and assumptions of Theorem 4.5.1.

(a) Representation of the interpolation operator as an integral operator. Show that

B(x) — P(2)
(x—2) ~

L) = g | K@ 5D K-
oD

Computer Exercises 379

also if x ¢ D. Note that K(z, z) is a polynomial, symmetric in the two variables z,
z.

(b) A formula for the divided difference. Show that

NPT B A O
[Il,d)z,..., n]f q)(z)d .

T 2w

oD

Hint: Look at the leading term of the polynomial (L, f)(z).

2. Check the omitted details of the derivations in Sec.4.5.1.

3. Check the validity of Eq. (4.5.5) on the Chebyshev and the equidistant cases. Also
show that fj1 w(z)dr = 1, and check the statements about the behaviour of P(z)
for |z| > 1.

4. Literature search. Find the articles, where L. Reichel analyzes boundary collocation

methods, by techniques similar to those used in Sec.4.5.2. There are both green
NADA reports and publications in journals or conference proceedings.

5. (a) Work out the details of the proof of the Sampling Theorem.

(b) The formulation of the Sampling Theorem with a general W in Strang, loc cit.,
does not agree with our Eq, (4.5.13). Who is right?

Computer Exercises

1. (a) Write a program for solving equations of the form (z) = ¢, where ¢ runs through
a rectangular grid in a complex plane, not necessarily equidistant. You may assume
that ¢ is defined in such a way, that that its derivative is rather easily computed.
When applicable, compute also the intersections of two families of level curves, i.e.,
with constant ¢ and constant ¢, with the real axis.

(b) Apply your program(s) to the plotting of these level curves in the two cases of
the text, (related to, respectively, equidistant and Chebyshev interpolation). Due
to the symmetry it is sufficient to draw the curves in a quarter-plane. Think of the
7aspect” of the plotting so that the conformality of the mappings becomes visible.
If the scanning of the grid (of ¢) leads z to cross the forbidden interval [—1,1],
or to some other exceptional situation, the program should return a nice message,
and continue the scanning without interrupt, with more fruitful values of ¢, so that
nothing is lost. By the way, find out, how the system you work with, handles the
logarithm and square root in the complex domain. It may not be entirely according to
our conventions, but it almost certainly produces some value that your own program
can modify appropriately.

(c) If Rc > 1, the level curve for the real part is, close to a circle (why?). Use
equidistant values of Sc € [0, £7r]. The values of Rc are to be chosen so that the
drawings become intellectually interesting and/or visually pleasing. You are then
likely to find that the density of the level curves for the imaginary part, when they
approach the interval [0, 1] is different for the Chebyshev case and the equidistant
case. Explain theoretically how this is related to the density function w in the text.
(d) The level curves of the imaginary part intersect the interval [0, 1], at different
angles in the Chebyshev and the equidistant cases. Give a theoretical analysis of
this.

380

Chapter 4. Interpolation and Related Subjects

2.

(a) (After Meray (1884) and Cheney, p.65.) Let L, f be the polynomial of degree
< n which interpolates to the function f(z) =1/z at the n’th roots of unity. Show
that (L. f)(2z) = 2"~'. Show that limy_, e max|y =1 |(Ln f — f)(u)| > 0.

Hint: Solve this directly, without the use of the previous theory.

(b) Modify the theory of Sec.4.5.2 to this case with equidistant interpolation points
on the unit circle, and make an application to f(z) =1/(z —a), a > 0, a # 1. Here,
®,(z) = 2" — 1. What is ¢¥(z), P(z) ? The density function? (The integral for
¥(z) is a little tricky, but you may find it in a table. There are, however, simpler
alternatives to the integral, see the end of Sec.4.5.2. Check your result by thinking
like Faraday.) Find out for which values of a, u, (|u| # 1, |u| # a), (Lnf— f)(u) — 0,
and estimate the speed of convergence (divergence).

(c) What can be said about the cases excluded above, i.e., |u| =1, |u| = a? Also
look at the case, when |a| =1, (a # 1).

(d) Is the equidistant interpolation on the unit circle identical to the Cauchy FFT
method (with @ = 0, R = 1) for the approximate computation of the coefficients in
a power series 7 See, in particular Eq. (3.1.10).

(e) We saw in b) that the equidistant interpolation on the unit circle gives no good
polynomial approximation when the pole is inside the unit circle. The coefficients
computed by the Cauchy FFT are however useful with a different interpretation,
namely as coefficients in an interpolation polynomial p(z~') for f(z) = 1/(z — a),
or as approximate coeflicients in a Laurent series 1/(z —a) = Zj‘;l cjz™9, that
converges for |z > a|. Note that the Cauchy integral, Eq. (3.1.8), is valid also for
the coefficients of a Laurent expansion.

Now comnsider

-5 1 2
& =G=3a-2) " 3-2 1-2

This has three Laurent expansions, i.e., an ordinary Taylor series for |z| < 1, an
expansion into negative powers for |z| > 3, and a mixed expansion for the annulus
% < |z| < 3. It is conceivable that the the first two expansions can be found by FFT,
with different interpretations of the results, but what about the annulus case 7 It is
easily seen from the above partial fraction form of f(z) what the Laurent expansion
should be. When the FFT is applied to f(z), it does therefore, in principle, find a
coefficient by adding a coefficient of a negative power of z from the first term of the
partial fraction decomposition, to the coefficient of a positive power of z from the
second term. Can this really work ?

Explain, why things go so well with a careful treatment, in spite that I almost tried
to convince you above that it would not work. Also try to formulate what ”careful
treatment” means in this case.

Hint: Generalize to the case of a Laurent expansion the relation between the FFT
output and the series coefficients given (for a Taylor series) in Eq. (3.1.11). Also
read in Strang [23] or somewhere else about ”aliasing”.

4.6 Trigonometric Interpolation and FFT.

Not included in this version. Part of it is found in Chapter 12.

4.6. Trigonometric Interpolation and FFT. 381

4.6.1 Multidimensional Interpolation

4.6.2 Repeated One-Dimensional Interpolation

The simplest way to generalize interpolation to functions of several variables is to
use repeated one-dimensional interpolation, i.e., to work with one variable at a time.
The following formula for bilinear interpolation,

f(xo + ph,yo + qh) = (1 — q)p(yo) + q¢(yo + k),
o(y) = (1 —p)f(xo,y) + pf(xo + h,y).

is the simplest example. After simplification it can written as

f(zo +ph,yo + qh) = (1 —p)(1 —q)foo +p(1 —q)f10 (4.6.1)
+ (1 =p)afo1 +pafi,

where we have used the notation f;; = f(zo+ih,yo+jk), i,j € {0,1}. This formula
is exact for functions of the form f(z,y) = a + bz + cy + dzy, and from equation
4.2.7 we obtain the error bound,

max 2 (p(1 = PR foel + a1 — DRUfl), 0<pa <1,
(z,y)ER 2
where R = {(z,y) : 0 <z < zo + h,y0 <y < yo + k}. The formula for bilinear
interpolation can easily be generalized by using higher order interpolation in the z
and/or y direction.
In the following we consider explicitly only the case of two dimension, since
corresponding formulas for three and more dimensions are analogous.

4.6.3 Rectangular Grids

A rectangular grid in the (z,y)-plane with grid spacings h,k in the z and y
directions, respectively, consists of points z; = xo + ih, y; = yo + ik. In the
following we use the notation f(x;,y;) = fi;- (For interpolation formulas valid for
irregular triangular grids, see Sec. 8.4.3)

Central difference approximations for partial derivatives using function values
can be obtained by working with one variable at a time,

of 1 of _ 1
9z = op Jirri = fimrg) + o(h?), 3y o i+ = fig—1) + O(k?).
For second order derivatives
0% f 1
Pz = 7z i = 2fij + fim1.4),

and a similar formula holds for 8% f/9y>.
Formulas of higher accuracy can also be obtained by operator techniques,
based on an operator formulation of Taylor’s expansion (see Theorem 4.6.6,

F(@o+ hyyo +) = exp (h% + k(%)f(%;yo) (4.6.2)

382 Chapter 4. Interpolation and Related Subjects

From this we obtain

0 0
flxo+h,yo+ k) = foo+ (h% + k—)fo,o

02 o* o*
2 2 2 2
+(h 5oz T2k 5 +k)f00+0(h + k).

An interpolation formula valid for all quadratic functions can be obtained by re-
placing in Taylor’s formula the derivatives by difference approximations valid for
quadratic polynomials,

f(zo + ph,yo + qh) = foo + %p(fl,o — fo10) + %Q(fo,l — fo—1) (4.6.3)

1
+ §p2(f1,0 —2fo,0 + f-1,0)

1
+ ZP‘J(le —fi—1— foaa+ fo1o1)

1.
+ §qz(f0,1 —2fo0+ fo,—1)-
This formula uses function values in nine points. (The proof of the expression for

approximating the mixed derivative ——— fy o is left as an exercise, Problem 2.

0?

0xdy

Cubic Hermite interpolation treating one variable at a time (see Example
4.6.3):

f(@o + ph,yo + qh) = (1 = q)d(yo) + qd(y1)
+a(1 - q) [(1 = @) (he, (90) — Ad(w0)) — alhd (1) — Ad(yo)].

¢(y) = (1 = p)f(zo,y) +pf(z1,9)
+p(1 = p)[(1 = p) (hf2 (w0, y) = Af(20,9)) = plhfa(ar,y) = Af(wo,y))]:
This formula requires that the quantities f,df/dz,0f/dy, and 82 f /0x0y are given

at the four points (z;,y;) for 0 <4, j < 1. Hence 16 quantities are needed to specify
the bicubic polynomial.

Review Questions

1. How is bilinear interpolation performed? What is the order of accuracy?

Problems
1. Compute by bilinear interpolation f(0.5,0.25) when

f(0,00=1, f(1,00=2, f(0,1)=3, f(@1,1)=5.

47. Examples of Interpolation in Nonlinear Function Spaces 383

2. Derive a formula for f;/,(0,0) using fi;, |¢) < 1,|j] < 1, which is exact for all quadratic
functions.

4.7 Examples of Interpolation in Nonlinear Function
Spaces

A little about interpolation by rational functions and by a sum of exponentials. Not
yet written.

Notes and References

The basic idea of scaled divided differences is due to F. Krogh [16]. The notation
and presentation used in Sec. 4.2.2 is due to L. O. Eriksson and G. Dahlquist [9]
Runge’s example is from 1901 (?), see the bibliography in Cheney [12].

[1] C. de Boor. On calculating with B-splines. J. Approz. Theory, 6:50-62, 1972.

[2] C. de Boor. Spline Toolbox for use with MATLAB. The Math. Works, South
Natick, 1990.

[3] C. de Boor. A Practical Guide to Splines. Revised ed., Springer-Verlag,
Berlin, 1991.

[4] M. G. Cox. The numerical evaluation of B-splines. J. Inst. Math. Applics.,
10:134-149, 1972.

[5] M. G. Cox. Algorithms for spline curves and surfaces. Tech. Report DITC
166/90, National Physical Laboratory, Teddington, U.K., 1990.

[6] P. Dierckx. FITPACK User Guide part I: Curve Fitting Routines. TW Re-
port 89, Department of Computer Science, Katholieke Universiteit, Leuven,
Belgium.

[7] P. Dierckx. FITPACK User Guide part II: Surface Fitting Routines. TW Re-
port 122, Department of Computer Science, Katholieke Universiteit, Leuven,
Belgium.

[8] P. Dierckx. Curve and Surface Fitting with Splines. Clarendon Press, New
York, 1993.

[9] L. O. Eriksson and G. Dahlquist.

[10] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide. Academic Press, New York, 1988.

[11] C.-E. Froberg. Numerical Mathematics. Theory and Computer Applications.
The Benjamin/Cummings, Menlo Park, CA, 1985.

[12] E. W. Cheney. Introduction to Approzimation Theory. McGraw-Hill, New
York, NY, 1966.

384

Chapter 4. Interpolation and Related Subjects

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

[23]

[24]

H. H. Goldstine. The Computer from Pascal to von Neumann. Princeton,
1972.

P. Henrici. Discrete Variable Methods in Ordinary Differential Equations.
Prentice-Hall, Englewood Cliffs, NJ, 1962.

E. Isaacson and H.B. Keller. Analysis of Numerical Methods, Dover, New
York Corrected reprint of 1966 original.

F. T. Krogh. A variable step variable order multistep method for the nu-
merical solution of ordinary differential equations. In A. J. Morell, editor,
Proceedings of the IFIP Congress 1968, pages 194-199. North-Holland, Am-
sterdam, 1969.

M. J. D. Powell. Approzimation Theory and Methods. Cambridge University
Press, Cambridge, UK, 1981.

H. Prautzsch, W. Boehm, M. Paluszny. Bézier and B-spline techniques
Springer-Verlag, Berlin, 2002.

1. J. Schoenberg. Contributions to the problem of approximation of equidis-
tant data by analytic functions. Quart. Appl. Math., 4:45-99 and 112-141.,
1946.

I. J. Schoenberg and A. Whitney, On Pdlya frequency functions III: The
positivity of translation determinants with an application to the interpolation
problem by spline curves. Trans. Amer. Math. Soc., 74, 246-259, 1953.

H. R. Schwarz. Numerical Analysis. A Comprehensive Introduction. John
Wiley, New York, Ny, 1989.

H. Schwetlick and T. Schiitze. Least squares approximation by splines with
free knots. BIT, 35 (1995), 361-384.

G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
USA, 1986.

G. Szegb. Orthogonal Polynomials, 4th ed.. Amer. Math. Soc. Colloq. Publ.,
vol. 23, Amer. Math. Soc., Providence, RI.

Chapter 5

Approximate Computation
of Linear Functionals

5.1 Introduction

The problem considered in this chapter is to compute an approximation to a definite
integral

b
I:/ f(z)dx (5.1.1)

by using values of f, and possibly some its derivatives. As is well known, even many
relatively simple integrals cannot be expressed in terms of elementary functions, and
must be evaluated by numerical methods. An important classical example is the
error function defined by

2 [P e
erf(b) = ﬁ/o e " dz,

and used in many branches of mathematics (see Problem 7, Sec. 3.1).

The above problem is known as numerical quadrature, which relates to the
ancient problem, the quadrature of the circle, i.e., constructing a square with equal
area to that of a circle. The name was then also used for more general problems of
finding areas and volumes.

Frequently f is assumed to be known on a grid of equidistant points. Several
classical formulas dating back to Newton (1642-1727) are described in Section 5.2.
By a careful choice of grid points the order of accuracy of the quadrature rule
can substantially improved. The construction of such Gaussian quadrature rules
are based on the theory of orthogonal polynomials, and the treatment of these
are therefore delayed until Section 9.4. Some special techniques for integrals with
singularities of different kinds are given in Section 5.3. Finally, methods for approx-
imating multiple integrals, where f is known on a rectangular or triangular grid,
are treated in Section 5.4.

385

386 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

5.2 Classical Quadrature Rules
5.2.1 The Trapezoidal and Midpoint Rules

One obvious way to solve the above problem is to approximate f(z) by a simple,
easily integrated function. We now study two methods which are based on approx-
imating the function f(z) by piecewise constants and linear functions respectively.
We assume f to be known on a grid of equidistant points

To=a, T;=x9+1ih, x,=">. (5.2.1)

where h = (b — a)/n is the step length. We will use the notation f; = f(z;).
In the midpoint rule approximate the integral (5.1.1) by

n—1

R=h>" fir1)2: (5.2.2)
1=0

see Fig. 5.2.1. (Compare the above approximation with the Riemann sum in the
definition of a definite integral.) Notice that (5.2.2) uses the values of f at the
midpoints of each subinterval (x;—1,2;). This is essential for good accuracy, as can
be seen from Fig. 5.2.1.

The trapezoidal rule was mentioned already in Sec. 1.2. Here we use the
approximation

~ n h n—1 h
T:hZ%(fi_l+fi):§fo+h2f,-+§fn, (5.2.3)
=1 i=2

see Fig. 5.2.1. This formula is based on piecewise linear interpolation in the intervals
(CBi_l,Jii), 1= 1,2,. oy N

The trapezoidal rule is called a closed rule because values of f at both
endpoints are used. It is not uncommon that f has an integrable singularity at an
endpoint. In that case an open rule, like the midpoint rule, still can be applied.

Figure 5.2.1.

It is easy to get strict estimates for the discretization error of both the midpoint
and the trapezoidal rule. Suppose that f" is continuous in [a, b]. For one subinterval

5.2. Classical Quadrature Rules 387

of the trapezoidal rule, we have from the remainder term in interpolation in (4.2.6)

T ZTq n
e =T(h) — / flx)de = —/ 1) (x — zi—1)(x — x;) du,
Ti—1 Ti—1 2
where £ € [z;-1, ;] depends on z. Since (z —x;—1)(x —x;) < 0 for z € [x;_1,x;] we
can apply a generalized form of the mean-value theorem of integral calculus, and it
follows that

€ = _%f”(fi)/ i (—zi—1)(z — ;) dz, & € lxi, x4

Ti—1

Setting © = x;_1 + ht, we get

_ 1 " ! _ h3f”(£i)
e =—5f (§,~)/0 hth(t = Dhdt = == 5%,

The global truncation error is just the sum of these local truncation errors. Hence
for the trapezoidal rule

(b —a)h?

12 (€, ¢€¢€la,bl (5.2.4)

n h3
Rr = Zfi = —nﬁf”(f) =-
i=1
For the midpoint rule using the remainder term in Taylor’s formula we have

(-2 1)’ f'(&), & € [wim1,@il.

N =

f@)=fiy+@—a Sy +

Noting that the integral over [z;_1, ;] of the second term vanishes we get analo-
gously

q=3"6) [wizar= "L,
and thus , .
R = %f”(f), € € [a,b]. (5.2.5)

Hence also the midpoint rule is exact when f(z) is a linear function. The midpoint
rule can also be interpreted as the area of the trapezium defined by the tangent of
f at the midpoint Ti 1 Note that the error is roughly half the size of the error in
the trapezoidal rule and of opposite sign.

Note that the error in the midpoint rule is half as large as that for the trape-
zoidal rule and has the opposite sign. However, the trapezoidal rule is more econom-
ical to use when a sequence of approximations for h, h/2,h/4,...is to be computed,
since about half of the values needed for h/2 were already computed and used for b,
etc. indeed, it is easy to verify the following useful relation between the trapezoidal

and midpoint rules:

A~

T(h/2) = =(T(h) + R(h)). (5.2.6)

N | =

388 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

If U denotes one unit in the last decimal place of the values of f(x) then for
both formulas the resulting rounding error R4 in the approximations satisfies

1 1
If the rounding error is negligible and h sufficiently small, then it follows from (5.2.4)
that the error in T'(h/2) is about 1/4-th of that in T'(h). Hence the magnitude of
the error in T'(h/2) can be estimated by #|T'(h/2) — T (h)|, or more conservatively

by [T'(h/2) =T (h)|.

Example 5.2.1.

08 ginx

Compute approximately dz. As an exercise the reader should check

0 w
some of the midpoint and trapezoidal sums given below, which are correct to ten
decimals. (Use (5.2.6).)

h R(h) T(h)

0.8 0.77883 66846 0.75867 80454
0.4 0.77376 69772 0.76875 73650
0.2 0.77251 27162 0.77126 21711
0.1 0.77188 74437

The correct value, to six decimals, is 0.772096.)/erify that in this example
the error is approximately proportional to h? for both R(h) and T'(h). We estimate
the error in 7'(0.1) to be 16.26- 104 < 2.1- 104,

5.2.2 Simpson’s Rule

One way to get a more accurate approximation of the integral (5.1.1) is to approx-
imate f(z) by a piecewise polynomial of higher degree. Consider the integral

/) do

Ti—1

According to Taylor’s formula we have

F@) = ot = o I gy By o),

where the remainder is zero for all polynomials of degree 3 or less. Integrating term
by term, the integrals of the second and fourth term vanishes and we obtain

Tit1 1
/ f(z)dx =2hf; + 0+ gh3 "+ 0+ O(R®).

i—1

Using h2f!' = (fi-1 — 2fi + fir1) + O(h*) (see (4.7.5)) we have that

/zi+1 f(z)dr = 2hf; + %h(fifl = 2fi + fir1) + O(B%) (5.2.8)

Ti—1

= %h(fz'q +4fi+ fir1) + O(h),

5.2. Classical Quadrature Rules 389

where the remainder term is zero for all third-degree polynomials. The above for-

mula, Simpson’s rule! and is one of the most famous classical formulas for nu-
merical integration.

To determine the truncation error, we first determine Ry for f(z) = (x —z;)*:

Tit1 2 2

1 4
Ry = =h(h*+0 h4—/ Ydr = h° =h—
=3 (h* +0+n%) - z-dz (3 5) o

from which follows the asymptotic error estimate

4 D ()
15 4!

5
Rr =1° +O(h%) = g—of(“) (z;) + O(h).

One can prove the following strict error estimate Ry = % FOE), € € [zim1, zit]-

In the practical use of Simpson’s formula for computing the integral (5.1.1),
one divides the interval [a, b] into an even number n = 2m steps of length h, and use
the formula (5.2.8) on each of m double steps. This compounded form of Simpson’s
rule can then be written

b
/ f(z)de = g(fo +4U +2E + f,) + Rr,

where
U=fi+fs+-+ fa1, E=fo+ fa+-+ fnoa,

and the remainder is

Re= S Bpog) = 0= Dpipng e 529)
T_izogo Y180 ’ Al e

5.2.3 Newton-Cotes’ Formulas

Let w(z) be a given nonnegative integrable function. We want to approximately
compute the definite integral

b
I:/ w(z) f(z) dx (5.2.10)

when m + 1 function values f; = f(z;) are given, a < xo < x1 < -++ < Ty, < b. The
unique polynomial p(z) interpolating f(z) at these points is given by the Lagrange
interpolation formula (Theorem 4.3.4),

p(z) = Zf(:c,-)Li(;c), Li(z) = H %
=0 % j

!Due to Thomas Simpson (1710-1761).

390 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

If we then approximate the integral I by f: w(z)p(z) dz we obtain the quadrature
rule

b b
/f(x)w(x)dxwCofo-i-lel-l-...-l-C’mfm, cz:/ Li(@)w(z) dz. (5.2.11)

By construction this formula is exact when f(x) is a polynomial of degree m. The
truncation error is obtained by integrating the remainder (see Theorem 4.2.2)

1 b
R:GﬁjﬁAQWVmﬂmﬂwﬂwa¢@F4wﬂmw—m%~W—%J
The coefficients C; depend only on the weight function w(x) and on the distribution
of the points {x;}7,. In practice, the coefficients are more easily computed using

the method of undetermined coefficients rather than by integrating L;(z).

Example 5.2.2.
Derive a formula

2h
J% /0 a2 f(w) do ~ Cof(0) + C1 f(h) + Caf (2h)

which is exact when f(x) is any second-degree polynomial. Equating the left and
right hand sides for f(z) = 1, z,2? we obtain

2 1 2 1
2:CO+01+02, 32501-}-02, 321014—02.

Hence Cp = 2, C1 = 12, and Cp = &.

In particular, for w(z) = 1 and equidistant points ; = a +ih, i =0,1,...,n,
h = (b — a)/n, we obtain rules called the closed Newton-Cotes’ quadrature
rules.? With 2 = a + sh we obtain for the closed rules

s(s=1)---(s—i+1)(s—i—1)---(s—m)

Li = =1 1(=1) (i —m) ’
and i
[ar=ny s [s

Example 5.2.3.
Taking n = 1 we we find again the trapezoidal formula; for n = 2 we have

_ 2(5—1)(5—2)8_1_ B QS(S—Q)S_é
C°‘/o (2 “T3=> Cl‘/o TSRS

2Named after Roger Cotes (1682-1716)

5.2. Classical Quadrature Rules 391

giving Simpson’s rule. As shown above, because of symmetry, this is exact for all
polynomials of degree three, although an interpolation polynomial of only degree
two was used to derive it.

It can be shown in general that the closed Newton-Cotes formulas are exact
for polynomials of degree m + 1 for m even and degree m for m odd, see Isaacson
and Keller [1966, Sec. 7.1.1]. Newton-Cotes’ formulas up to order m = 10 with
error terms are listed in Abramowitz and Stegun [1971, pp.886-887]. For m < 7
the coefficients C; are positive; however for m = 8 and m > 10 negative coefficients
appear. Such formulas may some times be useful, but are less robust with respect
to rounding errors.

The open Newton-Cotes rules use equidistantly distributed points z1, ..., Zm_1
in the interior of [a, b]. The simplest open Newton-Cotes rule for m = 2 is equivalent
to the midpoint rule with step length 2h. The open formulas have polynomial order
m — 1 for m even and m — 2 for m odd. For the open formulas negative coefficients
occur already for m = 4.

5.2.4 Adaptive Quadrature Methods

The quadrature methods considered so far all use the same step length over the
interval of integration. This may not be efficient when, for example, f(x) has greatly
different magnitude in different parts of the interval [a,b]. Adaptive quadrature
methods automatically adapts step sizes so that the approximation I satisfies a
prescribed error tolerance

b
|I—/ f(z)dz| <e. (5.2.12)
We first remark that evaluation of the integral (5.1.1) is equivalent to solving
d
T=f@, =0 (5.2.13)

and taking I = y(b). This is a special case of an initial value problem for an or-
dinary differential equation, and the methods described in Chapter 13 can be used
to solve the problem (5.2.13). These algorithms have been developed to include so-
phisticated techniques for adaptively choosing step size and order in the integration
(see Sec. 13.2), and may therefore be a good choice for handling difficult cases.

For simplicity we consider here only a fized order adaptive method, which is
based on Romberg’s method. For a subinterval [aj,b;], put h; = (b; — a;) and
compute the trapezoidal approximations

Too = T(hy), Tio=1T(hj/2), Teo=T(h;/4),

and the extrapolated values T7; and Ty, which are equivalent to Simpson’s rule
see Sec. 5.2.2. For the approximation I; = T5; we have the error estimate R; =
|T51 — Th1|. We accept the approximation I if

hje

To —Th1| < ,
|11 11] b—a

(5.2.14)

392 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

that is we require the error to be less than €¢/(b— a) per unit step. Otherwise we
reject the approximation, and subdivide the interval in two intervals [a;, %(aj +b;)],
[1(aj+b;),b;]. The same rule is now applied to these two subintervals. Note that if
we have saved the function values computed previously for 75 these can be reused.
We start with one interval [a,] and carry on subdivisions until the error criterion
in (5.2.14) is satisfied for all intervals. Since the total error is the sum of errors for
all subintervals we then have the error estimate

h.
RT<Z£Z€
J

as required.
In many situations it might be preferable to specify a relative error tolerance

|I—/abf(a:)da:|/|/abf(m)dm| <e.

This is complicated by the fact that the denominator might be zero. Hence some-
times a combination of relative and absolute criterion is used.

Many variations on the simple scheme outlined above are possible. For exam-
ple, we could base the method on a higher order Romberg scheme, or even try to
choose an optimal order for each subinterval. Adaptive methods work even when
the integrand f(z) is badly behaved. However, if f has singularities or unbounded
derivatives, the error criterion may never be satisfied. For such cases it is necessary
to include some bound of the number of subdivisions allowed. It should be kept
in mind that although adaptive quadrature algorithms are convenient to use they
are in general less efficient than methods which have been specially adapted for a
particular problem.

A collection of computer subroutines for adaptive quadrature is given by
Piessens et al. [2]. We finally warn the reader that no automatic quadrature routine
can be guaranteed always to work. The integrand f(z) may, for example, be nonzero
only on a small subset of [a,b]. Since any quadrature rule only samples f(z) in a
finite number of points an automatic routine theoretically may return the value zero
in such a case!

Review Questions

1. Give an account of the theoretical background of Romberg’s method and its use.

Problems

1. (a) Derive the closed Newton-Cotes rule for m = 3,

I:%(fO'f‘-?)fl +3fo+f3) +Rr, h=(b—a)/3,

Problems 393

also known as Simpson’s (3/8)-rule.

(b) Derive the open Newton-Cotes rule for m = 4,
4h
I'=5@h=fo+2fs)+Br, h=(0-a)d

(c) Find asymptotic error estimates for the formulas in (a) and (b) by applying them
to suitable polynomials.

2. Use Romberg’s method to compute the integral f: f(z) dz, using the following (cor-
rectly rounded) values of f(x). Need all the values be used?

T 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
f(z) —4271 —2522 —499 1795 4358 7187 10279 13633 17247

3. Compute the integral
1 . L sina

— evz dr
2 0

by the trapezoidal rule, using h = w/2 and h = 7 /4.
4. Gregory’s quadrature formula (James Gregory (1638-1675)) has the form

zo+nh B E"—1 B fn fO
/ZO yde =h=5 fo_h(—ln(l—v)_ln(1+A)>

= (T = oV o+ A% fo) = ea(V*fu + AL fo) = (T fu + A fo) =),

where T is the trapezoidal sum. Determine the coefficients co, c4, and ¢ so that the
formula is exact for polynomials of as high degree as possible.

5. (a) Show that the trapezoidal rule, with h = 27 /(n+1), is exact for all trigonometric
polynomials of period 2wm—i.e., for functions of the type

n

ikt .2
g cre™’, i =—1.

k=—n

—when it is used for integration over a whole period.

(b) Show that if f(¢) can be approximated by a trigonometric polynomial of degree
n so that the magnitude of the error is less than ¢, in the interval (0,27), then
the error with the use of the trapezoidal rule with h = 27/(n + 1) on the integral
(2r)~! f027r f(t) dt is less than 2e.

(c) Use the above to explain the sensationally good result in Problem 2 above, when
h=mr/4.

Hint: First use Theorem 5.4.1 to determine how well the function g(z) = ¢*/V? can
be approximated by a seventh-degree algebraic polynomial for z € [—-1,1].

6. Euler’s constant is defined by v = imn— o F'(IV), where

1 1 1 1
F(N)=1+§+§+...+ﬁ+ﬁ—log]\7.

(a) Use the Euler-Maclaurin formula with f(z) = 2™, h = 1, to show that, for any

integer M
_ Lope 6 ogia, 120
7—F(M)+12M 720M +30240M ce

394 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

where every other partial sum is larger than «, and every other is smaller.

(b) Compute v to seven decimal places, using M = 10, Ziozl n~! = 2.92896825,
In 10 = 2.30258509.

(c) Show how Richardson extrapolation can be used to compute v from the following

values:
M 1 2 4 8

F(M) 0.5 0.55685 0.57204 0.57592

5.3 Special Transformations

The extent to which Romberg’s method is successful depends on how well the func-
tion can be locally approximated by a polynomial. It is often profitable to investi-
gate whether or not one can transform or modify the given problem in some way so
that the resulting integrand is more suitable for numerical integration.

5.3.1 Integrals with Singularities

If the integrand becomes infinite at a point, such a modification is necessary. Even
if some low-order derivative of the function is infinite at some point in or near the
interval of integration, one should make such a modification. It is not uncommon
that a single step taken close to a point where, for example, the derivative of the
integrand is infinite gives a larger error than all other steps combined, when using
a constant step-size.

We first consider a few cases where the integrand has a singularity or is
“almost singular”.

Example 5.3.1. (Substitution)
1
1
Consider I = / Te”” dz. The integrand is infinite at the origin. By the
0 €T
substitution z = > we get I = 01 et”2dt. This integral can be treated without
difficulty by, for example Romberg’s method.

The integral above could also be evaluated by using a special Gauss quadrature
rule for the weight function w(z) = 1/4/z. With the midpoint rule and Romberg’s
method, a sufficient condition that the method converges as h — 0 is that the

integrand be continuous, but to get rapid convergence more is required.

Example 5.3.2. (Integration by parts)
1) 1
I= / a2 dp = 2x1/2ew|0 — 2/ '2e® dx
0 0
2 . 4 [, 2 4 (..
=2e — 2§a:3/Ze”E|(1J + 5/0 732" dy = ge + 5/0 732" da.

The last integral has a mild singularity at the origin. If one wants high accuracy,

5.3. Special Transformations 395

then it is advisable to integrate by parts a few more times before the numerical
treatment.

Example 5.3.3. (Simple Comparison Problem)

InI = f01.1 27 3e% dz the integrand is infinite near the left end point. If we

write
2 1 2

I:/O.lla:3(1+w+%)dm+/0.1m3(61—1—w—%)dw

the first integral can be computed analytically. The second integrand can be treated
numerically. The integrand and its derivatives are of moderate size. Note, however,
the cancellation in the evaluation of the integrand.

For integrands of the form w(x) f(z), where f(x) is well suited for local approxi-
mation by a polynomial, we can derive special quadrature methods of Newton-Cotes
or Gauss types for such integrals (see Sec. 5.2.3 and Sec. 5.3.1).

If the integrand is oscillating, then with ordinary integration methods one
must choose a step size which is small with respect to the wave length; this is often
an irritating limitation in many applications. The techniques previously mentioned
(simple comparison problem, special integration formula, etc.) are sometimes effec-
tive in such situations. In addition, the following method can be used on integrals
of the form

I- / " f(@)sin(g(a)) de.

where g(z) is an increasing function, and both f(z) and g(x) can be approximated
by a polynomial. Set

oo

Tn41
I=Y (V% wn= [f@)]sintg(o))] de,
n=0 Tn
where xg,x1,z2,... are the successive zeros of sin(g(z)). The convergence of this

alternating series can then be improved with the help of repeated averaging, see
Sec. 3.2.1.

5.3.2 Infinite Intervals

Infinite intervals of integration occur often in practical problems. For integrals of the
form ffooo f(z)dz, the trapezoidal Tule or the midpoint rule often give surprisingly
good accuracy if one integrates over the interval [— Ry, Rs], assuming that f(z) and
its lower derivatives are small for z < —R; and = > R».

Example 5.3.4.

Compute [e~ dx. For |z| > 4, the integrand is less than 1 -107%. Using
the trapezoidal rule for the integral over [—4,4] we get the estimate 1.772636 with
h =1 and 1.772453 with h = 0.5. (The values for the function are correct up

to six decimal places.) The exact value of the integral is 7'/2 = 1.772454. The

396 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

truncation error in the value of the integral is less than 10~ times the truncation
error in the largest term of the trapezoidal sum—a superb example of “cancellation
of truncation errors”!

The error which is committed when we replace co by 4 can be estimated in

the following way:
© 2 s —1/2
|R| =2 e ¥ dr=2 e =t dt
4 16 2

1 o0 1
<2 —16_1/2/ e tdt=-e 1% <1077,

One can also try some substitution which maps the interval (0, co) to (0,1)—
eg.,t=e®of t =1/(1+ z). However, in such cases one must be careful not to
introduce an unpleasant singularity into the integrand instead. Take, for example,
I = [°(1+ %) *?dz and make the substitution ¢ = 1/(1+ z). Then we get
I= fol (t2 + (1 — t)?)~*/3¢2/3 dt. he integrand now has an infinite derivative at the
origin. This can be eliminated by making the substitution ¢t = u3, to get

1
I= / (u® + (1 — u®)?) =3 3u*du,
0

which can be computed with, for example, Romberg’s method.

Review Questions

1. Give an account of Gauss quadrature formulas: accuracy, how the points are deter-
mined, some important property of the weights.

Problems

(oo}
1. Compute the integral / (1 + 2%)~*3 dz with five correct decimals. Expand the
0

integrand in powers of ™! and integrate term-wise over the interval [R, co], for a
suitable value of R. Then use Romberg’s method on the remaining interval [0, R].

2. Propose a suitable plan (using a computer) for computing the following integrals,
for s =0.5,0.6,0.7,...,3.0:

(a) / («® + sz) " da; (b) / (2® +1)7"%e™*" du, error < 1075;
0 0

(c) / (s +2) ' Psinada.

5.4. MULTIPLE INTEGRALS 397

3. For expressing integrals appearing in the solution of certain integral equations the
following modification of the midpoint rule is often used:

Tn n—1
[K ude =3 misi
o =0

where y;1/2 = y(5(t: + tit1)) and mi; is the moment integral

tit1
mi; = / K(Z‘j,t) dt.
t

i

Derive an error estimate for this formula.

5.4 Multiple Integrals
5.4.1 Introduction

The ideas of numerical quadrature can be generalized to multiple integrals, but the
amount of work will increase rapidly with the number of dimensions. It is therefore
advisable to try to reduce the number of dimensions by applying analytic techniques
to parts of the task.

Example 5.4.1.
The following triple integral can be reduced to a single integral:

/ / / ~(@+v+2) gin(z2) sin(yz) dedydz
oo oo T 2
e d Y d Zsi = ——) e "“d
/0 a:/o e Ysin(yz) y/o e *sin(zx) /0 (1+:c2) e “dzx,

/0 e *sin(zz)dz = /0 e Ysin(yz)dz = 1j:—x2

The remaining single integral is simply evaluated by the techniques previously stud-
ied.

because

Often a transformation of variable is needed for such a reduction (see Problem
1 at the end of this section), but sometimes that does not help either. Several
approaches are then possible:

(a) numerical integration in one direction at a time—see Sec. 5.4.2;

(b) the use of a rectangular grid, mainly if the boundary of the region is composed
of straight lines—see Sec. 5.4.3.

(c) the use of an irregular triangular grid—possible for more general boundaries—see
Sec. 5.4.4.

(d) Monte-Carlo methods, mainly for problems with complicated boundaries and a
large number of dimensions—see Sec. 5.4.5.

398 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

5.4.2 Successive One-Dimensional Quadrature

For simplicity we restrict ourselves below to the two-dimensional case, although the
ideas are more general. Consider the integral

I:/Df(a:,y) dzdy (5.4.1)

where D is a domain in the z-y plane. The simplest way to compute an approxi-
mation to I is by repeated use of one dimensional quadrature rules. If lines parallel
with the z-axis have at most one segment in common with D, then I can be written

in the form
b d(z)
1=/ (/(: f(x,y)dy) dz,

b d(z)
1= [o@dr, o= [swwi (5.42)
a c(x)

For a sequence of values x;, i = 1,...,n we can evaluate the function ¢(z) by the
one-dimensional quadrature methods described previously. These function values
are then used in another one-dimensional quadrature rule to evaluate I. Note that
if D is a more general domain, it might be possible to decompose D into the union
of simpler domains on which these methods can be used.

or

Figure 5.4.1. Region D of integration.

Example 5.4.2.
Compute

I= // sin? ysin® 2(1 + 2% + y2)*1/2 dzdy,
D

where
D ={(z,y) | 2+ < 1TUu{(z,y) | 1<z <3|yl <0.5}.

is the composite region shown in Fig. 8.4.1. Then

3
_ in2
I—/_1 ¢(z) sin” z dz, (5.4.3)

c(x)
o(x) = / sin y(1 + 22 + yQ)_l/Qdy, (5.4.4)
—c(z)

5.4. Multiple Integrals 399

where

(-2, o< 15
o ={ 2> V3

Values of ¢(z) were obtained by the application of Romberg’s method to (5.4.4)
and numerical integration applied to the integral (5.4.3) yielded the value of I =
0.13202 4 10~°. Ninety-six values of « were needed, and for each value of x, twenty
function evaluations used, on the average. The grid is chosen so that = = %\/3,
where ¢'(z) is discontinuous, is a grid point.

5.4.3 Product Rules

Consider a double integral over a rectangular region D = {(z,y) |a <z < b,c <y <
d}. Decomposing the integral as in (5.4.2) and using one-dimensional quadrature
rules we can write

1= uip(w), dlai) = Y v f (i, y;),
i=1 j=1

or, combining the rules

n n
I Z Zw”f TiYj)s Wij = W0;. (5.4.5)

i=1 j=1

This is called a product rule for the double integral I, and it uses mn function
values fij = /(@i ;)-

In particular we can use values of f and an equidistant rectangular grid in
the (z,y)-plane with grid spacings h and k in the z and y directions, respectively.
Let zg = a, h = (b—a)/n, yo = ¢, k = (d—c¢)/m, and use the notation z; = zo +ih,
y; = yo + jk. Then the following formulas can be used, generalizing the compound
rectangle rule and trapezoidal rule, respectively:

I~ thZf 1oL, (5.4.6)

i=1 j=1

M N

i=1 j=1

Here, for the trapezoidal rule w;; = 1 for the interior grid points—i.e., when 0 < ¢ <
Mand 0 < j < N, wi; = % for the four corner points, while w;; = % for the other
boundary points. Both formulas are exact for bilinear functions, and the error can
be expanded in even powers of h, k so that repeated Richardson extrapolation can
be used.

Formulas of higher accuracy can also be obtained by using Gaussian quadra-
ture rules in the x and y direction. Note that if the one-dimensional formulas are

400 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

exact for polynomials of degree d; and ds, respectively, then the product rule will
be exact for bivariate polynomials xPy? where p < d; and ¢ < d.

Higher accuracy formulas can also be derived by operator techniques, based
on an operator formulation of Taylor’s expansion, see equation (4.8.2),

u(wo + hyyo + k) = eBP=TEDy (34). (5.4.8)

It is possible to use product rules on nonrectangular regions, if these can be
mapped into a rectangle. This can be done, e.g., for a triangle. For nonrectangular
regions, the rectangular lattice may also be bordered by triangles or “triangles”
with one curved side, which may be treated with the techniques outlined in the
next section.

5.4.4 Irregular Triangular Grids

A grid of triangles of arbitrary form is a convenient means for approximating a
complicated plane region. It is fairly easy to program a computer to refine a coarse
triangular grid automatically; see Fig. 8.4.2. It is also easy to adapt the density of
points to the behavior of the function.

Triangular grids are thus more flexible than rectangular ones. On the other
hand, the administration of a rectangular grid requires less storage and a simpler
program. Sometimes the approximation formulas are also a little simpler. Trian-
gular grids have an important application in the finite element method (FEM)
for problems in continuum mechanics and other applications of partial differential
equations; see Chapter 14.

Figure 5.4.2. Refinement of a triangular grid.
Let P; = (x4,y:), © = 1,2,3, be the vertices of a triangle 7. Then any point
P = (z,y) in the plane can be uniquely expressed by the vector equation
P = 01P1 + 02P2 + 03P3, 01 + 01 + (91 =1. (549)

In fact, the 6;, which are called barycentric coordinates of P, are determined
from the following nonsingular set of equations:

011’1 + 921‘2 + 931‘3 =, (5410)
b1y1 + O2y2 + O3y3 = v,
01 +02+65=1,

5.4. Multiple Integrals 401

The interior of the triangle is characterized by the inequalities 6; > 0, i = 1,2, 3.
In this case P is the center of mass (centroid) of the three masses 6,602,653 located
at the vertices of the triangle (see Fig. 8.4.3). This explains the term “barycentric
coordinates”. 6, = 0 is the equation for the side P, P;, and similarly for the other
sides.

Figure 5.4.3. Center of mass of a triangle.

If f is a nonhomogeneous linear function of P, i.e., if f(P) = a” P + b, then
the reader can verify that

f(P) =01 f(P1) + 02 f(P2) + 03 f(P3). (5.4.11)

this is a form of linear interpolation on triangular grids. In order to obtain quadratic
interpolation, we define

A" = f(P) + f(P)) —2f(%(P,-+Pj)), i#] (5.4.12)

Theorem 5.4.1.
The interpolation formula

f(P) = 01f1 +02f2 + 03 f3 — 2(0205A05 + 0301 A5, + 010,A75)
where f; = f(B;), is exact for all quadratic functions.

Proof. The right-hand is a quadratic function of P, since it follows from (5.4.10)
that the 6; are (nonhomogeneous) linear functions of z,y. (See also Problem 8.)
It remains to show that the right hand side is equal to f(P) for P = P;, and
P=(P+P)/2,i,j=1,2,3.

For P=P;, 6; =1, 0; =0, ¢ # j, hence the right hand side equals f;. For
P=(P+P)2,

;i =0,==, 6,=0, k#ik#]

and hence the right hand side becomes

1 1 1 1 1
§f¢+§fj+—2'§(fi+fj—2u(§(Pi+Pj))) :f(§(Pi+Pj))-

402 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

The following theorem is equivalent to a rule which has been used in mechanics
for the computation of moments of inertia since the nineteenth century:

Theorem 5.4.2.
Let A be the area of a triangle T, with vertices Py, P, P3. Then the quadrature
formula

//Tf(x,y)d:cdy (5.4.13)

_ %A (f(%(Pl +p2)) +f((P2+P3)) -I-f((Ps +P1)>

is exact for all quadratic functions.

PROOF: By symmetry, [, [6;dzdy is the same for i = 1,2,3. Similarly
fT [0:8; dzdy is the same for all three (i, j)-combinations. Hence for the quadratic
function

/T [$a) dsdy = alhi+ o+ i) — 20(A% + Ay + L)
= (a—4b)(fi + f2 + f3)
+ 4b(f((P + P)) +f((P> + P3)) +f((P +P1)))

a://01 dzdy, b://0102 dzdy.
T T

Using 61,6, as new variables of integration, we get by (5.4.10) and the relation
03 =1—0; — 6,

where

x=01(x1 —x3) + 61 (21 — x3) + 23,
y="01(y1 —y3) +01(y1 — ys) + ys.

Hence the functional determinant is equal to

Ty — T3 T2 — T3

=24,
Y —Ys Y2 — Y3

and (check the limits of integration!)

1— 91 1 A
a = / / 291d01d92 = 2A/ (91(1 — 01)d01 = =,
01=0 J 6> 0 3

1-6,1 1 1— 2 A
b= / / 260,0-d61db> = 2A/ ledel = —.
01=0 J 2= 0 2 3

The results now follows by insertion of this into (5.4.13). 0O

5.4. Multiple Integrals 403

Figure 5.4.4. Correction for curved boundary segment.

A numerical method can be based on Theorem 5.4.1, by covering the domain
D by triangles. For each curved boundary segment (Fig. 8.4.4) the correction

% F(S)A(PRQ) (5.4.14)

is to be added, where A(PRQ) is the area of the triangle with vertices P, R, Q. The
error of the correction can be shown to be O(||Q — P|°) for each segment, if R is
close to the midpoint of the arc P(Q). If the boundary is given in parametric form,
x = z(t), y = y(t), where z and y are twice differentiable on the arc PQ, then one
should choose tg = %(tp +tg). Richardson extrapolation can be used to increase
the accuracy, see the examples.

Figure 5.4.5. The grids for I, and I¢.

Example 5.4.3.
Consider the integral

I://(x2+y2)k dzdy
D

where D is the region shown in Fig. 8.4.5. Let I, be the result obtained with n
triangles. The grids for Iy and I14 are shown in Fig. 8.4.5. Put

1 1

The following results were obtained. In this case the work could be reduced by a
factor of 4, because of symmetry.

It is seen that R’-values have full accuracy for k¥ = 2 and the R"-values have
high accuracy even for k = 4. In fact, it can be shown that R'-values are ex-

404 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

1y I o R, ‘6 R Exact

0.250000 0.307291 0.310872 | 0.311111 0.311111 0.311111 | 0.311111
0.104167 0.161784 0.170741 | 0.165625 0.171338 0.171429 | 0.171429
0.046875 0.090678 0.104094 | 0.093598 0.104988 0.105169 | 0.105397

=W N

act for any fourth-degree polynomial and R”-values are exact for any sixth-degree
polynomial, when the region is covered exactly by the triangles.

Example 5.4.4.
The integral

a//(a2 —)72 dady

over a quarter of the unit circle is computed with the grids shown in Fig. 8.4.2,
and with boundary corrections according to (5.4.9). The following results, using
the notation of the previous example, were obtained and compared with the exact
values:

Ig 132 R’g Exact

0.351995 0.352077 0.352082 | 0.352082
0.337492 0.337608 0.337615 | 0.337616
0.335084 0.335200 0.335207 | 0.335208
0.334259 0.334374 0.334382 | 0.334382

R O =N

Note, however, that Richardson extrapolation may not always give improve-
ment, e.g., in cases, where the rate of convergence of the basic method is more rapid
than usual.

We mention also that some progress has been made in developing quadra-
ture rules of optimal order for rectangles and triangles. In one dimension this led
to Gaussian quadrature rules. In two dimensions the problem is much more diffi-
cult. Non-product rules for simple regions like a circle, equilateral triangle, regular
hexagon, etc., can be found in Abramowitz and Stegun [1, pp. 891-895]. For a thor-
ough treatment of multiple integrals the reader is referred to the book by Stroud

[3]-

5.4.5 Monte Carlo Methods

One of the most important application of the Monte Carlo method described in
Section 1.4.2 is in the numerical calculation of multiple integrals. If we use product
rules to evaluate a multiple integral in d dimensions the work will depend exponen-
tially on d. This means that the problem may quickly becomes intractable when d
increases. On the other hand, for the Monte Carlo method the complexity always is
proportional to 1/¢, where € is the required tolerance independent of the dimension
d. Hence the Monte Carlo method can be said to break “the curse of dimension”
inherent in other approaches!

5.4. Multiple Integrals 405

We shall briefly describe some ideas used in integration by the Monte Carlo
method. For simplicity, we first consider integrals in one dimension, even though
the Monte Carlo method cannot really compete with traditional numerical methods
for this problem.

Let Ry, Ro, . .., R, be a sequence of random numbers rectangularly distributed
on [0, 1], and set

1 1 n
I:/O f(a:)da:zflzﬁ;f(m).

This generalizes to multiple integrals. For example, to approximate a two dimen-
sional integral over the domain 0 < z,y < 1, we sample the integrand f(z,y) in
points (Ra;—1, Ra;), for i = 1,2, ..., n. The technique can be applied to an integral
ovee a general region D, provided that we can sample the integrand f randomly
over D.

One can show that the expectation of the variable I; is I and that the standard
deviation of this estimate decreases in proportion to n~'/2. This is very slow even
compared to the trapezoidal rule—where the error decreases as n~2. To get one
extra decimal place of accuracy we must increase the number of points by a factor
of 100. To get three digit accuracy the order of one million points may be required!
However, if we consider, e.g., a six-dimensional integral this is not exorbitant. Using
a product rule with 10 subdivisions in each dimension would also require 10° points.

The above estimate is a special case of a more general one. Suppose X;
i=1,2,...,n, has density function g(z). Then

1 f(X)
b= n ; 9(X5)

has expected value I, since

E(f(Xf;> :/01%f(x)dx:/01f(x)dle.

9(X;

If one can find a frequency function g(z) such that f(z)/g(z) fluctuates less than
f(z), then I, will have smaller variance than I;. This procedure is called im-
portance sampling; it has proved very useful in particle-physics problems, where
important phenomena (e.g., dangerous radiation which penetrates a shield) are as-
sociated with certain events of low probability.

In Sec. 5.4.5 we mentioned the method of using a simple comparison problem.
The Monte Carlo variant of this method is called the control variate method.
Suppose that ¢(z) is a function whose integral has a known value K, and suppose
that f(z) — ¢(x) fluctuates much less than f(z). Then

=K+ (@) =s@)dem K+ b L= 13 (1(R) = 6(R).

i=1

where I3 has less variance than I7.

406 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

Review Questions

1. How is bilinear interpolation performed? What is the order of accuracy?

2. Define barycentric coordinates, and give the formula for linear interpolation on a
triangular grid.

3. Describe the methods for numerical integration with rectangular or triangular grids.

Problems

1. Let D be the unit circle. Introduce polar coordinates in the integral

ysin(ky)
I—// 2_}_dey

and reduce it analytically to a single integral.
2. Let E be the ellipse {(z,y) | (#/a)? + (y/b)? < 1}. Transform

IZ//Ef(fv,y)dfvdy

into an integral over a rectangle in the (r,t¢)-plane with the transformation z =
arcost, y = brsint.

3. Compute by bilinear interpolation (0.5, 0.25) when
w(0,0) =1, u(1,0)=2, u(0,1)=3, u(l,1)=>5.

4. Show that, using the notation for equidistant rectangular grids, the formula

zg+h 0+k
/ / x,y da:dy— (f10+f01+f_10+f0—1+2f00)

is exact for all cubic polynomials.

5. Is a quadratic polynomial uniquely determined, given six functions values at the
vertices and midpoints of the sides of a triangle?

6. Show that the boundary correction of (5.4.9) is exact if f = 1, and if the arc is a
parabola where the tangent at R is parallel to PQ.

7. Formulate generalizations to several dimensions of the integral formula of Theo-
rem 5.4.1, and convince yourself of their validity.

Hint: The formula is most simply expressed in terms of the values in the vertices
and in the centroid of a simplex.

8. (a) Write a program which uses the Monte Carlo method to compute fol e® dx. Take
25, 100, 225, 400 and 635 points. How does the error depend (approximately) on
the number of points?

(b) Compute the integral in (a) using the control variate method. Take ¢(z) =
1+ 2 + 2 /2. Use the same number of points as in (a).

Problems 407

Notes and References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Na-
tional Bureau of Standards, Dover Publications, New York, NY, 1965.

[2] R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner.
QUADPACK, A Subroutine Package for Automatic Integration. Springer-
Verlag, Berlin, 1983.

[3] A. Stroud. Approzimate Calculation of Multiple Integrals. Prentice-Hall,
Englewood Cliffs, NJ, 1972.

408 CHAPTER 5. APPROXIMATE COMPUTATION OF LINEAR FUNCTIONALS

Chapter 6

Solving Scalar Nonlinear
Equations

6.1 Introduction

In this chapter we study numerical methods for computing the roots of a nonlinear
equation

fz) =0, (6.1.1)

where f(z) is a real- or complex-valued function of one variable. We also briefly
consider the related problem of finding the minimum or maximum of a real-valued
function f(z). These are problems that has occupied mathematicians for many
centuries.

The roots of (6.1.1) cannot in general be expressed in closed form. Even when
an explicit solution is available, this is often so complicated that numerical methods
are more useful. Such methods are iterative in nature, that is, starting from one
or more initial approximations to the root, they produce a sequence {z,,} which
presumably converges to the desired root.

The function f(z) need not be known by a closed analytical expression. For
the methods to be applicable it suffices that we can evaluate f(z) and possibly
some of its derivatives for given numerical values of . The object is often to use
as few function evaluations as possible in order to approximate the root with a
prescribed accuracy. It is not uncommon with applications where each function
value is obtained by a complicated computation, e.g., by the numerical solution of
a differential equation.

With certain methods it is sufficient for convergence to know an interval [a,b]
which contains the desired root (and no other root). An important such method is
the bisection method described in Section 6.1.1. Other methods, which make more
use of regularity assumptions about f(z), may require an initial approximation
which is close to the desired root; in return, these methods converge more quickly.
Such methods are often special cases of fixed point iteration methods, which are
covered in Section 6.2, Newton’s method and its modifications are the most impor-
tant of these; see Section 6.3. The method in Section 6.4 based on interpolation can
achieve similar efficiency without using derivatives. It is often suitable to use, e.g.,

409

410 Chapter 6. Solving Scalar Nonlinear Equations

the bisection method to roughly locate the root and then change to a more rapidly
convergent method in the final stage.

Since an iterative method has to be truncated after a finite number of steps
we can only hope to obtain approximations to the roots of (6.1.1). However, in
practice the round-off errors occurring in the evaluation of computed function values
of f(z) is the dominant source of error. The effect of such errors on the attainable
accuracy of computed roots is discussed in Section 6.5. For the most part we
limit ourselves to the problem of determining simple root a, i.e., we assume that
f'(a) # 0. Multiple roots are discussed in Section 6.5.3. Special methods for the
problem of determining real and complex roots of a polynomial equation P(x) =0
are taken up in Section 6.6.

Solving a system of nonlinear equations can be a far more difficult problem.
Even though many of the methods for a single equation, such as Newton’s method,
are easily generalized, they presume that good approximations to the roots are
known. To obtain convergence from less accurate initial approximations requires
several modifications. Hence the discussion of such methods are deferred to Chap-
ter 11.

6.1.1 The Bisection Method

Rough initial approximations to the real roots of an equation f(x) = 0 can often be
obtained by graphing the function f(z). In simple cases this can be a useful tool
for determining the number of roots and intervals containing each root.

0.4

0.2r-

—0.2+

—0.4}

Figure 6.1.1. Graph of curve y = (z/2)? — sinz.

By the intermediate-value theorem if a function f(x) is continuous for a <
x < b, f(a) # f(b), and k is between f(a) and f(b), then there is a point £ € (a,b)
such that f(£) = k. In particular, if f(a)f(b) < O then the equation f(z) = 0 has
at least one root in the interval (a,b).

Example 6.1.1.

6.1. Introduction 411

We obtain a rough estimate of the root a of the equation
f(z) = (z/2)* —sinz = 0.

from the graph in Figure 6.1.1. It is clear that a € (1.8,2), probably close to
a =~ xo = 1.9. (Alternatively we could look for the intersection of the two curves
y1 = (x/2)?, yo = sinw.)

Another possibility is to make a table of some values of the function f(z). We
can easily set up the following table:

x (x/2)? sinz flx)

1.6 0.64 0.9996 <O
1.8 081 0.974 <0
2.0 1.00 0.909 >0

From this table we can conclude that there is a root in the interval (1.8,2.0).

A more systematic use of the above tabulation method is made in the bi-
section method. Assume that f(z) is continuous in the interval (ap,bo) and
that f(ao)f(bo) < 0. We shall determine a sequence of intervals I = (ag,by),
k=1,2,3,..., such that

(alabl) D) (a27b2) D) ((Lg,b3) c--

and which all contain a root of the equation f(x) = 0. The intervals are determined
recursively as follows. Given Ij, = (ay, b;) compute the midpoint

1
my = E(ak + bk) (612)

and f(my). We can assume that f(my) # 0, since otherwise we have found a root.
The new interval Ix41 = (ag+1,br+1) is then determined by the rule

_ J (ma, be), i f(mg) far) > 0;
(Aht1,0p41) = { (akljmi), if f(mi)f(ai) <0. (6.1.3)

From the construction it follows immediately that f(agt+1)f(bg+1) < 0 (see also
Figure 6.1.1) and therefore the interval Iy11 also contains a root of f(z) = 0.

After n bisection steps we have contained a root in the interval (a,,b,) of
length 27"(by — ag). If we take m,, as an estimate of the root a, we have the error
estimate

lae — | < 27D (b — ag). (6.1.4)

At each step we gain one binary digit in accuracy or, since 1071 ~ 2733, on the av-
erage one decimal digit per 3.3 steps, which may suffice for many practical purposes.
To find an interval of length § which includes a root will take about log, ((b —a)/J)
evaluations of f.

412 Chapter 6. Solving Scalar Nonlinear Equations

L L L L L L ,
1.75 1.8 1.85 1.9 1.95 2 2.05 2.1
x

Figure 6.1.2. The bisection method.

Example 6.1.2.
The bisection method applied to the equation (x/2)? —sinz = 0, with Iy =
(1.8,2) gives the sequence of intervals [ay, b,], where:

n ap b My, flmy)
1 1.8 2 1.9 <0
2 19 2 1.95 >0
3 1.9 1.95 1.925 <0
4 1.925 1.95 1.9375 >0
5 1.925 1.9375 1.93125 <0
6 193125 1.9375 1.934375 >0

Here after six function evaluations we have a € (1.93125,1.934375) an interval of
length 0.2 - 276 = 0.003125.

When implementing the bisection method the midpoint should be computed
asm = a+ %(b — a). This has the advantage that no round-off occurs in the
subtraction (see Theorem 2.2.2).

Example 6.1.3.

The inequalities a < %(a + b) < b, where a and b are floating point numbers
with a < b can be violated in base 10 arithmetic. For example, assume that floating
point arithmetic with six decimal digits is used. Taking a = 0.742531 and b =
0.742533 we obatin fl(a+b) = 1.48506 (rounded) and £ (a +b) = 0.742530. On the
other hand the inequalities a < a + %(b —a) < b are true in base § arithmetic, for
any 5. With a and p as given we get the correct value 0.742532.

An algorithmic description of the bisection method is given below. In this
the tolerance ¢ is increased by the amount wmax(|al, |b|), where u is the machine
precision. This is to guard against the possibility that J has been chosen smaller

6.1. Introduction 413

than the spacing between the floating point numbers between a and b.
Algorithm 6.1.1 The Bisection Method.

Let f be a given function and I = [a, b] an interval such that b > a and f(a) f(b) < 0.
The algorithm bisect attempts to compute an approximation to a root m € I of
f(z) =0, with an error less than a specified tolerance 6 > 0.

root = bisect(f, a, b,);

0 =0 + u - max((|al, |b]);

fa= f(a);

while |b —a| > 0
m=a+ (b—a)/2;

fm = f(m);
if fm-fa<0
b=m;
else
a=m; fa=fm,;
end;
end;

root = a + (b—a)/2;

The bisection algorithm is deceptively simple and it has be stressed that it
may not return an approximation with an error close to . This is because the
proper choice of interval will only be made as long as the sign of f(m) is correctly
evaluated. In Section 6.5 we show that there is a limiting accuracy with which a
root can be determined, which is independent of the particular method used.

The bisection algorithm makes no quantitative use of the magnitude of the
function values. As long as the sign of the computed function value f(m) is correctly
determined the correct subinterval will be chosen. If the tolerance § is chosen too
“small” or the root is ill-conditioned this may fail to be true in the later steps (cf.
Sec. 6.2), but even then the computed midpoints will stay within the domain of
uncertainty; cf. Sec. 6.5.1.

If the initial interval (a, b) contains several roots of f(z) = 0, then the bisection
method will converge to just one of these. If it is known that the minimum distance
between two zeros is less than d and we want to compute all roots in (a, b), then we
can start by computing the function values of f(z) at equidistant points a,a+d, a+
2d, The bisection method is then applied to each interval I}, = [a+kd, a+(k+1)d]
in which f(x) changes sign.

If we only know (say) a lower bound a < « for the root to be determined we
can proceed as follows. We choose an initial steplength d and in the first hunting
phase compute successively function values f(a+d), f(a+2d), f(a+4d),..., until
a function value is found such that f(a)f(a + 2*d) < 0. At this point we have
bracketed a root and can start the bisection algorithm.

414 Chapter 6. Solving Scalar Nonlinear Equations

In the bisection method the interval of interest is in each step split into two
subintervals. An obvious generalization is to partition instead into k subintervals,
for k > 2. In such a multi-section method of order k the interval I = [a,b] is
divided into k subintervals I; = [z;, ®;4+1], where

x;=a+i[(b—a)/k], i=0:k.

Bisection is multi-section of order 2. If there exists only one root in the interval I
and we wish to compute it with an absolute error ¢, then it is necessary to perform

e =1logy (15-4) [oma(h)

multi-sections of order k. Thus, the efficiency of multi-section of order k£ compared
to bisection is

ny/(kng) = log, (k) /k.

Hence if there is a single root in the interval bisection is always preferable. If there
are several roots in the interval multi-section may perform better if subintervals can
be processed in parallel.

In Section 4.4.5 we considered evaluating the nonzero B-splines for a given
argument . Then we first have to search an ordered sequence of knots 7, ..., T,
to find the interval such that 7; < = < 7;41. This can be solved by a slight
modification of the bisection method. An similar problem important in computer
science is searching in an ordered register, e.g., a register of employees ordered
according to increasing Social Security number. If the nth number in the register
is denoted by f(n), then searching for a certain number a means that an equation
f(n) = a is to be solved (here f is an increasing, discontinuous function). The
bisection method can also be used in searching an alphabetically ordered register.

The bisection method has the advantage that, for any function f(x) continuous
in the interval [a,d], it reduces by one half the width of an interval bracketing a
root @ € (a,b). This is true provided that the sign of computed functions values
are correctly determined. The rate of convergence is slow, but independent of the
reqularity of f(x). In the rest of this chapter we will consider methods which,
assuming more regularity of f(z) can achieve much faster rate of convergence.

Review Questions

1. What does limit the final accuracy of a root computed by the bisection algorithm?
Discuss suitable termination criteria.

Problems

1. Use graphic representation to determine the zeros of the following functions to one
correct decimal:

6.2. Fixed-Point lteration 415

(a) 4sinz+1—2; (b)l—-z—e 2" (c) (z+1)e®* —1;

(d) 2* —42® + 202 -8 (e) e* +22+x; (f)e®* —2>—22—2; (g) 327 + tan=.
2. Show analytically that the equation xe™ ™

y<e
3. Plot the functions f(z) = coshz and g(z) = 1/ cosz and deduce that the equation

cosh z cosz = 1 has its smallest positive root in the interval (37/2,27). Determine

this root using the bisection method.

= ~ has exactly two real roots when

4. The following equations all have a root in the interval (0, 1.6) Determine these with
an error less than 10~ ° using the bisection method.
(a) zcosz=Inz; (b)2x=e"% (c)e *®=1—u.

5. Let k£ be a given non-negative number and consider the equation sinz = —kcos .
This equation has infinitely many roots. Separate the roots, i.e., partition the real
axis into intervals which contain exactly one root.

6. The choice of my as the arithmetic mean of ap_1 and by_1 in the bisection method
minimizes the worst case maximum absolute error. If in the case that ab > 0 we take

instead
mg =/ akbk

i.e., the geometric mean, then the worst case relative error is minimized. Do Exam-
ple 6.1.2 using this variation of the bisection method.

6.2 Fixed-Point Iteration

We now introduce a very general class of iteration methods, which includes many
important root-finding methods as special cases.
Let ¢ be a continuous function and {z,} the sequence generated by

Tpt1 = d(zn), n=0,1,2,.... (6.2.1)
for some initial value xy. Assuming that lim,,_,. ©, = a we have that

a= nhﬁn;(} Ty = 711520 o(zn) = (), (6.2.2)
i.e., the limiting value a is a root of the equation z = ¢(z). We call a a fixed point
of the mapping z — ¢(z), and the iteration (6.2.1) a fixed-point iteration.
An iterative method for solving an equation f(z) = 0 can be constructed by
rewriting it in the form x = ¢(x), which then defines a fixed point iteration (6.2.1).
Clearly this can be done in many ways.

Example 6.2.1.

The equation z+In z = 0 can, for example, be written as: (i) z = —Ilnz; (i)
x=e"% (ili) 2 = (z + e *)/2. Each of these give rise to a different fixed-point
iteration.

In Figure 6.2.1 the results from the first eight iterations

Tpy1=e ", w9 =03,

416 Chapter 6. Solving Scalar Nonlinear Equations

0.9F

0.8

0.7

0.6f

05F

04r

0.3f

0.2

0.1

Figure 6.2.1. The fiz-point iteration xyy1 = e **, xg = 0.3.

are pictured. We get z9 = 0.5641 (correct value 0.567143).

As was shown already in Section 1.2, the iteration (6.2.1) may not converge
even if the initial value ¢ is chosen arbitrarily close to a root. If (6.2.2) holds for
all zg in a sufficiently close neighborhood of « the « is called a point of attraction
otherwise « is a point of repulsion. We now develop a general theory for fixed
point iteration methods.

A sufficient condition for (6.2.1) to generate a convergenct sequence is given
in the following theorem.

Theorem 6.2.1.
Suppose that the function ¢(z) has a real fized point a,, and that in the closed
interval
J={z|l-al <p}

x — ¢(z) is a contraction mapping, i.e.,

|¢(x) = p(y)| < ml|z —y[, m <1, (6.2.3)

Then the iteration method x, = ¢(xn_1), n =1,2,3..., generates a sequence {x,}
such that for all zoy € J:

(¢) xn€d,n=12,..;

(b) lim,, 00 T, = @,

(¢) « is the only root in J of x = ¢(x).

Proof. We first prove assertion (a), by induction. Suppose that z,,—1 € J. Then
by (6.2.3) it follows that

|[7n — af = [¢(zn-1) = ¢(@)| < m|zn —a <mp.

6.2. Fixed-Point lteration 417

Hence z,, € J and (a) is proved. Repeated use of the inequality above gives
|zn —al <m|z,—1 —a| < --- <m"|zg — al,

and since m < 1, the result (b) follows. Suppose, finally, that = ¢(z) has another
root 8 € J, 8 # «. Then, by (6.2.3)

la = 8| = |¢() = ¢(B)| < |a =5,

a contradiction; thus (c) follows. 0O

Note that if ¢'(z) exists, then a sufficient condition for (6.2.3) to hold is that
¢ ()] <m<1, =ze€elJ (6.2.4)

since then by the mean value theorem we have for z,y € J that

() — ¢ = [¢'(C)lle —yl <]z —yl, €

On the other hand if |¢'(a)| > 1 then the iterative method (6.2.1) diverges. The
four different cases that occur, depending on the sign and magnitude of ¢'(«) were
illustrated in Figures 1.2.1a—d.

In Theorem 6.2.1 we assumed the ezistence of a fized point a of ¢(x). It is
remarkable that the theorem can be modified so that it can be used to prove the
existence of a fized point, and hence of a root of the equation x = ¢(z).

Theorem 6.2.2.
Let zo be a starting point, and x,+1 = ¢(x,), n = 1,2,.... Further, let m be
a constant, 0 <m < 1, and J be a closed interval with ¢ € J such that

[6(x) = ¢(y)| <mlz —yl, zyecJ

and 1 + 1 (x1 — o) € J. Then (a), (b) and (c) of Theorem 6.2.1 are true.

Proof. The theorem will be proved in a more general setting in Chapter 12 (see
Theorem 12.2.1). O

Assume that ¢'(z) exists and is continuous in a neighborhood of a root «.
Then it follows from the proof of Theorem 6.2.1, that if x(is chosen sufficiently
close to a, then the sequence z,, generated by (6.2.1) converges, and it holds that

Tp—Q
lim ——— = ¢'(a).
n—00 Tp_1 — &
If ¢'(a) # 0 then we say that convergence is linear with rate |¢'(«)|. The iteration
method z,,11 = ¢(z,,) is then a first order method.

We now formally define the important concept of convergence order for a

convergent sequence.

418 Chapter 6. Solving Scalar Nonlinear Equations

Definition 6.2.3.
A convergent sequence {x} with limy_, o xx = «, is said to have conver-
gence order equal to p if it holds

mﬂﬂﬂlﬂzc¢a (6.2.5)
k—o0 |.1L'k - Oé|p
C is called the asymptotic error constant. For p =1 it is necessary that |C| < 1
and C'is called the rate of linear convergence. Convergence is superlinear if C =0
for somep > 1. Forp=1,2 3 the convergence is called linear, quadratic, and cubic,
respectively.

Note that p need not be an integer in (6.2.5). The number of accurate decimal
places in the approximation z, equals §, = —logyg|en]. From equation (6.2.5)
follows

Ont1 = pd, —logq |C|.

Hence for linear convergence (p = 1) as n — oo each iteration gives a fixed number
of additional decimal places. For a method with convergence of order p > 1 each
iteration increases the number of decimal places p-fold as n — oo.

If each iteration requires m units of work (usually the work involved in com-
puting a function value or a value of one of its derivatives) then the efficiency
index of the iteration is defined as

E =p'/™. (6.2.6)

The efficiency index gives a basis for comparing the efficiency of iterative methods
of different order of superlinear convergence. (Methods that converge linearly all
have E = 1.)

The order of the iteration method (6.2.1) can be determined if ¢(x) is suffi-
ciently many times continuously differentiable in a neighborhood of a.

Theorem 6.2.4. The iteration method xp+1 = &(xy) is of order p for the root «

if and only if
$W(a)=0, j=1:p—1, ¢P(a)£0. (6.2.7)

Proof. If equation (6.2.7) holds, then according to Taylor’s theorem we have
Bt = $on) = at 0 (G =), G € (e,
Hence for a convergent sequence x,, the error €, = x,, — « satisfies
Tim Jenia]/lenl” = |67 ()] /p! £ 0,

and the order of convergence equals p. It also follows that if ¢(9)(a) # 0 for some
j,1<j < p,orif ¢ (a) =0, then the iteration cannot be of order p. [

Problems 419

For a linearly convergent fixed point iteration we have

Inm® Lo £0,
Tp—1 — &

that is, the sequence {z,, — a} approximately forms a geometric series. A more

rapidly convergent sequence {«},} can then be obtained by Aitken extrapolation

(see Section 3.2.3)

Tl =2, — (Azy,1)? A%z, . (6.2.8)

n

Note that if the convergence is not linear, then the sequence {z]} will usually
converge slower than {z,}!

Example 6.2.2.

The equation © = e™* has one root a & 0.567. Using the fixed-point iteration
Tpt+1 = € *» combined with Aitken extrapolation we obtain the result shown in the
table below.

<

In Azp_q A2$n—2 T,
0.56700 00000
0.56722 45624 2245624
0.56709 71994 -1273630 -3519254 0.56714 32925
0.56716 94312 722318 1995948 0.56714 32911
0.56712 84650 -409662 -1131980 0.56714 32906

B W o R OS

It is seen that in this example the extrapolated sequence {z!,} converges much more
rapidly, and nine correct decimals are obtained.

In the above example Aitken extrapolation was used in a passive way to trans-
form the sequence {z,} into {z},}. It is also possible to use Aitken extrapolation in
an active way as follows. We start as before by computing x1 = ¢(xo), x2 = ¢(x1)
and apply the formula (6.3.17) to compute /. Next we continue the iterations
from x4, i.e., compute x3 = ¢(x}), x4 = ¢(x3). We can now extrapolate from z}, x3
and z4 to get x4, etc. It can easily be shown that the sequence z, = x},, satisfies

Zn+l = ¢(Zn); where
(¢(2) — 2)?
(¢(8(2)) — ¢(2)) — (¢(2) — 2)

Active Aitken extrapolation may lead to a convergent method even when the basic
iteration w41 = @(xy,) diverges!

ba)=z-

Problems

1. In Example 6.2.1 three different fixed point iterations were suggested for solving the
equation x + Inz = 0. (a) Which of the formulas can be used?

420 Chapter 6. Solving Scalar Nonlinear Equations

(b) Which of the formulas should be used?
(c) Give an even better formulal

2. Investigate if and to what limit the iteration z,1 = g%n—1 sequence converges for
various choices of zg.

3. (a) Consider the fix point iteration xn+1 = ¢(z,), where ¢(x) = z + (z — 1)2. Show
that this has a fix point for o = 1 and that ¢'(a) = 1.

(b) Show that the iteration in (a) is convergent for z¢ < 1.

4. In order to determine a root of the equation x = ¢(x) one has computed x4 =
0.43789, x5 = 0.43814, and knows that |¢'(z)| < 0.4. How many more iterations are
needed to be sure to attain an error less than 0.5-107*?

5. Let the function f(z) be four times continuously differentiable and have a simple
zero a. Successive approximation are computed by Tn41 = (2,41 + Z41)/2, where

Thr = on—ul@n), @hsr = @n — ulwn)/u (@),
and u(x) = f(z)/f'(x). Show that if the sequence z, converges to «, then the
convergence is cubic.

6. Use active Aitken extrapolation on the (divergent) iterative method zn4+1 = 5lnzx,
to compute the smallest root of the equation x = 5Ilnx. Start with zo = 1.3.

6.3 Newton’'s Method
6.3.1 Introduction

In this and the following sections we will study methods which make more efficient
use of the computed function values than the bisection method and also use values of
derivatives of f(z). If f(z) is sufficiently regular such methods achieve significantly
faster convergence.

Newton’s method! for solving an equation f(z) = 0 is based on approximating
the curve y = f(z) by its tangent at the point (z,, f(xy)), where x,, is the current
approximation to the root. Thus the next approximation x,,; is determined as the
abscissa of the point of intersection of the tangent with the z-axis (see Figure 1.2.3).
Clearly we have to assume that f'(z,) # 0. This is equivalent to replacing the
equation f(z) =0 by

T(z) = f(xn) + (x —) f'(zn) =0, (6.3.1)

where T'(z) is obtained by truncating the Taylor expansion of f(z) at z,, after the
first two terms. Hence in Newton’s method x4 is determined from

Tpnt1 = Tp +hp, hp = _f('rn)/f’('rn) (6.3.2)

If the iterations are broken off when |h,| < ¢ it can be shown (see the error
analysis below) that the truncation error is less than ¢, provided that |Kh,| < 1/2,
where K is an upper bound for |f"”/f’| in the neighborhood of the root. This
restriction is seldom of practical importance. However, one should also take account
of rounding errors made in computing h,,, see Section 6.5.

INewton’s method is occasionally called Newton-Raphson’s method; for a historical account
of the development of the method see Ypma [14, 1995].

6.3. Newton's Method 421

0.3

0.2

0.1

y
o
xF - - ==

o

L L L L
15 1.6 1.7 1.8 1.9 2 2.1 2.2
X

Figure 6.3.1. Newton’s method for the equation f(x) = (z/2)* —sinz = 0.

Example 6.3.1.

Given the equation f(z) = (2/2)? —sinz = 0 and f'(z) = 2/2 — cosx, we
want to compute its positive root; cf. Example 6.1.1. In Figure 6.3.1 the first step
starting from zg = 1.8 is illustrated. Continuing Newton’s method generates the
following approximations (correct digits in z,, in bold):

Ln f(an) f'(xn) han
1.8 —0.163847 630878 1.127202 094693 —0.145357 812631
1.945357 812631 0.015436 106659 1.338543 359427 0.011532 018406
1.933825 794225 0.000095 223283 1.322020 778469 0.000072 028582
1.933753 765643 0.000000 003722 1.3219174 29113 0.000000 002816
1.933753 762827

B ow N R oS

The number of correct digits approximately double in each iteration until the
limiting precision is reached. Although the initial approximation is not very good,
already x4 is correct to twelve decimals!

Note that when we approach the root the relative precision in the computed
values of f(z,) becomes less and less. Since f'(x,,) is only used for computing h,,.
it need not be computed to much greater relative precision than f(x,), In the above
example we could have used f’(x2) also for n > 2 without affecting the convergence.
Such a simplification can be of great importance when Newton’s method is used on
systems of nonlinear equations; see Section 12.2.3.

Newton’s method applied to the equation f(z) = 2P — ¢ = 0 can be used
to compute ¢'/P, p = +1,+2,.... The sequence 1,22, 3, ..., is then computed
recursively from

P —c

1°

Ln+l = Tn — e
Y2

422 Chapter 6. Solving Scalar Nonlinear Equations

which can be written as
1 c Tn
Tptl = — Dz, + ——) = —[(1 -p) — cz,,?]. 6.3.3
a= (G-) =B p el 633

It is convenient to use the first expression in (6.3.3) when p > 0 and the second
when p < 0. This iteration formula is often used for calculating, e.g., /¢, ¥/c, and
1/+/c, corresponding to p = 2,3, —2 respectively. Note also that 1/¢, corresponding
to p = —1 can be computed by the iteration

Tyl = Tp + (1 — cay),
using only multiplications and addition no divisions.
Example 6.3.2.
Suppose we want to construct an algorithm based on Newton’s method for

efficiently computing the square root of a given number z > 0. The first problem is
to find an initial approximation. This task is greatly simplified by writing

a=c-4° 1/4<c<]1,

where e is an integer. Then we have \/a = /c - 2¢, and we need only consider the
reduced range ¢ € [1/4,1). An initial approximation o can now be obtained by
linear interpolation of x = y/c in the endpoints 1/4, 1, giving the iteration zy =
(1+2¢)/3,

1 c
Tpl = Tn + hn, hn_i(wn—a), n=0,1,2,.... (6.3.4)

For ¢ = 0.5 the result is (correct digits in boldface)

o = 0.66666666666667, x; = 0.70833333333333, z2 = 0.70710784313725,
3 = 0.70710678118734, x4 =0.70710678118655.

The quadratic rate of convergence is apparent. For a slightly more refined variant
of this method see Problem 10.

6.3.2 Convergence Results

We first consider the local convergence of Newton’s method, that is the convergence
in a neighborhood of a root a.

Theorem 6.3.1. Assume that « is a simple root of f(xz) =0, i.e., f'(a) #0, and
that f' exists and is continuous. Then the convergence order of Newton’s method is
at least equal to two.

Proof. Newton’s method can be written as a fixed point iteration zjy1 = ¢(xg)
where

(6.3.5)

6.3. Newton's Method 423

where f'(x) # 0 for all in a neighborhood of a. If f(z) is twice differentiable then

d(x)=1—u'(x) = M (6.3.6)

f'(@)?
Hence ¢'(a) = 0, and the result follows from Theorem 6.2.4. 0O

Assume that f'(x) is continuous in a neighbourhood of « and that f'(«) # 0.
Expanding f in a Taylor series about zo we get

0= f(a) = f(zn) + (@ —z,) [(&), & € int(zy, a).

We let €, = z,, — a denote the error in the approximation x,. Subtracting (6.3.1)
with © = 2,41 and using xp41 — Ty = €p41 — €5, We have

—enf'(§n) = (€nt1 — €a) f'(20),

or after dividing by f'(x,)

€nt1 = (1— fl(gn))en, n=20,1,2,....

f'(@n)

Hence, if x¢ is sufficiently close to «, then lim, ,. x, = «. In other words « is a
point of attraction of the Newton iteration and Newton’s method always converges
(to a simple root) from a sufficiently good starting approzimation.

For convergence f need only have one continuous derivative. To get a more
precise relation between €,11 and €, we assume in what follows that f has two
continuous derivatives. Taking one more term in the Taylor series of f yields

0= f(@) = flea) + (@ = 2a)f (2) + 3@ = 2) 0" (G, Gu € int(em,).

After subtracting equation (6.3.1) and dividing by f'(z,) we have
1 f"(6n)

_ 2
Ty)

(n € int(zy,,). (6.3.7)

Provided that f'(«) # 0, it follows that (6.2.5) is satisfied with p = 2 and we have

f"(@)
f'(e)
If f"(a) #0, then C' > 0 and the rate of convergence is quadratic.

Note that the relation of equation (6.3.7) between the errors only holds as long
as the round-off errors in the calculations can be ignored. The limiting factor for
the accuracy which can be achieved in calculating the root is the accuracy of the
computed values of f(z). This will be discussed more fully in Section 6.5.

The following theorem gives a condition on zg, which is sufficient for the global
convergence of Newton’s method.

1
C=3 ‘ : (6.3.8)

424 Chapter 6. Solving Scalar Nonlinear Equations

Theorem 6.3.2. Assume that I = [a,b] is an interval containing the root a such
that
1]£")
2| Fa)

Let xg = a + ¢g be chosen so that

<m, VY zyé€el.

[—|eo|, +|eo|]] C I, and |meg| =mlzg —a| < 1.

Then x,, € I for alln >0, and

1 n
len] < E(meo)2 . (6.3.9)

Proof. If z, € I, then from equation (6.3.7) it follows that |e,41| < me2, or
equivalently |me, 1| < |mep|?. Since zg € I, the proof follows by induction. O

In practice, since « is of course unknown, the criterion in Theorem 6.3.2
cannot directly be applied. Below we state a sometimes more practical criterion for
convergence.

Theorem 6.3.3. Let xg be a given initial approximation and define x, and hy,
according to (5.3.2). Let Iy = int(xg, o + 2ho) and assume that

2|ho| My < |f'(mo)|, My = max|f"(z)].
x€ly
Then z,, € Iy, n=1,2,3,..., im z, = «, and a is the only root of f(z) =0 in I,.
n— 00

Proof. See Ostrowski [1973, Chap. 4]. O

When a bound for the magnitude of the second derivative is not available the
convergence criterion given in the following theorem may be easier to apply.

Theorem 6.3.4. Suppose that f'(x) # 0, that f'"(z) does not change sign in the
interval [a,b] and that f(a)f(b) < 0. If

‘ fla) f(0)
f'(a) f'(b)

then Newton’s method converges from an arbitrary xo € [a,b].

<b-—a, ‘ ‘<b—

Proof. That the theorem is true can be easily seen from Figure 6.3.2. 0O

In many practical problems one has a sufficiently good initial approximation
for the desired root and convergence is not a problem. If this is not the case one can
use a starting method with guaranteed convergence. Hence in practice it is most
often neither possible nor necessary to analyze the convergence a priori.

6.3. Newton's Method 425

0.6

f(b)/(b)

0.4

Yo - - - -

/ f(@)/f(a)

1.4 1.6 1.8 2 2.2 2.4

Figure 6.3.2. A situation where Newton’s method converges from any xo € [a, b].

6.3.3 Safeguarded Newton Method

Newton’s method is very efficient if started from an intial approximation close to
simple zero. If this is not the case Newton’s method may converge slowly or even
diverge. Hence a more robust algorithm is needed, which retains the good asymp-
totic convergence of Newton’s method. We now give an example of how such a
method can be constructed by combining Newton’s method with bisection.
Assume that a and b are known such that @ < b and f(a)f(b) < 0. At each step
a new approximation z is computed and a, b are updated to a’, b'. We take either
a =z, b =borda =a, b =z, where the choice is made so that f(a')f(b') < 0. To
determine z we first check if the Newton iterate z = x — f(x)/f'(x) lies in (a, b). If
it does, we take x = z, otherwise we take a bisection step, i.e. set = (a + b)/2.
We want to check if z € [a, b], or equivalently if

b—z=b—x+ f(x)/f'(x) >0 and z—a=z—a— f(x)/f'(x) >0.

We want to perform the check in a way which avoids division by f'(z), which may
be close to zero. First assume that f'(x) > 0. Then these two inequalities are
equivalent to

(b—a)f'(z) 2 —f(z) and (z—a)f' ()2 f(2).

(Only one of these will be nontrivial depending on whether f(z) > 0 or not.) The
case when f'(x) < 0 is analyzed similarly and gives

(b—2)f'(z) < —f(z) and (z—a)f'(z) < f(2).

426 Chapter 6. Solving Scalar Nonlinear Equations

Algorithm 6.3.1 Safeguarded Newton Method

Let f be a given function and a and b are two initial approximations to a root in
[a, b] such that f(a)f(b) < 0. The following algorithm takes the next approximation
as the Newton iterate if it lies in the interval [a, b]; otherwise the bisection point
is chosen. The first step is always a bisection step. It terminates either when
an interval [a,b] with |b — a| < tolz containing the root has been found or when
| f(z)|] < tolf or when maxit iterations have been carried out.

[, fz] = safenewt(f, fp,a,b,tolz, tol f, mazxit);

fa=f(a); fb=f(b);
% It is assumed that a < b and fa- fb <=0.

if [fal < |fb)
r=a; fr=fa; elsex=0; fr=fb
end;
it = 0;
while (|fz| > tolf) & (|b — a| > tolz) & (it < maxit)
fpz = fp(z);

% Is next Newton iterate strictly in [a,b]?
if sign(fx) = sign(fpzx)
zinab = |fz| < (x —a) - | fpx]
else
zinab = |fz| < (b—x) - | fpz|
end;
if xinab
% Take Newton step from (z, fx)
x=x— fz/fpx; else
% Take bisection step
xr=a+(b—a)/2;

end;
fx=f(x); it=1it+1;
if fa-fx <0
b==x;, fb=fx; else
a=x; fa= fuz;
end;
end;

)

This algorithm is still not quite acceptable because the number of steps needed
can in some cases be an arbitrarily factor larger than for the bisection method.
A crude remedy would be to force it to take a bisection step at least every pth
iteration for some fixed number p > 1. A more sophisticated improvement would
be to accept the Newton iterate only if it is “sufficiently far away” from the current
interval [a,] We return to the discussion of how that can be specified more precisely
in Section 6.4.4

6.3. Newton's Method 427

6.3.4 Higher Order Methods

A method of quadratic convergence will eventually converge very rapidly. As a rule
of thumb one can say that the number of significant digits in each iteration will
approximately double as was illustrated in Example 6.3.1. Similarly for a method
of cubic convergence the significant digits will approximately triple. There is rarely
any need for methods of higher order of convergence than two or three!

We first briefly review some famous methods with cubic convergence. New-
ton’s method was derived by approximating the function f(x) with its linear Taylor
approximation. Taking one more term in the Taylor expansion of f(z) at x,, we get
the following approximation of the equation f(z, + h) = 0:

T(h) = f(zn) + hf'(zn) + h;f”(wn) =0, h=z-m,, (6.3.10)

Assuming that f'(z,)? > 2f(2,)f"(z,) this quadratic equation has real solutions

p —) <1 N \/1_2f(xn)f"(a;n)>_

(@) (f'(2n))?

Rearranging this and taking the solution of the smallest absolute value we get the

iteration
2

Tpt1 = Tp — u(Ty) ————, 6.3.11
we = o —ulen) - g 1— 2t(zy) (6311
where (@) @)1 (@)
x z)f"(x
u(z) = () = 2L 6.3.12
D@ T e (0:342)
This is Euler’s iteration method. Using the approximation
2
N1+ (), 6.3.13
1+ /1 2t(zy) 7(an) (6:3.13)
valid for |t| < 1, we obtain the third order iteration method
Tng1 = Tn — w(zn) (1 + 2t(z,)), (6.3.14)

usually also attributed to Euler.
A different third order iterative method is obtained by instead of (6.3.13) using
a rational approximation

1

Tptp1 = Tp — u(zy,) -
This is the famous Halley’s iteration method [3]?, which also has the distinction
of being the most frequently rediscovered iteration method. It can also be derived
as follows. Starting from (6.3.10) we get

== 1) [(£/wn) + 22 7).

2Edmund Halley (1656-1742), an English astronomer, who predicted the periodic reappearance
(c:a 75 years) of a comet named after him.

428 Chapter 6. Solving Scalar Nonlinear Equations

Replacing h,, in the denominator by the Newton correction —f(z,)/f'(x,), again
gives Halley’s method.

The methods (6.3.14) and (6.3.15) are related to the (1,0) and (0,1) Padé ap-
proximations. We now show that both are of third order for simple zeros. Consider
an iteration function of the general form

o(z) = 2 — u(z)H(t(z)), (6.3.16)
where u(x) and t(z) are defined by (6.3.5) and (6.3.6). Differentiating (6.3.16) and
using u'(z) = 1 — t(z) we get

¢'(z) =1 = (1= tx))H(t) — u(x)H')t (x)-
Since u(a) = t(a) = 0 it follows that ¢'(a) = 1 — H(0), and so ¢'(«) = 0 and the
iteration function (6.3.16) of at least second order if H(0) = 1. Differentiating once
more and putting x = a we get
¢"(@) = t'() H(0) — 2/ () H'(0)t' (o) = #' () (H(0) — 2H'(0)).

Hence ¢'(a) = ¢"(a) = 0 and the method (6.3.16) of at least third order if the
conditions
HO)=1, H'0)=1/2 (6.3.17)

are satisfied. For Euler’s and Halley’s method we have
Hg(t) =2(1++/1-2t)71, Hy(t)=(1-1t/2)""

respectively, and both these methods satisfy the conditions in (6.3.17).

Example 6.3.3.
Using (6.3.12)—(6.3.15) a short calculation shows that Halley’s method for
solving the equation f(x) = 22 — ¢ = 0 can be written

Ty — €Ty,

=0,1,2,.... 6.3.18
3xn+c/x7 n P ? ()

Tn+l = Tp — 22y

(see Problem 8). Assuming that 1/4 < ¢ < 1, the initial approximation zg =
(1 4+ 2¢)/3 obtained by linear interpolation in Example 6.3.2 can be used. For
¢ = 0.5 we obtain the following result (correct digits in boldface)
zo = 0.66666666666667, x; = 0.70707070707071, x» = 0.70710678118652,
x3 = 0.70710678118655.

Already two iterations give a result correct to 13 digits. Compared to Newton’s
method we have gained almost two iterations.

There are several ways to construct iteration methods of higher order for

solving the equation f(z) = 0. The earlist derivation of a basic family of methods
of arbitrary order is due to E. Schréder [10]. By Taylors formula we have

f@+h) = f(z)+hf'(x Z f<k) + O(hP). (6.3.19)

6.3. Newton's Method 429

Assume that f'(z) # 0 and set f(z + h) = 0. Neglecting the O(hP)-term we obtain

p—1
—u=h+ Z aphk, (6.3.20)
k=2
e (@) £ @)
x x
u= @)’ ap = W ()’ k>2. (6.3.21)

Reversing the power series (6.3.20) (cf. Sec. 3.1.3) we obtain
p—1
h=—u—> cub. (6.3.22)
k=2

This defines a series of iteration functions ¢, (x) = z+ h(z) of order p. In particular
we have
Cy = g, c3 :2a§ — as, C4 :5a§ — dasas + ag,

Using the first two terms in the sum we get Euler’s method (6.3.14). Variants of
these high order methods can be derived from the family (6.3.21) by computing
different approximants in a Padé table. However, as pointed out before, methods
of order p > 3 are of practical interest only in special cases.

Kalantari [6] has given a compact determinantal formulation of a related basic
family of iteration fucntion. Set

" (p—1) z (p) x
f’(l‘) f 2(!) o f(p—l)(!) f (p)(!)
f@ f@ e . Ll
D,(x) = det . .
8 f(z) :
: : f’;('z)
0 0 ... fl) f(z)

Note that D,(x) corresponds to the determinant of a Toeplitz matrix defined with
respect to the normalized derivatives of f(x). (Recall that a square matrix is called
Toeplitz if its elements are identical along each diagonal.) For each p > 2, define

r Dp72(w)‘
Dyp_1(x)
A root 0 of f is a fixed-point of B,, i.e. f(a) = 0 implies Bp(a) = a. It can be

shown that B, defines an iteration method of order p. The third order method in
this family reads

(6.3.23)

which is Halley’s method (6.3.15).

430

Chapter 6. Solving Scalar Nonlinear Equations

Review Questions

1. Define the order of convergence and the asymptotic error constant for a convergent
sequence {zy}. What is meant by quadratic convergence, and superlinear conver-
gence?

2. (a) Under what assumptions is convergence of Newton’s method quadratic?

(b) Device an example where Newton’s method diverges, even though the equation
has real roots.

3. The equation f(z) = sinz = 0 has one trivial root = 0 in the interval (—n/2,7/2).
Show that for an initial approximation xo chosen so that tanxo = 2x¢ Newton’s
method cycles, and xor = xo for all k > 0!

Problems

1. (a) Compute €n41/¢2 for n = 0,1,2, and the limit, as n — oo, in Example 6.3.1.
(b) Treat the equation in Example 6.3.1 making use f'(z2) also for n > 2. Compare
the convergence with this simplification.

2. The equation £® — 2z —5 = 0 is of historical interest because it was the one used by
Wallis to exhibit Newton’s method when he first published it. Determine the real
root of this equation.

3. For p = 2, the iteration (6.3.3) is the same algorithm for computing square roots
which was given in Example 1.2.1. Show that in this case

1 2
Tnt1 — Ve = E(“ —Ve)'.
Use this relation to show that for all g > 0, we have that x1 > @2 > 23 > -+ > /¢
and that lim, . = /¢

4. Describe an iteration for the division-free computation of the reciprocal of a positive
number c. Determine the largest set of starting values xo such that the iterates
converge to c.

5. Determine p, g and r so that the order of the iterative method

Tu+1 = pon + qo/z, + 1 [T,
for computing /c becomes as high as possible. For this choice of p,q and r, give a
relation between the error in x,+1 and the error in .

6. Use Newton’s method to determine the positive root of the equation to six correct
decimals: (a)z=1—e"2*; (b)xlnz—1=0

7. Apply Newton’s method to determine one of the complex roots of the equation
22+ 1 =0. Start with zo = 1 + 4.

8. (a) Show that Halley’s method can be derived by applying Newton’s method to the

equation f(z)(f'(x))"*? =0.
ow that Halley’s method applied to f(z) =" —c = 1ves rise to the iteration
(b) Sh hat Halley’ hod applied to f(x) 2 0gi i he i i

x> + 3¢ty _ _ 2zn (2 —¢)

T 1= G 5
nt 3z2 +c " 32 +c

Computer Exercises 431

9. To compute the square root of the normalized floating point number a = m- 29,
1/2 < m < 1 by Newton’s method we first shift the mantissa so that the exponent
becomes even, a = ¢- 2%, and 1/2 < ¢ < 2. Then its square root is

\/a: \/5'267

and thus we only need to compute /¢ for 1/2 < ¢ < 1. (For 1 < ¢ < 2 we compute

y/1/c and invert.)

(a) What starting value minimizes the maximum initial error over all c in the interval
[1/2,1].

(b) Use the expression for the error in Problem 4 to determine the minimum number
of iterations that suffices to give \/c with an error less than 107° for all ¢ in [1/2,1]
using Newton’s method and the initial approximation from (a). Round-off errors
may be neglected.

Computer Exercises

1. (a) Given 01 > 01 > ... > on > 0, c1,¢2,...¢Cn, and a > 0, consider the secular
equation ¢(\) = a, where

#0=3 (755)

i=1
Show that ¢()) is a convex and strictly decreasing function of A. Conclude that if
¢(0) > «, this equation has a unique root A > 0 of smallest magnitude.
(b) Newton’s method for solving ¢(A) —a =0 is

p(Ar) —
)\k+1:)\k_hk7 hk:W
Show that with Ao = 0 this method produces a strictly increasing sequence Ay

converging to the solution. Derive an explicit expression for hy.
(c) The Newton iteration in (b) often converges very slowly. A more efficient method
is obtained by instead applying Newton’s method to the equation h(A) = 1/¢(A) =
1/a. Show that this iteration can be written

P(Ar)

A+l = Ap — Iy ;
a

where hy, is the Newton step in (b).

(d) Let 0; = 1/4%, ¢; = 1/i> +0.001, i = 1,2,...,20. Plot the function f(\) for
A € (0,0.0005). Solve the equation ¢(N\) = a = 2.5, using Ao = 0, comparing the
two methods in (b) and (c).

6.4 Methods Based on Interpolation
6.4.1 The Secant Method

The necessity to calculate f'(z) in Newton’s method is sometimes a disadvantage,
since f'(x) may not be available or require a considerable computational effort.

432 Chapter 6. Solving Scalar Nonlinear Equations

In the secant method the derivative at x, is approximated by the difference
quotient,?
fl@n) — f(@n-1)

Tp — Tp—1

fl(an) =

The secant method requires two initial approximations ¢ and x;. The sequence
Zo,T3,... 1S then computed by

Ip —Tpn-1
n>1

flan) = fl@na)” =7

assuming that f(z,) # f(z,—1). Note that this iteration is of the form z,41 =
¢(xyn; xn—1). Hence, in contrast to Newton’s method it is not a fixed point iteration
of the form studied in Section 6.2. Sometimes such iteration methods are called
fixed point iterations with memory, since it also uses the old information x,,, .

The geometrical interpretation of the secant method is that x,,41 is the ab-
scissa of the point of intersection between the secant through (z,_1, f(z,—1)) and
(zn, f(xy)) and the z-axis, see Figure 6.4.1. Notice that the secant method only
requires one function evaluation per step.

T+l = Tp + hn; hp = _f(xn) (641)

0.4~

x
x

T
|
|
|
-0.2f I
|
|
|
-0.4r :

—0.6F

-0.8 I I I I I I)

Figure 6.4.1. The secant method.

When |z, — &p—1]| is small, the quotient (z,, — Zp—1)/(f(zn) — f(@p-1)) will
in general be determined with poor relative accuracy. If by accident we get approx-
imations z,, and x,,_; which are very close to the root a;, and not bracketing «, the
resulting rounding error in x,4; can become very large. However, from the error
analysis below it follows that the secant method in general gives a sequence such
that |zp, — zp—1| > |zn — a|. In this case the dominant contribution to the round-
off error in h,, comes from the error in f(z,), and is not larger than for Newton’s

3Historically the secant method preceded Newton’s method.

6.4. Methods Based on Interpolation 433

method. Note that (6.4.1) should not be rewritten in the form

xn—lfn - 'rnfn—l

fn - fnfl ’
since this formula can give rise to severe difficulties with cancellation when x,, =~
Tpo1 and fr,fn1 > 0.

LTnt1 =

Example 6.4.1.
We use the same equation f(z) = (x/2)? —sinz = 0 as in previous examples
to examine the convergence of the secant method, and take zo = 1.5,z = 2.

1.933753 759902

—0.000000003867

n Tn f(zn) hn

0 1.5 —0.434994 986604

1 2.0 +0.090702573174 —0.086268 778965
2 | 1.913731221035 —0.026180060742 +0.019322989205
3 | 1.933054210240 —0.000924 399645 +0.000707253882
4 | 1.933761464122 +0.000010180519 —0.000007 704220
5

+0.000000002925

6 | 1.933753 762827

In this example, the secant method converges almost as fast as Newton—
Raphson’s method, and x5 is again correct to eight decimals. This is because z; = 2
is quite a good initial approximation. However, in the example in Figure 6.4.1 we
see that the iterate x3 will lie outside the initial interval [zq, z1].

We remark that even (6.4.1) is not always safe to use. We must take care
to avoid overflow or division by zero. Without restriction we can assume that
|fn=1] > |fn] > 0 (otherwise renumber the two points). Then, s, can be computed
without risk of overflow from

Sn

hn (xn - xn—l):

:1—sn

where the division with 1 — s, is only carried out if 1 — s,, is large enough.

6.4.2 Local Convergence of the Secant Method

We shall now derive an asymptotic formula for the errors in the successive ap-
proximations produced by the secant method. According to Newton’s interpolation
formula with error term, Theorem 4.3.1, we have

f(@) = f(zn) + (2 — zn) flTn—1,20] + (& — 1) (z — 2) f”(;n);

(6.4.2)

where (,, € int(z,z,_1,z,) and

Al = =g e

434 Chapter 6. Solving Scalar Nonlinear Equations

If we ignore the error term, we get the equation of the secant. Thus z,; satisfies
the equation

0= f(zn) + (Tn41 — Tn) fTn—1,2n].
Now put = « in (6.4.2) and subtract the equation of the secant. Since f(a) =0
we get
(@ =zpi1) flEn—1,20] + (@ = zn-1)(a — 2,) f"((n) /2 = 0.

According to the mean-value theorem, we have

f[xn—lvxn] = fl((;z)a (;z € int(xn—laxn)a

and it follows that

€ntl = gfl(i(%:))enenl. (6.4.3)

Notice that if we let x,,_1 — =, then the error formula (6.4.3) becomes identical
with the error formula (6.3.7) for Newton’s method.

Example 6.4.2.
The ratios €,+1/(€n€n—1) in Example 6.4.1 are equal to

0.697, 0.527, 0.550, n=1,2,3,

which compares well with the limiting value 0.543 of f"(«)/(2f'(c))

It is easy to show that if the first derivative f’(z) is continuous, then for the
secant method it holds that

€ntl = (1 — ;:E?@) €n, &n €int(z,—1,q), (, € int(x,,x,—1).

From this it can be deduced that the secant method always converges from suffi-
ciently good starting values xg, x1.
The following theorem gives the order of convergence for the secant method.

Theorem 6.4.1. Suppose that in a neighborhood I of the root o we have
1 ‘f”(y)

<m, z,ye€l

2| f'(x)

Let p= (1++/(5))/2 = 1.618... be the positive root of the equation p> — u—1= 0.
Then it holds that

1 n
len] < — K", K = max (mleo|, (mler)/?), n=0,1,2,.... (6.4.4)

Proof. The proof is by induction. From the choice of K it follows that equation
(6.4.4) is trivially true for n = 0, 1. From the assumption and (6.4.3) we have

|ent1] < mlen|en—1] (6.4.5)

6.4. Methods Based on Interpolation 435

Since p? = p + 1 it follows that if (6.4.4) holds for n and n — 1 then

1

1 no o on— 1 n
lensi] < —KP KP"T = — kP
m m

If each iteration requires m units of work (usually the work involved in com-
puting a function value or a value of one of its derivatives) then the of the iteration
may be defined as

To compare the efficiency of the secant method and Newton’s method we
assume that the work to compute f'(z) is 6 times the amount of work required
to compute f(x). Then, with the same amount of work we can perform k(1 +)
iterations with the secant method and k iterations with Newton’s method. Equating
the errors we get (meo)21c = (meg)pk(lJrs), where p = 1.618... Hence the errors are
the same for both methods when p*(1+?) = 2k o

(1+6)log (L(1+V5)) =log2,

which gives § = 0.4404.... Thus, from this analysis we conclude that if 8 > 0.44,
then the secant method is asymptotically more efficient than Newton’s method.

In Example 6.4.1 we can observe that the error €, = z, — a,, (and also the
value f(z,)) changes sign at every third step. Hence in this example

a € int(z,41 —x,), n=0,1,3,4,...,

i.e., the root « is bracketed by xni1 and x, except for every third step. We shall
show that this is no coincidence. Assume that z, € (a,b), n =0,1,2,..., and that
f'(z) and f"(z) have constant sign in (a,b). Then from (6.4.3) it follows that

6n+1/(6n6n71)

has constant sign for all n. If a € int(zo,z1) then €e; < 0, and it follows that the
sign of €, must change every third step (verify this!). Hence convergence occurs in a
waltz rhythm! If on the other hand the initial approximations to the secant method
are chosen so that f(x)f(z1) > 0, then convergence will be monotone. Since New-
ton’s method can be viewed as the limit when both interpolation points in the secant
method coincides, it will converge monotonically under the same assumptions.

6.4.3 False Position Method

For the secant method we noted that the last two iterates 41 and z, will not
always bracket the root. Therefore there is no guarantee that the computed approx-
imations are contained in [zg, 2] and, like Newton’s method, the secant method
may diverge even when the initial approximations zy and x; bracket the root.
Suppose that at a certain step we have two approximations z,, and z,_; to
a root for which f,f,—1 < 0 and that z,41 has been computed by a secant step

436 Chapter 6. Solving Scalar Nonlinear Equations

according to (6.4.1). In the false-position method (Latin regula falsi)* one
takes in the next step the secant through the points z,,41 and whichever of z,, and
x,,—1 for which the function value is of opposite sign to f,,11. The advantage of this
method is that convergence to a root is guaranteed for a continuous function f(z).

Figure 6.4.2. The false-position method.

A drawback is that in contrast to the secant method regula falsi only has a
linear rate of convergence. This is because once an interval has been reached on
which the f(x) is convex or concave, one of the endpoints is always retained. In
Figure 6.4.3 successive secants will all pass through the point (zo, f(z¢)). Using

f(zn) = f'(¢a)(zn —) we obtain

e G
T o= fa) (o —)’

If lim,,_, = «, it follows that

- ental f'(a)
1 —1- =C, 6.4.6
oo Jen] Fo/<o (6.4.6)

which shows that convergence is linear if C # 0. If f" is continuous, the same
conclusion follows also directly from (6.4.3).

Example 6.4.3.
We apply the regula falsi to the same equation as in Example 6.4.1 using again
the initial approximations zg = 1.5,2; = 2.

4The method of regula falsi is very old, originating in 5th century Indian texts.

6.4. Methods Based on Interpolation

437

0 1.5 —0.434994986604

1 2.0 +0.090702573174 +0.086268778965
2 | 1.913731221035 —0.026180060742 —0.019322989205
3 | 1.933054210240 —0.000924399645 —0.000675397892
4 | 1.933729608132 —0.000031930094 —0.000023321005
5 | 1.933752929137 —0.000001102069 —0.000000804916
6

1.933753 734053

Note that the approximations x5 and x3 are the same as for the secant method.
In all following iterations the point ;1 = 2 is kept and convergence becomes linear
with rate C' ~ 0.034.

6.4.4 Safeguarded Secant Method

Although the above algorithm is quite efficient and reliable it can converge much
slower than the bisection method, e.g., when « is an ill-conditioned root. Efficient
and robust root finders can be constructed by combining the secant method, or
some higher order interpolation method with bisection, cf. the safeguarded Newton
method discussed in Section 6.3.3. A simple variant of such a method can proceed
as follows.

Let a and b such that f(a)f(b) < 0 be given and set ¢ = a. In the following b
denotes the last iterate, a the one preceding it and ¢ the most recent iterate such
that f(c)f(b) < 0. At each step we update a,b,c to a’,b',c'. If f(a)f(b) < O the
new iterate b’ is computed from a secant step using a and b. If f(a)f(b) > 0 we
check implicitly (to avoid possible division by zero) if the result of a secant step will
lie in int[b, ¢]. If it does we take a secant step, otherwise the new iterate is computed
from a bisection step using the points bracketing the root, b’ = (b + ¢)/2. Finally,
weset ¢ =corcd =a

A particularly elegant combination of bisection and the secant method was
developed in the 1960th by van Wijngaarden, Dekker and others at the Mathemat-
ical Center in Amsterdam. A related algorithm, called ZEROIN, which combines
bisection and inverse quadratic interpolation, was published by Brent [1]. The
Matlab function “fzero”, which finds a zero near a given approximation zg, is based
on the Fortran implementation of ZEROIN in Forsythe, Malcolm, and Moler [2,
pp-161-166].

6.4.5 Higher Order Interpolating Methods

In the secant method we used linear interpolation through (z,—1, frn—1) and (x,, fr)
to determine the next approximation to the root. A natural generalization is to use
r+1 different approximations z,, €, 1 ..., Z,_, to determine an interpolating poly-
nomial P(z) of degree r and choose the root closest to z,, as the new approximation
ZTp+1. In practice only the case r = 2 is of interest, since for r > 2 there are no

438 Chapter 6. Solving Scalar Nonlinear Equations

useful formulas for determining the roots of the interpolating polynomial P(z). For
r = 2 we get the Muller—-Traub method, which we describe below.

By Newton’s interpolating formula (4.3.4) the interpolating polynomial P(x)
can be written

P(z) = fu+ fltn, Tn1](® — zp) + flTn, Tn_1, Tn_o](x — p) (2 — TH_1).
Setting h,, = (x — x,,) the equation P(z) = 0 becomes
fln, Tnet1, Tnos]hl + why + fr =0, (6.4.7)
where

w= flxn, Tno1] + (Tn — Tp—1) flTn, Tn-1, Tn—2]. (6.4.8)

Since we want the root closest to x,, that means we want the smallest root h,, to
the equation (6.4.7). To express the smallest root in a numerically stable way the
standard formula for the roots of a quadratic equation should be multiplied by its
conjugate quantity (see Example 2.3.3). Using this formula we get

) 2,
wx \/WQ - 4fnf[xn> xn—l:xn—Q]

Tnt1 = Tp + Ay, hp = (6.4.9)

Here the sign in the denominator should be chose so as to minimize the |h,|. Note
that equation (6.4.7) may have complex roots even if the zero being sought is real.
On the other hand, the Muller—Traub method has the useful property that complex
roots can be found from real starting approximations.

It can be shown, using a similar proof as for the secant method, that the
Muller—Traub method is at least of order p = 1.839..., where p is the largest root
of the equation p® — p? — u — 1 = 0. Hence this method does not quite achieve
quadratic convergence. In fact, it can be shown under very weak restrictions that
no iterative method using only one function evaluation can have p > 2.

A different way to extend the secant method is to use inverse interpolation.
We then consider @y, Tp—1,- - .,Tn—r as given values of the inverse function g(f) of
f(z) at distinct points fn, fn-1,---, fa—r- Since z = g(f) it follows that a = ¢(0)
is the desired root. We now fit a polynomial Q(f) to to the points and obtain the
next approximation from z,,11 = @(0). For r = 1 this is again the secant method.
For r > 1 this is a fundamentally different procedure from before and as a rule gives
different results. We consider now the special case r = 2.

Using Newton’s general interpolation formula we get

Q(f) = g(fn) + (f - fn)g[fnafnfl] + (f - fn)(f - fnfl)g[fn;fnflafnfﬂ-

If we note that g(f,) = x, and put f =0 we get

Tnt+1 = Tp — fng[fna fn—l] + fnfn—lg[fna fr—1, fn—Q]' (6-4'10)

Inverse quadratic interpolation has the same order of convergence as the Muller—
Traub method and it has the advantage of not requiring the solution of a quadratic

Review Questions 439

equation. (For other ways of avoiding this see Problems 2 and 4.) It is used together
with the bisection method in the algorithm ZEROIN by Brent [1], who claims that
on the average this saves 0.5 function evaluations over using the secant method.

It should be noted that it is not always safe to use the formula in (6.4.10).
Care has to be taken in order to avoid overflow and possibly division by zero. If we
assume that 0 # |fn| < |fn—1] < |fn—2| then it is safe to compute

Sn:fn/fn—la Sn—1 :fn—l/fn—Q: Tn:fn/fn—QZSnSn—l-

We can rewrite (6.4.10) in the form z,+1 = &, + pn/gn, where

Dn = Sn[(]- - Tn)('rn - xn—l) - Sn—l(sn—l - 'rn)('rn - xn—?)]a
Gn=(1—5,)(1=5,_1)(1—1p).

The final division py, /gy is only carried out if the correction is sufficiently small, see
Brent [1] for a detailed discussion.

Review Questions

1. How does regula falsi differ from the secant method? Why does it in general only
have linear convergence?

2. Outline how the secant method can be safeguarded by combining it with the bisection

method.
Problems
1. Use the secant method to determine the roots of the following equations to six correct
decimals
(a) 2z = e 7 (b) tanz + coshz = 0.

2. Another modification of the secant method can be derived by estimating f'(x,)
in Newton’s method by quadratic interpolation through the points ., Zn—1, Zn—2.
Show that the resulting method can be written z,4+1 = » — f(2n)/w, where

W = f[xnaxnfl] + (mn - mnfl)f[mnyxnflymnfﬂ-

3. Assume that we have f, fn,—1 < 0, and have computed 1. If friy1frn < 0 then in
the next step we compute zpt2 using a secant through (Tp+1, frt1) and (Tn, fr).
Otherwise, if fo+1fn > 0, we use a line through (xn41, fat1) and (Zn—1,0fn-1),
where 0 < 6 < 1. Clearly, § = 1 would correspond to a regula falsi step and usually
give fn42fn+1 > 0. On the other hand, 8 = 0 gives xp+1 = @y, and thus fr+1fn <O0.
Hence a suitable choice of 8 will always give fri2fn+1 < 0.

Show that with § = 0.5 in a modified step it holds asymptotically €,41 & —ep.
Deduce that the resulting algorithm gives cubic convergence with three function
evaluations and hence has efficiency index E = 33 =1.4422....°

5The resulting modified rule of false position is often called after its origin the Illinois method.
It is due originally to the staff of the computer center at the University of Illinois in the early 1950’s.

440 Chapter 6. Solving Scalar Nonlinear Equations

4. The Muller—Traub method uses three points to determine the coefficient of an inter-
polating parabola. The same points can also be interpolated by a rational function
of the form

r—a

An iterative method is devised by taking z,+1 equal to the root a of g(z) = 0.
(a) Show that this is equivalent to calculating z,+1 from the ”modified secant for-
mula”
f[l'n, $n71]
f[xn—h In—Q] .

Tn — Tn-2 ri
Tn+1 :xn_fn%; fn—2 :fn—2
fn - fn—2
Hint: Use a theorem in projective geometry, according to which the cross ratio of
any four values of x is equal to the cross ratio of the corresponding values of g(z)

(see Householder [1970, p.159]). Hence

(O_fn)/(o—fnfz) — (anrl _xn)/(anrl —l‘nfg)
(famt = fo)/(fa1 = fa—2) (Tn—1 —2n)/(Tn-1 — Tn—2)’

(b) Use the result in (a) to show that z,—1 € int(zn—2, %) if

sign(fn) = —sign(fazz), sign(flen, @nmr]) = sign(flea—r, enms]).

Computer Exercises

1. Implement a safeguarded version of the secant method based on the outline at the
end of Sec. 6.4.3 and the safeguarded Newton algorithm in Sec. 6.3.3.

2. The result in Problem 4 suggest that the Illinois method is modified by taking

b= flowed/flonaet, 0={ FIZ0
Implement this modified method. Compare it with the unmodified Illinois method
and with the safeguarded secant algorithm. As test equations use the following:
(a) f(x) =22 — (1 —2)", a=25,b=1, n =2,5,10; one inflection point on [0, 1].
(b) flx) =e ™ (x—1)+2", a=0.25b=1,n=>5,10,15; A family of curves which
lie increasingly close to the z-axis for large n.
(c) f(x) =(nx—1)/((n—1)z),a=10.01, b=1, n = 2,5,10; A family of curves with
the y-axis asymptotic.

6.5 Attainable Accuracy and Multiple Roots
6.5.1 Error Estimation

In the previous analysis of iteration methods we studied the asymptotic convergence
rate of x, to a root as n — oo, disregarding round-off errors. However, in practice
computed function values of f will be affected by errors, e.g., roundoff errors in
floating point computation. In other words, we are dealing not with the true func-
tion f(z) but with a contaminated function f(z) = f(z) +é(z), where §(x) denotes

6.5. Attainable Accuracy and Multiple Roots 441

the error in evaluating f(z). Note that f in general is not even continuous on [a, b].
Even if f(a)f(b) < 0, the equation f(x) = 0 may not have a zero in [a, b]!

We now derive an error estimate, which takes into account that the computed
values of f(z) are subject to errors. Let « be a simple root of the equation f(x) = 0.
Assume that for any x in a neighborhood of a the computed value f(z) of f(z)
satisfies

|f(z) = f(z)] <. (6.5.1)
Here ¢ is an upper bound for roundoff and other errors in computed function values

of f(x). We assume that f'(z) is continuous in a neighborhood J of a containing
an approximation z, to a simple root «. Then, by the mean-value theorem

flan) = (@n = a)f'(Cn), Cn € int(an, @),
from which we obtain the estimate
o0 —of < |f(@n)l/My, |f'(@)] 2 My, we . (6.5.2)
Using (6.5.2) we get the error estimate
(@ — o] < (IF (@) + 6)/My. (6.5.3)

The best we can hope for is to find an approximation z,, such that the computed
function value f(z,) is zero. It follows that independent on which method is used
the accuracy with which a simple root a can be determined is limited by §/M;. If
f'(x) does not vary much near x,, = a, then we have the approximate error bound

|zn —a| <I/Mi =€y, €4 =0/|f (a)l. (6.5.4)

Since this is the best error bound for any method we call ¢,, the attainable ac-
curacy for the simple root a. Note that We call the interval [@ — €,, @ + €,] the
domain of uncertainty for the root a. if |f'(a)] is small, then ¢, is large and the
problem of computing the root « is ill-conditioned (see Figure 6.5.1).

Example 6.5.1.

Suppose we have computed the approximation x = 1.93375 to the positive
root to the equation f(z) = sinz — (z/2)%. We have f'(z) = cosz — x/2 and
it is easily verified that |f(z)| > 1.31 = M;, = € [1.93,1.94]. Further, using six
decimals we have sin 1.93375 = 0.934852 + 0.5107%, and (x/2)?> = 0.966875)? =
0.934847 4+ 0.51076. Then from (6.5.3) follows the strict error estimate

|t —al <6-1079/1.31 < 5.6-107°.

6.5.2 Termination Criteria

Suppose that we want to compute an approximation to the root a to a prescribed ab-
solute accuracy. In hand computation, it may be possible to interrupt the iterations
on the basis of the error estimate (6.5.3), provided that the necessary derivative is

442 Chapter 6. Solving Scalar Nonlinear Equations

Figure 6.5.1. An ill-conditioned root.

easy to estimate. On a computer it is usually better to iterate a few extra times
rather than make the effort to use a special formula for error estimation.

In subroutines for solving a nonlinear equation it is common practice to use
a termination criterion of the following form. Assuming that f(a)f(b) < 0 the
iterations are terminated if

|b —a| < 2u|z,|+ T, (6.5.5)

where 7 is a user specified absolute tolerance and u is the rounding unit (see Sec-
tion 2.2).

We must also deal with the possibility that the user specified tolerance is
too small and cannot be attained. If this is the case, then from some n onwards
rounding errors will dominate in the evaluation of f(z,) and the computed values
of f(x) may vary randomly in an interval (—¢,¢). If we are using a method like the
bisection method, the iterations will continue until the criterion (6.5.5) is satisfied,
but this, of course, may not mean that the root actually has been determined to
this precision!

If we are using Newton’s method, quadratic convergence will eventually be
lost and the computed corrections h, will tend to vary randomly in some interval
(—¢,€). This observation suggests the following alternative termination criterion:%

Accept the approximation x, when for the first time the following two condi-
tions are satisfied

|Tpt1 — Tl > T — Tp-1], |Zp — Tp—1] < tol. (6.5.6)

Here tol is a coarse tolerance, used only to prevent the iterations from being termi-
nated before x,, even has come close to . When (6.5.6) is satisfied the quantity
|Znt1 — Tpl is usually a good estimate of |z, — a|. With this termination criterion

6This termination criterion has been suggested by Jan Garwick.

6.5. Attainable Accuracy and Multiple Roots 443

the risk of not terminating the iterations in time for ill-conditioned roots is quite
small. Note also that for iteration methods of superlinear convergence ultimately
converge so fast that the cost of always iterating until the attainable accuracy is
obtained may be small, even if the user specified tolerance is much larger than e,.

6.5.3 Multiple Roots

In the previous discussion we have assumed that the root a to be computed is a
simple root, i.e., f'(«) # 0. We make the following definition:

Definition 6.5.1.
A root a to the equation f(x) =0 is said to have multiplicity ¢ if

O#Jiir(ll|f(m)/(w—a)q| < 0. (6.5.7)

Suppose that f(z) is ¢ times continuously differentiable in a neighborhood of
a root a of multiplicity ¢. By (6.5.7) we have fU)(a) = 0, j < q and by Taylor’s
formula

f@) = (o =) f DO, ¢ € int(a,a) (6.5.8)

Multiple roots are inherently ill-conditioned. Proceeding as in Section 6.5.1, if

|f(z,)] < 9, then using (6.5.8) with = =,,, we find that the best corresponding
error bound for a root a of multiplicity ¢ if is

|20 — o] < (Gpl/MHYY, |fD ()| > M, z€lJ (6.5.9)
Comparing this with (6.2.3)) we see that because of the exponent 1/¢ multiple roots

in general are very ill-conditioned. If there are several distinct but pathologically
close roots we can expect a similar behavior.

Example 6.5.2.
The equation f(z) = (z —2)z + 1 = 0 has a double root z = 1. The (exact)
value of the function at x =1+ ¢ is

f@+e)=(e-1(1+e)+1=—-(1-€)+1=¢.
Now, suppose that we use a floating point arithmetic with eight decimal digits in
the mantissa. Then .
=€) =1, e <5V2:107,
and for 0.99992929 < z < 1.0000707, the computed value of f(z) will be zero when
f(z) is evaluated using Horner’s rule. Hence the root can only be computed with

about four correct digits, that is, with a relative error equal to the square root of
the machine precision.

If f(z) is ¢ times continuously differentiable in a neighborhood of a root « of
multiplicity ¢ we have by Taylor’s formula (cf. (6.5.8))

"(z) = 1 z—)t f@¢ "€ int(z,a
Pe) = e = S0E), € € mila,)

444 Chapter 6. Solving Scalar Nonlinear Equations

It follows that if x,, is close to «a, then the Newton correction satisfies

S 1
" P~ g T = e

q

and for the corresponding errors we have

€nt1 = €n — €, /q= (1 —1/q)€y,.

This shows that for a root of multiplicity ¢ > 1 Newton’s method only converges
linearly with rate C = 1 — 1/q. (The same is true of other methods which have
quadratic or higher rate of convergence for simple roots.) Note also that when
z, — a both f(x,) = 0 and f'(x,) = 0. Therefore rounding errors may seriously
affect the Newton correction when evaluated close to «, and some safeguarding is
essential; see Section 6.5.4.

We now consider the case when the multiplicity q is known a priori. Then the
modified Newton’s method

f(@n)
is easily shown to have quadratic convergence for roots of multiplicity q.
From (6.5.8) it follows that the equation u(x) = 0, where

u(z) = f(x)/f'(x), (6.5.11)

always has a simple root at x = «. Hence any method applied to this equation
will retain its order of convergence independent of the multiplicity of « as a root to
f(z) = 0. In particular Newton’s method applied to the equation (6.5.11) gives

Tpt1 = Tp +4 (6.5.10)

- u(zn) W) =1— f”(xn)u "
Tpt1 = Tn W)’ (xn) =1 Filen) (). (6.5.12)
. . 1 _ flan)f" (@)
Tpy1 = Tp — u(Tp) 1— t(mn)’ t(xn) = (f'(z))? :

which requires the evaluation of the second derivative of f(z). Note that this is
similar to Halley’s method (6.3.15). One can also use the secant method

Lp — Tp—1

Tpt1l = Ty — u(xn)m

The transformation (6.5.11) is most useful if an analytical simplification can be done
such that u(z) can be evaluated accurately also in a neighborhood of «a.

Review Questions

1. What two quantities determines the attainable accuracy of a simple root a to the
equation f(x) = 0. Give an example of an ill-conditioned root.

Computer Exercises 445

2. Discuss the choice of termination criteria for iterative methods.

3. (a) Assume that f is continuously differentiable in a neighborhood of a double root
a of the equation f(z) = 0. Describe how the equation can be converted to one with
a simple root a.

(b) Discuss the case when f(x) = 0 has two distinct roots which nearly coincide.

Computer Exercises

1. Determine the multiple root o = 1 of the equation p(z) = (1 — 2)° = 0, when the
function is evaluated using Horner’s scheme, i.e.,

p(x) = (((((x — 5)x + 10)xz — 10)xz + 5)z — 1 = 0.

(a) Use bisection (cf. Algorithm 6.1.1) with initial interval (0.9,1.1) and tolerance
d = 10~%. What final accuracy is achieved?

(b) Use Newton’s method, starting from zo = 1.1 and evaluating p’(z) using Horner’s
scheme. Terminate the iterations when for the first time |zn4+1 — 1| > |z, — 1|. How
many iterations are performed before termination? Repeat with a couple of other
starting values!

(c) Same as (b), but perform one step of the modified Newton’s method (6.5.10)
with o = 1.1 and ¢ = 5. How do you explain the achieved accuracy which is much
better than predicted by (6.5.9)7

6.6 Zeros of Polynomials
6.6.1 Introduction

Consider the algebraic polynomial equation of degree n
p(z) =apz" +a12" "+ +a, =0, ay#0. (6.6.1)

Such equations are special enough that information about the location of the roots
can be obtained and many methods have been devised specifically tailored to them.

The fundamental theorem of algebra states for any algebraic equation p(z) = 0
of degree n > 0, there exists at least one complex number z; such that p(z;) = 0.
Hence we can write p(z) = (z — 21)p1(z), where p;(z) is a polynomial of degree
n — 1. Applying this reasoning recursively it follows that, counting multiplicities,

the equation (6.6.1) has exactly n (real or complex) roots as, @z, ..., ay,, and
p(z) =ap(z —a1)(z —az) - (2 — ay). (6.6.2)
By this representation it follows that if the coefficients ag, a1, ..., a, are real, then

eventual complex roots must occur in conjugate pairs.

Solution of algebraic equations is a topic that has been extensively studied.
The long history of investigations started with algebraic expressions for the zeros
of equations of degree less than five. The case of roots of a quadratic is elementary.
Cardano published formulas for the roots of a cubic equation in the 16th century and

446 Chapter 6. Solving Scalar Nonlinear Equations

formulas for the roots when n = 4 are also known. In 1826 Abel gave a proof that
it is not possible to find algebraic expressions for the roots when n > 4. However
the existing formulas for n < 4 are not in general suitable for numerical evaluation
of the roots. As discussed in Section 2.3.2, already in the quadratic case care must
be taken to ensure numerical stability (see also Problem 2)!

Although a problem may appear in the form (6.6.1) it may be that p(z) is the
characteristic polynomial of some matrix A and hence the roots to be determined are
the eigenvalues of A. It is very important that such equations, which are eigenvalue
problems in disguise, are solved by a method for solving eigenvalue problems; consult
Chapter 9 and references therein! This is because, even when the eigenvalues are well
determined by the elements of the matrix A, the roots of p(z) = 0 can be extremely
sensitive to perturbations in the coefficients ao,...,a, of p(z). A striking example
is given in Sec. 6.6.5. Computing the characteristic polynomial is therefore not,
as is sometimes thought, a simplification of the eigenvalue problem if a numerical
method has to be used!

On the other hand algorithms for solving the eigenvalue problem are now
highly developed and can be used also for solving polynomial equations. The char-
acteristic polynomial of the matrix

—a; —az -+ —Qp—1 —an
1 0 - 0 0
K,=| 0 1 - 0 0
0 0 1 0

equals
p(A) =det(K — M) = (=1)"(A\" + a1 A"t + -+ a, 1A+ ay).

Hence the roots of p(A) = 0 are the eigenvalues of K,,, which is called the com-
panion matrix of p(\). (Sometimes the companion matrix is defined slightly
differently, e.g., with the coefficients of the polynomial in the last row or in the last
column.

6.6.2 Synthetic Division

Function values and derivatives of a polynomial p(z) at a (real or complex) point
zk, can conveniently be computed by repeated synthetic division, see Section 1.4.2.
If we define the sequence {b;}"_, by the recursion

bo = ao, b =b;_1z1+a;, i=1:n, (663)
then it holds that

z — z)q(z) + by, (6.6.4)

p(z) = (
= boz"_l + blz"_2 + ...+ bp_1.

q(z)

6.6. Zeros of Polynomials 447

Hence ¢(z) is the quotient polynomial when dividing out the linear factor z — z
and we immediately have p(z;) = b,,. Differentiating (6.6.4) we get

P'(2) = (z — 2)d' + q(2),
and taking z = 2z we obtain p'(z1) = q(2r) = ¢n—1, where
co = bg, cG=c¢i12k+b;, i=1:n-1.

Higher derivatives can be computed in the same fashion. Differentiating once more
we have

P'(2) = (z = 2)q" (2) + 2¢' (2),
and so p''(zx) = 2¢'(21) = 2d,,—2, where

do = co, di =di 1z +c¢;, 1=1:n-2.

To compute p(?) (zk) using these formulas requires n—i additions and multiplications.

In the important special case where all the coefficients ag, a1,...,a, are real,
the above formulas are somewhat inefficient, and one can save operations by per-
forming synthetic division with the quadratic factor

(z — 21) (2 — Zx) = 2° — 2zRe(z;) + |21)?,

which has real coefficients (see Problem 1 at the end of this section).

6.6.3 Laguerre’s Iteration Method

If we have sufficiently good initial approximations to a (real or complex) zero of
p(z), this can be computed by Newton’s method. If p(z) has real coefficients, then
p(z) and p'(z) are real for real values of z. This means that Newton’s method cannot
converge to a complex root from a real initial approximation. The same holds for
the secant method and its variants. The Muller—Traub method (see Section 6.4.5),
which can converge to complex roots from real approximations and also requires only
one evaluation of p(z) per step, has therefore become popular. In many applications
no good a priori information about the location of the roots is available. Then a
method with good global convergence properties has to be used. We also have to
avoid converging to the same root more than once. In the following we discuss these
and other topics in more detail.

Laguerre’s method is a method with very good global convergence proper-
ties for polynomial equations, and with cubic convergence for simple roots (real or
complex). In this method the polynomial p(z) of degree n is approximated in the
neighborhood of the point z; by a special polynomial of the form

r(z) = a(z —wy)(z — wy)" !

)

where the parameters a,w; and ws are determined so that

plzr) =r(ze), plz) =7"(z), P"(z) = 7" (z1). (6.6.5)

448 Chapter 6. Solving Scalar Nonlinear Equations

If z; is an approximation to a simple zero, a then the simple zero w; of r(z) is
taken as the new approximation zgy; of a.

In order to derive Laguerre’s method we note that the logarithmic derivative
of p(z) =(z—a1) - (z — ay) is

z—q;
i=1 v

Taking the derivative of this expression we obtain

_d81(e) _g oy _ (PR P 5~ 1
i =50=(55) 55 L

Using (6.6.5) to determine the parameters of the approximating polynomial r(z) we
obtain the equations

1 -1 1 (n—1)

Si(zk) = Sa(zk) = (zx —w1)? (21 —wa)?

ZE — W1 2k — W
Eliminating z —ws gives a quadratic equation for the correction zy —w; = 2 —2g41.
After some algebra we obtain (check this!)

np(2x)
P'(z) £ /H(zk)

Zk+1 = Rk — (666)

where

H(z) = (n = 1)%[p'(21)]* = n(n — 1)p(z)p" (2x)-
The sign in the denominator in (6.6.6) should be chosen so that the magnitude of
the correction |zj4+1 — 2x| becomes as small as possible.

For polynomial equations with only real roots, Laguerre’s method is globally
convergent, i.e., it converges for every choice of real initial estimate zo. Suppose the
roots are ordered such that a1 < as <--- <, If 29 € (@j-1,05), j =2 :n, then
Laguerre’s method converges to one of the roots a;_1,a;; if 20 < a1 or 20 > ay,
then convergence is to a1 or a,, respectively.

For polynomial equations with complex roots, Laguerre’s method no longer
converges for every choice of initial estimate. However, experience has shown that
the global convergence properties are good also in this case. In particular, if we take
zo = 0, then Laguerre’s method will usually converge to the root of smallest modu-
lus. We finally remark that for multiple roots convergence of Laguerre’s method is
only linear.

Consider the polynomial equation (6.6.1) and assume that a,, # 0 so that
a = 0 is not a root. Now suppose that a,,_sa,_1 # 0, and take zg = 0 in Laguerre’s
method. A simple calculation gives

—na,
an—1 £ \/H(z)

where the sign is now chosen so the the |z1| is minimized. In particular, for n = 2,
H(zp) is the discriminant of p(z) and z; is the root of smallest modulus.

z1 = H(z) = (n—1)%a3_; — 2n(n — 1)a,a, 2, (6.6.7)

6.6. Zeros of Polynomials 449

Example 6.6.1.
If there are complex roots, then there may be several distinct roots of smallest
modulus. For example, the equation

p(z) =2% =222 + 2 -2
has roots +i and 2. Using the above formula (6.6.7) for z; with n = 3, we get

2 44/11
6 ny

= — =2 BV 006666666667 + 0.88443327743i.
T ii2ivil 15 15

Continuing the iterations with Newton’s method we get convergence to one of the
two roots +i,

—0.00011503062 + 1.000188045023
—0.00000000000 + 1.00000000000¢

zo = —0.00849761051 + 1.01435422762¢, z3
—0.00000002143 + 1.00000003279:, z5

Z4

6.6.4 Deflation and Zero Suppression

Suppose we have found a root « to the equation p(z) = 0. Then taking z; = « in
(6.6.3)-(6.6.4) we have b, = p(a) = 0 and the remaining roots of p(z) are also roots
of the polynomial equation

Hence we can continue the iterations with the quotient polynomial ¢(z) of degree
n — 1. This process is called deflation and can be repeated; as soon as a root has
been found it is factored out. In this fashion, all roots are eventually found. Since
we work with polynomials of lower and lower degree, deflation saves arithmetic
operations. More important is that it prevents the iterations to converge to the
same simple root more than once.

So far we have ignored that roots which are factored out are only known with
finite accuracy. Also rounding errors occur in the computation of the coefficients of
the quotient polynomial ¢(z). Clearly there is a risk that both these types of errors
can have the effect that the zeros of the successive quotient polynomials deviate
more and more from those of p(z). Indeed, deflation is not unconditionally a stable
numerical process. A closer analysis performed by Wilkinson [13, 1963] shows that
if the coefficients of the quotient polynomials are computed by the recursion (6.6.3),
then errors resulting from deflation are negligible provided that:

1. the roots are determined in order of increasing magnitude;

2. every root is determined to its limiting accuracy.

450 Chapter 6. Solving Scalar Nonlinear Equations

Note that if the coefficients of the polynomial p(z) are reversed, then we obtain
a new polynomial, whose zeros are the reciprocals of the zeros of p(z). Hence if the
above procedure is applied to this new polynomial we obtain the zeros of p(z) in
order of decreasing magnitude.

With Laguerre’s method it is quite probable that we get convergence to the
root of smallest magnitude from the initial value zp = 0. However, this cannot be
guaranteed and one often proceeds in two steps. First, all n roots are determined
using deflation in the process. Next, each root from the first step is refined by doing
one or several iterations using the original polynomial p(z).

Deflation can be avoided by using a zero suppression technique suggested
by Maehly [1954]. He notes that the derivative of the reduced polynomial ¢(z) =
p(2)/(2 — &) can be expressed as

4 (2) = Pz) p(2)
z=& (2= &)?
More generally, assume that we have determined approximations &i,...,& to j

roots of p(z) = 0. Then the the first derivative of the reduced polynomial g;(z) =
p(2)/[(z = &) -+ (2 — &)] can be expressed as
o V) _ p(2) 1
e PR Er s Rk ey B ey P D

Hence Newton’s method applied to g;(z) can be written

p(zk)
P (zk) = S p(er) /(2 — &)

which is the Newton—Maehly method. This iteration has the advantage that it is
not sensitive to the accuracy in the approximations to the previous roots &1, ..., §;.
Indeed, the iteration (6.6.8) is locally quadratically convergent to simple zeros of
p(z) for arbitrary values of &, ...,§;.

Zk+1 = Rk — (668)

6.6.5 Illl-Conditioned Polynomial Roots

We have previously noted that multiple roots in general are ill-conditioned, i.e.
sensitive to perturbations from, for example, round-off errors in the evaluation of
function values. Thus, it seems natural that if p(z) = 0 has some roots which
are very close to each other (nearly multiple roots) then these roots should be
very sensitive to perturbations. That roots which, at first sight, appear to be
well separated can be extraordinary sensitive to small relative perturbations in the
coefficients of p(z) is more surprising but nonetheless true! In the following we give
a famous example, due to Wilkinson [13, 1984]. This paper contains an extensive
discussion of numerical problems in determining roots of polynomial equations.

6.6. Zeros of Polynomials 451

Example 6.6.2.
Consider the Wilkinson polynomial

p(z) =(z=1)(z=2)--- (2 — 20) = 2*° — 2102 + ... 4 20!,

with zeros 1,2,...,20. Let p(z) be the polynomial which is obtained when the
coefficient a; = 210 in p(z) is replaced by

—(210 4 272%) = —210.000000119.. . .,

while the rest of the coefficients remain unchanged. Even though the relative per-
turbation in a; is of order 107'°, many of the zeros of the perturbed polynomial
p(z) deviate greatly from those of p(z). In fact, correct to nine decimal places, the
perturbed zeroes are

1.000000000 10.095266145 £ 0.6435009041

2.000000000

3.000000000 11.793633881 + 1.652329728:

4.000000000

4.999999928 13.992358137 &+ 2.518830070:

6.000006944

6.999697234 16.730737466 + 2.8126248941

8.007267603

8.917250249 19.502439400 + 1.940330347:
20.846908101

For example, the two zeros 16,17 have not only changed substantially, but have
become a complex pair. It should be emphasized that this behavior is quite typical
of polynomials with real coefficients and real roots. Indeed, many polynomials which
arise in practice behave much worse than this.

If we assume that the coefficients a; of a polynomial are given with full machine
accuracy, then the error in computed values of p(z) (for real z) can be as large as

§=1.06u> |(2i+ 1)ay_iz’],
see Section 2.4. Hence by (6.5.4) the attainable accuracy of a zero « is equal to

_) _ S 1(2i + 1)ay, it
P (a)] P (a)] '

In particular for the root o = 14 in the above example we get €, = 1.89 - 1016,
However, the changes in this example are so large that this linearized perturbation
theory does not apply!

If the coefficients are known (and stored) exactly, then by using multiple-
precision arithmetic the accuracy in the zeros can be increased. It is generally true
that the solution of polynomial equations of high degree requires the use of multiple
precision floating-point arithmetic in order to achieve high accuracy. Therefore, if

€a

452 Chapter 6. Solving Scalar Nonlinear Equations

the coefficients of p(z) are not given as the original data, it may be better to avoid
computing them. An important example of this is the determination of eigenvalues
of matrices; the eigenvalues are zeros of the characteristic equation, p(A) = det(A —
AI) = 0. Here the original data are the elements of the matrix A. Numerical values
of p(A\) can in general be evaluated much more accurately directly from the matrix
elements, see Chapter 9. Another example is given below.

Example 6.6.3.
The largest positive root of the equation

p(x)=(x+2)(2*-1)°%-3-10% .2 =0

is to be computed. Here p(z) is a polynomial of degree 13. If the coefficients
are computed using decimal floating point arithmetic with seven digits, then the
coefficient of z!! which is (12 — 3 - 107%) will be rounded to 12.00000. Thus the
machine will treat the equation (z +2)(z? — 1)% = 0, whose exact positive root is 1.

This is a poor result. One can get the root a = 1.053416973823 to full accuracy
for example by writing the equation in the form

0.1 [3\
c=o) o =1+ 2 (2)

and solving this by the iteration zg = 1, 3411 = ¢(zr). Hence the relative error in
the previous result is greater then 5%.

6.6.6 Simultaneous Determination of Roots

We now consider iterative methods that, under appropriate separation assumptions.
allows for the simultaneous determination of all the roots of a polynomial equation.

Suppose that the numbers fz(k) are a set of n distinct approximations to the ze-
ros a;, i = 1 : n of p(z). In Weierstrass’ method one computes a new set of
approximations using the iteration formula

€D =g —p(e™) [ao [LE€P =)], i=1:n. (669)

j=1
i
: R) N () N O) :
With ¢(z) = (# =&/)(2 — &) --- (2 — &) the formula may also be written

¢ — e® _pe®y g (e),

which shows that to first approximation the method is identical to Newton’s method.
This relation can be used to prove that the asymptotic order of convergence of the
Weierstrass method is equal to 2 for simple zeros. For multiple zeros the method
will only converge linearly, as does Newton’s method.

Review Questions 453

Note that it is possible to use the new approximations of the roots in (6.6.9)
as they become available, i.e.

& = —p(el) [ao [T - ¢ T -], i=1:m.
j<i j>i
This serial version of the Weierstrass method can be shown to have an order of
convergence which lies between 2 and 3.
If no a priori information about the roots is available then the initial approx-

imations §§°) can be chosen equidistantly on a circle |z| = p, centered at the origin,
which encloses all the zeros of p(z). Such a circle can be found using the following
result:

Theorem 6.6.1. All the roots a1, ...,ay, of the polynomial p(z) = apz™ + -+ +
an,ag # 0 lie in the disk |z| < p, where

p=min |n || "M .
|an—1|" Y lacl

Review Questions

1. Discuss the ill-conditioning of roots of polynomial equations. What famous polyno-
mial did J. H. Wilkinson use as an example?

2. Suppose that all roots of a polynomial equation are to be determined. Describe two
methods which avoids the problem of repeatedly converging to roots already found.

Problems
1. Consider a polynomial with real coeflicients
p(2) =ao" +a12" '+ tan, ai #0, i=0:n.

(a) Count the number of (real) additions and multiplications needed to compute a
value p(zo) by synthetic division of p(z) by (2 — z0), when z is a real and complex
number, respectively.

(b) For a complex number zo = xo + iyo, p(z0) can also be computed by performing
the synthetic division of p(z) with the real quadratic factor

d(z) =(z—20)(2 — Z0) = 22— %m0z + (zé + y%).

Derive a recursion for computing the quotient polynomial ¢(z) and p(z0) = bn—120 +
by, where

q(2) =boz" 24+ b12" P+ ..+ bn_a,
p(2) = q(2)d(z) + br_12 + bn.

Count the number of real additions and multiplications needed to compute p(zo)
and also show how to compute p'(zo).

454

Chapter 6. Solving Scalar Nonlinear Equations

2. (a) Using Cardano’s formula the real root a to the equation z® = z + 4 can be

written in the form

a= §/2+%V321+</2—%\/321.

Use this expression to compute « and discuss the loss of accuracy due to cancellation.
(b) Compute a to the same accuracy by Newton’s method starting from zo = 2.

. In Graeffes root-squaring method one separates even and odd powers of the polyno-

mial p(z) and squares the equation as follows

n n—2 n—4 2 n—1 n—3 n—>5 2
(aoz" +a22" " +asz""" +) = (02" Hazz" " tasz" T +-0)7

Putting u = 22 the resulting equation becomes
q(u) = p(=2)p(2) = bou" +bru" " + -+ b, =0.

This has roots equal to the squares of the roots of the original equation.
(a) Show that the coefficients by of g(u) can be computed from

k
bo :aé, (—1)kbk Zai-f-Z(—l)jZak_jak_H‘, k= 1,2,...,71.
j=1
(b) After squaring m times we obtain (after normalizing Ag = 1) an equation in
u=z""

u A" A+ A, =0,
with roots B = ai™. Assume that the roots ay, of the original equation p(z) = 0

are real and distinct. Use the relations between coefficients and roots of an algebraic
equation to show that for m large enough we have

ﬂ1%—A17 ﬂz%—Ag/Ah ﬂg%—Ag/Ag,....

(c) Square the polynomial z® —82% 417z —10 m = 3 times, and then use the relations
in (b) to compute approximations to its three real roots.

. Consider the iteration z,+1 = 22 +c¢, where ¢ = p+igq is a fixed complex number. For

a given zo the sequence of iterates z, = x, +1iy,, n = 0,1,2, ... may either converge
to one of the two roots of the quadratic equation z? — z 4 ¢ = 0 or diverge to infinity.
Consider zo chosen, e.g., in the unit squares of the complex plane. The boundary
separating the region of convergence from other points in the plane is a very complex
fractal curve know as the Julia set. The Mandelbrot set is obtained by fixing
zo = 0 and sweeping over values of ¢ in a region of the complex plane.

(a) Picture the Julia set as follows. Set ¢ = 0.27334 + 0.000742¢. Sweep over points
of zo in the region —1 < Rzp <1, —1.3 < V2o < 1.3. If |2n| < R, for N = 100 and
R = 10 color the point zo black. otherwise color the point from hot (red) to cool
(blue) according to how fast the iteration is diverging, i.e. according to how fast the
inequality |z,,| > R becomes satisfied.

(b) Picture the Mandelbrot set in a similar way. Sweep over values of ¢ in the region
—2.25 <Rec <0.75, =1.5 < Jc < 1.5.

6.7. Minimizing a Scalar Function 455

6.7 Minimizing a Scalar Function

We consider here the problem of finding an approximation to the minimum or
maximum of a real-valued function f of one variable belonging to some interval
[a,b]. We will give methods which determine an approximate local minimum of f
by evaluating f and/or f' at a small number of points.

One-dimensional minimization is an important subproblem in methods for
optimization and for solving systems of nonlinear equation. For example, if zj is
the current approximation and dj a search direction, the next approximation in
such methods is often found by minimizing a function

FA) = dax + Ady),

where A is a steplength.

If f is differentiable in I = [a, b], a necessary condition for f to have a local
minimum at an interior point of z* € I is

fl(z") =0.

It is also possible that the minimum is at a or b. This is the case if f’ does not
change sign on I. If this is checked for separately, then it is possible to reduce the
problem to a zero-finding problem for f’ by some of the methods described earlier
in this chapter. Since f’ also vanishes at a point of maximum and inflection, it is
necessary to check if the point found is a minimum, and continue if it is not. If
it is difficult or impossible to compute f’ directly, then f’ can be determined by
numerical differentiation. However, methods described below, which use function
values of f more directly are usually to be preferred.

In any minimization method, which only uses computed values of f, there is

a fundamental limitation in the accuracy of the computed minimum. If f is twice
differentiable in a neighborhood of a minimum point z* then

fz*+0) ~ f(z*) + %(52]””(;17*).

Hence, unless $6% > u|f(z*)|/|f"(«*)|, where u is the unit roundoff, the computed
value will not be different from f(z*). This means that there is no difference in the
floating point representation of f(z* +) unless ¢ is larger than a constant times
the square root \/u. Rounding and other errors in the computed function values
f(z) = fl (f(x)) may also contribute to the uncertainty. We can in general not
expect the relative error to be less than /u unless we can also use values of f’ or
the function has some special form; see Example ?7.

Most algorithms for minimizing a nonlinear function of one (or more) variables
find, at best, a local minimum. For a function with several local minima, there is
no guarantee that the global (lowest) minimum will be found. One remedy is to
try several different starting points and hope that the lowest local minimum found
is also the global minimum. This approach is neither efficient or safe. In practice
we have to be content with algorithms which nearly always give correct results in
most practical applications.

We introduce a condition which ensures that a function f has a unique global
minimum z* in an interval [a, b].

456 Chapter 6. Solving Scalar Nonlinear Equations

Figure 6.7.1. One step of interval reduction, f(cg) > f(dx).

Definition 6.7.1.
The function f(x) is said to be unimodal in [a,b] if there exists a unique
x* € [a,b] such that, given any c,d € [a,b] for which ¢ < d

d<z* = flc)> fd); c>z* = f(e) < f(d).

Using this definition we need not assume that the function f is smooth or even
continuous.

We now consider the interval reduction method, which can be thought of
as being analogue of the bisection method. Assume that f is unimodal in [a,b]. It
is possible to find a reduced interval on which f is unimodal by comparing values
of f(z) at two interior points ¢ and d such that ¢ < d. It holds

e {loth 02)
fa.d), i 7(0) < (@)

(If f(c) = f(d) we could take the smaller interval [¢, d], but we ignore this possibil-
ity.) Hence by performing two function evaluations we can enclose z* in an interval
of length at most equal to max(b — ¢,d — a). To minimize this length one should
take ¢ and d so that b —c = d — a. Hence ¢ +d = a + b, and we can write

c=a+t(b-a), d=b—t(b—a), 0<t<1/2.

Thend—a=b—c=(1-1t)(b—a), and by choosing ¢t =~ 1/2 we can almost reduce
the length of the interval by a factor 1/2. However, d — ¢ = (1 — 2¢)(b — a) must
not be too small for the available precision in evaluating f(z).

If we only consider one step the above choice would be optimal. Note that this
step requires two function evaluations. A clever way to save function evaluations
is to arrange it so that if [c,b] is the new interval then d can be used as one of
the points in the next step; similarly if [a,d] is the new interval then c¢. Suppose
this can be achieved with a fixed value of ¢. Because of symmetry we need only
consider the the first case. Then ¢ must satisfy the following relation (cf. above and
Figure 6.7.1)

d—c=(1-2t)(b—a) =(1-t)t(b—a).

6.7. Minimizing a Scalar Function 457

Hence t should equal the root in the interval (0,1/2) of the quadratic equation
1—3t+1t* =0, which is t = (3 — v/5)/2. With this choice the length of the interval
will be reduced by the factor

1—t=2/(v5+1)=0.6180...

at each step, which is the the golden section ratio. For example, n = 20 gives a
reduction of the interval with a factor about 104,

If we know in advance that we are allowed to evaluate f(z) at a fixed number
of of points @y, p_1,...,%2, 21, then one can show (see [2, Section 8.1]) that the
optimal choice of points are related to the Fibonacci sequence 7, where

=71 =1, Tpy1 =Tk +7k-1, k>1L (6.7.1)
At successive steps the length of the interval will be reduced by the factors

Tn—1/Tn>Tn—1/Tns - - -, 71 /T2 (1 + €),

where € &~ /u. Hence the length of the final interval will be (1 + €)(b — a)/7,. For
n — oo it holds that

tesr/tr — 2/(1+/5) = 0.618...,

and we recover the golden section ratio.
Algorithm 6.7.1 Golden Section Search.

Let f be a given continuous function and I = [a,b] an interval. The following
algorithm computes an approximation m € I to a local minimum of f(x), with an
error less than a specified tolerance tau.

Zmin = goldsec(f,a,b,d);

t=2/(3+V5);

c=a+t-(b—a);

d=b—-t-(b—a);

fe=f(e); fd= f(d);

while (d — ¢) > ¢ - max(|¢|, |d|)
if fc> fd

%K eep right endpoint b

a=c¢ c=d;

d=b—t-(b—a);
fe=fd; fd= f(d);
else

%Keep left endpoint a
b=d; d=c¢

458 Chapter 6. Solving Scalar Nonlinear Equations

c=a+t-(b—a);
fd=fe fe=[f(o);

end;

end;
ZTmin = (c+d)/2;

For smooth functions f more efficient methods can be devised where computed
function values of f are better utilized. For example, f can be interpolated by a
polynomial or rational function, the minimum of which is easy to determine. Since
a linear function in general has no minimum the simplest choice is to use a second
degree polynomial. In the following algorithm, due to Powell, one seeks zj € [a, b]
such that

f(@r) < fla) and f(zx) < min f(z) +9,

z€a,b]

where § is a tolerance. In each step we have three points x,y, z, which determine a
second degree polynomial g(z). We start with z = a, y = ¢, and

L { ¢, if f(c) > f(a);
2, if £(c) < f(a).

Then the critical point to g(z) is

flz,y]
f['rvy] - f[yvz]

Suppose first that f[z,y,z] > 0. Then z' is a minimum point of ¢(z), and if

|f (") — min{f(z), f(y), f(2)}| < 6 or [f(z) — q(z")] <,

x = %((m+y)(1—9)+(y+z)0), 6 =

stop with z* = z’. Else, replace z,y, or z with 2’ and repeat. Usually the point
with the largest function value is discarded.

Often a combination of interpolation and golden section search is used; see
Brent [1, 1973, Ch. 5]. Note the analogy with robust methods for solving a nonlinear
equation, where a combination of inverse interpolation and bisection can be used,
see Section 6.4.3. If the first derivative f'(x) is known, then one can use cubic
interpolation based on f(x), f'(x), f(y), f'(y). From Taylor’s formula we have

f@)=a+b@—z,) +c(w—2,)%/2, a=fn, b=f, c=f"
If ¢ # 0, then f has a stationary point at z* where b+ c(lx —z,) =0, or
min f(z*) = a — b*/(2¢), 2* ~x, —b/c.

The Matlab function “fmin” is based on the Fortran implementation FMIN of
Brent’s algorithm given in Forsythe, Malcolm, and Moler [2, pp.184-187].

Review Questions 459

Review Questions

1. Suppose the twice differentiable function f(x) has a local minimum at a point z~.
What approximate limiting accuracy can you expect in a method for computing z*
which uses only function values?

2. What property should the function f(z) have to be unimodal on the interval [a, b]?

3. How many steps in needed in golden section search to reduce an initial interval [a, b]
by a factor of 10767

Problems

1. Use the algorithm goldsec to find the minimum of the quadratic function f(z) =
(x — 1/2)? starting from a = 0.25, b = 1. Plot the successive inclusion intervals.

Computer Exercises

1. Modify the algorithm goldsec so that it performs a given number of n steps where
the points of evaluation of f are based on the Fibonacci sequence (6.7.1). What is
the gain in efficiency compared to goldsec for n = 10 and n = 100, respectively?

Notes and References

Many of the methods for solving a nonlinear equation date back a long time. The
regula falsi originated in old Indian texts and was used in medieval Arabic mathe-
matics. It got its name from the Italian mathematician Leonardi Pisano in the 13th
century.

Also the secant method predates Newton’s method. The current form of
Newton’s method did not originate with Newton, but is more related to an algorithm
published by Raphson about 1690. This is why the method often is called the
Newton-Raphson method. The first to give a description of Newton’s method using
derivatives seems to have been Thomas Simpson in 1740. An interesting historical
account of Newton’s method is given in Ypma [14]. The third order method of
Halley [3] was published more than 300 years ago! For some recent generalizations
see Kalantari

One of the best algorithms to combine bisection and interpolation was devel-
oped by van Wijngaarden and Dekker at Mathematical Center in Amsterdam in
the 1960s; see [?]. It was taken up and improved by Brent [1], see also [2], Section
7.2.

Wilkinson [13] received the Chauvenet Prize of the Mathematical Association
of America for his exposition of the ill-conditioning of polynomial zeros in [13].

A more detailed discussion of measures for the asymptotic speed of conver-
gence is found in Ortega and Rheinboldt [7, Chapter 9].

460

Chapter 6. Solving Scalar Nonlinear Equations

Several comprehensive monographs dealing with methods for solving scalar

nonlinear equations are available. Traub [12, 1964] gives an exhaustive enumeration
of iteration methods with and without memory, with their order of convergence and
efficiency index. Householder [5, 1970] contains much material on classical results
and on algebraic equations as does Ostrowski [8, 1973].

The literature on methods for solving algebraic equations is vast. A good

survey is given by Sendov et al. in [11].

[1]

2]

3]

R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall,
Englewood Cliffs, NJ, 1973.

G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Method for
Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ, 1977.

E. Halley. A new and general method of finding the root equations. Philos.
Trans. Roy. Soc. London, 18 (1694).

P. Henrici. Applied and Computational Complex Analysis, Vol. 1. Wiley
Classics Library, New York, 1996.

A. S. Householder. The Numerical Treatment of a Single Nonlinear Equation.
McGraw-Hill, New York, 1970.

B. Kalantari, I. Kalantari, and R. Zaare-Nahandi, A basic family of iteration
functions for polynomial root finding and its characterizations, J. Comput.
Appl. Math., 80 (1997), pp. 209-226.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables. Academic Press, New York, 1970.

A. M. Ostrowski. Solution of Equations in Euclidian and Banach Spaces.
Academic Press, New York, third edition, 1973.

P. Rabinowitz. Numerical Methods for Non-Linear Algebraic Equations. Gor-
don and Breach, London, UK, 1970.

E. Schréder, On infinitely many algorithms for solving equations (in German),
Math. Ann. 2 (1870), pp. 317-365. English translation by G. W. Stewart, TR-
92-121, Institute for Advanced Computer Studies, University of Maryland,
College Park, MD, 1992.

Bl. Sendov, A. Andreev, and N. Kjurkchiev. Numerical solution of polynomial
equations. In P. G. Ciarlet and J. L. Lions, editors, Handbook of Numerical
Analysis, volume III, pages 629-778. Elsevier Science, Cambridge, UK, 1994.

J. F. Traub. Iterative Methods for the Solution of Equations. Prentice-Hall,
Englewood Cliffs, NJ, 1964.

J. H Wilkinson. The perfidious polynomial. In G. H. Golub, editor, Studies in
Numerical Analysis, pages 1-28. American Mathematical Society, Providence,
RI, 1984.

Computer Exercises 461

[14] T. J. Ypma. Development of the Newton—Raphson’s method. SIAM Review,
37:531-551, 1995.

Computer Exercises 463

accept single floats (not expressions) as input data and convert them to normalized
mulprec numbers by means of the command npr, or npc for complex floats, see
below.® Mulprec distinguishes between floats and mulprec numbers by the length,
which is equal to 1 or larger than 1, respectively.

For a complex, normalized mulprec number these conditions typically hold
for both the real and the imaginary part. The exponent and the length are common
for both parts; an exception: z(2) may thus be zero for one of the parts.

It is fundamental for Mulprec that P can be squared without overflow with
some margin. In fact, 2°3 > 90P2. Hence, if the shorter one of two positive
normalized mulprec numbers has at most 90 gytes, we can obtain their product by
the multiplication of gytes and addition of integers, so that the sums do not exceed
253 Typically, there is only one normalization in a multiplication.

The normalized representation of z is unique (if # 0). For example, note
that, if you subtract two positive normalized mulprec numbers, the gytes of the
result may have varying signs, unless you normalize the result by the mulprec
operation nize (or the simpler operation rnize if the number is real). Since the
operation rnize is not fast compared to the operations add and sub, there is as a
rule no normalization in add and sub.

For such reasons we now introduce a more general concept: the legal mulprec
number; val(z) has the same value and the same form as the normalized mulprec
number, but all the z(j) need not have the same sign and they have a looser bound:
|z(j)| < 45 P2.° Evidently such a representation of a number is not unique.

Allowing this more general type of mulprec number in additions and subtrac-
tions, makes it unnecessary to transport carry digits inside these operations; this is
typically done later, if a normalization is needed.'® A typical suboperation of the
normalization is to subtract a multiple ¢P from one of the z(j); this is typically
compensated for by adding ¢ to z(j — 1), in order to keep val(x) constant. (Is not
that how we learned to handle the carry in addition in elementary school?)

Multiplication, division, elementary functions etc., do include normalization,
both of the operands and of the results. Normalized numbers only should be printed.

The Mulprec Library

The mfiles for about 60 mulprec functions are packed together in the text file mul-
prec.lib, which can be downloaded from the books homepage. The numbers in the
beginning of the lines of the

The mfiles for the following mulprec functions are packed together in the text
file mulprec.lib, which can be downloaded from the books homepage. The numbers
in the beginning of the lines of the lists below are only for making references in
the text more convenient. They are thus not to be used in the codes and your
commands.

8 Expressions with mulprec operations are, however, allowed as input data.

9The addition of two legal numbers does not cause overflow, but the sum can be illegal at first
and must be immediately normalized, see the next footnote.

10An exception: if the result of an add or a sub has become illegal, then it becomes acceptable
after an automatic call of nize inside add.m (or sub.m).

464 Chapter 6. Solving Scalar Nonlinear Equations

Since the condensed comments in the table below, may be unclear, you are
recommended to study the codes a little before you use the system. x,y,z are
typically mulprec numbers. As mentioned above, most of the commands accept
also floats as input if it makes sense.

In a command like z = mul(z,y,s), the parameter s means the number of
gytes wanted in the result (including the exponent; hence it equals the length in
the Matlab sense). It is optional; if s is omitted the ezact product is computed and
normalized (not chopped).

An asterisk means that the code is longer than 500 bytes. The absence of an
asterisk usually indicates, e.g., that the code is a relatively short combination of
other library codes. The number in the beginning of the lines of the following table
are not used in the computations; they are just for easy reference to the table and
to mulprec.lib.

Basic arithmetic operations.

Addition, subtraction were commented above. Multiplication is performed as in el-
ementary school—the amount of work is approximately proportional to the product
of the sizes of the factors. Perhaps one of the fast algorithms presented in Knuth
[2, Sec. 4.3.3], in the binary case, will be adapted to the gyte system in the future.

In the table below mul.m, the shorter of the operands is chosen to be the
multiplier. In order to avoid overflow (in the additions inside the multiplication), the
multiplier is chopped to 90 gytes (at most 623 decimal places). An operation that
can handle a multiplier by partitioning it into 90-gyte pieces and calling mul.m once
for each piece, is tentatively called mullong.m. It has not yet been implemented. At
present there are bounds also for the accuracy for division, square root, elementary
functions etc., since multiplication is used in their codes.

1/x and 1/sqrt(x) are implemented by Newton’s iteration method, (with vari-
able precision) that (roughly) doubles the number of gytes in each iteration. The
initial approximation is obtained by the ordinary Matlab operations (giving ap-
proximately 16 correct decimals). See more details in mulprec.lib. The square root
algorithm is division-free.

At present, some limitations of Mulprec are set by the restriction of the length
of the shorter operand of a multiplication to at most 90 gytes). It does not seem to
be very difficult to remove these bounds, or at least to widen them considerably.

1.* add.m z = add(z,y) z=x+y

2a*. sub.m z = sub(z,y) z=xz—y

2b. subb.m z = subb(z,y) z = x + mi(y), shorter but
slower than 2a

3*. mul.m z =mul(z,y,s) z=ux-y, s optional, see above

3b. mullongm z=mul(z,y,s) 2z =z-y. Unrestricted multi-

plication. Not yet implemented.
4*. recip.m z =recip(z,s) z=1/z

Computer Exercises 465

5. div.m z = div(z,y,s) z=afy

6a. mim z = mi(x) z = —ux; all components change
sign ezcept the exponent

6b. muabsm z=|z| Absolute value of a real or

complex mulprec number

Not yet implemented.
7% musqrt.m [y, iny] = musqrt(z,s) Returns sqrt(x) and

optionally 1/sqrt(x)

Some special mulprec operations.

The operation chop.m is more general than just chopping to a desired length. See
the code in mulprec.lib. The normalization code rnize still has a bug (7) that violates
the uniqueness. It can happen, e.g., that the last two gytes of a positive number
read —1 9999634 (say). Such nine-sequences may also occur at other places in the
vector. Sometimes such a representation is more easily interpreted than a strictly
normalized normalized mulprec number. I have therefore not yet tried to eliminate
this “bug”.

8. npr.m zx = npr(z) Converts real float to normalized
mulprec number

9. npc.m xx = npc(x) Converts complex float to normalized
mulprec number

10. flom y = flo(x) Approximates mulprec number by float

11*. chop.m y = chop(z,k) Returns approximately equivalent
mulprec number, length &

12*. rnize.m y =rnize(x) Normalizes real mulprec number

13. nizem y = nize(x) Normalizes complex mulprec number

14. elizer.m y = elizer(x) Eliminates zero gytes in mulprec
number, left and right.

15. muzerom y=muzero(z) Ifz==0,y=1,elsey=0.

Elementary functions.
In the computation of e®, z real, we first seek Z and an integer n, such that
e" =¢e"P", and |Z|<3ilnP.

Then, for an appropriate integer m, /2" is computed by the k — 1-term Maclaurin
expansion, a Horner scheme with variable precision. e is then obtained by squaring
the sum of the Maclaurin expansion m times. Suppose that the volume of computa-
tion is proportional to m + ck; the value ¢ = 0.4 has been found by a combination of
heuristic theory and experiment. In the code, the parameters m and k are obtained
from an approximate formula for finding the minimum of m + ck with the constraint
that the bound for the relative error of €*/2” | due to the Maclaurin truncation and
the squarings of the Maclaurin sum does not exceed P~%.

A similar idea is applied for e**. Now Z € [—8m,8n], and k — 1 terms of
the Taylor expansion into powers of /2™ are used. These methods are inspired

466 Chapter 6. Solving Scalar Nonlinear Equations

from ideas developed by Napier and Briggs, when they computed the first tables of
logarithms. See Goldstine [12].

The algorithms in Inr.m and muat2.m are based on Newton’s method for the
equations e¥ = x and tany = x, respectively, with initial approximations from the
Matlab operations Inz and atan2(y,z). The commands muat2, Inc and mulog do
not yet allow floats as input, and the codes are not well tested.

16*. expo.m y = expo(z, s) y = e”, x real,

17*. expi.m [coz, siz,eix] = expi(x,s) cosz and optionally
sinz, e, z real

18. muexp.m w = rmuexp(z,s) y = e, z complex

19*. Inr.m y = lnr(z, s) x>0

20*. muat2.m v = muat2(y,z, s) adapted from atan2(y, z);
not yet with float input

2la. Inc.m w = Inc(z, s) w=1Inz, z#0;
not yet with float input

21b. mulog.m w = mulog(z, s) A better(?) name for 21a

A library for mulprec vector algorithms.

A mulprec column vector is represented by a (Matlab) rectangular matrix. A
mulprec row vector is a row of mulprec numbers (where each mulprec number
is a row of gytes). In a rectangular mulprec matrix, each column is a mulprec
column vector, and each row is a mulprec row vector. So, we can say that a
mulprec matrix is a row of rectangular (Matlab) matrices, all of the same size. The
following set of operations is very preliminary. It was worked out for an application
to repeated Richardson h? extrapolation, see the m-file rich3.m.
30*. fixcom.m y = fizcom(z,a) z,y mulprec vectors. Returns
y~, y(1) = a(l),
length(y(i)) =length(a)

31*. musv.m y = musv(sca, vec), sca is mulprec scalar, vec is
mulprec vector y = sca - vec

32*%. scalp.m y = scalp(vecl,vec2), scalar prod. in n-dim Eucl. space,
vecy, vecs mulprec column vectors

33. adv.m z = adv(z,y) z =+ y; z,y, z mulprec vectors

34. rnizev.im y = rnizev(x) Normalizes real mulprec vector

35. chopv.m y = chopv(z, s) Chops components of mulprec
vector to length s

36. chonizv.m y = chonizv(z, s) Normalizes and chops a mulprec
vector

Miscellaneous.

50*. intro.m Starting routine for Mulprec. See below.

51*%. rich3.m Mulprec algorithm for repeated Richardson h? extr.

52*%. polygons.m Compute circumference for a sequence of polygons.
Calls rich3.m

53. why.m

Computer Exercises 467

There are also edited diaries of a few test experiments (comparisons of com-
putations with different precision), e.g., pippi2.dia (7 computed by polygons.m and
rich3.m), muat2est.dia (7 = 4 arctan 1, etest.dia (e computed by expo.m).

How to start Mulprec.

Change directory to the seat of the Mulprec files.

Run intro.m. (If you forget this, you are likely to obtain confusing error messages.
Ignore them and run intro.m!)

Then intro.m brings down the file const.mat from the disk. The file const.mat
contains, e.g., 50 gytes mulprec approximations to 7 (called pilong), and to In P
(called LP), and the default values of some other global variables. Now Matlab is
ready for your Mulprec adventures.

More Subprojects.

A mulprec analog to the matlab command rat for finding accurate (or exact) ra-
tional approximations to floating point results. In connection with this the basic
operations of exact rational arithmetic and continued fractions, including ged and
lem. (See Knuth [2, vol.IL, sec. 4.5.2], in particular p.327). Mulprec can, of course,
not compete with Maple and similar systems for rational arithmetic. Minor tasks
of this type may, however, appear in a context where Mulprec is used.

Interesting specific examples: difference schemes, the generalized Euler Trans-
formation, the Euler—-Maclaurin Formula, and other methods of convergence accel-
eration. Illconditioned power series, transformation of a moment sequence to the
three-term recurrence coefficients for the orthogonal polynomials to the same weight
distribution or, equivalently, transformation of a power series to a continued frac-
tion. Gaussian elimination, Gram—-Schmidt orthogonalization.

Theoretical analysis, if possible applied to built-in error estimation and con-
trol, e.g., chopping strategies for the construction of the m-files, both for the Mulprec
library, and for suggestions to the Mulprec users.

Documentation, both comments in the codes, a detailed report, and (in par-
ticular) a clear, short and attractive booklet with a user’s manual.

At present, some limitations of Mulprec are set by the restriction of the length
of the shorter operand of a multiplication to at most 90 gytes. It does not seem to
be very difficult to remove these bounds, or at least to widen them considerably.

Computer Exercises

1. Asis well known f(z) = (14 x)'/® has the limit e = 2.71828 18284 59045 ..., when
x — 0o. Study the sequences f(z,) for z, = 107" and z, =27 ", forn =1,2,3,....
Stop when z, < 107*° (or when z,, < 1072° if you are using double precision). Give
your results as a table of n, z,, and the relative error g, = (f(zn) —e)/e. Also plot
log(|gn|) against log(|z,)|. Comment on and explain your observations.

Hint: The Maclaurin expansion of In(1 + z) is useful. Both truncation and roundoff

468

Appendix . Solving Scalar Nonlinear Equations

€errors occur.

. Make up and run some simple examples with several choices of the parameter s,

such that you can easily check the accuracy of the result. For example: 1/7, v/0.75,
sin(m/3), e, 4arctan 1. (Compare also the calculations in the dia files.)

. The ancient Greeks computed approximate values of the circumference of the unit

circle, 27, by inscribing a regular polygon and computing its perimeter. Archimedes
considered the inscribed 96-sided regular polygon, whose perimeter is 6.2821. In gen-
eral, a regular n-sided polygon inscribed in a circle with radius 1 has circumference
¢n = 2nsin 7. If we put h = 1/n, then
2 . LTI Y
h) = =— h=2m— —h —h"— ...
c(h) =cin , sinm T3 + &0 ,

so c(h) satisfies the assumptions for repeated Richardson extrapolation with p, = 2k.
One can prove that the following recursion formula leads from ¢, to can:

cm_4nsm—— \/ 1—cos— \/2—\/ cn/n

(cn/m)

\/2+ 4 — (cn/n)?

(The last transformation is made to avoid cancellation and consequential round-off
errors.)

can/(2m)

The script file polygons.m uses this recursion after the substitutions
n=6%2""" m=1:M, M<36, c,=p(m+1), q=p/n.

The script polygons.m then calls the function rich3.m that performs Richardson
extrapolations until the list of M polygons is exhausted or the sequence of estimates
of the limit 27 ceases to be monotonic.

Choose a suitable M, M < 36, and call polygons.m. Compare with the diary file
pippi2.dia that contains previous runs of this. Study the elapsed time.

. Write a code for the summation of an infinite series) f(n) by Euler-Maclaurin’s

Summation Formula, assuming that convenient algorithms exist for the integral and
for derivatives of arbitrary order. Consider also how to handle generalized cases
where a limit is asked for, rather than a sum, e.g., Stirling’s asymptotic expansion
for InI'(z) or the Euler constant .

The numerators and denominators of some Bernoulli numbers By,, n = 1: 17, are
found in the file const.mat, in the vectors B2nNN and B2nD, respectively. B0 =
1, B1 = —1/2, are given separately.

. An interesting table of mathematical constants (40 decimal places) is given in Knuth

[2, Appendix A, p. 659]. Compute a few of them to much higher accuracy. For some
of them an estimate of the accuracy may be most easily obtained by comparing
results obtained using different values of the parameter s. (Compare also the diary
files given in the directory of Mulprec.'!) Some of the constants may require some
version of the Euler—Maclaurin formula, see Example 3. Incorporate them to your
const.mat, if they are interesting. I'(1/3) and —('(2) (the derivative of Riemann’s
¢-function) seem to be relatively advanced tasks.

11'We suspect that one digit is wrong in v/5. Are we right? By the way, Knuth denotes (v/541)/2

by ¢.

Computer Exercises 469

5. Write and test a code for the product of a mulprec matrix by a mulprec vector.
Incorporate into your mulprec library.

6. Implement mullong.m according to the indications given above in “Basic arithmetic
operations”, or in some different way. Do something about the consequences of this
for expo.m, if you want to treat the next exercise.

—t2h?

7. Poisson’s Summation Formula reads, in the case f(t) = e with the Fourier

Transform f(w) = (\/E/h)e*wZ/(thZ)’

N K-1
2,2 2,2 2
§ —n“h E —7°k“/h
h e = \/E e / Rh,N,K,chopping.s .

n=—N k=—K+1

This particular case is also known as the Theta Transformation Formula.

8. Suppose that you want to compute /7 to an extreme accuracy, by letting a computer
that didn’t cost more than $2000 (say) work over a weekend with the use of Mulprec
(with a few amendments). For a given (appprox.) bound for Ry v,k choppings, de-
termine a good choice of the parameters h, N, K, and the parameter s in the various
terms. Estimate roughly the relation of computing time to error.

e Problem 6 must have been treated, at least in principle, before you can solve this.
e Note that the function evaluation can be arranged as a set of recursion formulas
with basic arithmetic operations only. I believe that only two or three evaluations
of the exponential will be needed in the whole computation.

e Leave the door open for the use of variable precision, but I am not sure that it will
reduce the computing time by a terrific amount in this exercise.

e Note that 7 appears in several places in the equation. Think of the computation
as an iterative process (although in practice one iteration is perhaps enough).

e Before you make a full scale experiment, make sure that neither your computer—
nor your office—will be a ruin, when you return after weekend.

[1] H. H. Goldstine. A History of Numerical Analysis from the 16th through the
19th Century. Springer-Verlag, New York, 1977.

[2] D. E. Knuth. The Art of Computer Programming, Vol. 2. Seminumerical
Algorithms. Addison-Wesley, Reading, MA, second edition, 1981.

470 Appendix . Solving Scalar Nonlinear Equations

Appendix. Guide to Literature

For many readers numerical analysis is studied as an important applied subject.
Since the subject is still in a dynamic stage of development, it is important to
keep track of recent literature. Therefore we give in the following a more complete
overview of the literature than is usually given in textbooks. We restrict ourselves
to books written in English. The selection presented is by no means complete and
reflects a subjective choice. However, we hope it can serve as a guide for a reader
who out of interest (or necessity!) wishes to deepen his knowledge. Both more recent
textbooks and older classics are included. A valuable source book to the literature
before 1956 is Parke [29, 1958]. An interesting account of the history of numerical
analysis from the 16th through the 19th century can be found in Goldstine [12,
1977]

Monographs specialized in linear algebra, approximation, ordinary and partial
differential equations, and other various areas, will be listed together with a short
introductory commentary in later chapters of this book. Reviews of most books
of interest can be found in Mathematical Reviews as well as in SIAM Review and
Mathematics of Computation

Textbooks in Numerical Analysis

Textbooks which can be read as a complement to this book include Van Loan [25],
Conte and de Boor [6, 1980], Deuflhard and Hohmann [7, 1995], and Stewart [37,
38]. Gautschi [11, 1997] is a carefully written introductory text with a wealth
of computer exercises and much valuable information in notes after each chapter.
Several books contain listings of algorithms, or even comes with a disk containing
software, for example, the introductory book by Forsythe, Malcolm, and Moler [8,
1977] and its successor Kahaner, Moler and Nash [2, 1988].

Press et al. [30, 1993] gives an unsurpassed survey of contemporary numerical
methods for the applied scientist together with software available on-line. The book
by Gander and Hiebicek [10, 1997] contains worked through examples on how to
use modern software tools like Matlab and Maple in solving a selection of applied
problems.

More advanced classical texts include Isaacson and Keller [22, 1966], Hamming
[17, 1974], Ralston and Rabinowitz [32, 1978], and Schwarz [36, 1989]. The book
by Stoer and Bulirsch [39, 2002], now in anew edition is particularly suitable for
a reader with has a good mathematical background. Strang [40, 1986] gives an
excellent modern introduction to applied mathematics.

[1] F.S Acton. Numerical Methods That (Usually) Work. Math. Assoc. of Amer-
ica, New York, second edition, 1990.

[2] D. Kahaner anf C. B. Moler and S. Nash. Numerical Methods and Software.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[3] K. E. Atkinson. An Introduction to Numerical Analysis. Wiley, New York,
second edition, 1989.

Computer Exercises 471

[4] E. K. Blum. Numerical Analysis and Computation: Theory and Practice.
Addison-Wesley, Reading, MA, 1972.

[5] E. W. Cheney and D. Kincaid. Numerical Mathematics and Computing.
Brooks and Cole, Pacific Grove, CA, third edition, 1994.

[6] S. D. Conte and C. de Boor. Elementary Numerical Analysis. An Algorithmic
Approach. McGraw-Hill, New York, third edition, 1980.

[7] P. Deuflhard and A. Hohmann. Numerical Analysis. A First Course in Sci-
entific Computing. de Gruyter, Berlin, 1995.

[8] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for
Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ, 1977.

[9] C.-E. Froberg. Numerical Mathematics. Theory and Computer Applications.
Benjamin/Cummings, Menlo Park, CA, 1985.

[10] W. Gander and J. Hiebicek. Solving Problems in Scientific Computing using
Maple and Matlab. Springer-Verlag, Berlin, third edition, 1997.

[11] W. Gautschi. Numerical Analysis. Birkhauser, Boston, MA, 1997.

[12] H. H. Goldstine. A History of Numerical Analysis from the 16th through the
19th Century. Springer-Verlag, New York, 1977.

[13] G. H. Golub, editor. Studies in Numerical Analysis. The Math. Assoc. of
America, 1984.

[14] G. H. Golub and J. M. Ortega. Scientific Computing and Differential Equa-
tions. An Introduction to Numerical Methods. Academic Press, San Diego,
CA, 1992.

[15] G. H. Golub and J. M. Ortega. Scientific Computing. An Introduction with
Parallel Computing. Academic Press, 1993.

[16] G. Hémmerlin and K.-H. Hoffmann. Numerical Mathematics. Springer-
Verlag, Berlin, 1991.

[17] R. W. Hamming. Numerical Methods for Scientists and Engineers. McGraw-
Hill, New York, second edition, 1974.

[18] M. T. Heath. Scientific Computing. An Introductory Survey. McGraw-Hill,
Boston, MA, second edition, 2002.

[19] P. Henrici. Elements of Numerical Analysis. Wiley, New York, 1964.

[20] F. B. Hildebrand. Introduction to Numerical Analysis. McGraw-Hill, New
York, 1974.

[21] A. S. Householder. Principles of Numerical Analysis. McGraw-Hill, New
York, 1953.

472

Appendix . Solving Scalar Nonlinear Equations

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

31]

E. Isaacson and H. B. Keller. Analysis of Numerical Methods. John Wiley,
New York, 1966. Corrected reprint of 1966 original, 1994, Dover, New York.

D. Kincaid and W. Cheney. Numerical Analysis. Brooks/Cole, Pacific Grove,
CA, second edition, 1996.

C. Lanczos. Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956.

C. F. Van Loan. Introduction to Scientific Computing. Prentice-Hall, Upper
Saddle River, NJ, 1997.

G. I. Marchuk. Methods in Numerical Mathematics. Springer-Verlag, Berlin,
second edition, 1982.

J. C. Nash. Compact Numerical Methods for Computers: Linear Algebra and
Function Minimisation. American Institute of Physics, New York, second
edition, 1990.

J. Ortega. Numerical Analysis: A Second Course. Academic Press, New
York, 1972.

N. G. Parke. Guide to the Literature of Mathematics and Physics. Dover
Publications, New York, second edition, 1958.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes in Fortran 77; The Art of Scientific Computing. Cambridge
University Press, Cambridge, UK, second edition, 1993.

A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer-
Verlag, New York, 2000.

A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis.
McGraw-Hill, New York, second edition, 1978.

J. R. Rice. Mathematical Software. Academic Press, New York, 1971.

J. R. Rice. Numerical Methods, Software, and Analysis. Academic Press,
New York, 1983.

H. Rutishauser. Lectures on Numerical mathematics. Birkhduser, Boston,
MA, 1990.

H. R. Schwarz. Numerical Analysis. A Comprehensive Introduction. Wiley,
New York, 1989.

G. W. Stewart. Afternotes on Numerical Analysis. STAM, Philadelphia, PA,
1996.

G. W. Stewart. Afternotes Goes to Graduate School. SIAM, Philadelphia,
PA, 1997.

Computer Exercises 473

[39] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-
Verlag, New York, third edition, 2002.

[40] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
Wellesley, MA, 1986.

[41] J. Todd, editor. A Survey of Numerical Analysis. McGraw-Hill, New York,
1962.

[42] C. W. Ueberhuber. Numerical Computation. 1 & 2. Springer-Verlag, Berlin,
1997.

[43] J. S. Vandergraft. Introduction to Numerical Computations. Academic Press,
New York, 1983.

[44] D. M. Young and R. T. Gregory. A Survey of Numerical Analysis. Vol. 1.
Addison-Wesley, Reading, MA, 1973.

[45] D. M. Young and R. T. Gregory. A Survey of Numerical Analysis. Vol. 2.
Addison-Wesley, Reading, MA, 1973.

Handbooks, Tables and Formulas

Some principal questions in the production of software for mathematical computa-
tion are discussed in Rice [33, 1971],

Mathematical tables are no longer as important for numerical calculations as
they were in the pre-computer days. However, tables can often be an important
aid in checking a calculation or planning calculations on a computer. Detailed
advice about the use and choice of tables is given in Todd [41, 1962, pp.93-106],
The classical six-figure tables of A most comprehensive source of information on
mathematical functions and formulas is Abramowitz and Stegun [1, 1965],

The three monographs edited by Jacobs [9, 1977], Iserles and Powell [8, 1987],
and Duff and Watson [5, 1997] give exellent surveys of the development of “state
of the art” methods in many different areas of numerical analysis during the last
decades. The Handbook of Numerical Analysis [4], edited by P. G. Ciarlet and J. L.
Lions, is a multivolume sequence that offers comprehensive coverage in all areas of
numerical analysis as well as many actual problems of contemporary interest. Very
useful surveys articles are to be found in ACTA Numerica, a Cambridge University
Press Annual started in 1992.

Two general mathematics dictionaries, which are useful to have at hand are
[11] and [16].

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Func-
tions. National Bureau of Standards, Dover, New York, 1965.

[2] Yu. A. Brychkov, A. P. Prudnikov, and O. I. Marichev. Integrals and Series.
Vol. 1: Elementary Functions. Gordon and Breach, New York, 1986.

474

Appendix . Solving Scalar Nonlinear Equations

[3]

[4]

[5]

[6]

[7]

R. Churchhouse, editor. Handbook of Applicable Mathematics, volume III.
Numerical Methods. Wiley-Interscience, New York, 1981.

P. G. Ciarlet and J. L. Lions. Handbook of Numerical Analysis, volume I-VII.
North-Holland, Amsterdam, 1990-2000.

I. S. Duff and G. A. Watson, editors. The State of the Art in Numerical
Analysis. Clarendon Press, Oxford, 1997.

B. Engquist and W. Schmid, editors. Mathematics Unlimited—2001 and Be-
yond. Springer-Verlag, Berlin, 2001.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products.
Academic Press, London, UK, fifth edition, 1993.

A. TIserles and M. J. D. Powell, editors. The State of the Art in Numerical
Analysis. Clarendon Press, Oxford, 1987.

D. A. H. Jacobs, editor. The State of the Art in Numerical Analysis. Claren-
don Press, Oxford, 1977.

E. Jahnke, F. Emde, and F. Losh. Tables of Higher Functions. McGraw-Hill,
New York, sixth edition, 1960.

R. C. James and E. F. Beckenbach, editors. James & James Mathematics
Dictionary. Van Nostrand, Princeton, NJ, third edition, 1968.

D. E. Knuth. The Art of Computer Programming, Vol. 2. Seminumerical
Algorithms. Addison-Wesley, Reading, MA third edition, 1998.

A. V. Lebedev and R. M. Federova. A Guide to Mathematical Tables. Van
Nostrand, New York, 1960.

A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev. Integrals and Series.
Vol. 2: Special Functions. Gordon and Breach, New York, 1986.

J. Spanler and K. B. Oldham. An Atlas of Functions. Springer-Verlag, Berlin,
1987.

E. W. Weisstein, editor. CRC Concise Encyclopedia of Mathematics. CRC
Press, Boca Raton, FL, 2000.

Index

divide and conquer strategy, 16

absolute error, 78
acceleration
Aitken, 240, 286
acceleration of convergence, 238—-300
accuracy, 78
automatic control of, 107-108
Adams formula
explicit, 231
implicit, 231
adjoint matrix, 59
Aitken acceleration, 240-245, 286
active, 242
iterated, 241
Aitken interpolation, 335—-336
algorithm, 120
back-substitution, 22
backward stable, 133
bisection method, 413
divide and conquer, 118
divided difference table, 331
Euler’s transformation, 249
Gaussian elimination, 24
golden section search, 457
mathematically equivalent, 96
Newton coefficients, 331
numerically equivalent, 96
safeguarded Newton method, 426
stable, 135
unstable, 133
aliasing, 182
alternating series, 144
analytic continuation, 278
analytic functions, 370-378
Ansatz, 222
antidiagonal, 55
antithetic sequence, 45
arithmetic
circular, 111

complex, 96

fixed-point, 84

floating-point, 92—97

interval, 108—-117

multiple precision, 91

standard model, 92

unnormalized floating point, 107
array operations, 55
arrowhead system, 355
asymptotic error constant, 418
asymptotic series, 177
attainable accuracy

for multiple roots, 443

for roots, 441
attraction

point of, 416
automatic differentiation, 159

B-spline, 359-367

basis, 362

definition, 361

evaluation, 365

exterior knots, 360

hat function, 360

multiple knots, 363

properties, 362

recurrence relation, 364
back-substitution, 20
backward error

analysis, 97
band matrix, 55, 219
barycentric coordinates, 400
basis

standard, 52
bell sum, 183, 236, 264, 298
Bernoulli numbers, 153-154, 180
Bessel’s

function, 183
bidiagonal

matrix, 56

476

Index

bilinear interpolation, 381
binary

number system, 81

point, 82

system, 82
Birkhoff interpolation, 344
bisection method, 410—414
BLAS, 99
boundary value problem, 183
boundary values)

for difference equation, 219
Box—Muller’s transformation, 46

c.m., 282
application, 278
c.m., see completely monotonic, 274
cancellation, 12
of errors, 108
of terms, 104-106
Cauchy+FFT method, 159, 162-166
Cauchy—Schwarz inequality, 67
characteristic equation (polynomial)
of difference equation, 219
Chebyshev abscissae, 338
Chebyshev interpolation, 371-372
Chebyshev series, 171
circular arithmetic, 111
Clenshaw’s algorithm, 171, 186
column rank, 66
companion matrix, 446
compensated summation, 99-100
completely monotonic
criteria, 280
completely monotonic, c.m., d.c.m.,
274-282
complex arithmetic, 96
condition number, 126
of matrix, 129
of problem, 120-127
contined fraction, 312
continued fractions, 301-307
contraction mapping, 416
convergence
acceleration of, 238—300
of vectors and matrices, 69
superlinear, 418
convergence acceleration
problems, 284—-300
convergence order, 418
conversion

between number systems, 83
convolution, 151
coordinates
barycentric, 400
correct decimals, 79
Cramer’s rule, 56
cubic convergence
methods of, 427-429
cubic spline, 234
complete interpolant, 352
interpolation error, 355-358
knot not a knot condition, 353
natural interpolant, 352
periodic boundary conditions,
353, 355
tridiagonal system, 351
cut (in the complex plane), 167

d.c.m.
application, 278, 282
d.c.m., see completely monotonic,
274
deflation, 14, 449-450
determinant, 56
difference
checks, 189
equation
linear, 217-223
nonhomogeneous, 222
of product, 191
operator, 186-223
backward, 188
forward, 187
scheme, 188
difference approximation, 9-19
centered, 9
difference scheme, 11
differentiation
numerical, 211
differentiation formula
backwards, 201
forwards, 203
higher derivatives, 203
Discrete Fourier Transform (DFT),
163
discretization error, 9
divergent series, 175-178
divide and conquer, 17
divided difference, 326
table, 328

Index

477

divided differences
scaled, 332—-334
domain of uncertainty, 441
double precision
simulating, 100
double rounding, 86

efficiency index, 418
eigenvalue, 63
eigenvector, 63
elementary functions, 90-91
epsilon algorithm, 310-312
erf(z), 18
error
absolute, 78
bound, 122
floating point rounding, 99, 132
human, 76
maximal, 125
propagation, 132
general formula, 124
propagation of, 122
relative, 78
rounding, 75
sources of, 75-77
standard, 100
systematic, 75
truncation, 76
error analysis
backward, 132
forward, 132
running, 107
error bounds, 78
error constant, 273
error estimate
asymptotic, 203
error function, 18, 182
Euclid’s algorithm, 30
Euclidian norm
computing, 103
Euler’s
numbers, 154
Euler’s iteration method, 427
Euler’s method, 32, 34
Euler’s transformation
optimal, 278
Euler—Maclaurin summation formula,
271
experimental perturbations, 131
exponent, 84

overflow, 103
underflow, 103
exponential integral, 306

false position method, 435—437
FEM, see finite element method
FFT, 163, 234
Fibonacci sequence, 234, 286, 457
finite element method, 400
fixed point, 5
fixed-point, 415
fixed-point iteration, 415
floating point
number, 84
representation, 84
standard arithmetic, 86—90
flop, 21
flop count
Gaussian elimination, 25
triangular system, 25
forward-substitution, 21
Fourier series, 167-171
Fourier transform, 264
fractal curve, 454
frozen coefficients, 226, 237
functionals, 194
fused multiply-add, 93

gamma function
incomplete, 306
Gaussian elimination, 22
GCA, 282-284
generating
function, 222
geometric series, 151
comparison with, 146
golden section, 457
golden section search, 457
gradual underflow, 89
grid
irregular triangular, 400-404
rectangular, 381, 399
guard digits, 88
Gustafson’s Chebyshev acceleration,
282284

Holder inequality, 67

Halley’s iteration method, 427
Hermite interpolation, 341-346, 382
Hermitian matrix, 59

478

Index

Hessenberg matrix, 56
Hilbert matrix, 310
Horner’s rule, 14

idempotent, 60
IEEE 754 standard, 86—90
ill-conditioned
problem, 126
ill-conditioned series, 174-175
ill-conditioning
polynomial roots, 450—452
Illinois method, 439
importance sampling, 49, 405
inner product, 54
accurate, 99
error analysis, 98
input data, 120
integral
over infinite interval, 395
with singularity, 394-395
integration
by parts, 394
integration by parts, 177
repeated, 150
interpolation
inverse, 337
broken line, 349
error in linear, 336
Hermite, 341-346
osculatory, 341-346
piecewise cubic, 350
remainder term, 329
with derivatives, 341-346
interpolation formula, 207
Hermite’s, 342
Lagrange’s, 334
interval
complex, 111
infimum-supremum representa-
tion, 108
midpoint-radius representation,
109, 111
interval arithmetic
operational definitions, 109
interval operations
inclusion monotonic, 110
interval reduction method, 456
INTLAB, 116, 139
inverse interpolation, 337, 438
inverse matrix, 57

iteration method
Euler’s, 427
Halley’s, 427, 430
Newton’s, 420

Jacobian matrix, 7
Julia set, 454

knot, 348
Krawczyck’s method, 115
Kronecker symbol, 55

lacunary interpolation, 344
Lagrange’s
interpolation formula, 334
polynomials, 334
remainder term, 150
Laguerre’s iteration method, 447—
448
Laurent and Fourier
expansion, 167
Laurent series, 171
Laurent series;(, 167
least squares, 321
characterization of solution, 61—
63
problem, 61
solution, 61
Leibniz formula, 345
Lin—Segel’s balancing procedure, 172
line search, 455—458
linear interpolation, 7
on triangular grid, 401
linear map, 53
linear operator, 193
linear system
consistent, 61
overdetermined, 321
linearly independent
vectors, 52
logarithmic potential, 372

machine epsilon, 85
Mandelbrot set, 454
mantissa, 84
matrix
adjoint, 59
band, 55
bidiagonal, 56
block, 57

Index

479

diagonalizable, 64

Hermitian, 59

Hessenberg, 56

ill-conditioned, 130

indefinite, 59

inverse, 57

non-negative definite, 59

normal, 64

orthogonal, 60

positive definite, 59

shift, 158

symmetric, 56

Toeplitz, 158

totally nonnegative, 366

trapezoidal form, 27

tridiagonal, 56

unitary, 60

well-conditioned, 129
matrix representation

of power series, 158

of truncated expansion, 203

of truncated series, 159
maximal

error, 125
minimization

one-dimensional, 455458
moment, 275
moment sequence, 275
Monte Carlo Methods, 41-51
Muller—Traub method, 438
multi-section method, 414
multi-valued functions, 167
multidimensional interpolation, 381—

382

multiple integrals, 397—-405
multiple roots, 443—444
multiplicity

of interpolation point, 342

Neville’s algorithm, 264-274, 335—
336
Newton’s interpolation formula, 327
Newton’s method, 5, 420-426
convergence of, 422-426
interval, 112
Newton—Cotes integration formulas,
273
Newton—Maehly’s method, 450
Newton-Cotes’
quadrature rule, 389-391

nilpotent, 158
nonsingular, 57
norm
absolute, 67
consistent, 68
Frobenius, 69
Holder, 67
matrix, 68
operator, 68
scaled, 68
spectral, 68
submultiplicative, 68
subordinate, 68
vector, 67
weighted, 68
normal equations, 62, 325
normal probability function, 306
null space (of matrix), 61
number system
binary, 81
floating-point, 84
hexadecimal, 82
octal, 82
numerical differentiation, 338
numerical instability, 15
numerical integration
Newton—Cotes, 273
trapezoidal rule, 7
numerical method, 120
numerical problem, 120
numerical simulation, 32, 33

operator
averaging, 193
calculus of, 192-217
central difference, 193
commutative, 194
differentiation, 193
expansions, 186—223
linear, 193
order of accuracy, 273
orthogonal, 59
complement, 60
matrix, 60
projector, 60
orthogonal polynomials, 186
orthogonal projector, 63
orthogonality, 186
orthonormal, 60
oscillating integrand, 395

480

Index

osculating polynomial, 341
osculatory interpolation, 341-346
outer product, 54

output data, 120

Padé

approximation, 307-310

of exponential function, 307,
308

table, 307-310, 312
parametric spline, 355
partitioning

conformal, 57
partitioning (of matrix), 57
Pascal’s triangle, 229
Peano kernel, 203, 362
perturbation

expansion, 171-174

regular, 172

experimental, 131

of linear systems, 128

singular, 172
pivotal elements, 23
pivoting

partial, 27
Poisson process, 47

Poisson summation formula, 263, 264

polynomial, 445-453
polynomial interpolation, 370-378
polynomial roots
simultaneous methods, 452—453
position system, 81-82
Powell’s algorithm, 458
power series, 149-155
precision, 78

double, 87
single, 87
problem

ill-conditioned, 126

well-conditioned, 126
projector, 60

orthogonal, 60
pseudo-random numbers, 43—44
Pythagorean sum, 103

quadratic interpolation

on triangular grid, 401
quadrature

Monte Carlo methods, 404—-405
quadrature rule

adaptive, 391-394

closed, 386

midpoint, 386

Newton-Cotes, 389—-391

open, 386

product, 399—-400

Simpson’s, 388—389

successive one-dimensional, 398—
399

trapezoidal, 386

radix, 84
random numbers, 43—47
antithetic sequence of, 45
exponentially distributed, 47
generating, 44
normally distributed, 46
uniformly distributed, 43
range (of matrix), 61
range reduction, 90
recurrence
backward, 218
forward, 218
recursion formula, 32
reduction of variance, 47-50
regula falsi, see false-position method
relative error, 78
remainder term
in series, 148
interpolation, 329
Lagrange’s, 150
resolve
grid, 203
Richardson extrapolation, 8, 36, 264—
274
repeated , 264
Richardson’s method, 28
Romberg’s method, 9, 262, 271
error bound, 272
root condition, 223
rounding, 80
chopping, 79
row rank, 66
Runge’s phenomenon, 338

sampling theorem, 370-378

scale factors (fixed point), 84
Schoenberg—Whitney condition, 366
Scylla and Charybdis, 297, 338
secant method, 7, 234, 431-435

Index

481

modified, 440
rate of convergence, 434
waltz rhythm, 435
seed, 218, 295
semiconvergent series, 176
series
alternating, 144
asymptotic, 177
convergence acceleration, 238—
300
divergent, 175-178
expansion of functions, 152
geometric, 151
ill-conditioned, 174-175
semiconvergent, 176, 184
Taylor, 149
with positive terms, 175
Shannon’s sampling theorem, 377
shift
matrix, 158
shift operator, 187
significant digits, 79
similarity transformation, 63
Simpson’s formula, 233
single precision, 87
singular value, 65
singular value decomposition, 65
singular vector, 65
smoothing, 321
spectral radius, 63
spectrum (of matrix), 63
spline
best approximation property, 353
interpolation, 347-366
least squares approximation, 366—
367
parametric, 355
truncated power basis, 359
spline function, 351-367
definition, 350
spline interpolation
closed curves, 355
splitting technique, 49
square root
algorithm for, 431
fast method, 4
standard basis, 52
standard error, 78
Stieltjes integral, 275
subdistributivity, 110

subspaces
dimension, 52
fundamental, 61
intersection of, 52
sum of, 52
successive approximation, 2
summation
compensated, 99-100
summation algorithms, 238-300
summation by parts, 192
repeated, 228
superlinear convergence, 418
superposition principle, 189
support coefficients, 335
SVD, see singular value decompo-
sition
compact form, 66
symbolic differentiation, 159
symmetric matrix, 56
synthetic division, 14, 446
with the quadratic factor, 447

tablemaker’s dilemma, 80
Taylor series, 149

symbolic form of, 195
termination criteria, 441-443
termination criterion, 146
three term recurrence relation, 171
three term relation, 186
titanium data, 367
Toeplitz

matrix, 158
Toeplitz matrix, 135
total differential, 124
transform

Fourier, 264
transform:Laplace—Stieltjes, 275
translation operator, 187
transpose (of matrix), 54
trapezoidal error, 264
trapezoidal rule, 7

superconvergence, 263
triangle family

of polynomials, 321-322
triangular

matrix, 56

systems of equations, 20—22
triangular grid

linear interpolation on, 401

quadratic interpolation on, 401

482

Index

refinement of, 400
tridiagonal, 219

matrix, 56
tridiagonal system

algorithm, 354
truncation error, 19, 76

global, 387
local, 387
ulp, 84

unimodal function, 456
unit roundoff, 86

variance
reduction of, 4750
vector
orthogonal, 59
orthonormal, 60

Weierstrass’ method, 452

well-conditioned
problem, 126

word-length, 83

wrapping effect, 113

z-transform, 222
zero suppression, 450
ZEROIN algorithm, 439

	Contents
	1. Principles of Numerical Calculations
	Introduction
	Common Ideas and Concepts
	Numerical Algorithms
	Numerical Solution of Differential Equations
	Monte Carlo Methods
	Linear Algebra and Matrix Computations

	2. How to Obtain and Estimate Accuracy
	Basic Concepts in Error Estimation
	Computer Number Systems
	Accuracy and Rounding Errors
	Error Propagation and Condition Numbers

	3. Series, Operators and Continued Fractions
	Some Basic Facts about Series
	Difference Operators and Operator Expansion
	Acceleration of Convergence
	Continued Fractions and Pade Approximants

	4. Interpolation and Related Subjects
	The Interpolation Problem
	Interpolation Formulas and Algorithms
	Interpolation where values of derivatives are used
	Spline Functions
	Polynomial Interpolation of Analytic Functions
	Trigonometric Interpolation and FFT
	Examples of Interpolation in Nonlinear Function Spaces

	5. Approximate Computation of Linear Functionals
	Introduction
	Classical Quadrature Rules
	Special Transformations
	Multiple Integrals

	6. Solving Scalar Nonlinear Equations
	Introduction
	Fixed-Point Iteration
	Newton's Method
	Methods Based on Interpolation
	Attainable Accuracy and Multiple Roots
	Zero of Polynomials
	Minimizing a Scalar Function

	Appendix - Guide to Literature
	Index

