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Preface

Numerical analysis is the branch of mathematics that is used to find approximations to difficult
problems such as finding the roots of non-linear equations, integration involving complex
expressions and solving differential equations for which analytical solutions do not exist. It is
applied to a wide variety of disciplines such as business, all fields of engineering, computer science,
education, geology, meteorology, and others.

Years ago, high-speed computers did not exist, and if they did, the largest corporations could only
afford them; consequently, the manual computation required lots of time and hard work. But now
that computers have become indispensable for research work in science, engineering and other
fields, numerical analysis has become a much easier and more pleasant task.

This book is written primarily for students/readers who have a good background of high-school

algebra, geometry, trigonometry, and the fundamentals of differential and integral calculus.” A
prior knowledge of differential equations is desirable but not necessary; this topic is reviewed in
Chapter 5.

One can use Fortran, Pascal, C, or Visual Basic or even a spreadsheet to solve a difficult problem.
It is the opinion of this author that the best applications programs for solving engineering
problems are 1) MATLAB which is capable of performing advanced mathematical and
engineering computations, and 2) the Microsoft Excel spreadsheet since the versatility offered by
spreadsheets have revolutionized the personal computer industry. We will assume that the reader
has no prior knowledge of MATLAB and limited familiarity with Excel.

We intend to teach the student/reader how to use MATLAB via practical examples and for
detailed explanations he/she will be referred to an Excel reference book or the MATLAB User’s
Guide. The MATLAB commands, functions, and statements used in this text can be executed
with either MATLAB Student Version 12 or later. Our discussions are based on a PC with
Windows XP platforms but if you have another platform such as Macintosh, please refer to the
appropriate sections of the MATLAB’s User Guide that also contains instructions for installation.

MATLAB is an acronym for MATrix LABoratory and it is a very large computer application
which is divided to several special application fields referred to as toolboxes. In this book we will
be using the toolboxes furnished with the Student Edition of MATLAB. As of this writing, the
latest release is MATLAB Student Version Release 13 and includes SIMULINK which is a

* These topics are discussed in Mathematics for Business, Science, and Technology by this author, Orchard Publications,
ISBN 0-9709511-0-8. This text includes probability and other advanced topics which are supplemented by many practical
applications using Microsoft Excel and MATLAB.




software package used for modeling, simulating, and analyzing dynamic systems. SIMULINK is
not discussed in this text; the interested reader may refer to the documentation which also
includes demo models with detailed explanations. Additional information including purchasing
may be obtained from The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.
Phone: 508 647-7000, Fax: 508 647-7001, e-mail: info@mathwork.com and web site http://

www.mathworks.com.

The author makes no claim to originality of content or of treatment, but has taken care to present
definitions, statements of physical laws, theorems, and problems.

Chapter 1 is an introduction to MATLAB. The discussion is based on MATLAB Student Version
5 and it is also applicable to Version 6. Chapter 2 discusses root approximations by numerical
methods. Chapter 3 is a review of sinusoids and complex numbers. Chapter 4 is an introduction to
matrices and methods of solving simultaneous algebraic equations using Excel and MATLAB.
Chapter 5 is an abbreviated, yet practical introduction to differential equations, state variables,
state equations, eigenvalues and eigenvectors. Chapter 6 discusses the Taylor and Maclaurin
series. Chapter 7 begins with finite differences and interpolation methods. It concludes with
applications using MATLAB. Chapter 8 is an introduction to linear and parabolic regression.
Chapters 9 and 10 discuss numerical methods for differentiation and integration respectively.
Chapter 11 is a brief introduction to difference equations with a few practical applications.
Chapters 12 is devoted to partial fraction expansion. Chapters 13, 14, and 15 discuss certain
interesting functions that find wide application in science, engineering, and probability. This text
concludes with Chapter 16 which discusses three popular optimization methods.

New to the Second Edition

This is an extensive revision of the first edition. The most notable changes are the inclusion of
Fourier series, orthogonal functions and factorization methods, and the solutions to all end-of-
chapter exercises. It is in response to many readers who expressed a desire to obtain the solutions
in order to check their solutions to those of the author and thereby enhancing their knowledge.
Another reason is that this text is written also for self-study by practicing engineers who need a
review before taking more advanced courses such as digital image processing. The author has
prepared more exercises and they are available with their solutions to those instructors who adopt
this text for their class.

Another change is the addition of a rather comprehensive summary at the end of each chapter.
Hopefully, this will be a valuable aid to instructors for preparation of view foils for presenting the
material to their class.

The last major change is the improvement of the plots generated by the latest revisions of the

MATLAB® Student Version, Release 13.
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Chapter 1

Introduction to MATLAB

his chapter is an introduction of the basic MATLAB commands and functions, procedures

for naming and saving the user generated files, comment lines, access to MATLAB’s Editor/

Debugger, finding the roots of a polynomial, and making plots. Several examples are pro-
vided with detailed explanations.

1.1 Command Window

To distinguish the screen displays from the user commands, important terms and MATLAB func-
tions, we will use the following conventions:

Click: Click the left button of the mouse

Courier Font: Screen displays

Helvetica Font: User inputs at MATLAB’s command window prompt EDU>>"
Helvetica Bold: MATLAB functions
Times Bold Italic: Important terms and facts, notes, and file names

When we first start MATLAB, we see the toolbar on top of the command screen and the prompt
EDU>>. This prompt is displayed also after execution of a command; MATLAB now waits for a
new command from the user. We can use the Editor/Debugger to write our program, save it, and
return to the command screen to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M-File. This takes us to the
Editor Window where we can type our code (list of statements) for a new file, or open a previ-
ously saved file. We must save our program with a file name which starts with a letter. Impor-
tant! MATLAB is case sensitive, that is, it distinguishes between upper- and lower-case letters.
Thus, t and T are two different characters in MATLAB language. The files that we create are
saved with the file name we use and the extension .m; for example, myfileO1.m. It is a good
practice to save the code in a file name that is descriptive of our code content. For instance, if
the code performs some matrix operations, we ought to name and save that file as
matricesO1.m or any other similar name. We should also use a separate disk to backup our
files.

* EDU>> is the MATLAB prompt in the Student Version.
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2. Once the code is written and saved as an m-file, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu, and MATLAB returns to the command win-
dow.

3. To execute a program, we type the file name without the .m extension at the EDU>> prompt;
then, we press <enter> and observe the execution and the values obtained from it. If we have
saved our file in drive a or any other drive, we must make sure that it is added it to the desired
directory in MATLAB’s search path. The MATLAB User’s Guide provides more information

on this topic.

Henceforth, it will be understood that each input command is typed after the EDU>> prompt and
followed by the <enter> key.

The command help matlab iofun will display input/output information. To get help with other
MATLARB topics, we can type help followed by any topic from the displayed menu. For example, to
get information on graphics, we type help matlab graphics. We can also get help from the Help
pull-down menu. The MATLAB User’s Guide contains numerous help topics.

To appreciate MATLAB's capabilities, we type demo and we see the MATLAB Demos menu. We
can do this periodically to become familiar with them. Whenever we want to return to the com-
mand window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all
previous values, variables, and equations without exiting, we should use the clear command. This
command erases everything; it is like exiting MATLAB and starting it again. The ¢lec command
clears the screen but MATLAB still remembers all values, variables and equations which we have
already used. In other words, if we want MATLAB to retain all previously entered commands, but
leave only the EDU>> prompt on the upper left of the screen, we can use the clec command.

All text after the % (percent) symbol is interpreted by MATLAB as a comment line and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the func-
tion or command or as a separate line. For instance,

conv(p,q) % performs multiplication of polynomials p and q
% The next statement performs partial fraction expansion of p(x) / q(x)
are both correct.

One of the most powerful features of MATLAB is the ability to do computations involving complex
numbers. We can use either i, or j to denote the imaginary part of a complex number, such as
3 —4i or 3-4j. For example, the statement

z=3-4j
displays

zZ =

3.0000 - 4.00001
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In the example above, a multiplication (*) sign between 4 and j was not necessary because the
complex number consists of numerical constants. However, if the imaginary part is a function or
variable such as cos(x), we must use the multiplication sign, that is, we must type cos(x)*j or
j*cos(x).

1.2 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form [a, a,_; a, a; a,]. The ele-

ments a; of this vector are the coefficients of the polynomial in descending order. We must
include terms whose coefficients are zero.

We can find the roots of any polynomial with the roots(p) function where p is a row vector con-
taining the polynomial coefficients in descending order.

Example 1.1
Find the roots of the polynomial

p(x) = x* = 10x> + 35x° — 50x + 24 (1.1)
Solution:

The roots are found with the following two statements. We have denoted the polynomial as p1,
and the roots as roots_ p1.

p1=[1 —10 35 -50 24] % Specify the coefficients of p1(x)

pl =
1 -10 35 -50 24

roots_ p1=roots(p1) % Find the roots of p1(x)

roots_pl =
4.0000
3.0000
2.0000
1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example 1.2

Find the roots of the polynomial

p,(x) = X°—7x* + 16x° + 25x + 52 (1.2)
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Solution:

There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the
statements below where we have defined the polynomial as p2, and the roots of this polynomial as
roots_ p2. The result indicates that this polynomial has three real roots, and two complex roots. Of

course, complex roots always occur in complex conjugate’ pairs.
p2=[1 -7 0 16 25 52]

p2 =
1 -7 0 16 25 52

roots_ p2=roots(p2)

roots_ p2 =
6.5014
2.7428
-1.5711
-0.3366 + 1.32021
-0.3366 - 1.32021

1.3 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial from a given set of roots with the poly(r) func-
tion where r is a row vector containing the roots.

Example 1.3

It is known that the roots of a polynomial are 1, 2, 3, and 4. Compute the coefficients of this poly-
nomial.

Solution:

We first define a row vector, say r3, with the given roots as elements of this vector; then, we find
the coefficients with the poly(r) function as shown below.

r3=[1 2 3 4] % Specify the roots of the polynomial

r3 =
1 2 3 4

poly_r3=poly(r8) % Find the polynomial coefficients

poly r3 =
1 -10 35 -50 24

* By definition, the conjugate of a complex number A = a+jb is A* = a—jb
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We observe that these are the coefficients of the polynomial p;(x) of Example 1.1.
Example 1.4

[t is known that the roots of a polynomial are -1, -2, -3, 4 +j5,and 4 —j5. Find the coefficients
of this polynomial.

Solution:

We form a row vector, say r4, with the given roots, and we find the polynomial coefficients with
the poly(r) function as shown below.

rd=[ -1 -2 -3 445] 4-5j]

rd =
Columns 1 through 4
-1.0000 -2.0000 -3.0000 -4.0000 + 5.00001
Column 5

-4.0000 - 5.00001

poly_r4=poly(r4)

poly rd =
1 14 100 340 499 246

Therefore, the polynomial is

p,(x) = x° + 14x" + 100x° + 340" + 499X + 246 (1.3)

1.4 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial p(x) at some specified value of the indepen-
dent variable x.

Example 1.5

Evaluate the polynomial

Ps(X) = x® = 3%% + 5x° — 4x% + 3X + 2 (1.4)
at X = -3.

Solution:

p5=[1 -3 0 5 -4 3 2]; % These are the coefficients

% The semicolon (;) after the right bracket suppresses the display of the row vector
% that contains the coefficients of p5.

%

val_minus3=polyval(p5, —3)% Evaluate p5 at x=—3; no semicolon is used here

% because we want the answer to be displayed
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val_minus3 =

1280
Other MATLAB functions used with polynomials are the following:
conv(a,b) — multiplies two polynomials a and b

[a,r]=deconv(c,d) —divides polynomial ¢ by polynomial d and displays the quotient q and remain-
derr.

polyder(p) — produces the coefficients of the derivative of a polynomial p.
Example 1.6
Let

p, = x° - 3x* +5x° + 7x + 9
(1.5)

p, = 2x°—8x* +4x" + 10x + 12

Compute the product p; - p, with the conv(a,b) function.

Solution:

pi=[1 -3 05 7 9]
p2=[2 0 -8 0 4 10 12];
p1p2=conv(p1,p2)

plp2 =
2 -6 -8 34 18 -24 -74 -88 78 166 174 108

Therefore,
PPy = xM - 6x10 - 8x9 + 34x8 +18x - 24x6
_74x°-88x* + 78x° + 166x> + 174x + 108

We can write MATLAB statements in one line if we separate them by commas or semicolons.
Commas will display the results whereas semicolons will suppress the display.

Example 1.7

Let
p; = X —3x°+5x° + 7x+9 (1.6)
P, = 2x% ~ 8x° + 4x% + 10x + 12

Compute the quotient p;/p, using the deconv(p,q) function.

Solution:

p3=[1 0 -3 05 7 9], p4=2 -8 0 0 4 10 12]; [q,r]=deconv(p3,p4)
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0.5000

0 4 -3 0 3 2 3

Therefore, the quotient q(x) and remainder r(x) are

q(x) = 0.5 r(x) = 4x° = 3x* + 3x% + 2x + 3
Example 1.8
Let
Ps = 2x° — 8x* + 4x% + 10x + 12 (1.7)

Compute the derivative dps/dx using the polyder(p) function.

Solution:

p5=[2 0 -8 0 4 10 12}
der_p5=polyder(p5)

der_pb5 =
12 0 -32 0 8 10

Therefore,
dps/dx = 12x° - 32x% + 4x” + 8x + 10

1.5 Rational Polynomials

Rational Polynomials are those which can be expressed in ratio form, that is, as

n-2

Num(x) _ ann+bn_1xn71+bn_2X +...+bx+by

R(X) = (1.8)

B -1 m-2
Den(X) g x"+a, X" t+a, X" 7+ . +ax+a

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

Example 1.9
Let
5 4 2
R(X) = Poum _ x6 —3x4 +5x2 +7x+9 (1.9)
Pden  2x° —8X" +4x° + 10x + 12

Express the numerator and denominator in factored form, using the roots(p) function.
Solution:

num=[1 -3 0 5 7 9];den=[2 0 -8 0 4 10 12];% Do not display hum and den coefficients
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roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num
2.4186
-0.3370

roots_den
1.6760
-0.2108

+ +

+ + 1

0
0

.07121
.99611

.49221
.98701

2.4186 - 1.07121i -1.1633
-0.3370 - 0.99611

1.6760 - 0.49221i -1.9304
-0.2108 - 0.98701 -1.0000

As expected, the complex roots occur in complex conjugate pairs.

For the numerator, we have the factored form

pnum

= (x-2.4186 — j1.0712) - (x—2.4186 + j1.0712) - (x + 1.1633) -
(X +0.3370 — j0.9961) - (x + 0.3370 + j0.9961)

and for the denominator, we have

We can also express the numerator and denominator of this rational function as a combination of
linear and quadratic factors. We recall that in a quadratic equation of the form x2+bx+c¢ = 0
whose roots are x; and x,, the negative sum of the roots is equal to the coefficient b of the x term,
that is, —(x; + X,) = b, while the product of the roots is equal to the constant term c, that is,
X; - X, = ¢. Accordingly, we form the coefficient b by addition of the complex conjugate roots and
this is done by inspection; then we multiply the complex conjugate roots to obtain the constant

Dgen = (X=1.6760 —j0.4922) - (x~1.6760 + j0.4922) - (X + 1.9304) -

(X + 0.2108-j0.9870) - (x + 0.2108 + j0.9870) - (x + 1.0000)

term ¢ using MATLAB as indicated below.

(2.4186+1.0712i)*(2.4186 —1.0712i)
ans = 6.9971
(-=0.3370+0.9961i)*(—0.3370-0.9961i) % Form the product of the 2nd set of complex conjugates
ans = 1.1058

(1.6760+0.4922i)*(1.6760-0.4922i)

ans = 3.0512

(-0.2108+0.9870i)*(—-0.2108-0.9870i)

ans = 1.0186
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1.6 Using MATLAB to Make Plots

Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command which plots y versus x. Here, x is the horizontal axis (abscissa) and y is the
vertical axis (ordinate).

Example 1.10

Consider the electric circuit of Figure 1.1, where the radian frequency o (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude
was held constant. The ammeter readings were then recorded for each frequency. The magnitude
of the impedance |Z| was computed as |Z| = |V/A| and the data were tabulated in Table 1.1.

Figure 1.1. Electric circuit for Example 1.10

TABLE 1.1 Table for Example 1.10

o (rads/s) | |Z| Ohms || o (rads/s) | |Z| Ohms
300 39.339 1700 90.603
400 52.589 1800 81.088
500 71.184 1900 73.588
600 97.665 2000 67.513
700 140.437 2100 62.481
800 222.182 2200 58.240
900 436.056 2300 54.611
1000 1014.938 2400 51.428
1100 469.83 2500 48.717
1200 266.032 2600 46.286
1300 187.052 2700 44.122
1400 145.751 2800 42.182
1500 120.353 2900 40.432
1600 103.111 3000 38.845

Plot the magnitude of the impedance, that is, |Z| versus radian frequency o .
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Solution:

We cannot type o (omega) in the MATLAB command window, so we will use the English letter w
instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by
typing three or more periods, then pressing <enter> to start a new line, and continue to enter
data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-
colon (;) to suppress the display of numbers which we do not care to see on the screen.

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400.... % Use 4 periods to continue
1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500....

2600 2700 2800 2900 3000]; % Use semicolon to suppress display of these numbers
%

z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056....

1014.938 469.830 266.032 187.052 145.751 120.353 103.111....

90.603 81.088 73.588 67.513 62.481 58.240 54.611 51.468....

48.717 46.286 44.122 42.182 40.432 38.845];

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press
<enter>.

To plot z (y —axis) versus w (x —axis), we use the plot(x,y) command. For this example, we use
plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s graph
screen. This plot is shown in Figure 1.2.

1200 T T T T T

1000

200

600

400

200 F

1 1 1 1
u] S00 1000 1500 2000 2500 3000

Figure 1.2. Plot of impedance |z| versus frequency o for Example 1.10

This plot is referred to as the amplitude frequency response of the circuit.
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To return to the command window, we press any key, or from the Window pull-down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull-down
menu, and we select Figure.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The

command grid toggles them, that is, changes from off to on or vice versa. The default” is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.
xlabel(‘string’) and ylabel(‘string’) are used to label the x - and y -axis respectively.

The amplitude frequency response is usually represented with the x -axis in a logarithmic scale.
We can use the semilogx(x,y) command that is similar to the plot(x,y) command, except that
the x-axis is represented as a log scale, and the y-axis as a linear scale. Likewise, the semil-
ogy(x,y) command is similar to the plot(x,y) command, except that the y-axis is represented as a
log scale, and the x-axis as a linear scale. The loglog(x,y) command uses logarithmic scales for
both axes.

Throughout this text, it will be understood that log is the common (base 10) logarithm, and In is
the natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is
the natural logarithm, whereas the common logarithm is expressed as log10(x). Likewise, the log-
arithm to the base 2 is expressed as log2(x).

Let us now redraw the plot with the above options, by adding the following statements:

semilogx(w,z); grid; % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel(’'|Z| in Ohms')

After execution of these commands, our plot is as shown in Figure 1.3.

If the y-axis represents power, voltage, or current, the x-axis of the frequency response is more
often shown in a logarithmic scale, and the y-axis in dB (decibels) scale. A review of the decibel
unit follows.

The ratio of any two values of the same quantity (power, voltage, or current) can be expressed in
decibels (dB). Thus, we say that an amplifier has 10 dB power gain, or a transmission line has a
power loss of 7 dB (or gain —7 dB). If the gain (or loss) is 0 dB the output is equal to the input.

*  Default is a particular value for a variable or condition that is assigned automatically by an operating system, and remains
in effect unless canceled or overridden by the operator.
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Magnitude of Impedance vs. Radian Frequency
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Figure 1.3. Modified frequency response plot of Figure 1.2.

By definition,

dB = 10log Pout

in

Therefore,

10 dB represents a power ratio of 10
10n dB represents a power ratio of 10"
It is very useful to remember that:

20 dB represents a power ratio of 100
30 dB represents a power ratio of 1, 000
60 dB represents a power ratio of 1, 000, 000

Also,

1 dB represents a power ratio of approximately 1.25
3 dB represents a power ratio of approximately 2
7 dB represents a power ratio of approximately 5

From these, we can estimate other values. For instance,

(1.10)

4dB = 3dB+1dB and since 3 dB=power ratio of 2 and 1 dB = power ratio of 1.25 then,

4 dB =z ratio of (2x 1.25) = ratio of 2.5
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Likewise, 27 dB = 20 dB + 7 dB and this is equivalent to a power ratio of approximately
100 x5 = 500

Using the relations

y = Iogx2 2logx
and
2

p=L
Z

z

if we let Z = 1, the dB values for voltage and current ratios become

2
dB, = 10log|You|" — 2010g|Your (1.11)

in in

and

dB; = 10log

2
boutl® _ 2010g] out (1.12)

n n
To display the voltage v in a dB scale on the y — axis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’) switches to the current Figure Window, and displays a cross-hair
which can be moved around with the mouse. For instance, we can use the command
gtext(‘Impedance |Z| versus Frequency’), and this will place a cross-hair in the Figure window.
Then, using the mouse, we can move the cross-hair to the position where we want our label to
begin, and we press <enter>.

The command text(x,y, string’) is similar to gtext(‘string’). It places a label on a plot in some
specific location specified by x and y, and string is the label which we want to place at that loca-
tion. We will illustrate its use with the following example which plots a 3-phase sinusoidal wave-
form.

The first line of the code below has the form
linspace(first_value, last_value, number_of_values)

This command specifies the number of data points but not the increments between data points.
An alternate command uses the colon notation and has the format

x=first: increment: last
This format specifies the increments between points but not the number of data points.
The code for the 3-phase plot is as follows:

x=linspace(0, 2*pi, 60); % pi is a built-in function in MATLAB,;
% we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;
y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3);
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plot(x,y,x,u,x,v); % The x-axis must be specified for each function
grid on, box on, % turn grid and axes box on
text(0.75, 0.65, 'sin(x)'); text(2.85, 0.65, 'sin(x+2*pi/3)"); text(4.95, 0.65, 'sin(x+4*pi/3)")

These three waveforms are shown on the same plot of Figure 1.4.

0.8

06 \ Ar \ n(x+2*pi/3 \ sin(x+4*pi/]
0.4 >< >< ><
B VAN H VA I I
ol ) \ \l/
1\ / \ \
A X X
o /N |/ /

0 1 2 3 4 5 6 7
Figure 1.4. Three-phase waveforms

X
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In our previous examples, we did not specify line styles, markers, and colors for our plots. However,
MATLARB allows us to specify various line types, plot symbols, and colors. These, or a combination
of these, can be added with the plot(x,y,s) command, where s is a character string containing one
or more characters shown on the three columns of Table 1.2.

MATLAB has no default color; it starts with blue and cycles through the first seven colors listed in
Table 1.2 for each additional line in the plot. Also, there is no default marker; no markers are
drawn unless they are selected. The default line is the solid line.

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs') plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs—'). For
additional information we can type help plot in MATLAB’s command screen.

The plots which we have discussed thus far are two-dimensional, that is, they are drawn on two
axes. MATLAB has also a three-dimensional (three-axes) capability and this is discussed next.
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TABLE 1.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style
b blue point - solid line
g green 0 circle dotted line
r red X x-mark - dash-dot line
c cyan + plus — dashed line
m magenta * star
y yellow S square
k black d diamond
w white \Y, triangle down

A triangle up
< triangle left
> triangle right
p pentagram
h hexagram

The plot3(x,y,z) command plots a line in 3-space through the points whose coordinates are the
elements of x, y, and z, where x, y, and z are three vectors of the same length.

The general format is plot3(X4,Y1,21,S1,X2,¥2,22,52,X3,¥3,23,S3;-..) Where Xp, Y, and z,, are vectors
or matrices, and s, are strings specifying color, marker symbol, or line style. These strings are the
same as those of the two-dimensional plots.

Example 1.11

Plot the function

z =—2x3+x+3y2—1 (1.13)

Solution:

We arbitrarily choose the interval (length) shown on the code below.

x=-10:0.5: 10;

y=Xx

Z= -2 XA3+x+3.*y N2—-1;
plot3(x,y,z); grid

% Length of vector x
% Length of vector y must be same as x

% Vector z is function of both x and y*

The three-dimensional plot is shown in Figure 1.5.

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where these operations are pre-
ceded by a dot (period). These operations will be explained in Section 1.8.
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Figure 1.5. Three dimensional plot for Example 1.11

The command plot3(x,y,z,'bd-') will display the plot in blue diamonds, connected with a solid
line.

In a three-dimensional plot, we can use the zlabel(‘string’) command in addition to the xla-
bel(‘string’) and ylabel(‘string’).

In a two-dimensional plot, we can set the limits of the x- and y-axes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a three-dimensional plot we can set the limits of all three
axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot com-
mand. This must be done for each plot. The three-dimensional text(x,y,z,’string’) command will
place string beginning at the co-ordinate (x, y, z) on the plot.

For three-dimensional plots, grid on and box off are the default states.

The mesh(x,y,z) command displays a three-dimensional plot. Another command, contour(Z,n),
draws contour lines for n levels. We can also use the mesh(x,y,z) command with two vector argu-

ments. These must be defined as length(x) = n and length(y) = m where [m, n] = size(Z). In
this case, the vertices of the mesh lines are the triples {x(j), y(i), Z(i, )} . We observe that x corre-
sponds to the columns of Z, and y corresponds to the rows of Z.

To produce a mesh plot of a function of two variables, say z = f(X, y), we must first generate the X
and Y matrices which consist of repeated rows and columns over the range of the variables x and
y. We can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function which creates

the matrix X whose rows are copies of the vector X, and the matrix Y whose columns are copies of
the vector y.
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Example 1.12

The volume V of a right circular cone of radius r and height h is given by

_ %nrzh (1.14)

Plot the volume of the cone as r and h vary on the intervals 0<r<4 and 0 <h <6 meters.
Solution:
The volume of the cone is a function of both the radius r and the height h, thatis, V = f(r, h)

The three-dimensional plot is created with the following MATLAB code where, as in the previous
example, in the second line we have used the dot multiplication, division, and exponentiation. As
mentioned in the footnote of the previous page, this topic will be explained in Section 1.8.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h
V=(pi .* R .A2.*H)./3; mesh(R, H, V)

xlabel('x-axis, radius r (meters)'); ylabel('y-axis, altitude h (meters)');

zlabel('z-axis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The three-dimensional plot of Figure 1.6, shows how the volume of the cone increases as the
radius and height are increased.

Wolume of Right Cincular Cone

z-axis, volume (cubic meters)
82 & 2 8

m O

. - o
y-axis, altitude h (meters) c waxis, rmdius r (metars)

Figure 1.6. Volume of a right circular cone.

This, and the plot of Figure 1.5, are rudimentary; MATLAB can generate very sophisticated and
impressive three-dimensional plots. The MATLAB User’s manual contains more examples.
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1.7 Subplots

MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m x n matrix of plotting areas

and chooses the pth area to be active. No spaces or commas are required between the three inte-
gers m, n, and p. The possible combinations are shown in Figure 1.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

111
Full Screen Default
211 221 | 222
122
212 223 | 224 121
221 | 222 211 221 122 191 222
212 223 | 224 223 224

Figure 1.7. Possible subpot arrangements in MATLAB

1.8 Multiplication, Division and Exponentiation

MATLAB recognizes two types of multiplication, division, and exponentiation. These are the
matrix multiplication, division, and exponentiation, and the element-by-element multiplication,
division, and exponentiation. They are explained in the following paragraphs.

In Section 1.2, the arrays [a b ¢ ...], such a those that contained the coefficients of polynomials,
consisted of one row and multiple columns, and thus are called row vectors. If an array has one col-
umn and multiple rows, it is called a column vector. We recall that the elements of a row vector are
separated by spaces. To distinguish between row and column vectors, the elements of a column
vector must be separated by semicolons. An easier way to construct a column vector, is to write it
first as a row vector, and then transpose it into a column vector. MATLAB uses the single quota-
tion character (') to transpose a vector. Thus, a column vector can be written either as

b=[-1; 3; 6; 11]

or as

b=[-1 3 6 117

MATLAB produces the same display with either format as shown below.

b=[-1; 3; 6; 11]
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-1
3
6

11

b=[-1 3 6 11]

b =
-1
3
6
11

We will now define Matrix Multiplication and Element-by-Element multiplication.
1. Matrix Multiplication (multiplication of row by column vectors)

Let A=1[a, a a; ... a,] and B =[b; b, by ... b,]" betwo vectors. We observe that

A is defined as a row vector whereas B is defined as a column vector, as indicated by the trans-

pose operator ('). Here, multiplication of the row vector A by the column vector B, is per-
formed with the matrix multiplication operator (¥). Then,

A*B = [a;b; +a,b, +a;b; + ... +a,b,] = single value (1.15)

For example, if A=[1 2 3 4 5] and B=[-2 6 -3 8 7], the matrix multiplication

A*B produces the single value 68, that is,

A*B = 1x(—2)+2x6+3x(-3)+4x8+5x7 = 68
This can be verified with MATLAB as follows.
A=[1 2 3 4 5];Bs[-2 6 -3 8 7];A'B
ans =

68

Now, let us suppose that both A and B are row vectors, and we attempt to perform a row-by-
row multiplication with the following MATLAB statements.

A=[ 12 3 4 5] B=[-2 6 -3 8 7]; A*B
When these statements are executed, MATLAB displays the following message:
??? Error using ==> *

Inner matrix dimensions must agree.
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Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects
vector B to be a column vector, not a row vector as it was specified. MATLAB recognizes that
B is a row vector, and warns us that we cannot perform this multiplication using the matrix

multiplication operator (*). Accordingly, we must perform this type of multiplication with a dif-
ferent operator. This operator is defined below.

2. Element-by-Element Multiplication (multiplication of a row vector by another row vector)

Let C=1[c, ¢, ¢ ... ¢,] and D =[d; d, d; ... d,] be two row vectors. Here, multi-

plication of the row vector C by the row vector D is performed with the dot multiplication
operator (.*). There is no space between the dot and the multiplication symbol. Thus,

n=n

and this product is another row vector with the same number of elements, as the elements of C
and D.

As an example, let C=[1 2 3 4 5] and D =[-2 6 -3 8 7]. Dot multiplication of
these two row vectors produce the following result.

C*D = 1x(=2) 2x6 3x(-3) 4x8 5x7 =-2 12 -9 32 35
Check with MATLAB:

C=[1 2 3 4 5]; % Vectors C and D must have
D=[-2 6 -3 8 7]; % same number of elements

C.*D % We observe that this is a dot multiplication
ans =
-2 12 -9 32 35

Similarly, the division (/) and exponentiation (* ) operators, are used for matrix division and
exponentiation, whereas dot division (./) and dot exponentiation (.” ) are used for element-by-
element division and exponentiation.

We must remember that no space is allowed between the dot (.) and the multiplication, division,
and exponentiation operators.

Note: A dot (.) is never required with the plus (+) and minus () operators.
Example 1.13
Write the MATLAB code that produces a simple plot for the waveform defined as

2

y = f(t) = 3¢ *'cos5t— 26 tsin2t + ti_l (1.17)
in the 0 <t<5 seconds interval.
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Solution:
The MATLAB code for this example is as follows:
t=0: 0.01: 5; % Define t-axis in 0.01 increments

y=3." exp(-4 .* 1) .* cos(5 .* 1)-2 .* exp(-3 .* 1) .* sin(2 .* t) + t A2 ./ (t+1);
plot(t,y); grid; xlabel('t"); ylabel('y=f(t)"); title('Plot for Example 1.13")

Figure 1.8 shows the plot for this example.

Flot for Example 1.13

y=1{Y)

Figure 1.8. Plot for Example 1.13
Had we, in this example, defined the time interval starting with a negative value equal to or less
than -1, say as -3 <t< 3, MATLAB would have displayed the following message:
Warning: Divide by zero.
This warning is displayed because the last term (the rational fraction) of the given expression, is
divided by zero when t = —1. To avoid division by zero, we use the special MATLAB function

eps, which is a number approximately equal to 2.2 x 107*® . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each plot.
The following example illustrates the use of the dot multiplication, division, and exponentiation,
the eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability
of displaying up to four windows of different plots.

Example 1.14

Plot the functions

y = sin’, z = cos’, W = sin®-cos’, V = sin®x/cos’x (1.18)
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in the interval 0 <x <2n using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.

Solution:

The MATLAB code to produce the four subplots is as follows:
x=linspace(0, 2*pi,100); % Interval with 100 data points
y=(sin(x) A 2); z=(cos(x) N 2);

w=y .* z;

v=y ./ (z+eps); % add eps to avoid division by zero
subplot(221); % upper left of four subplots

plot(x,y); axis([0 2*pi 0 1]);

title('y=(sinx)"2');

subplot(222); % upper right of four subplots
plot(x,z); axis([0 2*pi 0 1]);

title('z=(cosx)"2');

subplot(223); % lower left of four subplots
plot(x,w); axis([0 2*pi 0 0.3]);

title(‘'w=(sinx)"2*(cosx)"2');

subplot(224); % lower right of four subplots
plot(x,v); axis([0 2*pi 0 400]);

title(‘v=(sinx)"2/(cosx)"2');

These subplots are shown in Figure 1.9.

\.r:(ssinx)2 z:(cosx)2
1
0.8 0
0.6 0.6
0.4 0.4
0.2 02
0 0
0 2 4 & 0 2, 4 5
w:(sinx)2‘(c>usx)2 \.r:(sm)(]2#(1::9!3)(}2
400
300
0.2
200
0.1
100
0 0
0 2 4 6 0 2 4 <

Figure 1.9. Subplots for the functions of Example 1.14

The next example illustrates MATLAB'’s capabilities with imaginary numbers. We will introduce
the real(z) and imag(z) functions which display the real and imaginary parts of the complex quan-
tity z = x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magni-
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tude) and phase angle of the complex quantity z = x+iy = r£6. We will also use the
polar(theta,r) function that produces a plot in polar coordinates, where r is the magnitude, theta
is the angle in radians, and the round(n) function that rounds a number to its nearest integer.

Example 1.15

Consider the electric circuit of Figure 1.10.

Figure 1.10. Electric circuit for Example 1.15
With the given values of resistance, inductance, and capacitance, the impedance Z,, as a func-

tion of the radian frequency o can be computed from the following expression.

10° — j(10°/ )
10+j(0.10 - 10"/ )

Zy=2=10+ (1.19)

a. Plot Re{Z} (the real part of the impedance Z) versus frequency .

b. Plot Im{Z} (the imaginary part of the impedance Z) versus frequency .
c. Plot the impedance Z versus frequency o in polar coordinates.

Solution:

The MATLAB code below computes the real and imaginary parts of Z,, that is, for simplicity,

denoted as z, and plots these as two separate graphs (parts a & b). It also produces a polar plot
(part c).

w=0: 1: 2000; % Define interval with one radian interval

z=(10+(10 A4 - .10 A6 ./ (w+eps)) ./ (10 +j .* (0.1 .* w —10.15./ (w+eps))));
%

% The first five statements (next two lines) compute and plot Re{z}
real_part=real(z); plot(w,real_part); grid;

xlabel('radian frequency w'); ylabel('Real part of Z');

%

% The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z); plot(w,imag_part); grid;

xlabel('radian frequency w'); ylabel('Imaginary part of Z');

% The last six statements (next six lines) below produce the polar plot of z
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mag=abs(z);% Computes |Z|

rndz=round(abs(z));% Rounds |Z| to read polar plot easier
theta=angle(z);% Computes the phase angle of impedance Z
polar(theta,rndz);% Angle is the first argument

grid;

ylabel('Polar Plot of Z');

The real, imaginary, and polar plots are shown in Figures 1.11, 1.12, and 1.13 respectively.
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Figure 1.11. Plot for the real part of Z in Example 1.15
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Figure 1.12. Plot for the imaginary part of Z in Example 1.15
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Polar Plot of 2

Figure 1.13. Polar plot of Z in Example 1.15
Example 1.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

1.9 Script and Function Files

MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m-files since both require the .m extension.

A script file consists of two or more built-in functions such as those we have discussed thus far.
Thus, the code for each of the examples we discussed earlier, make up a script file. Generally, a
script file is one which was generated and saved as an m-file with an editor such as the MAT-

LAB’s Editor/Debugger.

A function file is a user-defined function using MATLAB. We use function files for repetitive
tasks. The first line of a function file must contain the word function, followed by the output argu-
ment, the equal sign ( =), and the input argument enclosed in parentheses. The function name
and file name must be the same, but the file name must have the extension .m. For example, the
function file consisting of the two lines below

function y = myfunction(x)
y=x A 3 + cos(3 .* x)

is a function file and must be saved. To save it, from the File menu of the command window, we
choose New and click on M-File. This takes us to the Editor Window where we type these two
lines and we save it as myfunction.m.

We will use the following MATLAB functions with the next example.

The function fzero(f,x) tries to find a zero of a function of one variable, where f is a string con-
taining the name of a real-valued function of a single real variable. MATLAB searches for a value
near a point where the function f changes sign, and returns that value, or returns NaN if the
search fails.
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Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples 1.1 and 1.2.

fmin(f,x1,x2) minimizes a function of one variable. It attempts to return a value of x where f(x) is
minimum in the interval x; <x <x,. The string f contains the name of the function to be mini-

mized.

Note: MATLAB does not have a function to maximize a function of one variable, that is, there is
no such function as fmax(f,x1,x2) MATLAB; but since a maximum of f (x) is equal to a minimum
of —f (x) , we can use fmin(f,x1,x2) to find both minimum and maximum values of a function.

fplot(fcn,lims) plots the function specified by the string fen between the x -axis limits specified by
lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y-axis limits. The
string fen must be the name of an m-file function or a string with variable x.

Note: NaN (Not-a-Number) is not a function; it is MATLAB’s response to an undefined expres-
sion such as 0/0, o/, or inability to produce a result as described on the next paragraph. We
can avoid division by zero using the eps number, that we mentioned earlier.

Example 1.16
Find the zeros, maxima and minima of the function

f(x) = 1 + 1 10 (1.20)

(x-01)2+0.01 (x-1.2)°+0.04

Solution:

We first plot this function to observe the approximate zeros, maxima, and minima using the follow-
ing code.

x=-1.5:0.01: 1.5;
y=1. ((x-0.1) A2 +0.01) -1 ./ ((x-1.2) A2 + 0.04) -10;
plot(x,y); grid

The plot is shown in Figure 1.14.

The roots (zeros) of this function appear to be in the neighborhood of x = -0.2 and x = 0.3. The

maximum occurs at approximately x = 0.1 where, approximately, = 90, and the minimum

ymax

occurs at approximately X = 1.2 where, approximately, y;, = -34.

Next, we define and save f(x) as the funczero01.m function m-file with the following code:

function y=funczero01
% Finding the zeros of the function below
y=1/((x-0.1)"2+0.01)-1/((x—1.2)A2+0.04)-10;
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100 T T T T T

Figure 1.14. Plot for Example 1.16 using the plot command

Now, we can use the fplot(fcn,lims) command to plot f(x) as follows.

fplot(‘funczero01', [ -1.5 1.5]); grid

This plot is shown in Figure 1.15. As expected, this plot is identical to the plot of Figure 1.14 that
was obtained with the plot(x,y) command.

100 T T T T T

Figure 1.15. Plot for Example 1.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of f(x) in (1.20) more precisely. The
code below must be saved with a file name, and then invoked with that file name.

x1= fzero(‘funczero01', -0.2);
x2= fzero(‘funczero01', 0.3);
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fprintf('The roots (zeros) of this function are r1= %3.4f' ,x1); % This command is explained below
fprintf(' and r2= %3.4f \n', x2)

MATLARB displays the following:
The roots (zeros) of this function are rl= -0.1919 and r2= 0.3788

The fprintf(format,array) command used above displays and prints both text and arrays. It uses
specifiers to indicate where and in which format the values would be displayed and printed. Thus,
if %f is used, the values will be displayed and printed in fixed decimal format, and if %e is used, the
values will be displayed and printed in scientific notation format. With these commands only the
real part of each parameter is processed.

Whenever we use the fmin(f,x1,x2) function, we must remember that this function searches for a

minimum and it may display the values of local minima , if any, before displaying the function min-
imum. It is, therefore, advisable to plot the function with either the plot(x,y) or the fplot(fcn,lims)
command to find the smallest possible interval within which the function minimum lies. For this

example, we specify the range 0 <x < 1.5 rather than the interval -1.5<x<15.

The minimum of f(x) is found with the fmin(f,x1,x2) function as follows:
min_val=fmin(‘funczero01', 0, 1.5)
min_val =

1.2012

This is the value of x at which y = f(x) is minimum. To find the value of y corresponding to this
value of y, we substitute it into f(x), that is,

x=1.2012;
y=1/((x-0.1) A2+ 0.01) -1/ ((x-1.2) ~2 + 0.04) -10
y =

-34.1812

To find the maximum value, we must first define a new function m-file that will produce —f(x). We
define it as follows:

function y=minusfunczero01(x)
% lt is used to find maximum value from —f(x)
y=—(1/((x—0.1)"2+0.01)-1/((x—1.2)A2+0.04)-10);

We have placed the minus (=) sign in front of the right side of the last expression above, so that

*  Local maxima or local minima, are the maximum or minimum values of a function within a restricted range of values in the
idependent variable. When the entire range is considered, the maxima and minima are considered be to the maximum and
minimum values in the entire range in which the function is defined.
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the maximum value will be displayed. Of course, this is equivalent to the negative of the
funczero01 function.

Now, we execute the following code to get the value of x where the maximum y = f(x) occurs.

max_val=fmin('minusfunczero01', 0,1)

max_val =
0.0999

x=0.0999;
y=1/((x-0.1) A2 + 0.01) -1/ ((x-1.2) A 2 + 0.04) =10

y:
89.2000

1.10 Display Formats

MATLAB displays the results on the screen in integer format without decimals if the result is an
integer number, or in short floating point format with four decimals if it a fractional number. The
format displayed has nothing to do with the accuracy in the computations. MATLAB performs all
computations with accuracy up to 16 decimal places.

The output format can changed with the format command. The available formats can be dis-
played with the help format command as follows:

help format

FORMAT Set output format.

All computations in MATLAB are done in double precision.

FORMAT may be used to switch between different output display

formats as follows:

FORMAT Default. Same as SHORT.

FORMAT SHORT Scaled fixed point format with 5 digits.

FORMAT LONG Scaled fixed point format with 15 digits.

FORMAT SHORT E Floating point format with 5 digits.

FORMAT LONG E Floating point format with 15 digits.

FORMAT SHORT G Best of fixed or floating point format
with 5 digits.

FORMAT LONG G Best of fixed or floating point format
with 15 digits.

FORMAT HEX Hexadecimal format.

FORMAT + The symbols +, - and blank are printed
for positive, negative and zero elements.
Imaginary parts are ignored.

FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.
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Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short 33.3335 Four decimal digits (default)
format long 33.33333333333334 16 digits

format shorte 3.3333e+01 Four decimal digits plus exponent

format short g 33 .333 Better of format short or format short e

format bank 33 .33 two decimal digits

format + only + or — or zero are printed

format rat 100 /3 rational approximation

1.11 Summary

We can get help with MATLAB topics by typing help followed by any topic available. For
example, the command help matlab\iofun will display input/output information, and help mat-
lab graphics will display help on graphics.

The MATLAB Demos menu displays MATLAB’s capabilities. To access it we type demo and
we see the different topics. Whenever we want to return to the command window, we click on
the Close button.

We type quit or exit when we are done and want to leave MATLAB.

We use the clear command if we want to clear all previous values, variables, and equations
without exiting.

The clc command clears the screen but MATLAB still remembers all values, variables and
equations which we have already used.

All text after the % (percent) symbol is interpreted by MATLAB as a comment line and thus it
is ignored during the execution of a program. A comment can be typed on the same line as the
function or command or as a separate line.

For computations involving complex numbers we can use either i, or j to denote the imaginary
part of the complex number.
In MATLAB, a polynomial is expressed as a row vector of the form [a, a,_; @, a; a,]. The

elements a; of this vector are the coefficients of the polynomial in descending order. We must

include terms whose coefficients are zero.
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e We can find the roots of any polynomial with the roots(p) function where p is a row vector
containing the polynomial coefficients in descending order.

e We can compute the coefficients of a polynomial from a given set of roots with the poly(r)
function where r is a row vector containing the roots.

¢ The polyval(p,x) function evaluates a polynomial p(x) at some specified value of the indepen-
dent variable x.

e The conv(a,b) function multiplies the polynomials a and b.

¢ The [q,r]=deconv(c,d) function divides polynomial ¢ by polynomial d and displays the quotient
g and remainder r.

e The polyder(p) function produces the coefficients of the derivative of a polynomial p.

e We can write MATLAB statements in one line if we separate them by commas or semicolons.
Commas will display the results whereas semicolons will suppress the display.

e Rational Polynomials are those which can be expressed in ratio form, that is, as

n- n-2

1
+b, X

m m-1 m-2
anX +a,_.X +a,, _oX +...+a;X+3q

_ Num(x) _ ann+bn,1X + ...+ b X+Db

Den(x)

R(X)

where some of the terms in the numerator and/or denominator may be zero. Normally, we
express the numerator and denominator of a rational function as a combination of linear and
quadratic factors.

e We use the MATLAB command plot(x,y) to make two-dimensional plots. This command plots
y versus X where x is the horizontal axis (abscissa) and y is the vertical axis (ordinate).

e [f a statement, or a row vector is too long to fit in one line, it can be continued to the next line
by typing three or more periods, then pressing <enter> to start a new line, and continue to
enter data.

e We can make a plot more presentable with the commands grid, box, title(‘string’), xla-
bel(‘string’), and ylabel(‘string’).

¢ The semilogx(x,y) command that is similar to the plot(x,y) command, except that the x -axis is
represented as a log scale, and the y-axis as a linear scale. Likewise, the semilogy(x,y) com-
mand is similar to the plot(x,y) command, except that the y -axis is represented as a log scale,

and the x-axis as a linear scale. The loglog(x,y) command uses logarithmic scales for both
axes.

e The function log(x) in MATLAB is the natural logarithm, whereas the common logarithm is
expressed as 10g10(x). Likewise, the logarithm to the base 2 is expressed as log2(x).
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e The ratio of any two values of the same quantity, typically power, is normally expressed in deci-

bels (dB) and by definition,

P
dB = 10log|-2ut

In

® The command gtext(‘string’) switches to the current Figure Window, and displays a cross-hair
which can be moved around with the mouse. The command text(x,y,’string’) is similar to
gtext(‘string’); it places a label on a plot in some specific location specified by x and y, and string
is the label which we want to place at that location.

® The command linspace(first_value, last value, number of values) specifies the number of data
points but not the increments between data points. An alternate command uses the colon nota-
tion and has the format x=first: increment: last. This format specifies the increments between
points but not the number of data points.

e MATLAB has no default color; it starts with blue and cycles through seven colors. Also, there
is no default marker; no markers are drawn unless they are selected. The default line is the solid
line.

¢ The plot3(x,y,z) command plots a line in 3-space through the points whose coordinates are the
elements of X, y, and z, where X, y, and z are three vectors of the same length.

¢ In a three-dimensional plot, we can use the zlabel(‘string’) command in addition to the xla-
bel(‘string’) and ylabel(‘string’).

¢ In a two-dimensional plot, we can set the limits of the x - and y -axes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a three-dimensional plot we can set the limits of all three
axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot com-
mand. This must be done for each plot. The three-dimensional text(x,y,z,’string’) command will
place string beginning at the co-ordinate (x,y, z) on the plot.

¢ The mesh(x,y,z) command displays a three-dimensional plot. Another command, contour(Z,n),
draws contour lines for n levels. We can also use the mesh(x,y,z) command with two vector

arguments. These must be defined as length(x) = n and length(y) = m where
[m, n] = size(Z). In this case, the vertices of the mesh lines are the triples {x(j), y(i), Z(i, j)} .
We observe that x corresponds to the columns of Z, and y corresponds to the rows of Z. To
produce a mesh plot of a function of two variables, say z = f(X, y), we must first generate the X
and Y matrices which consist of repeated rows and columns over the range of the variables x
and y. We can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function which
creates the matrix X whose rows are copies of the vector X, and the matrix Y whose columns
are copies of the vector y.
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e MATLAB can display up to four windows of different plots on the Figure window using the
command subplot(m,n,p). This command divides the window into an m x n matrix of plotting
areas and chooses the pth area to be active.

e With MATLAB, matrix multiplication (multiplication of row by column vectors) is performed
with the matrix multiplication operator (*), whereas element-by-element multiplication is per-
formed with the dot multiplication operator (.*). Similarly, the division (/) and exponentiation

A . e e . . e e
() operators, are used for matrix division and exponentiation, whereas dot division (./) and
dot exponentiation (.” ) are used for element-by-element division and exponentiation.

e To avoid division by zero, we use the special MATLAB function eps, which is a number

approximately equal to 2.2 x 107°°.

e The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each
plot.

¢ The real(z) and imag(z) functions display the real and imaginary parts of the complex quantity
z = x + iy, and the abs(z), and the angle(z) functions compute the absolute value (magni-
tude) and phase angle of the complex quantity z = x +iy = r£6. The polar(theta,r) function
produces a plot in polar coordinates, where r is the magnitude, and theta is the angle in radi-
ans.

e MATLAB recognizes two types of files: script files and function files. Both types are referred to
as m-files. A script file consists of two or more built-in functions. Generally, a script file is one
which was generated and saved as an m-file with an editor such as the MATLAB’s Editor/
Debugger. A function file is a user-defined function using MATLAB. We use function files for
repetitive tasks. The first line of a function file must contain the word function, followed by the
output argument, the equal sign ( = ), and the input argument enclosed in parentheses. The
function name and file name must be the same, but the file name must have the extension .m.

e The MATLAB fmin(f,x1,x2) function minimizes a function of one variable. It attempts to
return a value of x where f(x) is minimum in the interval x; < x <x,. The string f contains the

name of the function to be minimized.

e The MATLAB fplot(fcn,lims) command plots the function specified by the string fcn between
the x-axis limits specified by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also
controls the y -axis limits. The string fcn must be the name of an m-file function or a string
with variable x.

e The MATLAB fprintf(format,array) command used above displays and prints both text and
arrays. It uses specifiers to indicate where and in which format the values would be displayed
and printed. Thus, if %f is used, the values will be displayed and printed in fixed decimal for-
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mat, and if %e is used, the values will be displayed and printed in scientific notation format.
With these commands only the real part of each parameter is processed.

e MATLAB displays the results on the screen in integer format without decimals if the result is
an integer number, or in short floating point format with four decimals if it a fractional number.
The format displayed has nothing to do with the accuracy in the computations. MATLAB per-
forms all computations with accuracy up to 16 decimal places.
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1.12 Exercises

1. Use MATLAB to compute the roots of the following polynomials:
a. p(x) = x> +8x° + 10X + 4
b. p(y) = ¥ +7y" +19y° + 25y* + 16y + 4

2. Use MATLARB to derive the polynomials having the following roots:

a. —6.5708 —0.7146 +j0.3132 —-0.7146-j0.3132

b. Two roots at x = —2.000 and three roots at X = —3.000

3. Use MATLARB to evaluate the polynomials below at the specified values.
a. p(x) = X°+8x"+10x+4 at x = 1.25

b. p(y) = y>+7y* + 19y + 25y* + 16y + 4 at y = —3.75

4. In the circuit below, the applied voltage Vg was kept constant and the voltage V. across the

capacitor was measured and recorded at several frequencies as shown on the table below.

Capacitor voltage versus radian frequency
® 500 600 700 800 900 1000

Ve 88.9 98.5 | 103.0 | 104.9 | 1053 | 104.8

® 1100 | 1200 | 1300 | 1400 | 1500 | 1600

VC 103.8 | 102.4 | 100.7 | 98.9 96.5 94.9

Plot V¢ (in dB scale) versus o (in common log scale) and label the axes appropriately.
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1.13 Solutions to Exercises
Dear Reader:
The remaining pages on this chapter contain the solutions to the exercises.

You must, for your benefit, make an honest effort to find the solutions to the exercises without first
looking at the solutions that follow. It is recommended that first you go through and work out
those you feel that you know. For the exercises that you are uncertain, review this chapter and try
again. Refer to the solutions as a last resort and rework those exercises at a later date.

You should follow this practice with the rest of the exercises of this book.
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Px=[1 8 10 4]; roots(Px)

ans =
~6.5708
~0.7146 + 0.31321
~0.7146 - 0.3132i
Py=[1 7 19 25 16 4]; roots(Py)

ans =
-2.0000
-2.0000
-1.0000
-1.0000 + 0.00001
-1.0000 - 0.00001

r1=[-6.5708 —0.7146+0.3132j —0.7146-0.3132]]; poly_r1=poly(r1)
poly rl = 1.0000 8.0000 9.9997 4.0000

p(x) = x> + 8% + 10x + 4

r2=[-2 -2 -3 -3 -3]; poly_r2=poly(r2)
poly_r2 =
1 13 67 171 216 108

p(z) = 2°+132* +672° + 1712° + 2162 + 108
Pv=[1 8 10 4]; value=polyval(Pv, 1.25)
value = 30.9531

Pw=[1 7 19 25 16 4]; value=polyval(Pw, —3.75)
value = -63.6904
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4.

w=[567891011 1213 14 15 16]*100;

Vc=[88.9 98.5 103 104.9 105.3 104.8 103.8 102.4 100.7 98.9 96.5 94.9];
dB=20*log10(Vc); semilogx(w,dB); grid; title('Magnitude of Vc vs. w');...
xlabel('w in rads/sec'); ylabel('|Vc| in volts')

Magnitude of Vo vs. w
40.6 T T I R 7 T

|“o| in volts

e ()| GRS R

38

388 = H H I S R |3 H H HE S - | :
10 10 10
win rmads/sec
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Chapter 2

Root Approximations

his chapter is an introduction to Newton’s and bisection methods for approximating roots
of linear and non-linear equations. Several examples are presented to illustrate practical
solutions using MATLAB and spreadsheets.

2.1 Newton’s Method for Root Approximation

Newton’s (or Newton-Raphson) method can be used to approximate the roots of any linear or non-
linear equation of any degree. This is an iterative (repetitive procedure) method and it is derived
with the aid of Figure 2.1.

y Tangent line (slope) to the curve
/ y = f(x) arpoint {Xq, f(xy)}
y = f(x)
{xg, f(x1)}

__] (%, 0)

Figure 2.1. Newton’s method for approximating real roots of a function

We assume that the slope is neither zero nor infinite. Then, the slope (first derivative) at x = x,

is

y —f(x;)
f =
(1) X — X,
y—f(xp) = £ (x)(x=xp) (2.1)

The slope crosses the x —axis at x = x, and y = 0. Since this point [X,, f(X,)] = (X,, 0) lies on
the slope line, it satisfies (2.1). By substitution,

0-f(xy) = F (X)X —Xq)
f(xy)

Xo = Xq — 2.2
2 1T ) (2.2)
and in general,
_ f(Xq)
ne1 = Xp 7 ) (2.3)
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Example 2.1

Use Newton’s method to approximate the positive root of

f(x) = x2-5 (2.4)
to four decimal places.

Solution:

As a first step, we plot the curve of (2.4) to find out where it crosses the x —axis. This can be
done easily with a simple plot using MATLAB or a spreadsheet. We start with MATLAB and will

discuss the steps for using a spreadsheet afterwards.

We will now introduce some new MATLAB functions and review some which we discussed in
Chapter 1.

input(‘string’): It displays the text string, and waits for an input from the user. We must enclose
the text in single quotation marks.

We recall that the polyder(p) function displays the row vector whose values are the coefficients
of the first derivative of the polynomial p. The polyval(p,x) function evaluates the polynomial p
at some value X. Therefore, we can compute the next iteration for approximating a root with
Newton’s method using these functions. Knowing the polynomial p and the first approximation
Xq, we can use the following code for the next approximation x; .

q=polyder(p)

x1=x0-polyval(p,x0)/polyval(q,x0)

We used the fprintf command in Chapter 1; we will use it many more times. Therefore, let us
review it again.

The following description was extracted from the help fprintf function.

It formats the data in the real part of matrix A (and in any additional matrix arguments), under control
of the specified format string, and writes it to the file associated with file identifier fid and contains C lan-
guage conversion specifications. These specifications involve the character %, optional flags, optional
width and precision fields, optional subtype specifier, and conversion characters d, i, o, u, x, X, f, e, E,
g, G, ¢, and s. See the Language Reference Guide or a C manual for complete details. The special for-
mats \n,\r,\t,\b,\f can be used to produce linefeed, carriage return, tab, backspace, and formfeed charac-
ters respectively. Use \\ to produce a backslash character and %% to produce the percent character.

To apply Newton’s method, we must start with a reasonable approximation of the root value. In
all cases, this can best be done by plotting f(x) versus x with the familiar statements below. The
following two lines of code will display the graph of the given equation in the interval -4 <x<4.

x=linspace (-4, 4, 100); % Specifies 100 values between —4 and 4
y=x A2 - 5; plot(x,y); grid % The dot exponentiation is a must
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We chose this interval because the given equation asks for the square root of 5; we expect this
value to be a value between 2 and 3. For other functions, where the interval may not be so obvi-

ous, we can choose a larger interval, observe the x —axis crossings, and then redefine the inter-
val.

Figure 2.2. Plot for the curve of Example 2.1

As expected, the curve shows one crossing between x = 2 and x = 3, so we take x, = 2 as our

first approximation, and we compute the next value x, as

[0, @5, (D) _
Xl_xo_f'(xo)_z_ 2D =2- 2 = 225 (2.5)

The second approximation yields

f 2_
Xy = ¥ - ) o5 (225) =5 _ 505 00625 _ (2.6)
(%) 2(2.25) 45

We will use the following MATLAB code to verify (2.5) and (2.6).

% Approximation of a root of a polynomial function p(x)
% Do not forget to enclose the coefficients in brackets [ ]
p=input('Enter coefficients of p(x) in descending order: ');
xO=input('Enter starting value: ‘);

g=polyder(p); % Calculates the derivative of p(x)
x1=x0-polyval(p,x0)/polyval(q,x0);

fprintf(\n'); % Inserts a blank line

%

% The next function displays the value of x1 in decimal format as indicated
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% by the specifier %9.6f, i.e., with 9 digits where 6 of these digits
% are to the right of the decimal point such as xxx.xxxxxx, and
% \n prints a blank line before printing x1

fprintf(‘'The next approximation is: %9.6f \n', x1)

fprintf(\n’); % Inserts another blank line
%

fprintf('Rerun the program using this value as your next....
approximation \n');

The following lines show MATLAB’s inquiries and our responses (inputs) for the first two
approximations.

Enter coefficients of P(x) in descending order:
[1 0-5]

Enter starting value: 2

The next approximation is: 2.250000

Rerun the program using this value as your
next approximation

Enter polynomial coefficients in

descending order: [1 0-5]

Enter starting value: 2.25

The next approximation is: 2.236111

We observe that this approximation is in close agreement with (2.6).

In Chapter 1 we discussed script files and function files. We recall that a function file is a user-
defined function using MATLAB. We use function files for repetitive tasks. The first line of a
function file must contain the word function followed by the output argument, the equal sign (=),
and the input argument enclosed in parentheses. The function name and file name must be the
same but the file name must have the extension .m. For example, the function file consisting of
the two lines below

function y = myfunction(x)
y=Xx .A 3 + cos(3 .* X)
is a function file and must be saved as myfunction.m

We will use the while end loop, whose general form is

while expression
commands ...
end
where the commands ... in the second line are executed as long as all elements in expression of the
first line are true.

We will also be using the following commands:
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disp(x): Displays the array x without printing the array name. If x is a string, the text is displayed.
For example, if v = 12, disp(v) displays 12, and disp(‘volts’) displays volts.

sprintf(format,A): Formats the data in the real part of matrix A under control of the specified
format string. For example,

sprintf('%d',round(pi))

ans =
3

where the format code %d specifies an integer. Likewise,
sprintf('%4.3f',pi)

ans =

3.142

where the format code %4.3f specifies a fixed format of 4 digits where 3 of these digits are allo-
cated to the fractional part.

Example 2.2

Approximate one real root of the non-linear equation

f(x) = X%+ 4X + 3 + SiNX — XCOSX 2.7)
to four decimal places using Newton’s method.

Solution:

As a first step, we sketch the curve to find out where the curve crosses the x —axis. We generate
the plot with the code below.

x=linspace(—pi, pi, 100); y=x A2 + 4 .* x + 3 + sin(x) — x .* cos(x); plot(x,y); grid
The plot is shown in Figure 2.3.

The plot shows that one real root is approximately at x = —1, so we will use this value as our first
approximation.

Next, we generate the function funcnewt01 and we save it as an m-file. To save it, from the File
menu of the command window, we choose New and click on M-File. This takes us to the Editor
Window where we type the following three lines and we save it as funcnewtO1.m.

function y=funcnewt01(x)
% Approximating roots with Newton's method
y=x A2+ 4 ." x+ 3 + sin(x) — x .* cos(x);

We also need the first derivative of y; This is y* = 2x + 4 + xsinx
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Figure 2.3. Plot for the equation of Example 2.2

The computation of the derivative for this example was a simple task; however, we can let MAT-
LAB do the differentiation, just as a check, and to introduce the diff(s) function. This function
performs differentiation of symbolic expressions. The syms function is used to define one or
more symbolic expressions.

syms x
y = XA2+4*x+3+sin(x)—x*cos(x); % Dot operations are not necessary with
% symbolic expressions, but correct
% answer will be displayed if they are used.
y1=diff(y) % Find the derivative of y
vyl =

2*x+4+x*sin (x)

Now, we generate the function funcnewt02, and we save it as m-file. To save it, from the File
menu of the command window, we choose New and click on M-File. This takes us to the Editor
Window where we type these two lines and we save it as funcnewt02.m.

function y=funcnewt02(x)

% Finding roots by Newton's method

% The following is the first derivative of the function defined as funcnewt02
y=2 .* X+ 4 + x .* sin(x);

Our code for finding the next approximation with Newton’s method follows.

X = input('Enter starting value: ');
fx = funcnewt01(x);
fprimex = funcnewt02(x);
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xnext = x-fx/fprimex;
X = Xnext;
fx = funcnewt01(x);
fprimex = funcnewt02(x);
disp(sprintf('First approximation is x = %9.6f \n', x))
while input('Next approximation? (<enter>=no,1=yes)");
xnext=x-fx/fprimex;
x=xnext;
fx=funcnewt01(x);
fprimex=funcnewt02(x);
disp(sprintf('Next approximation is x = %9.6f \n', x))
end;
disp(sprintf('%9.6f \n', x))

MATLAB produces the following result with —1 as a starting value.

Enter starting value: -1

First approximation is: -0.894010
Next approximation? (<enter>=no,l=yes)1
-0.895225

Next approximation? (<enter>=no,l=yes) <enter>

We can also use the fzero(f,x) function. It was introduced in Chapter 1. This function tries to
find a zero of a function of one variable. The string f contains the name of a real-valued function
of a single real variable. As we recall, MATLAB searches for a value near a point where the func-
tion f changes sign and returns that value, or returns NaN if the search fails.

2.2 Approximations with Spreadsheets

In this section, we will go through several examples to illustrate the procedure of using a spread-
sheet such as Excel to approximate the real roots of linear and non-linear equations.
We recall that there is a standard procedure for finding the roots of a cubic equation; it is
included here for convenience.
A cubic equation of the form

y3+py2+qy+r =0 (2.8)
can be reduced to the simpler form

x>+ax+b =0 (2.9)
where

* We will illustrate our examples with Excel, although others such as Lotus 1-2-3, and Quattro can also be used. Hence-
forth, all spreadsheet commands and formulas that we will be using, will be those of Excel.
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_y4 B = Llag_p? = Lopd
X=y+q a_3(3q p) b_27(2p 9pq + 27r) (2.10)

For the solution it is convenient to let

3 2 3 3 2 3
A= |2R o, g jb, bt a @2.11)
2 4T 27 2 Na "2

Then, the values of x for which the cubic equation of (2.11) is equal to zero are

x,=A+B  x,=_ArB A-B 3 _ A+B A-B 3 (2.12)
2 2 2 2
If the coefficients p, q, and r are real, then (2.13)
b’ a°
If I + > >0 one root will be real and the other two complex conjugates
b*> . a°

If 1 + > <0 the roots will be real and unequal

2 .3
If b” + a_7 = 0 there will be three real roots with at least two equal

While MATLAB handles complex numbers very well, spreadsheets do not. Therefore, unless we
know that the roots are all real, we should not use a spreadsheet to find the roots of a cubic equa-
tion by substitution in the above formulas. However, we can use a spreadsheet to find the real
root since in any cubic equation there is at least one real root. For real roots, we can use a spread-
sheet to define a range of x values with small increments and compute the corresponding values
of y = f(x). Then, we can plot y versus x to observe the values of x that make f(x) = 0. This
procedure is illustrated with the examples that follow.

Note: In our subsequent discussion we will omit the word cell and the key <enter>. Thus B3,
C11, and so on will be understood to be cell B3, cell C11, and so on. Also, after an entry has been
made, it will be understood that the <enter> key was pressed.

Example 2.3

Compute the roots of the polynomial

y = f(x) = X = 7% + 16x — 12 (2.14)
using Excel.
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Solution:

We start with a blank worksheet. In an Excel worksheet, a selected cell is surrounded by a heavy
border. We select a cell by moving the thick hollow white cross pointer to the desired cell and we
click. For this example, we first select Al and we type x. We observe that after pressing the
<enter> key, the next cell moves downwards to A2; this becomes the next selected cell. We type
0.00 in A2. We observe that this value is displayed just as 0, that is, without decimals. Next, we
type 0.05 in A3. We observe that this number is displayed exactly as it was typed.

We will enter more values in column A, and to make all values look uniform, we click on letter A
on top of column A. We observe that the entire column is now highlighted, that is, the back-
ground on the monitor has changed from white to black. Next, from the Tools drop menu of the
Menu bar, we choose Options and we click on the Edit tab. We click on the Fixed Decimal check
box to place a check mark and we choose 2 as the number of decimal places. We repeat these
steps for Column B and we choose 3 decimal places. Then, all numbers that we will type in Col-
umn A will be fixed numbers with two decimal places, and the numbers in Column B will be fixed
with three decimal places.

To continue, we select A2, we click and holding the mouse left button down, we drag the mouse
down to A3 so that both these two cells are highlighted; then we release the mouse button.
When properly done, A2 will have a white background but A3 will have a black background. We
will now use the AutoFill” feature to fill-in the other values of x in Column A. We will use values

in 0.05 increments up to 5.00. Column A now contains 100 values of x from 0.00 to 5.00 in incre-
ments of 0.05.

Next, we select B, and we type f(x). In B2, we type the equation formula with the = sign in front
of it, that is, we type

= A2"3-T*A2"2 + 16*A2-2

where A2 represents the first value of x = 0.00. We observe that B2 displays the value —12.000.
This is the value of f(x) when x = 0.00 Next, we want to copy this formula to the range B3:B102
(the colon : means B3 through B102). With B2 still selected, we click on Edit on the main taskbar,
and we click on Copy. We select the range B3:B102 with the mouse, we release the mouse button,
and we observe that this range is now highlighted. We click on Edit, then on Paste and we observe
that this range is now filled with the values of f(x). Alternately, we can use the Copy and Paste
icons of the taskbar.

* To use this feature, we highlight cells A2 and A3. We observe that on the lower right corner of A3, there is a small black
square; this is called the fill handle. If it does not appear on the spreadsheet, we can make it visible by performing the
sequential steps Tools>Options, select the Edit tab, and place a check mark on the Drag and Drop setting. Next, we point
the mouse to the fill handle and we observe that the mouse pointer appears as a small cross. We click, hold down the mouse
button, we drag it down to A102, and we release the mouse button. We observe that, as we drag the fill handle, a pop-up
note shows the cell entry for the last value in the range.
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To plot f(x) versus x, we click on the Chart Wizard icon of the Standard Toolbar, and on the
Chart type column we click on XY (Scatter). From the displayed charts, we choose the one on top
of the right side (the smooth curves without connection points). Then, we click on Next, Next,
Next, and Finish. A chart similar to the one on Figure 2.4 appears.

B C D E F G H |
X f(x)
0.00| -12.000 f(x)
0.05| -11.217
0.10/ -10.469 | 20000 Y |

0.15| -9.754/ | 15000 |
020 9072 10.000 /

5.000 1 I
0.25| -8.422 o 0 |

0.30| -7.803 ] ‘ ‘ ‘ ‘
035 7215 -5.00(0.00/1.00 2.00 3.00 400 500  6.00 i
10| 0.40| -6.656| | -10-000 1 |
11| 045 -6.126| | -15:000

12| 0.50| -5.625 \ \ I \ \

OlO|NO|O|PIWIN]F-

Figure 2.4. Plot of the equation of Example 2.3.

We will modify this plot to make it more presentable, and to see more precisely the x — axis cross-
ing(s), that is, the roots of f(x). This is done with the following steps:

1. We click on the Series 1 box to select it, and we delete it by pressing the Delete key.

2. We click anywhere inside the graph box. Then, we see it enclosed in six black square handles.
From the View menu, we click on Toolbars, and we place a check mark on Chart. The Chart
menu appears in two places, on the main taskbar and below it in a box where next to it is
another small box with the hand icon. Note: The Chart menu appears on the main taskbar and
on the box below it, only when the graph box is selected, that is, when it is enclosed in black
square handles. From the Chart menu box (below the main taskbar), we select Value (X) axis,
and we click on the small box next to it (the box with the hand icon). Then, on the Format axis
menu, we click on the Scale tab and we make the following entries:

Minimum: 0.0
Maximum: 5.0
Major unit: 1.0
Minor unit: 0.5

We click on the Number tab, we select Number from the Category column, and we type 0 in the
Decimal places box. We click on the Font tab, we select any font, Regular style, Size 9. We click
on the Patterns tab to select it, and we click on Low on the Tick mark labels (lower right box).
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We click on OK to return to the graph.

3. From the Chart menu box we select Value (Y) axis and we click on the small box next to it (the
box with the hand icon). On the Format axis menu, we click on the Scale tab, and we make the
following entries:

Minimum: —-1.0
Maximum: 1.0
Major unit: 0.25
Minor unit: 0.05

We click on the Number tab, we select Number from the Category column, and we select 2 in
the Decimal places box. We click on the Font tab, select any font, Regular style, Size 9. We click
on the Patterns tab, and we click on Outside on the Major tick mark type (upper right box). We
click on OK to return to the graph.

4. We click on Chart on the main taskbar, and on the Chart Options. We click on Gridlines, we
place check marks on Mgjor gridlines of both Value (X) axis and Value (Y) axis. Then, we click
on the Titles tab and we make the following entries:

Chart title: f(x) = the given equation (or whatever we wish)
Value (X) axis: X (or whatever we wish)
Value (Y) axis: y=f(x) (or whatever we wish)

5. Now, we will change the background of the plot area from gray to white. From the Chart
menu box below the main task bar, we select Plot Area and we observe that the gray back-
ground of the plot area is surrounded by black square handles. We click on the box next to it
(the box with the hand icon), and on the Area side of the Patterns tab, we click on the white
square which is immediately below the gray box. The plot area on the chart now appears on
white background.

6. To make the line of the curve f(x) thicker, we click at any point near it and we observe that
several black square handles appear along the curve. Series | appears on the Chart menu box.
We click on the small box next to it, and on the Patterns tab. From the Weight selections we
select the first of the thick lines.

7. Finally, to change Chart Area square corners to round, we select Chart Area from the Chart
menu, and on the Patterns tab we place a check mark on the Round corners box.

The plot now resembles the one shown in Figure 2.5 where we have shown partial lists of x and
f(x). The given polynomial has two roots at x = 2, and the third root is x = 3.

We will follow the same procedure for generating the graphs of the other examples which follow;
therefore, it is highly recommended that this file is saved with any name, say polyOl.xls where.xls
is the default extension for file names saved in Excel.
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A B c | b | E | F | &
1 X f(X) I I I I \
2 | 0.00]-12.000 f(x) = x> - 7x® + 16x - 12 i
3 | 0.05]-11.217 , |
4 | 0.10| -10.469 égg | |
5 | 0.15| -9.754 0.50 |
6 | 0.20] -9.072 0.95 | |
7 | 025 -8422|| = 000 |
8 | 0.30| -7.803|| T -0.25- |
9 | 0.35] -7.215 -0.50 |
10| 0.40| -6.656 -0.75 1 /
11| 045 -6.126 -1.00 ! i
12| 050 -5.625 °o oz 3 45
13| 0.55/ -5.151 X |
14| 0.60| -4.704 /
15| 0.65 -4.283
16| 0.70| -3.887 X f(x) X f(x)
17| 0.75| -3.516 1.90| -0.011 2.90| -0.081
18| 0.80| -3.168 1.95| -0.003 2.95  -0.045
19| 0.85/ -2.843| Roots —> 2.00|  0.000—> 3.00 0.000
20| 0.90| -2.541 2.05/ -0.002 3.05 0.055
21| 0.95 -2.260 2.10|  -0.009 3.10 0.121
22| 1.00| -2.000 f(x) =0 at x=2 (double root) and at x=3

Figure 2.5. Modified plot of the equation of Example 2.3.
Example 2.4
Find a real root of the polynomial

y = f(x) = 3x° - 2x> + 6x -8 (2.15)
using Excel.

Solution:

To save lots of unnecessary work, we invoke (open) the spreadsheet of the previous example, that
is, polyO1.xls (or any other file name that was assigned to it), and save it with another name such
as poly02.xls. This is done by first opening the file polyOl.xls, and from the File drop down menu,
we choose the Save as option; then, we save it as poly02.xls, or any other name. When this is
done, the spreadsheet of the previous example still exists as polyOl.xls. Next, we perform the fol-
lowing steps:

1. For this example, the highest power of the polynomial is 5 (odd number), and since we know
that complex roots occur in conjugate pairs, we expect that this polynomial will have at least
one real root. Since we do not know where a real root is in the x-axis interval, we arbitrarily
choose the interval -10 <x < 10. Then, we enter —10 and -9 in A2 and A3 respectively. Using

2-12 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



Approximations with Spreadsheets

the AutoFill feature, we fill-in the range A4:A22, and we have the interval from —10 to 10 in
increments of 1. We must now delete all rows starting with 23 and downward. We do this by
highlighting the range A23:B102, and we press the Delete key. We observe that the chart has
changed shape to conform to the new data.

Now we select B2 where we enter the formula for the given equation, i.e.,
=3*A2"5-2*A2"3+6*A2-8
We copy this formula to B3:B22. Columns A and B now contain values of x and f(x) respec-

tively, and the plot shows that the curve crosses the x-axis somewhere between x = 1 and

X =2.

A part of the table is shown in Figure 2.6. Columns A (values of x), and B (values of f(x)),
reveal some useful information.

X f(x)
-10.00] -298068.000
20.00] -175751.000
0.00 -8.000
1.00 -1.000
2.00 84,000/~ Sign Change
9.00| 175735.000
10.00|  298052.000

Figure 2.6. Partial table for Example 2.4

This table shows that f(x) changes sign somewhere in the interval from x = 1 and x = 2. Let
us then redefine our interval of the x values as 1 <x <2 in increments of 0.05, to get better
approximations. When this is done Al contains 1.00, A2 contains 1.05, and so on. Our
spreadsheet now shows that there is a sign change from B3 to B4, and thus we expect that a
real root exists between x = 1.05 and x = 1.10. To obtain a good approximation of the real
root in that interval, we perform Steps 2 through 4 below.

2. On the View menu, we click on Toolbars and place a check mark on Chart. We select the graph
box by clicking inside it, and we observe the square handles surrounding it. The Chart menu
on the main taskbar and the Chart menu box below it, are now displayed. From the Chart
menu box (below the main taskbar) we select Value (X) axis, and we click on the small box
next to it (the box with the hand). Next, on the Format axis menu, we click on the Scale tab
and make the following entries:

Minimum: 1.0
Maximum: 1.1
Major unit: 0.02
Minor unit: 0.01
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3. From the Chart menu we select Value (Y) axis, and we click on the small box next to it. Then,
on the Format axis menu, we click on the Scale tab and make the following entries:

Minimum: -1.0
Maximum: 1.0
Major unit: 0.5
Minor unit: 0.1

4. We click on the Titles tab and make the following entries:

Chant title: f(x) = the given equation (or whatever we wish)
Value (X) axis: X (or whatever we wish)
Value (Y) axis: y=f(x) (or whatever we wish)

Our spreadsheet now should look like the one in Figure 2.7 and we see that one real root is
approximately 1.06.

Since no other roots are indicated on the plot, we suspect that the others are complex conjugates.
We confirm this with MATLAB as follows:

p=[3 0 -2 0 6 —8]; roots_p=roots(p)

roots_p =
-1.1415 + 0.82121
-1.1415 - 0.82121

0.6113 + 0.94761
0.6113 - 0.94761
1.0604

Example 2.5

Compute the real roots of the trigonometric function
y = f(X) = c0os2x + sin2x +x—1 (2.16)
using a spreadsheet.

Solution:

We invoke (open) the spreadsheet of one of the last two examples, that is, polyO1.xls or poly02.xls,
and save it with another name, such as poly03.xls.

Since we do not know where real roots (if any) are in the x-axis interval, we arbitrarily choose the
interval -1 <x<6. Then, we enter —1.00 and —0.90 in A2 and A3 respectively, Using the Auto-
Fill feature, we fill-in the range A4:A72 and thus we have the interval from -1 to 6 in increments
of 0.10. Next, we select B2 and we enter the formula for the given equation, i.e.,

=COS(2*A2)+SIN(2*A2)+A2-1
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A B c | b | E | F | G
1 X f(x) It It It It \
2 1.00 -1.000 ‘f(X) =3x° -2x° +6x - 8‘ '
3] 105 -0.186 I
4] 110 0.770 1.00 |
5| 115 1.892 050 i
6| 120 3.209 i
7 1.25 4749/ | X 0.0 i
8| 130 6.545 |
9| 135 8.631 0-30 1 |
10| 1.40 11.047 100 i
11] 145 13.832 1.00 102 1.04 106 1.08 1.10 |
12| 150 17.031 « i
13| 155 20.692 )
14| 1.60 24.865
15| 1.65 29.605
16| 1.70 34.970 X f(x)
17| 175 41.021 1.00/  -1.000
18| 1.80 47.823 Real Root between——Y 1:05|  -0.186
19| 185 55.447 ~*110 0770
20| 1.90 63.965 1.15 1.892
21| 195 73.455 1.20]  3.209
22| 2.00 84.000 f(x) = —0.007 at x = 1.06

Figure 2.7. Graph for Example 2.4

and we copy this formula to B3:B62.

There is a root at x = 0; this is found by substitution of zero into the given equation. We observe
that Columns A and B contain the following sign changes (only a part of the table is shown):

X f(x)
1.20 0.138
1.30| -0.041
2.20| -0.059
2.30 0.194

~ = Sign Change
> Sign Change

We observe two sign changes. Therefore, we expect two more real roots, one in the
1.20 <x<1.30 interval and the other in the 2.20 <x <2.30 interval. If we redefine the x — axis
range as 1 to 2.5, we will find that the other two roots are approximately x = 1.30 and x = 2.24.

Approximate values of these roots can also be observed on the plot of Figure 2.8 where the curve

crosses the X — axis.
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A B c | b | E | F | ¢
1 X f(x) I I I I
> 1.00 3.325 ‘f(x) = C0S2X +sin2x + x - 1 ‘ N
3] -0.00 -3.101 I
4 [ -0.80 -2.829 6 |
5] -070 -2.515 4 / |
6 | -0.60 -2.170 5 ,/\/ |
7| -050 1801 | ® / |
8| 040 1421/ T O ~— |
9| -030 -1.039 217 |
10| -0.20 -0.668 4 |
11| -0.10 -0.319 1 0 1 2 3 4 5 6 |
12| 0.00 0.000 « |
13| o0.10 0.279 |
14| 0.20 0.510
15| 0.30 0.690 X f(x)
16| 0.40 0.814 Real Root|at ——0.00 0.000
17| o050 0.882 Real Root between— 120 0.138
18| o0.60 0.894 =130 -0.041
19| o0.70 0.855 oo bt lhanaan . 2.20] <0059
20| 0.80 0.770 D 2.30 0.194

Figure 2.8. Graph for Example 2.5

We can obtain more accurate approximations using Excel’s Goal Seek feature. We use Goal Seek
when we know the desired result of a single formula, but we do not know the input value which

satisfies that result. Thus, if we have the function y = f(x), we can use Goal Seek to set the
dependent variable y to the desired value (goal) and from it, find the value of the independent
variable x which satisfies that goal. In the last three examples our goal was to find the values of x
for whichy = f(x) = 0.

To illustrate the Goal Seek feature, we will use it to find better approximations for the non-zero
roots of Example 2.5. We do this with the following steps:

1. We copy range A24:B24 (or A25:B25) to two blank cells, say J1 and K1, so that J1 contains
1.20 and K1 contains 0.138 (or 1.30 and —0.041 if range A25:B25 was copied). We increase the
accuracy of Columns J and K to 5 decimal places by clicking on Format, Cells, Numbers tab.

2. From the Tools drop menu, we click on Goal Seek, and when the Goal Seek dialog box appears,
we make the following entries:

Set cell: K1
To value: 0
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By changing cell: J1

3. When this is done properly, we will observe the changes in J1 and K1. These indicate that for
X = 1.27647,y = f(x) = 0.00002.

4. We repeat the above steps for the next root near x = 2.20, and we verify that for
X = 2.22515,y = f(x) = 0.00020.

Another method of using the Goal Seek feature, is with a chart such as those we've created for the
last three examples. We will illustrate the procedure with the chart of Example 2.5.

1. We point the mouse at the curve where it intersects the x-axis, near the x = 1.30 point. A
square box appears and displays Series 1, (1.30, -0.041). We observe that other points are also
displayed as the mouse is moved at different points near the curve.

2. We click anywhere near the curve, and we observe that five handles (black square boxes) are
displayed along different points on the curve. Next, we click on the handle near the x = 1.30
point, and when the cross symbol appears, we drag it towards the x-axis to change its value.
The Goal Seek dialog box then appears where the Set cell shows B24. Then, in the To value box
we enter 0, in the By changing cell we enter A24 and we click on OK. We observe now that A24
displays 1.28 and B24 displays 0.000.

For repetitive tasks, such as finding the roots of polynomials, it is prudent to construct a template
(model spreadsheet) with the appropriate formulas and then enter the coefficients of the polyno-

. . . >k . . . .
mial to find its real roots . This is illustrated with the next example.

Example 2.6

Construct a template (model spreadsheet), with Excel, which uses Newton’s method to approxi-
mate a real root of any polynomial with real coefficients up to the seventh power; then, use it to
compute a root of the polynomial

y = f(x) = x —6x°+5x° —4x*+3x° —2x” +x - 15 2.17)
given that one real root lies in the 4 <x <6 interval.
Solution:

1. We start with a blank spreadsheet and we make the entries shown in Figure 2.9.

* There exists a numerical procedure, known as Bairstow’s method, that we can use to find the complex roots of a polyno-
mial with real coefficients. We will not discuss this method here; it can be found in advanced numerical analysis textbooks.
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A |l Bl c]|] b E [ F ]| G H

1 |Spreadsheet for finding approximations of the real roots of polynomials

2 |up the 7th power by Newton's Method.

3 | | |

4 [Powers of x and corresponding coefficients of given polynomial p(x)

5 |Enter coefficients of p(x) in Row 7

6 X’ x® x® x* x® X X Constant
Z

8

9 |Coefficients of the derivative p'(x)

10 |Enter coefficients of p'(x) in Row 12

11 x® x> x* x® X2 X Constant
12

13

14 |Approximations: Xp. = Xn — P(Xn)/P' (Xs)
15 [initial (xo] 1st (x1) | 2nd (x)| 3rd (xs) | 4th (xs) | 5th (xs) | 6th (x¢) | 7th (xy)
16

Figure 2.9. Model spreadsheet for finding real roots of polynomials.

We save the spreadsheet of Figure 2.9 with a name, say template.xls. Then, we save it with a dif-
ferent name, say Example_2_6.xls, and in B16 we type the formula

=AL6-($AST*A16/7+$BST*ALE6"G+$CST*A16/5+$D$7*A16"4
+SEST*AL6M3+SFST*AL6 2+$GST*A16M 1 +$H$7)/
($BSL2*A16/6+$CH12*A16/5+$D$12*A16M4+SES12*A16M3
+$F$12*A16/2+$G$12*A16M +$HS12)

The use of the dollar sign ($) is explained in Paragraph 4 below.

The formula in B16 of Figure 2.10, is the familiar Newton’s formula which also appears in Row
14. We observe that B16 now displays #DIV/0! (this is a warning that some value is being
divided by zero), but this will change once we enter the polynomial coefficients, and the coeffi-
cients of the first derivative.

2. Since we are told that one real root is between 4 and 6, we take the average 5 and we enter it in
A16. This value is our first (initial) approximation. We also enter the polynomial coefficients,
and the coefficients of the first derivative in Rows 7 and 12 respectively.

3. Next, we copy B16 to C16:F16 and the spreadsheet now appears as shown in the spreadsheet
of Figure 2.10. We observe that there is no change in the values of E16 and F16; therefore, we
terminate the approximation steps there.

2-18 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



The Bisection Method for Root Approximation

Al Bl c]|] bp| E [ F ] G H
1 |Spreadsheet for finding approximations of the real roots of polynomials
2 |up the 7th power by Newton's Method.
3 | | |
4 |Powers of x and corresponding coefficients of given polynomial p(x)
5 |Enter coefficients of p(x) in Row 7
6 X’ x® x® x* x® x? X Constant
7 1 -6 5 -4 3 -2 1 -15
8
9 |Coefficients of the derivative p'(x)
10 |Enter coefficients of p'(x) in Row 12
11 x° x> x* x® x? X Constant
12 7 -36 25 -16 9 -4 1
13
14 |Approximations: X,.1 = Xp — P(Xn)/P' (Xp)
15 [initial (xo) 1st (x4) | 2nd (x,)| 3rd (x3) | 4th (x,) | 5th (xg) | 6th (xg) | 7th (x)
16 5.0| 5.20409| 5.16507| 5.163194|5.163190|5.163190

Figure 2.10. Spreadsheet for Example 2.6.

4. All cells in the formula of B16, except A16, have dollar signs ($) in front of the column letter,
and in front of the row number. These cells are said to be absolute. The value of an absolute
cell does not change when it is copied from one position to another. A cell that is not absolute
is said to be relative cell. Thus, B16 is a relative cell, and $B$16 is an absolute cell. The con-
tents of a relative cell changes when it is copied from one location to another. We can easily
convert a relative cell to absolute or vice versa, by first placing the cursor in front, at the end,
or between the letters and numbers of the cell, then, we press the function key F4. In this
example, we made all cells, except A16, absolute so that the formula of B16 can be copied to
C16, D16 and so on, without changing its value. The relative cell A16, when copied to the
next column, changes to B16, when copied to the next column to the right, changes to C16,
and so on.

We can now use this template with any other polynomial by just entering the coefficients of the
new polynomial in row 7 and the coefficients of its derivative in Row 12; then, we observe the
successive approximations in Row 16.

2.3 The Bisection Method for Root Approximation

. . . . . . * . .
The Bisection (or interval halving) method is an algorithm  for locating the real roots of a function.

* This is a step-by-step problem-solving procedure, especially an established, recursive computational procedure for solving a
problem in a finite number of steps.
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The objective is to find two values of x, say x; and X, , so that f(x;) and f(x,) have opposite signs,
that is, either f(x;) >0 and f(x,) <0, or f(x;) <0 and f(x,) > 0. If any of these two conditions is
satistied, we can compute the midpoint x,, of the interval x; <x <x, with

X; + X,

Xy = =5 (2.18)

Knowing x,,, we can find f(x,,) . Then, the following decisions are made:

1. If f(x,,) and f(x;) have the same sign, their product will be positive, that is, f(x,) - f(x;) > 0.
This indicates that x,, and x; are on the left side of the x-axis crossing as shown in Figure 2.11.

In this case, we replace x; with x,.

f(xy) and f(x,,) are
both positive and thus
their product is positive

f(x,) and f(x,,) are
both negative and thus
their product is positive

X1 Xm\ Xz X1 Xm /X,

Figure 2.11. Sketches to illustrate the bisection method when f(x;) and f(x,,) have same sign

2. It f(x,,) and f(x,) have opposite signs, their product will be negative, that is, f(x,,) - f(x;) <0.
This indicates that x,, and x, are on the right side of the x-axis crossing as in Figure 2.12. In

this case, we replace x, with X, .

f(x,) and f(x,,) have f(x,) and f(x,,) have
opposite signs and thus opposite signs and thus
their product is negative their product is negative

Xy wz y X X

Figure 2.12. Sketches to illustrate the bisection method when f(x;) and f(x,,) have opposite signs

After making the appropriate substitution, the above process is repeated until the root we are
seeking has a specified tolerance. To terminate the iterations, we either:

a. specify a number of iterations

b. specify a tolerance on the error of f(x)
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We will illustrate the Bisection Method with examples using both MATLAB and Excel.

Example 2.7
Use the Bisection Method with MATLAB to approximate one of the roots of

y = f(x) = 3x° - 2x> + 6x -8 (2.19)
by

a. by specifying 16 iterations, and using a for end loop MATLAB program

b. by specifying 0.00001 tolerance for f(x), and using a while end loop MATLAB program
Solution:

This is the same polynomial as in Example 2.4.

a. The for end loop allows a group of functions to be repeated a fixed and predetermined num-
ber of times. The syntax is:

for x = array
commands...
end

Before we write the program code, we must define a function assigned to the given polynomial
and save it as a function m-file. We will define this function as funcbisectO1 and will save it as

funcbisectO1.m.

function y= funcbisect01(x);

y=3"XA5-2*xA3+6."x-8;

% We must not forget to type the semicolon at the end of the line above;
% otherwise our code will fill the screen with values of y

On the code below, the statement for k = 1:16 says for k = 1,k = 2, ...,k = 16, evaluate all
commands down to the end command. After the k = 16 iteration, the loop ends and any
commands after the end are computed and displayed as commanded.

Let us also review the meaning of the fprintf('%9.6f %13.6f \n', xm,fm) line. Here, %9.6f and
%13.6f are referred to as format specifiers or format codes; the first specifies that the value of xm
must be expressed in decimal format also called fixed point format, with a total of 9 digits, 6 of
which will be to the right of the decimal point. Likewise, fm must be expressed in decimal for-
mat with a total of 13 digits, 6 of which will be to the right of the decimal point. Some other
specifiers are %e for scientific format, %s for string format, and %d for integer format. For
more information, we can type help fprintf. The special format \n specifies a linefeed, that is, it
prints everything specified up to that point and starts a new line. We will discuss other special
formats as they appear in subsequent examples.

The code for the first part of Example 2.7 is given below.
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x1=1; x2=2; % We know this interval from Example 2.4, Figure 2.6
disp(" xm fm') % xm is the average of x1 and x2, fm is f(xm)

disp(' ) % insert line under xm and fm

for k=1:16;

f1=funcbisect01(x1); f2=funcbisect01(x2);
xm=(x1+x2) / 2; fm=funcbisect01(xm);
fprintf('%9.6f %13.6f \n', xm,fm) % Prints xm and fm on same line;
if (f1*fm<0)

X2=xm;

else

X1=xm;

end
end

When this program is executed, MATLAB displays the following:

Xm fm
1.500000 17.031250
1.250000 4.749023
1.125000 1.308441
1.062500 0.038318
1.031250 -0.506944
1.046875 -0.241184
1.054688 -0.103195
1.058594 -0.032885
1.060547 0.002604
1.059570 -0.015168
1.060059 -0.006289
1.060303 -0.001844
1.060425 0.000380
1.060364 -0.000732
1.060394 -0.000176
1.060410 0.000102

We observe that the values are displayed with 6 decimal places as we specified, but for the
integer part unnecessary leading zeros are not displayed.

b. The while end loop evaluates a group of commands an indefinite number of times. The syntax
is:

while expression
commands...
end
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The commands between while and end are executed as long as all elements in expression are
true. The code should be written so that eventually a false condition is reached and the loop
then terminates.

There is no need to create another function m-file; we will use the same as in part a. Now we
type and execute the following while end loop program.

x1=1; x2=2; tol=0.00001;
disp(' xm fm"); disp(’ )]
while (abs(x1-x2)>2*tol);
f1=funcbisect01(x1); f2=funcbisect01(x2); xm=(x1+x2)/2;
fm=funcbisect01(xm);
fprintf('%9.6f %13.6f \n‘, xm,fm);
if (f1*fm<0);
X2=xm;
else
X1=xm;
end
end

When this program is executed, MATLAB displays the following:

xm fm

1.500000 17.031250
1.250000 4.749023
1.125000 1.308441
1.062500 0.038318
1.031250 -0.506944
1.046875 -0.241184
1.054688 -0.103195
1.058594 -0.032885
1.060547 0.002604
1.059570 -0.015168
1.060059 -0.006289
1.060303 -0.001844
1.060425 0.000380
1.060364 -0.000732
1.060394 -0.000176
1.060410 0.000102
1.060402 -0.000037
1.060406 0.000032
1.060404 -0.000003
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Next, we will use an Excel spreadsheet to construct a template that approximates a real root of a
function with the bisection method. This requires repeated use of the IF function which has the
following syntax.

=IF(logical_test,value_if true,value_if false)

where

logical_test: any value or expression that can be evaluated to true or false.
value_if true: the value that is returned if logical_test is true.

If logical_test is true and value_if true is omitted, true is returned. Value_if true can be another
formula.

value_if_false is the value that is returned if logical test is false. If logical test is false and
value_if false is omitted, false is returned. Value_if false can be another formula.

These statements may be clarified with the following examples.

=IF(C11>=1500,A15, B15):If the value in C11 is greater than or equal to 1500, use the value in
A15; otherwise use the value in B15.

=IF(D22<E22, 800, 1200):If the value in D22 is less than the value of E22, assign the number
800; otherwise assign the number 1200.

=IF(M8<>N17, K7*12, L8/24):If the value in M8 is not equal to the value in N17, use the value in
K7 multiplied by 12; otherwise use the value in L8 divided by 24.

Example 2.8

Use the bisection method with an Excel spreadsheet to approximate the value of /5 within
0.00001 accuracy.

Solution:

Finding the square root of 5 is equivalent to finding the roots of x*~5=0.We expect the posi-
tive root to be in the 2 < x < 3 interval so we assign X; = 2 and x, = 3. The average of these val-
ues is X, = 2.5. We will create a template as we did in Example 2.6 so we can use it with any
polynomial equation. We start with a blank spreadsheet and we make the entries in rows 1
through 12 as shown in Figure 2.13.

Now, we make the following entries in rows 13 and 14.

A13: 2
B13: 3
C13: =(A13+B13)/2
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A | B | c¢c | b | E | F G H
1 |Spreadsheet for finding approximations of the real roots
2 |of polynomials using the Bisection method
3 |
4 |Equation: |y=f(x)=x*~5=0
5 |
6 |Powers of x and corresponding coefficients of given polynomial f(x)
7 |Enter coefficients of f(x) in Row 9
8 x’ x® x> x* x3 x* X | Constant
9 0.00000| 0.00000| 0.00000, 0.00000/ 0.00000| 1.00000 0 -5
10
111 x; X2 Xm f(x4) f(Xm) | f(X0)f(Xm)
12 (X1+X,)/2

Figure 2.13. Partial spreadsheet for Example 2.8

D13: =$A$9*A13"7+$B$9*A13"6+$CHI*A13"5+$D$9*A13"4
+$E$9*AL3"3+$F$9*AL3"2+$G$I*AL3 1 +$H$9*AL13"0

E13: =$A$9*C13"7+$B$9*C13"6+$C$9*C13"5+$D$9*C13"4
+$E$9*C13"3+$F$9*C13/2+$G$9*C13 ' 1+$H$9*C13"0

F13: =D13*E13

Al4: =IF(A14=A13, C13, B13)

B14: =IF(A14=A13, C13, B13)

We copy C13 into C14 and we verify that C14: =(A14+B14)/2

Next, we highlight D13:F13 and on the Edit menu we click on Copy. We place the cursor on D14
and from the Edit menu we click on Paste. We verify that the numbers on D14:F14 are as shown
on the spreadsheet of Figure 2.14. Finally, we highlight A14:F14, from the Edit menu we click on
Copy, we place the cursor on A15, and holding the mouse left button, we highlight the range
A15:A30. Then, from the Edit menu, we click on Paste and we observe the values in A15:F30.

The square root of 5 accurate to six decimal places is shown on C30 in the spreadsheet of Figure
2.14.
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A | B | ¢ | b | E | F G H
1 |Spreadsheet for finding approximations of the real roots
2 |of polynomials using the Bisection method
3 |
4 |Equation: ly=f(x)=x*-5=0
5 |
6 |Powers of x and corresponding coefficients of given polynomial f(x)
7 |Enter coefficients of f(x) in Row 9
8 x’ x® x> x* x3 x? X | Constant
9 0.00000{ 0.00000| 0.00000f 0.00000| 0.00000| 1.00000 0 -5
10
11 X1 Xz Xm f(x1) f(Xm) | F(x0)f(Xm)
12 (X1+X)/2

13| 2.00000 | 3.00000 | 2.50000 | -1.00000 | 1.25000 | -1.25000
14| 2.00000 | 2.50000 | 2.25000 | -1.00000 | 0.06250 | -0.06250
15| 2.00000 | 2.25000 | 2.12500 | -1.00000 | -0.48438 | 0.48438
16| 2.12500 | 2.25000 | 2.18750 | -0.48438 | -0.21484 | 0.10406
17| 2.18750 | 2.25000 | 2.21875 | -0.21484 | -0.07715 | 0.01657
18| 2.21875 | 2.25000 | 2.23438 | -0.07715 | -0.00757 | 0.00058
19| 2.23438 | 2.25000 | 2.24219 | -0.00757 | 0.02740 | -0.00021
20| 2.23438 | 2.24219 | 2.23828 | -0.00757 | 0.00990 | -0.00007
21| 2.23438 | 2.23828 | 2.23633 | -0.00757 | 0.00116 | -0.00001
22| 2.23438 | 2.23633 | 2.23535 | -0.00757 | -0.00320 | 0.00002
23| 2.23535 | 2.23633 | 2.23584 | -0.00320 | -0.00102 | 0.00000
24| 2.23584 | 2.23633 | 2.23608 | -0.00102 | 0.00007 | 0.00000
25| 2.23584 | 2.23608 | 2.23596 | -0.00102 | -0.00047 | 0.00000
26 | 2.23596 | 2.23608 | 2.23602 | -0.00047 | -0.00020 | 0.00000
27 | 2.23602 | 2.23608 | 2.23605 | -0.00020 | -0.00006 | 0.00000
28| 2.23605 | 2.23608 | 2.23607 | -0.00006 | 0.00000 | 0.00000
29| 2.23605 | 2.23607 | 2.23606 | -0.00006 | -0.00003 | 0.00000
30| 2.23606 | 2.23607 | 2.23606 | -0.00003 | -0.00001 | 0.00000

Figure 2.14. Entire spreadsheet for Example 2.8
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2.4 Summary

Newton’s (or Newton-Raphson) method can be used to approximate the roots of any linear or
non-linear equation of any degree. It uses the formula

f(xy)

Xﬂ+l = Xn_f-(x )
n

To apply Newton’s method, we must start with a reasonable approximation of the root value.
In all cases, this can best be done by plotting f(x) versus x.

We can use a spreadsheet to approximate the real roots of linear and non-linear equations but
to approximate all roots (real and complex conjugates) it is advisable to use MATLAB.

The MATLAB the while end loop evaluates a group of statements an indefinite number of
times and thus can be effectively used for root approximation.

For approximating real roots we can use Excel’s Goal Seek feature. We use Goal Seek when
we know the desired result of a single formula, but we do not know the input value which sat-

isfies that result. Thus, if we have the function y = f(x), we can use Goal Seek to set the
dependent variable y to the desired value (goal) and from it, find the value of the indepen-
dent variable x which satisfies that goal.

For repetitive tasks, such as finding the roots of polynomials, it is prudent to construct a tem-
plate (model spreadsheet) with the appropriate formulas and then enter the coefficients of the
polynomial to find its real roots.

The Bisection (or interval halving) method is an algorithm for locating the real roots of a
function. The objective is to find two values of x, say x; and x,, so that f(x;) and f(x,) have
opposite signs, that is, either f(x;) >0 and f(x,) <0, or f(x;) <0 and f(x,) > 0. If any of these

two conditions is satisfied, we can compute the midpoint x,, of the interval x; <x <x, with

n = S
We can use the Bisection Method with MATLAB to approximate one of the roots by specify-

ing a number of iterations using a for end or by specifying a tolerance using a while end loop
program.

We can use an Excel spreadsheet to construct a template that approximates a real root of a
function with the bisection method. This requires repeated use of the IF function which has
the =IF(logical_test,value_if true,value_if false)
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2.5 Exercises

1. Use MATLAB to sketch the graph y = f(x) for each of the following functions, and verify
from the graph that f(a) and f(b), where a and b defined below, have opposite signs. Then,
use Newton’s method to estimate the root of f(x) = 0 that lies between a and b.

a. fl(X)=X4+X—3 a=1 b =2
b. f(x) = J2x+1-J/x+4 a=2 b =4
Hint: Start with x, = (a+b)/2

2. Repeat Exercise 1 above using the Bisection method.

3. Repeat Example 2.5 using MATLAB.
Hint: Use the procedure of Example 2.2
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2.6 Solutions to Exercises

1.
a.
x=-2:0.05:2; f1x=x."+x-3; plot(x,f1x); grid
From the plot above we see that the positive root lies between x = 1 and x = 1.25 so we
choose a = 1 and b = 1.25 so we take x, = 1.1 as our first approximation. We compute
the next value x, as
f(x 4 _ _
X = %g— (_o) _qq (WD) +11-3 4 (=0436) _ 4469
F'(%o) 4(11)°+1 6.324
The second approximation yields
f(x 4 _
X, = X, — ) g g9 (1169) + L1093 _ 116020392 _ 4964
f'(x1) 4(1.169)° + 1
Check with MATLAB:
pa=[1 0 0 1 —3]; roots(pa)
ans =
-1.4526

0.1443 + 1.32411

0.1443 - 1.32411i

1.1640
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b.
x=-5:0.05:5; f2x=sqrt(2.*x+1)-sqrt(x+4); plot(x,f2x); grid
Warning: Imaginary parts of complex X and/or Y arguments ignored.
S—w— ¢+ 9 T @& ¢ r I |
B I T I T B S S
From the plot above we see that the positive root is very close to x = 3 and so we take
X, = 3 as our first approximation. To compute the next value x; we first need to find the
first derivative of f,(x). We rewrite it as
1/2 1/2
f,(X) = W2x+1-Jx+4 = (2x+1)" "= (x+4)
Then,
d 1 -1/2 1 -1/2 1 1
L) =z 2x+ ) V22 2 (xeay V21 = -
dx 2 2 2 S2x+1 2.x+4
and
B f(Xg) ., 2x3+1-./3+4 _ 0 B
X, = Xo— 2l = 3 —3-—2 _ -3
f'(Xo) 1/J7-1/2J7) 1/(24J7)
Thus, the real root is exactly x = 3. We also observe that since f(x,) = +/7—-7 = 0,
there was no need to find the first derivative f'(x,).
Check with MATLAB:
syms Xx; f2x=sqrt(2.*x+1)-sqrt(x+4); solve(f2x)
ans =
3
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2.

a. We will use the for end loop MATLAB program and specify 12 iterations. Before we write
the program code, we must define a function assigned to the given polynomial and save it
as a function m-file. We will define this function as exercise2 and will save it as
exercise2.m
function y= exercise2(x);
y=Xx/N4+x - 3;

After saving this file as exercise2.m, we execute the following program:
x1=1; x2=2; % x1=a and x2=b
disp(" xm fm') % xm is the average of x1 and x2, fm is f(xm)
disp(' Y % insert line under xm and fm
for k=1:12;
f1=exercise2(x1); f2=exercise2(x2);
xm=(x1+x2) / 2; fm=exercise2(xm);
fprintf('%9.6f %13.6f \n', xm,fm)% Prints xm and fm on same line;
if (f1*fm<0)
X2=xm;
else
x1=xm;
end
end
MATLAB displays the following:
xm fm
1.500000 3.562500
1.250000 0.691406
1.125000 -0.273193
1.187500 0.176041
1.156250 -0.056411
1.171875 0.057803
1.164063 0.000200
1.160156 -0.028229
1.162109 -0.014045
1.163086 -0.006930
1.163574 -0.003367
1.163818 -0.001584

b. We will use the while end loop MATLAB program and specify a tolerance of 0.00001.
We need to redefine the function m-file because the function in part (b) is not the same as
in part a.
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function y= exercise2(x);
y = sqrt(2.*x+1)—-sqrt(x+4);

After saving this file as exercise2.m, we execute the following program:

x1=2.1; x2=4.3; t0l=0.00001; % If we specify x1=a=2 and x2=b=4, the program
% will not display any values because xm=(x1+x2)/2 = 3 = answer
disp(" xm fm’); disp(’ )
while (abs(x1-x2)>2*tol);

f1=exercise2(x1); f2=exercise2(x2); xm=(x1+x2)/2;

fm=exercise2(xm);

fprintf('%9.6f %13.6f \n', xm,fm);

if (f1*fm<0);
X2=Xm;

else

X1=xm;

end

end

When this program is executed, MATLAB displays the following:

Xm fm
3.200000 0.037013
2.650000 -0.068779
2.925000 -0.014289
3.062500 0.011733
2.993750 -0.001182
3.028125 0.005299
3.010938 0.002065
3.002344 0.000443
2.998047 -0.000369
3.000195 0.000037
2.999121 -0.000166
2.999658 -0.000065
2.999927 -0.000014
3.000061 0.000012
2.999994 -0.000001
3.000027 0.000005
3.000011 0.000002

3.
From Example 2.5,
y = f(X) = cos2x + sin2x +x -1
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We use the following code to plot this function.

x=-5:0.02:5; y=cos(2.*x)+sin(2.*x)+x—1; plot(x,y); grid

Let us find out what a symbolic solution gives.
syms X; y=C0s(2*x)+sin(2*x)+x—1; solve(y)
ans =

[0]

[2]
The first value (0) is correct as it can be seen from the plot above and also verified by substi-
tution of x = 0 into the given function. The second value (2) is not exactly correct as we can
see from the plot. This is because when solving equations of periodic functions, there are an

infinite number of solutions and MATLAB restricts its search for solutions to a limited range
near zero and returns a non-unique subset of solutions.

To find a good approximation of the second root that lies between x = 2 and x = 3, we write
and save the function files exercise3 and exercise3der as defined below.

function y=exercise3(x)
% Finding roots by Newton's method using MATLAB
y=c0s(2.*x)+sin(2.*x)+x—1;

function y=exercise3der(x)

% Finding roots by Newton's method
% The following is the first derivative of
% the function defined as exercise3
y=—2."sin(2.*x)+2.*cos(2.*x)+1;
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Now, we write and execute the following program and we find that the second root is
X = 2.2295 and this is consistent with the value shown on the plot.

x = input('Enter starting value: ');
fx = exercise3(x);
fprimex = exercise3der(x);
xnext = x-fx/fprimex;
X = Xnext;
fx = exercise3(x);
fprimex = exercise3der(x);
disp(sprintf('First approximation is x = %9.6f \n', x))
while input('Next approximation? (<enter>=no,1=yes)");
xnext=x-fx/fprimex;
X=xnext;
fx=exercise3(x);
fprimex=exercise3der(x);
disp(sprintf('Next approximation is x = %9.6f \n', x))
end;
disp(sprintf('%9.6f \n', x))

Enter starting wvalue: 3

First approximation is x = 2.229485
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Chapter 3

Sinusoids and Phasors

his chapter is an introduction to alternating current waveforms. The characteristics of sinu-

soids are discussed and the frequency, phase angle, and period are defined. Voltage and cur-

rent relationships are expressed in sinusoidal terms. Phasors which are rotating vectors in
terms of complex numbers are also introduced and their relationships to sinusoids are derived.

3.1 Alternating Voltages and Currents

The waveforms shown in Figure 3.1 may represent alternating currents or voltages.
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Figure 3.1. Examples of alternating voltages and currents
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Thus an alternating current (AC) is defined as a periodic current whose average value over a period
is zero. Stated differently, an alternating current alternates between positive and negative values
at regularly recurring intervals of time. Also, the average of the positive and negative values over a
period is zero.

As shown in Figure 3.1, the period T of an alternating current or voltage is the smallest value of
time which separates recurring values of the alternating waveform.

Unless otherwise stated, our subsequent discussion will be restricted to sine or cosine waveforms
and these are referred to as sinusoids. Two main reasons for studying sinusoids are: (1) many phys-
ical phenomena such as electric machinery produce (nearly) sinusoidal voltages and currents and
(2) by Fourier analysis, any periodic waveform which is not a sinusoid, such as the square and saw-
tooth waveforms on the previous page, can be represented by a sum of sinusoids.

3.2 Characteristics of Sinusoids

Consider the sine waveform shown in Figure 3.2, where f(t) may represent either a voltage or a
current function, and let f(t) = Asint where A is the amplitude of this function. A sinusoid (sine
or cosine function) can be constructed graphically from the unit circle, which is a circle with radius
of one unit, thatis, A = 1 as shown, or any other unit. Thus, if we let the phasor (rotating vector)
travel around the unit circle with an angular velocity o, the coswt and sinwt functions are gen-
erated from the projections of the phasor on the horizontal and vertical axis respectively. We
observe that when the phasor has completed a cycle (one revolution), it has traveled 2n radians or
360° degrees, and then repeats itself to form another cycle.

f(t) Sine Waveform
n/2 (90°)
Phasor Al- - - __
Direction E :
- - WOf rotation 5 |
o
n(180°) < 1) 00 20 /;2 n 37;5/2 2n
)
N 27(360°) g & .
3 |
> I
AF-— - - - - =%
37[:/2 (2700) Time

Figure 3.2. Generation of a sinusoid by rotation of a phasor

At the completion of one cycle, t = T (one period), and since o is the angular velocity, com-
monly known as angular or radian frequency, then
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oT = 21| or |T=2E G.1)
Q)

The term frequency in Hertz, denoted as Hz, is used to express the number of cycles per second.
Thus, if it takes one second to complete one cycle (one revolution around the unit circle), we say
that the frequency is 1 Hz or one cycle per second.

The frequency is denoted by the letter f and in terms of the period T and (3.1) we have

f= or o = 2rf (3.2)

1
T

The frequency f is often referred to as the cyclic frequency to distinguish it from the radian fre-

quency .

Since the cosine and sine functions are usually known in terms of degrees or radians, it is conve-
nient to plot sinusoids versus ot (radians) rather that time t. For example, v(t) = V, cosot,

and i(t) = I, Sinot are plotted as shown in Figure 3.3.
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I * | /

| |

| |
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Figure 3.3. Plot of the cosine and sine functions

By comparing the sinusoidal waveforms of Figure 3.3, we see that the cosine function will be the
same as the sine function if the latter is shifted to the left by n/2 radians, or 90°. Thus, we say
that the cosine function leads (is ahead of) the sine function by n/2 radians or 90°. Likewise, if we
shift the cosine function to the right by ©/2 radians or 90°, we obtain the sine waveform; in this
case, we say that the sine function lags (is behind) the cosine function by n/2 radians or 90°.

Another common expression is that the cosine and sine functions are out-of-phase by 90°, or there is
a phase angle of 90° between the cosine and sine functions. It is possible, of course, that two sinusoids
are out-of-phase by a phase angle other than 90°. Figure 3.4 shows three sinusoids which are out-
of-phase. If the phase angle between them is 0° degrees, the two sinusoids are said to be in-phase.
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Out-of-phase sinusoids

® VomaxSin(ot+0); leads Vi, Sinot by 6 deg.
Vi

/ VimaxSinot

77

VimaxSin(ot—e); 1ags VimaxSinot by ¢ deg.

Figure 3.4. Out-of-phase sinusoids

We must remember that when we say that one sinusoid leads or lags another sinusoid, these are of
the same frequency. Obviously, two sinusoids of different frequencies can never be in phase.

[t is convenient to express the phase angle in degrees rather than in radians in a sinusoidal func-
tion. For example, it is acceptable to express

v(t) = 100sin(2000nt — 7/6)
as
v(t) = 100sin(20007t - 30°)

since the subtraction inside the parentheses needs not to be performed.

When two sinusoids are to be compared in terms of their phase difference, these must first be writ-
ten either both as cosine functions, or both as sine functions, and should also be written with pos-

itive amplitudes. We should remember also that a negative amplitude implies 180° phase shift.
Example 3.1
Find the phase difference between the sinusoids
i, = 120c0s(100nt—30°)
and
i, = —6sin(100mt—30")
Solution:
We recall that the minus (-) sign indicates a £180° phase shift, and that the sine function lags the

cosine by 90°. Then,

—sinx = sin(x+180°) and sinx = cos(x - 90°)
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and
6sin(1007nt—210°) = 6sin(1007t + 150°)

=
1]

6c0s(100xt + 150° — 90°) = 6cos(100mt + 60°)

and comparing i, with i,, we see that i, leads i; by 90°, or i, lags i, by 90°.

In our subsequent discussion, we will be using several trigonometric identities, derivatives and
integrals involving trigonometric functions. We, therefore, provide the following relations and
formulas for quick reference. Let us also review the definition of a radian and its relationship to
degrees with the aid of Figure 3.5.

1 radian = 57.3 deg

)

N

N

T radians

Figure 3.5. Definition of radian

As shown in Figure 3.5, the radian is a circular angle subtended by an arc equal in length to the
radius of the circle, whose radius is r units in length. The circumference of a circle is 2nr units;
therefore, there are 2n or 6.283... radians in 360° degrees. Then,

360°
2n

1 radian = ~57.3° (3.3)

The angular velocity is expressed in radians per second, and it is denoted by the symbol ® . Then,

a rotating vector that completes n revolutions per second, has an angular velocity ® = 2nn radi-
ans per second.

Some useful trigonometric relations are given below for quick reference.

c0s0° = c0s360° = cos2w = 1 (3.4)

c0s30° = cos’at = %’ = 0.866 (3.5)

c0s45° = cosg = % = 0.707 (3.6)

c0s60° = cosg = % =05 (3.7)
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c0s90° = cos’zt =0 (3.8)
c0s120° = cosZ—Tc ==l -05 (3.9
3 2
cos150° = cos%ﬂ - :{3 = _0.866 (3.10)
cos180° = cosn = -1 (3.11)
c0s210° = cos% - ‘% — _0.866 (3.12)
C0s225° = cos%—fE - ‘% = 0707 (3.13)
€0s240° = cos4—n ==l_ -0.5 (3.14)
3 2
€0s270° = cos?’?n =0 (3.15)
c0s300° = 0035?7E =05 (3.16)
C05330° = cosllTn — 0.866 (3.17)
sin0° = sin360° = sin2n = 0 (3.18)
. . 1

30° = sinf == =05 3.1
sin sm6 5 (3.19)
sin45° = sin% = % = 0.707 (3.20)
§in60° = sin® = < = 0.866 (3.21)

3 2

sin90° = sing =1 (3.22)
sin120° = sin%" - § = 0.866 (3.23)
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5n 1

sin150° = sin= = = = 0.5 (3.24)

6 2
sin180° = sint = 0 (3.25)
sin210° = sinl® = =1 _ o5 (3.26)

6 2
sin225° = sinSIn - ‘—Zf—z = _0.707 (3.27)
sin240° = sin%n - ‘%* — _0.866 (3.28)
sin270° = sin%ﬂ =-1 (3.29)
sin300° = sin%’E = ‘—2f—3 = _0.866 (3.30)
sin330° = sinLT - ——21 - 05 (3.31)
cos(-0) = cos6 (3.32)
cos(90° +0) = —sind (3.33)
cos(180°-0) = —cos6 (3.34)
sin(-0) = —sind (3.35)
sin(90° + 0) = coso (3.36)
sin(180°-06) = sin® (3.37)
tang = N0 (3.38)

coso
coto = €9 _ 1 (3.39)

sin@  tan®
1

sec) = — (3.40)

coso
CscH = —— (3.41)

sin®
tan(90° + 6) = —cot6 (3.42)
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tan(180°-0) = —tan6 (3.43)
cos(6 +¢) = cosOcosd — sinBsing (3.44)
cos(6 —¢) = cosOcosd + sinBsind (3.45)
sin(6+ ¢) = sinBcos¢ + cosOsinG (3.46)
sin(6 —¢) = sinbcosd—cosOsing (3.47)
tan(0 + ¢) = 2n0+tang (3.48)
1-tanOtan¢
tan(6— ¢) = and—tang (3.49)
1+ tanBtand
cos?0 + sin’0 = 1 (3.50)
05260 = c0s%0 —sin’0 3.51)
sin20 = 2sin0coso (3.52)
tan2p = 21209 (3.53)
1-tan"6
2 1
cos’6 = §(1+ c0s20) (3.54)
.2 1
sin“0 = 5(1—00326) (3.55)
1 1
cosbcosd = Ecos(e +¢)+ Ecos(e -0) (3.56)
. 1. 1.
cosfsing = Esm(e+¢)—§sm(e—¢) (3.57)
. 1. 1.
sinfcos¢ = Esm(e +¢)+ Esm(e—d)) (3.58)
. . 1 1
sin@sing = Ecos(9—¢)—§cos(6+¢) (3.59)
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Let Figure 3.6 be any triangle.

Figure 3.6. General triangle
Then,

by the law of sines,

a _ b ¢

— = —— = — (3.60)
sino. sinff  siny
by the law of cosines,
a’ = b?+c’— 2bccosa (3.61)
b? = a2+c2—2accos[3 (3.62)
¢? = a2+b2—2ab003y (3.63)
and by the law of tangents,
1 1 1
ab _ tanz(oc—B) b—c _ tanz(B—y) _a_ tanz(y—a) .64
a+b tan%(ow[}) b+c tan%([}+y) c+a tan%(y+oc)

The following differential and integral trigonometric and exponential functions, are used exten-

sively in engineering.

d oo _ dv
a(smv) = Cosv (3.65)
i(cosv) = —sinvd—v (3.66)
dx dx ‘
d, v, _vdv
ﬁ(e ) =¢ ix (3.67)
jsinaxdx = —icosax +C (3.68)
J’cosaxdx = isinax +C (3.69)
jeaxdx = ieax +C (3.70)
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3.3 Inverse Trigonometric Functions

The notation cos™y or arccosy is used to denote an angle whose cosine is y. Thus, if y = cosx,

thenx = cos~ly. Similarly, if w = sinv, then v = sin~*w, and if z = tanu, then u = tan~'z.
These are called Inverse Trigonometric Functions.

Example 3.2

Find the angle 6 if cos™0.5 = 6
Solution:

Here, we want to find the angle 0 given that its cosine is 0.5. From (3.7), cos60° = 0.5. Therefore,
6 = 60°

3.4 Phasors

In the language of mathematics, the square root of minus one is denoted as i, thatis, i = 4~1.1In
the electrical engineering field, we denote i as j to avoid confusion with current i. Essentially, j is
an operator that produces a 90° counterclockwise rotation to any vector to which it is applied as a
multiplying factor. Thus, if it is given that a vector A has the direction along the right side of the
X -axis as shown in Figure 3.7, multiplication of this vector by the operator j will result in a new
vector jA whose magnitude remains the same, but it has been rotated counterclockwise by 90°.
Also, another multiplication of the new vector jA by j will produce another 90° counterclockwise
direction. In this case, the vector A has rotated 180° and its new value now is —A. When this
vector is rotated by another 90° for a total of 270°, its value becomes j(-A) = —jA. A fourth 90°

rotation returns the vector to its original position, and thus its value is again A. Therefore, we

conclude that j = -1, j° = —j, j* = 1, and the rotating vector A is referred to as a phasor.

Note: In our subsequent discussion, we will designate the x -axis (abscissa) as the real axis, and the
y -axis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is just as

. . . . . . . . *
“real” as the real axis. In other words, the imaginary axis is just as important as the real axis.

An imaginary number is the product of a real number, say r, by the operator j. Thus, r is a real
number and jr is an imaginary number.

* A more appropriate nomenclature for the real and imaginary axes would be the axis of the cosines and the axis of the sines
respectively.
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JA

iGA) = J°PA = A A

X

iR = A = A

JA) = J°A = A
Figure 3.7. The j operator

A complex number is the sum (or difference) of a real number and an imaginary number. For
example, the number A = a+jb where a and b are both real numbers, is a complex number.
Then, a = Re{A} and b = Im{A} where Re{A} denotes real part of A, and b = Im{A} the
imaginary part of A. When written as A = a + jb, it is said to be expressed in rectangular form.

Since in engineering we use complex quantities as phasors, henceforth any complex number will
be referred to as a phasor.

By definition, two phasors A and B where A = a+jb and B = ¢+ jd, are equal if and only if
their real parts are equal and also their imaginary parts are equal. Thus, A = B if and only if
a=candb =d.

3.5 Addition and Subtraction of Phasors

The sum of two phasors has a real component equal to the sum of the real components, and an
imaginary component equal to the sum of the imaginary components. For subtraction, we change
the signs of the components of the subtrahend and we perform addition. Thus, if A = a+ jb and
B = c+jd, then

A+B =(a+c)+j(b+d)
and

A-B = (a—c)+j(b-d)
Example 3.3

[t is given that A = 3+j4,and B = 4—j2. Find A+B and A-B

Solution:
A+B=3B+]J4)+(4-J2) = B+4)+]J(4-2) =T7+]j2
A-B=(3+j4)-(4-]2) = (3-4)+](4+2) = —1+]6
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3.6 Multiplication of Phasors

Phasors are multiplied using the rules of elementary algebra, and making use of the fact that
j2 = -1.Thus,if A = a+jb and B = c+jd, then

A-B = (a+jb)-(c+jd) = ac+jad + jbc + j?bd

and since j2 = -1, it follows that

A-B = ac+jad +jbc-bd = (ac-hd) +j(ad + bc) (3.71)
Example 3.4
[tis given that A = 3+j4 and B = 4-j2.Find A-B
Solution:

A-B = (3+j4)-(4—j2) = 12-j6+]16—j28 = 20 +j10
The conjugate of a phasor, denoted as A*, is another phasor with the same real component, and
with an imaginary component of opposite sign. Thus, if A = a+jb, then A* = a—jb.
Example 3.5
[t is given that A = 3 +j5. Find A*
Solution:

The conjugate of the phasor A has the same real component, but the imaginary component has

opposite sign. Then, A* = 3-j5

If a phasor A is multiplied by its conjugate, the result is a real number. Thus, if A = a+jb, then
A-A* = (a+jb)(a-jb) = a?—jab+jab—j2%b% = a’+b°

Example 3.6

[t is given that A = 3+j5. Find A - A*

Solution:
A-A* = (3+)5)(3-j5) = 3°+5° = 9+25=34

3.7 Division of Phasors

When performing division of phasors, it is desirable to obtain the quotient separated into a real
part and an imaginary part. This procedure is called rationalization of the quotient, and it is done by
multiplying the denominator by its conjugate. Thus, if A = a+jb and B = ¢ +jd, then,
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a+jb _ (a+jb)(c—jd) _ A B* _ (ac+bd)+j(bc—ad)

A
B

_ (ac+bd) , .(bc—ad)
- 2 2 T 2
c +d c +d

c+jd (c+jd)(c-jd) B B* c?+d?

(3.72)

In (3.72), we multiplied both the numerator and denominator by the conjugate of the denomina-

tor to eliminate the j operator from the denominator of the quotient. Using this procedure, we
see that the quotient is easily separated into a real and an imaginary part.

Example 3.7

It is given that A = 3+j4,and B = 4+j3. Find A/B
Solution:

Using the procedure of (3.72), we get

A_3+j4_ B+jH(4-j3) _12-j9+j16+12 _ 24+]7 _
B 4+j3 (4+j3)(4-j3) 42 4 32 25

3.8 Exponential and Polar Forms of Phasors

The relations

jo

24

.7 .
S+l = 096+0.28

e’ = c0sO+jsing (3.73)
and
e = cos 0-jsino (3.74)
are known as the Euler’s identities.
Multiplying (3.73) by the real positive constant C we get:
ce!® = ccoso +jCsino (3.75)
This expression represents a phasor, say a + jb, and thus
cel” = a+jb (3.76)
Equating real and imaginary parts in (3.75) and (3.76), we get
a=Ccos0 and b = Csino (3.77)
Squaring and adding the expressions in (3.77), we get
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a’+b? = (CcosB)’ +(CsinB)® = C*(cos?0 +sin’9) = C?
Then,

2

C™ = a2+b2

or

Cc = Ja’+b? (3.78)

Also, from (3.77)

b _ Csinb _ tno
a Ccoso
or
0= tan‘l(g) (3.79)

Therefore, to convert a phasor from rectangular to exponential form, we use the expression

. 1b
a+jb = JaZbZel = 3 (3.80)

To convert a phasor from exponential to rectangular form, we use the expressions

cel® = ccoso +jCsino
i . (3.81)
ce!” = Cccoso-jCsin®

The polar form is essentially the same as the exponential form but the notation is different, that is,

cel® = c0 (3.82)

where the left side of (3.82) is the exponential form, and the right side is the polar form.

We must remember that the phase angle 0 is always measured with respect to the positive real axis, and
rotates in the counterclockwise direction.

Example 3.8
Convert the following phasors to exponential and polar forms:

a. 3+j4 b. —1+j2 c -2-j d.4-j3
Solution:

a. The real and imaginary components of this phasor are shown in Figure 3.8.
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Re

Figure 3.8. The components of 3 + |4

Then,
344 = 24 a2 I WD) _ gelT 5 pa g0
Check with MATLAB:
x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi; disp(magx); disp(thetax)
5
53.1301

b. The real and imaginary components of this phasor are shown in Figure 3.9.

Figure 3.9. The components of — 1 + j2
Then,

C14j2 = J124 2% @) _ Ee 160 B 46 6o
Check with MATLAB:
y=—1+j*2; magy=abs(y); thetay=angle(y)*180/pi; disp(magy); disp(thetay)
2.2361
116.5651

c. The real and imaginary components of this phasor are shown in Figure 3.10.

Then,

__J = + e (/- = e ' = B6° = e._ ’ = — 4°
2-j1 = 22412 eI (VD) 5120887 B o0p60 = fBe Y = 51534
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Im
206.6°
—2 /—\ Re
&26'6/7\—153.4°(Measured
' «/g _] Clockwise)

Figure 3.10. The components of — 2 — |
Check with MATLAB:

v=—2—-|*1; magv=abs(v); thetav=angle(v)*180/pi; disp(magv); disp(thetav)
2.2361
-153.4349

d. The real and imaginary components of this phasor are shown in Figure 3.11.

Figure 3.11. The components of 4 —j3
Then,

4-j3 = A7 430 e () | 5o BB g aon g0 L 5e 3097 _ 5/ 3690
Check with MATLAB:
w=4-j*3; magw=abs(w); thetaw=angle(w)*180/pi; disp(magw); disp(thetaw)
5
-36.8699

Example 3.9
Express the phasor —2230° in exponential and in rectangular forms.

Solution:

We recall that -1 = j2. Since each j rotates a vector by 90° counterclockwise, then —2./30° is
the same as 2.230° rotated counterclockwise by 180°. Therefore,

-2/30° = 2/(30°+180°) = 2.£210° = 2.£-150°
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The components of this phasor are shown in Figure 3.12.

&130 ~150°(Measured
Clockwise)

Figure 3.12. The components of 2 /-150°

Then,

-j150°

2./-150° = 2e = 2(c0s150° — jsin150°) = 2(~0.866 —j0.5) = —1.73 |

Note: The rectangular form is most useful when we add or subtract phasors; however, the expo-
nential and polar forms are most convenient when we multiply or divide phasors.

To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we add
the phase angles, that is, if

A=Ms6 and B=N/p
then,

i(6+9)

AB = MN/(0+¢) = Me ONel® = mNe (3.83)

Example 3.10
Multiply A = 10/53.1° by B = 5/-36.9°

Solution:

Multiplication in polar form yields
AB = (10 x 5)/[53.1° + (-36.9°)] = 50./16.2°
and multiplication in exponential form yields

AB = (10ej53.1°)(56—j36.9°) _ Qe (831°-369°) _ g i162°

To divide one phasor by another when both are expressed in exponential or polar form, we divide
the magnitude of the dividend by the magnitude of the divisor, and we subtract the phase angle of
the divisor from the phase angle of the dividend, that is, if

A=M20 and B=Nso

then,
jo .
g - %4(9_4)) - Me _ %e‘(e“") (3.84)
Nel?
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Example 3.11

Divide A = 10£53.1° by B = 5/-36.9°

Solution:

Division in polar form yields

A _ 10/53.1°

= = 2/[53.1° - (~36.9°)] = 2.£90°
B 5./-36.9°

Division in exponential form yields

j53.1° ) _ .
53.1°  j36.9° 90°
gzloe - 2¢] N - 2¢!

5o i36.9°

3.9 Summary

An alternating current (or voltage) alternates between positive and negative values at regularly
recurring intervals of time.

The period T of an alternating current or voltage is the smallest value of time which separates
recurring values of the alternating waveform.

Sine and cosine waveforms and these are referred to as sinusoids.
The angular velocity o is commonly known as angular or radian frequency and oT = 2n

The term frequency in Hertz, denoted as Hz, is used to express the number of cycles per sec-
ond. The frequency is denoted by the letter f and in terms of the period T, f = 1/T. The fre-
quency f is often referred to as the cyclic frequency to distinguish it from the radian frequency
o.

The cosine function leads (is ahead of) the sine function by n/2 radians or 90°, and the sine
function lags (is behind) the cosine function by n/2 radians or 90°. Alternately, we say that

the cosine and sine functions are out-of-phase by 90°, or there is a phase angle of 90° between
the cosine and sine functions.

Two (or more) sinusoids can be out-of-phase by a phase angle other than 90°.

[t is important to remember that when we say that one sinusoid leads or lags another sinusoid,
these are of the same frequency since two sinusoids of different frequencies can never be in
phase.

[t is customary to express the phase angle in degrees rather than in radians in a sinusoidal func-
tion. For example, we write v(t) = 100sin(2000nt —/6) as v(t) = 100sin(2000xt — 30°)
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e When two sinusoids are to be compared in terms of their phase difference, these must first be
written either both as cosine functions, or both as sine functions, and should also be written
with positive amplitudes.

® A negative amplitude implies 180° phase shift.

® The radian is a circular angle subtended by an arc equal in length to the radius of the circle,
whose radius is r units in length. The circumference of a circle is 2nr.

® The notation cos™ly or arccosy is used to denote an angle whose cosine is y. Thus, if

y = cosx, thenx = cos™ly. These are called Inverse Trigonometric Functions.

e A phasor is a rotating vector expressed as a complex number where j is an operator that
rotates a vector by 90° in a counterclockwise direction.

e Two phasors A and B where A = a+jb and B = c+jd, are equal if and only if their real
parts are equal and also their imaginary parts are equal. Thus, A = B if and only if a = ¢ and
b=d.

® The sum of two phasors has a real component equal to the sum of the real components, and an
imaginary component equal to the sum of the imaginary components. For subtraction, we
change the signs of the components of the subtrahend and we perform addition. Thus, if
A=a+jbandB =c+jd,then A+B = (a+c)+j(b+d) and A-B = (a—-c)+j(b—-d)

¢ Phasors are multiplied using the rules of elementary algebra. If A = a+jb and B = c+jd,
then A-B = ac+jad +jbc-bd = (ac-bd) +j(ad + bc)

¢ The conjugate of a phasor, denoted as A*, is another phasor with the same real component,
and with an imaginary component of opposite sign. Thus, if A = a+ jb, then A* = a—jb.

e When performing division of phasors, it is desirable to obtain the quotient separated into a
real part and an imaginary part. This is achieved by multiplying the denominator by its conju-
gate. Thus, if A = a+jb and B = ¢ +jd, then,

A _a+jb _ (a+jb)yc—jd) _ (ac+bd)+j(bc—ad) _ (ac+bd)+j(bc—ad)
B c+jd (c+jd)(c—jd) ¢’ +d? ¢’ +d? ¢ +d°

‘ o . -jo . . .
e The relations €’ = cos6 + jsin® and e!” = cos6-jsin® are known as the Euler’s identi-
ties.

e To convert a phasor from rectangular to exponential form, we use the expression

a+jb = A/mej(mnilg)
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e To convert a phasor from exponential to rectangular form, we use the expressions

cel” = Ccos0 + jCsind
ce® = Ccos0—jCsino

e The polar form is essentially the same as the exponential form but the notation is different,
that is,

cel® = c0

and it is important to remember that the phase angle 0 is always measured with respect to the
positive real axis, and rotates in the counterclockwise direction.

¢ The rectangular form is most useful when we add or subtract phasors; however, the exponen-
tial and polar forms are most convenient when we multiply or divide phasors.

¢ To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we

add the phase angles, that is, if
A=M<s0 and B =NL¢
then,
AB = MN/(0+¢) = Me ONe!? = mnel@*®

e To divide one phasor by another when both are expressed in exponential or polar form, we
divide the magnitude of the dividend by the magnitude of the divisor, and we subtract the
phase angle of the divisor from the phase angle of the dividend, that is, if

A=Ms0 and B=N’o

then,
jo .
A M Me M_j(0-9)
= = 5340-90) = —— = €
B N nel® N
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3.10 Exercises

1.

Perform the following operations, and check your answers with MATLAB.
a. (2-j4)+B+j4) b.(-3+j5)-(1+j6) c.(2-j3)-(2-j3)* d. (3-j2)-(3-j2)*
e. (2-j4)-(3+j5) £ (3-j2)-(-2-j3) g (2-j4)-(3+]5)-(3-j2)- (-2-]3)

. Perform the following operations, and check your answers with MATLAB.

. 22+j6 | 8+j6 120 . (3-j2)
" 3+4j2 " -3-j T 4-j10 '(3_j2)*

. Any phasor A can be expressed as

A = a+jb = r(cosb +jsin0) = rel®
Using the identities (re?%) = r"e™ or Wre!® = e’ compute:

a. 8/12+j5 b. 4/100./2(1-j)
Check your answers with MATLAB

Compute the exponential and polar forms of

9+ij5 b -8+j3
—4-j2 T -2+j4

Check your answers with MATLAB.

a.

. Compute the rectangular form of

j60°

a 4 ,/30° b e
T 5/-150° T _5o7i%0°

Check your answers with MATLAB

Find the real and imaginary components of _—9-:4_]-;47(
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3.11 Solutions to Exercises

1.

(2-j4)+(3+j4) =5+0 =5

(-3+5) - (1+]6) = ~4-]

(2-j3)-(2-j3)* = (2-j3)-(2+]3) = 06
(3-j2)-(3-j2)* = (3-j2) - (3+j2) = 9+j6-j6+4 = 13
(2-j4)- (3+j5) = 6+j10—j12+20 = 26—j2
(3-j2)-(-2-j3) = —6-j9+j4—6 = —12 -5

(2-j4)- (3+j5) - (3-j2)-(-2-j3) = (6+j10—j12+20)- (~6—j9+j4—6)
(26-j2) - (-12-j5)
~312-j130+j24 - 10 = — 322 - 106

Check with MATLAB:

(2-4j)+(3+4j), (-3+5))—(1+6), (2-3j)—(2+3]), (3-2))*(3+2)),...
(2-4))*(3+5)), (3-2))"(=2-3]), (2-4))"(3+5))"(3-2))*(-2-3])
ans =
5
ans =
-4.0000 - 1.0000i
ans =
0 - 6.00001
ans =
13
ans =
26.0000 - 2.0000i
ans =
-12.0000 - 5.00001
ans =

-3.2200e+002 - 1.0600e+0021

3-22
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22+j6 _ 22+]6 3-j2 _66-j44+j18+12 _ 78-j26 _
3+j2 3+j2 3-j2 32 4 92 13

p, 8+j6 _8+j6 —3+j _-24+j8-j18-6 _—-30-ji0 _
T -3-j  -3-j -3+j 32,12 10

120 _ 120 4+10 _480+1200 _ 480  ; 1200 _ 120, 300
4-j10  4-j10 4+j10 42 42 116 116 29 29

4 G- _(B-i2) (3-j2) _9-i6-j6-4 _5-j12 _ 5 _; 12

(3-j2)*  (B3+j2) (3-j2) = 32,2 13 13 ° 13

Check with MATLARB:
22+6j)/(3+2j), (8+6j)/(-3—j), 120/(4-10j), (3-2j)/(3+2))

ans =

-3 - 1i
ans =

120/29 + 300/291
ans =

5/13 - 12/131

j0.395 j0.3948/6 1/6 j0.0658
6/13¢! = 6/13.¢! =137°.¢!

1.5334(c0s0.0658 + jsin0.0658) = 1.53 +j0.10

6/12 +j5

_i _j —jn/16
41100./2(1 - j) = 410042 - 2677 = (1002 - J2e 774 = (100./2)" " . 2 %
— (3.4485 x 1.0905)(cos(n/16) — jsin(r/16)) = 3.6883 — j0.7337

Check with MATLAB:
(12+5))M(1/6), (100*sqgrt(2)* (1)) 1/4)
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ans =
1.5301 + 0.10081
ans =

3.6883 - 0.73371

4,
a.
. -1 .
9+j5 _ J9% 452 gllan 5/9) _ /106 - g 10507 _ 9 30p0e 130%1
-4-j2 42, 92 pltan 24 fop. ¢ 136052 '
= 2.3022¢ 7S08L° _ 5 3022 /_177.5081°
. -1 .
-8+j3 _ J82+3%. gltan /-8 _ J73 g 103988 _ 1.9105¢ 07483
b. —2+Jj4 L2 .2 e 20 M
= 1.9105¢ 287" _ 19105 /42.8744°
Check with MATLAB:
x=(9+5j)/(—4-2j); abs(x), angle(x)*180/pi,...
y=(-8+3))/(—2+4j); abs(y), angle(y)*180/pi
ans =
2.3022
ans =
-177.5104
ans =
1.9105
ans =
42 .8789
5.
a.
A4£430° _ (4/5),180° = 0.8
5/-150°
e 160° j90°
b, & = _05e% = _0.5(cos90° +jsin90°) = —0.5(0 + j) = 0.5
_Ze—130°
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Check with MATLAB:
4*(cos(pi/6)+sin(pi/6)*j)/(5*(cos(—5*pi/6)+sin(—5*pi/6)*})),...
exp(pi*j/3)/(—2*exp(—pi*j/6))
ans =

-0.8000 - 0.00001
ans =

-0.0000 - 0.50001

0.
9-j4 _ 9-j4 5-jx _ —45-jox+[20-4x _ —4x—45 .-9x+20
SR =S S 5% +X° X425  xX+25
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NOTES
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Chapter 4

Matrices and Determinants

his chapter is an introduction to matrices and matrix operations. Determinants, Cramer’s

rule, and Gauss’s elimination method are introduced. Some definitions and examples are

not applicable to subsequent material presented in this text, but are included for subject
continuity, and reference to more advance topics in matrix theory. These are denoted with a dag-
ger () and may be skipped.

4.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

A 1 31
L 15} o 2 1=
4 -7 6

In general form, a matrix A is denoted as
a1 dgp 13 ... 8y
8y1 Ay 8p3 ... 8y

aml a'm2 am3 amn

The numbers a;; are the elements of the matrix where the index i indicates the row, and j indi-
cates the column in which each element is positioned. Thus, a,; indicates the element posi-

tioned in the fourth row and third column.
A matrix of m rows and n columns is said to be of m x n order matrix.

If m = n, the matrix is said to be a square matrix of order m (or n). Thus, if a matrix has five rows
and five columns, it is said to be a square matrix of order 5.

In a square matrix, the elements a,;, ay, a3, ..., a,, are called the main diagonal elements.
Alternately, we say that the matrix elements a;, a,, ass, ..., a,,, are located on the main
diagonal.
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T The sum of the diagonal elements of a square matrix A is called the trace” of A.
T A matrix in which every element is zero, is called a zero matrix.

4.2 Matrix Operations

Two matrices A = [aiJ and B = [biJ] are equal, thatis, A = B, if and only if

a;: = b i=123..m j=1273,...,n (4.2)

Two matrices are said to be conformable for addition (subtraction), if they are of the same order
mxn.

IfA = [a”] and B = [biJ] are conformable for addition (subtraction), their sum (difference) will

be another matrix C with the same order as A and B, where each element of C is the sum (dif-
ference) of the corresponding elements of A and B, that is,

C = AxB = [a;tby] (4.3)

Example 4.1

Compute A +B and A -B given that

Ao 123 4g-1230
014 -1 25

Solution:
Asp o |1+2 243 3+0 _[3 5 3
0-1 1+2 4+5 -1 3 9
and
A_p-|l-2 2-3 3-0| _|-1-13
0+1 1-2 4-5 1 -1-1
Check with MATLAB:

A=[1 2 3; 014];B=[230;,-125]; % Definematrices AandB
A+B % Add A and B

* Henceforth, all paragraphs and topics preceded by a dagger ( ) may be skipped. These are discussed in matrix theory text-
books.
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ans =
3 5 3
-1 3 9
A-B % Subtract B from A
ans =
-1 -1 3
1 -1 -1

If k is any scalar (a positive or negative number), and not [k ] which is a 1 x 1 matrix, then mul-
tiplication of a matrix A by the scalar k, is the multiplication of every element of A by k.

Example 4.2

Multiply the matrix

S

by (a) k; = 5 and (b) k, = -3 +j2

Solution:
a.
kA =5x |12 = [Bx1 5x(-=2) _ |5 -10
2 3 5x2 5x3 10 15
b.
kA = (-3+j2)x 1-2) _ |(-3+j2)x1 (-3+j2)x(-2)| _ |-3+j2 6-j4
2 3 (-3+j2)yx2 (-3+j2)x3 -6+j4 -9+j6
Check with MATLAB:
k1=5; k2=(-3 + 2%)); % Define scalars kqy and ko
A=[1-2;2 3]; % Define matrix A
k1*A % Multiply matrix A by constant k
ans =
5 -10
10 15
k2*A %Multiply matrix A by constant ko
ans =

-3.0000+ 2.00001 6.0000- 4.00001
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-6.0000+ 4.00001i -9.0000+ 6.00001

Two matrices A and B are said to be conformable for multiplication A - B in that order, only when
the number of columns of matrix A is equal to the number of rows of matrix B. That is, the prod-
uct A-B (but not B-A) is conformable for multiplication only if A is an m x p and matrix B is
an p x n matrix. The product A - B will then be an m x n matrix. A convenient way to determine

if two matrices are conformable for multiplication is to write the dimensions of the two matrices
side-by-side as shown below.

Shows that A and B are conformable for multiplication

/
Al 1B

mxp pxn
!
/

Indicates the dimension of the product A - B
For the product B - A we have:
Here, B and A are not conformable for multiplication
™~
Bl la
pXn mxp

For matrix multiplication, the operation is row by column. Thus, to obtain the product A - B, we
multiply each element of a row of A by the corresponding element of a column of B ; then, we add
these products.

Example 4.3
Given that
1
C = [234] andD = |_1
2

compute the products C-D and D-C
Solution:

The dimensions of matrices C and D are respectively 1 x 3 3 x 1; therefore the product C- D is
feasible, and will result in a 1 x 1, that is,
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1

C-D=[234]|-1 = [ - W+3) - 1)+@) @) = [7]
2

The dimensions for D and C are respectively 3 x 1 1 x 3 and therefore, the product D - C is also
feasible. Multiplication of these will produce a 3 x 3 matrix as follows.

1 -2 1-B3 14 2 3 4
D-C=lall234 = ||c1)- @ 1@ 1@ =|2-3 -4
2 (2)-(2) (2)-3) (2)-(4) 4 6 8
Check with MATLAB:
C=[2 3 4]; D=[1; -1; 2]; % Define matrices C and D
C'D % Multiply C by D
ans =
7
D*C % Multiply D by C
ans =
2 3 4
-2 -3 -4
4 6 8

Division of one matrix by another, is not defined. However, an equivalent operation exists, and it
will become apparent later in this chapter, when we discuss the inverse of a matrix.

4.3 Special Forms of Matrices

T A square matrix is said to be upper triangular when all the elements below the diagonal are
zero. The matrix A below is an upper triangular matrix.

0 &y, a3 ... dy,
A=lo 0 (4.4)

In an upper triangular matrix, not all elements above the diagonal need to be non-zero. For
applications, refer to Chapter 14.
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T A square matrix is said to be lower triangular, when all the elements above the diagonal are
zero. The matrix B below is a lower triangular matrix. For applications, refer to Chapter 14.

ay 0 0 .. 0]
ay Ay 0 0
B = 200 0 (4.5)
\.\.\ 0
8m1 A2 83 ér\nn_

In a lower triangular matrix, not all elements below the diagonal need to be non-zero.

T A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The

matrix C below is a diagonal matrix.

2, 0 0 ...
0 a, 0 ..

c=1o (4.6)

N
BERY
AN

o O O o

N

N
- N

0

0 0 0
0 0 O

T A diagonal matrix is called a scalar matrix, if a;; = a,, = ag3 = ... = a,, = k where k is a

scalar. The matrix D below is a scalar matrix with k = 4.

4 000
0400 (4.7)
0040
000 4

A scalar matrix with k = 1, is called an identity matrix 1. Shown below are 2 x2, 3 x 3, and

4 x 4 identity matrices.

1 0 00
1 00
{10} 1o 0100 48)
01 00 1 0010
0 001
The MATLAB eye(n) function displays an n x n identity matrix. For example,
eye(4)% Display a 4 by 4 identity matrix
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ans =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as
matrix A. For example, let A be defined as

A=[1 3 1;-2 1-5;4-7 6] % Define matrix A

A =

1 3 1
-2 1 -5

4 -7 6

then,

eye(size(A))

displays

ans =
1 0 0
0 1 0
0 0 1

. T, . . .
T The transpose of a matrix A, denoted as A", is the matrix that is obtained when the rows and
columns of matrix A are interchanged. For example, if

1 4
A= {1 2 3} then AT= |5 5 (4.9)
456
3 6

In MATLAB we use the apostrophe (') symbol to denote and obtain the transpose of a matrix.
Thus, for the above example,

A=[1 2 3; 4 5 6]% Define matrix A

A =
1 2 3
4 5 6
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A'% Display the transpose of A

ans =
1 4
2 5
3 6

. . . T . . .
T A symmetric matrix A, is one such that A = A, that is, the transpose of a matrix A is the same
as A. An example of a symmetric matrix is shown below.

12 3 B R
A=12 45 A =12 45 =A (4.10)
3-5 6 3-5 6

T If a matrix A has complex numbers as elements, the matrix obtained from A by replacing each

element by its conjugate, is called the conjugate of A, and it is denoted as A*.

An example is shown below.

A= |1+]2 j ax = (1-02
3 2-j3 3 24j3
T MATLAB has two built-in functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second,

conj(A), computes the conjugate of a matrix A. Using MATLAB with the matrix A defined as
above, we get

A=[1+2] j; 3 2-3j] % Define and display matrix A
A =
1.0000 + 2.00001 0 + 1.00001
3.0000 2.0000 - 3.00001
conj_A=conj(A) % Compute and display the conjugate of A
conj_A =
1.0000 - 2.00001 0 - 1.00001
3.0000 2.0000 + 3.00001
A square matrix A such that A" = —A, is called skew-symmetric. For example,
0 2 -3 . 0 -2 3
A=120-4 A=|2 0 4/=-A
340 -3 4 0
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Therefore, matrix A above is skew symmetric.

T A square matrix A such that A" = A, is called Hermitian. For example,

1o1-j 2 |1 1+j o2 |1 14j 2
A = 1+J 3 J A = 1_J 3 _j A = 1_J 3 _j =A
2 4 0 2 i 0 2 i 0

Therefore, matrix A above is Hermitian.

T A square matrix A such that A" = A, is called skew—Hermitian. For example,
T I T T R I Y
A=l-1-j 31 A =[] 3 A =lej 3 |=A
2 i 0 2 j 0 2 450

Therefore, matrix A above is skew-Hermitian.

4.4 Determinants

Let matrix A be defined as the square matrix

a1p 81p 13 - Qg
Ay1 8y Ap3 ... 3y

_anl 8pp 8p3 .- ann_
then, the determinant of A, denoted as detA, is defined as
detA = a;;8,,853...8p, + A1p8383. ..y, + A38p835... 8, + ... (4.12)
~@...8p83...~8 ... Ap3814 — 8. Apgds5 — ...
The determinant of a square matrix of order n is referred to as determinant of order n.
Let A be a determinant of order 2, that is,
a;; a
A= |72 (4.13)
8z 8
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Then,
detA = a;;a,, —a,a;, (4.14)

Example 4.4

Given that

A={1 2} andB={2 _}
3 4 2 0

compute detA and detB.

Solution:
detA =1-4-3-2=4-6 =-2
detA =2-0-2-(-1) =0-(-2) =2
Check with MATLAB:
A=[1 2;3 4];B=[2 -1;2 0]; % Define matrices A and B
det(A) % Compute the determinant of A
ans =
-2
det(B) % Compute the determinant of B
ans =
2

Let A be a matrix of order 3, that is,

app 8yp 13
A = |ay ay ay (4.15)
ag; 83y Az
then, detA is found from
detA = a;3 @y, ag3+ a5, 8p3 ag; + a9 3y Agg (4.16)

=817 @y 8z3 —8y; 8pp 833 — 837 App Azg

A convenient method to evaluate the determinant of order 3, is to write the first two columns to
the right of the 3 x 3 matrix, and add the products formed by the diagonals from upper left to
lower right; then subtract the products formed by the diagonals from lower left to upper right as
shown on the diagram of the next page. When this is done properly, we obtain (4.16) above.

4-10 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



Determinants

31 Q3 +

This method works only with second and third order determinants. To evaluate higher order
determinants, we must first compute the cofactors; these will be defined shortly.

Example 4.5

Compute detA and detB given that

2 35 2 -3 -4
A=|1 0 1| andB =1 0 -2
2 10 0 -5 -6
Solution:
2. 3 2 3
detA = 1\o>>§f><1<o
2/1 0><2 1
or
detA= (2x0x0)+(3x1x1)+(5x1x1)
—(2x0x5)-(1x1x2)-(0x1x3)=11-2=9
Likewise,
2-3-4_,2 -3
detB = 1\0><_:%><< /;2
0 —5><—:6 2 26
or
detB= [2x0x (-6)]+[(-3) x (-2) x 0] +[(-4) x L x (-5)]
—[0x0x(-4)]-[(-5) x(-2) x 2] - [(-6) x 1 x(-3)] =20-38 =-18
Check with MATLAB:
A=[2 3 51 0 1; 2 1 0]; det(A) % Define matrix A and compute detA
ans =
9

B=[2 -3 -4;1 0 -2; 0 -5 -6];det(B) % Define matrix B and compute detB

ans =
-18
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4.5 Minors and Cofactors

Let matrix A be defined as the square matrix of order n as shown below.

aj1 89p a13 ...

8y1 8y Ap3 ... 8y

anl an2 an3 ann

If we remove the elements of its ith row, and jth column, the determinant of the remaining n—1

square matrix is called the minor of determinant A, and it is denoted as [Mij] .

The signed minor (—l)i +] [Miil is called the cofactor of a;; and it is denoted as a;.

Example 4.6
Given that
ay1 agp g3
A = |ay ay ay; (4.18)
Agy a3y Az

compute the minors [Mn] : [MHJ : [Mls] and the cofactors o, 0, and o;.

Solution:

] - [ } ] - [ ] ] - { ]

a3 dg3 831 33 a3 dg
and

Oqp = (—1)1+1[M11J = [Mn] Ogp = (—1)1+2:M12] = _|:M12:| Qg3 = |:M13;| = (—1)1+3[M13]

The remaining minors

Ma): [ (M) M), M), [

and cofactors
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OLyg, Olgp, Olpg, Olgg, Olgp, AN OLgg

are defined similarly.

Example 4.7
Given that
1 2-3
A=12-4 2 (4.19)
1 2-6
compute its cofactors.
Solution:
ayy = (—1)“{‘4 2} =20 ap,= (—1)“2{ 2 2} =10 (4.20)
2 -6 -1-6
Qg3 = (—1)“3{ 2 _4} =0 Qo1 = (—1)2”{2 _3} =6 (4.21)
-1 2 2 -6
Oy = (_1)2+2|: 1 —3:| -_9 Olpg = (_1)2+3|: 1 2:| = _4 (422)
-1-6 -1 2
Oy = (_1)3”{ 2 —3} =8,  ag-= (_1)3”{1 —3} =-8 (4.23)
4 2 2 2
oz = (-1)3+3& ﬂ - -8 (4.24)

It is useful to remember that the signs of the cofactors follow the pattern

+ -+ — +
o+ — + _
+ -+ — +
o+ — + _
+ -+ — +

that is, the cofactors on the diagonals have the same sign as their minors.

Let A be a square matrix of any size; the value of the determinant of A is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.
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Example 4.8

Compute the determinant of A using the elements of the first row.

1 2 -3
A=|2_-4 2 (4.25)
1 2 -6
Solution:
detA = 1{—4 2} _2{2 2}3{2 —4} = 1x20-2x(-10)-3x0 = 40
2 6 |-1-6 |-1 2
Check with MATLAB:

A=[1 2 -83;2 -4 2;-1 2 -6]; det(A) % Define matrix A and compute detA

ans =
40

We must use the above procedure to find the determinant of a matrix A of order 4 or higher.
Thus, a fourth-order determinant can first be expressed as the sum of the products of the ele-
ments of its first row by its cofactor as shown below.

a11 Ay 13 Ayy

A A A @ Ay 8p3 Ay Ay 813 Ayy
_ |81 8pp Ap3 8y4| _ _
A= = 81y|ag) A3 Ag4| 21|83, A3 Agy (4.26)
Az A3y Az gy
Qyp 43 Ayy Ayp 43 Ayy
Ay yp Ay3 Ayy
app 13 Ay Ay A1z Ay

+ag1 |8y, Az 8y ~ 1|8y Ang Ay

Qyp Q43 Ayy A3y 833 Az

Determinants of order five or higher can be evaluated similarly.

Example 4.9
Compute the value of the determinant
2 -1 0 -3
A=t 10 (4.27)
4 0 3 -2
-3 0 0 1
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Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor.
Then,

1 0-1 -1 0-3 -1 0-3 -1 0-3
A=210 32| -(-D|jo 3-2 +411 o0-1] (3|1 0-1
001 0 01 0 01 0 3 -2

[a] [b] [c] [d]
Next, using the procedure of Example 4.5 or Example 4.8, we find
[a] =6, [b] =-3, [c] =0, [d] = -36

and thus
detA = [a]+[b]+[c]+[d] = 6-3+0-36 = -33

We can verify our answer with MATLAB as follows:
A=[2 -1 0 -3;~1 10 —1;4 0 3 -2; -3 0 0 1]; delta = det(A)

delta =
-33

Some useful properties of determinants are given below.
Property 1:

If all elements of one row or one column are zero, the determinant is zero. An example of this is the
determinant of the cofactor [¢] above.

Property 2:

If dll the elements of one row or column are m times the corresponding elements of another row or col-
umn, the determinant is zero. For example, if

2 4 1
A=13 6 1 (4.28)
1 2 1
then,
2 4 1|12 4
detA=1|3 6 1/3 6 =12+4+46-6-4-12=0 (4.29)
1 2 1]1 2
Here, detA is zero because the second column in A is 2 times the first column.
Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 4-15

Orchard Publications



Chapter 4 Matrices and Determinants

Check with MATLAB:
A=[2 4 1:3 6 1:1 2 1]; det(A)

ans =
0

Property 3:

If two rows or two columns of a matrix are identical, the determinant is zero. This follows from Prop-

erty 2withm = 1.

4.6 Cramer’s Rule

Let us consider the systems of the three equations below

Ay X+ Ay +axyz =B
Ag X +agpy+azz =C
and let
a1y a1z g3 A ay agg ay A ag ajy ap A
A=layapay| Di=|Bayag| D2=|ayBay| Di=|a,a,B

gy 83y dg3 C ag ag; a1 C agg ag ag C

Cramer’s rule states that the unknowns x, y, and z can be found from the relations
D D D

A A A

provided that the determinant A (delta) is not zero.

(4.30)

(4.31)

We observe that the numerators of (4.31) are determinants that are formed from A by the substi-

tution of the known values A, B, and C, for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (4.30) is a homogeneous set of equations, thatis,if A = B = C = 0, then, D;, D,, and D, are

all zero as we found in Property 1 above. Then, x = y = z = 0 also.

Example 4.10

Use Cramer’s rule to find v,, v,, and vy if
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Vo+3Vy—4-vy; =0

and verify your answers with MATLAB.
Solution:

Rearranging the unknowns v, and transferring known values to the right side, we get

—4v, - 3v,-2v; = 8 (4.33)

Now, by Cramer’s rule,

2 -1 3| 2 -1

A=|_4 3 2| _4 _3 =6+6-12+27+4+4 =35
3 1 -1 3 1
5-1 3|5 -1
D;=|8 -3 2|8 -3 =15+8+24+36+10-8 =85
4 1 -114 1
2 5 3| 2 5
D,=|_4 8 2| -4 8 =-16-30-48-72+16-20 = -170
3 4 -1| 3 4
2 -1 5| 2 1
D;=|_4 3 8| -4 -3 =-24-24-20+45-16-16 = -55
3 1 41 3 1
Therefore, using (4.31) we get
D D D
X1=_1=§=£ X2=_2=_m=_3_4 X3:—3:—§:—£ (434)
A 3B 7 A 35 7 A 35 7
We will verify with MATLAB as follows.
% The following code will compute and display the values of v, v, and vs.
format rat % Express answers in ratio form
B=[2 -1 3; 4 -3 -2; 3 1-1]; % The elements of the determinant D
delta=det(B); % Compute the determinant D of B
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di=[5 -1 3; 8 -3 -2; 4 1 -1]; % The elements of D4
detd1=det(d1); % Compute the determinant of D4
d2=[2 5 3; -4 8 -2; 3 4 —1]; % The elements of D,
detd2=det(d2); % Compute the determinant of D,
d3=[2 -1 5;-4 -3 8; 3 1 4]; % The elements of D5
detd3=det(d3); % Compute he determinant of Dg
vi=detd1/delta; % Compute the value of v4
v2=detd2/delta; % Compute the value of v,
v3=detd3/delta; % Compute the value of vg
%
disp(‘'v1=");disp(v1); % Display the value of v4
disp('v2=");disp(v2); % Display the value of v,
disp('v3=");disp(v3); % Display the value of vy
vl=
17/7

v2=

-34/7
v3=

-11/7

These are the same values as in (4.34)

4.7 Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimination
method. With this method, the objective is to eliminate one unknown at a time. This can be done
by multiplying the terms of any of the equations of the system by a number such that we can add
(or subtract) this equation to another equation in the system so that one of the unknowns will be
eliminated. Then, by substitution to another equation with two unknowns, we can find the sec-
ond unknown. Subsequently, substitution of the two values found can be made into an equation
with three unknowns from which we can find the value of the third unknown. This procedure is
repeated until all unknowns are found. This method is best illustrated with the following example
which consists of the same equations as the previous example.

Example 4.11

Use the Gaussian elimination method to find v;, v,, and v; of

2Vi—V,+3vy =5
—4v, —3v,-2v,; = 8 (4.35)
3Vi+V,—Vy =4
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Solution:

As a first step, we add the first equation of (4.35) with the third to eliminate the unknown v, and

we obtain the following equation.

Next, we multiply the third equation of (4.35) by 3, and we add it with the second to eliminate
v, . Then, we obtain the following equation.

5v, - 5v; = 20 (4.37)
Subtraction of (4.37) from (4.36) yields

7vy = =11 or vy = —% (4.38)

Now, we can find the unknown v, from either (4.36) or (4.37). By substitution of (4.38) into
(4.36) we get

5v1+2-(—%) =9 or vlzg (4.39)

Finally, we can find the last unknown v, from any of the three equations of (4.35). By substitu-

tion into the first equation we get

v2=2v1+3v3—5=374—§—3—;’=—374 (4.40)

These are the same values as those we found in Example 4.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small inte-
gers, as in Example 4.11. However, it becomes impractical if the coefficients are large or fractional
numbers.

The Gaussian elimination is further discussed in Chapter 14 in conjunction with the LU factor-
ization method.

4.8 The Adjoint of a Matrix

Let us assume that A is an n square matrix and a; is the cofactor of a;;. Then the adjoint of A,

denoted as adjA, is defined as the n square matrix shown on the next page.
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O1g Olpg Ozp ... Opg

O1p Olgp O3z ... Opp

adjA = (4.41)

Q13 Opz O3z ... Op3

We observe that the cofactors of the elements of the ith row (column) of A, are the elements of
the ith column (row) of adjA.

Example 4.12

Compute adjA given that

1 2 3
A=1{1 3 4 (4.42)
1 4 3
Solution:
3 4} |2 3 {2 3}
4 3 4 3 3 4
- - 7 6 -1
adjA = |_|1 4} 13 {23 =110 -1
1 3 |1 3] 3 4 Lo 1
3} 12 {1 2
1 4] |1 4 1 3

4.9 Singular and Non-Singular Matrices

An n square matrix A is called singular if detA = 0;if detA=0, A is called non-singular.

Example 4.13
Given that
1 2 3
A=12 3 4 (4.43)
3 57
determine whether this matrix is singular or non-singular.
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Solution:
1 2 3|12
detA = | 2 3 4|23 =21+24+30-27-20-28 = 0
3 57|35
Therefore, matrix A is singular.
4.10 The Inverse of a Matrix
If A and B are n square matrices such that AB = BA = |, where | is the identity matrix, B is

called the inverse of A, denoted as B = A", and likewise, A is called the inverse of B, that is,
A=B"

If a matrix A is non-singular, we can compute its inverse from the relation

a1 .
AT = —adjA (4.44)
Example 4.14
Given that
1 2 3
A=11 3 4 (4.45)
1 4 3

compute its inverse, that is, find A™
Solution:

Here, detA = 9+8+12-9-16 -6 = -2, and since this is a non-zero value, it is possible to com-
pute the inverse of A using (4.44).

From Example 4.12,

-7 6 -1
ade =11 0 -1
1 -2 1
Then,
1 1 1 -7 6 -1 35-3 05
AT = SadjA = =11 0 -1 = (05 0 05 (4.46)
1-21 -05 1-05
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Check with MATLARB:
A=[1 2 3; 1 3 4; 1 4 3], invA=inv(A) % Define matrix A and compute its inverse
A =
1 2 3
1 3 4
1 4 3
invA =
3.5000 -3.0000 0.5000
-0.5000 0 0.5000
-0.5000 1.0000 -0.5000

Multiplication of a matrix A by its inverse A~ produces the identity matrix I, that is,

AAT =1 or AMA=1 (4.47)

el

Example 4.15
Prove the validity of (4.47) for

Proof:
detA = 8-6 = 2 and adjA=| 273
-2 4
Then,
1 _ 1 . 12 -3 _ |1 -3/2
A= det/—\adJA B 2{_2 4} B Ll 2 }
and

AAL = 4 3| 1 -3/2| _ |4-3 -6+6| _ |1 -
2 2||-1 2 2-2 -3+4 0 1
4.11 Solution of Simultaneous Equations with Matrices

Consider the relation
AX = B (4.48)

where A and B are matrices whose elements are known, and X is a matrix (a column vector)
whose elements are the unknowns. We assume that A and X are conformable for multiplication.
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Multiplication of both sides of (4.48) by A" yields:

A'AX = A'B = IX = A'B
or

X=A"'B

(4.49)

(4.50)

Therefore, we can use (4.50) to solve any set of simultaneous equations that have solutions. We

will refer to this method as the inverse matrix method of solution of simultaneous equations.

Example 4.16

Given the system of equations

2X1 +3X, +X3 = 9
X1 +2X,+3%X; = 6 (4.51)
33Xy + X, +2X3 = 8
compute the unknowns X;, X,, and X5 using the inverse matrix method.
Solution:
In matrix form, the given set of equations is AX = B where
2 3 1 X1 9
A=|1 2 3|, X=|x| B=lg (4.52)
3 1 2 Xs 8
Then,
X =A"'B (4.53)
or
-1
X1 2 3 1 |9
X =11 2 3| |6 (4.54)
x| 31 2 |8
Next, we find the determinant detA, and the adjoint adjA.
1 -5 7
detA=18 and adjA=|7 1 _5
-5 71
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Therefore,
1 -5 7
11 a1
A= GenddA =117 15
5 71
and by (4.53) we obtain the solution as follows.
X1 1 1 -5 7|9 35 35/18 1.94
X'= x| =157 1-5||6| = 15|29 = |29/18 = |1.61 (4.55)
X3 -5 7 1}|8 5 5/18 0.28

To verify our results, we could use the MATLAB inv(A) function, and multiply A~ by B. How-
ever, it is easier to use the matrix left division operation X = A \ B; this is MATLAB's solution of

A™'B for the matrix equation A-X = B, where matrix X is the same size as matrix B. For this
example,

A=[2 3 1;1 2 3;3 1 2];B=[9 6 8]; X=A\B % Observe that B is a column vector

X =
1.9444
1.6111
0.2778
Example 4.17

For the electric circuit of Figure 4.1, the loop equations are

Figure 4.1. Circuit for Example 4.17

101, - 91, = 100
—91,+201,-9l, = 0 (4.56)
91, +15l, = 0

Use the inverse matrix method to compute the values of the currents I, I,, and I5.
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Solution:

For this example, the matrix equationis RI = V or | = RV, where

10 -9 0 100 Iy
R=1_920-9), V=| of and I=]I,
0 -9 15 0 I,

The next step is to find R™. This is found from the relation
= —— adjR (4.57)

Therefore, we find the determinant and the adjoint of R. For this example, we find that

219 135 81
detR = 975, adjR = {135 150 90 (4.58)
81 90 119
Then,
219 135 81
R = —adjR = =
181 90 119
and
Iy L |219 135 81 100] 100|219 22.46
= |l,| = §75]135 150 90 || 0| = §37¢|135| = |13.85
I, 81 90 119/| O 81 8.31
Check with MATLAB:
R=[10 -9 0; -9 20 -9; 0 -9 15]; V=[100 0 0]; I=R\V
I =
22.4615
13.8462
8.3077

We can also use subscripts to address the individual elements of the matrix. Accordingly, the
above code could also have been written as:

R(1,1)=10; R(1,2)=-9; % No need to make entry for A(1,3) since it is zero.
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R(2,1)=-9; R(2,2)=20; R(2,3)=-9; R(3,2)=-9; R(3,3)=15; V=[100 0 0]'; I=R\V

I =
22.4615
13.8462

8.3077

Spreadsheets also have the capability of solving simultaneous equations using the inverse matrix
method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT
(Matrix Multiplication) functions, to obtain the values of the three currents in Example 4.17.

The procedure is as follows:

1. We start with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure 4.2. Then, we enter the elements of matrix V in G3:G5.

A | B | c | bl E [F] G H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 10 -9 0 100
4 R= -9 20 -9 V= 0
5 0 -9 15 0
6

7 0.225| 0.138| 0.083 22.462
8 R'=| 0.138| 0.154| 0.092 I=| 13.846
9 0.083| 0.092| 0.122 8.3077
10

Figure 4.2. Solution of Example 4.17 with a spreadsheet

2. Next, we compute and display the inverse of R, that is, R™*. We choose B7:D9 for the ele-
ments of this inverted matrix. We format this block for number display with three decimal
places. With this range highlighted and making sure that the cell marker is in B7, we type the
formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously. We observe that R™ appears in these
cells.

3. Now, we choose the block of cells G7:G9 for the values of the current I. As before, we high-
light them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)
and we press the Crtl-Shift-Enter keys simultaneously. The values of I then appear in G7:G9.
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Example 4.18

For the phasor circuit of Figure 4.3, the current Iy can be found from the relation

170£0° | +
QY v
VS -

Figure 4.3. Circuit for Example 4.18

V, -V
= e (4.59)

and the voltages V; and V, can be computed from the nodal equations

Vi -170£0° V-V, V,-0
85 100  j200

=0 (4.60)

V,—170£0° V,-Vy V,-0
~j100 100 50

=0 (4.61)

Compute, and express the current |, in both rectangular and polar forms by first simplifying like

terms, collecting, and then writing the above relations in matrix form as YV = I, where
Y = admittance, V = voltage, and | = current.
Solution:

The elements of the Y matrix are the coefficients of V; and V,. Simplifying and rearranging the
nodal equations of (4.60) and (4.61), we get

(0.0218 - j0.005)V, — 0.01V, = 2 .
_0.01V, + (0.03 +j0.01)V, = jL.7 (4.62)
Next, we write (4.62) in matrix form as

0.0218 -j0.005  -0.01 Vi 2

001 003+j0.01] |V,| = [j17 (4.63)
%,—/

Y vV |
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where the matrices Y, V, and | are as indicatedin (4.63).

We will use MATLAB to compute the voltages V, and V,, and to do all other computations.

The code is shown below.

Y=[0.0218-0.005] —0.01; —0.01 0.03+0.01j]; I=[2; 1.7]]; V=Y\l; % Define Y, |, and find V

fprintf(\n'); % Insert a line
disp(' V1 V2Y); disp(' ------------------ % % Display V1 and V2 with dash line underneath
fprintf('%9.3f %9.3f\n",V(1),V(2)) % Display values of V1 and V2 in tabular form
fprintf(\n')% Insert another line
Vi V2
104.905 53.416

Next, we find 1y from
R3=100; IX=(V(1)-V(2))/R3 % Compute the value of Iy

IX =
0.5149 - 0.05901

and this is the rectangular form of 1. For the polar form we use
maglX=abs(IX) % Compute the magnitude of Iy

maglX =
0.5183

thetalX=angle(IX)*180/pi % Compute angle theta in degrees

thetaIX =
-6.5326

Therefore, in polar form I, = 0.518./-6.53°

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to
compute matrices that include complex numbers in their elements.
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4.12 Summary

® A matrix is a rectangular array of numbers whose general form is

a1y 89p 843 .. Qg
8y 8y 8p3 ... Ayp

dzy azp a3z ... Azp

aml am2 am3 o a

The numbers a; j are the elements of the matrix where the index i indicates the row, and j
indicates the column in which each element is positioned. A matrix of m rows and n columns
is said to be of m x n order matrix. If m = n, the matrix is said to be a square matrix of order

m.
¢ Two matrices A = [aiJ and B = [biJ] are equal, thatis, A = B, if and only if

a.: = b =123 ...m j=123,..n

e Two matrices are said to be conformable for addition (subtraction), if they are of the same order

mxn.If A= [aij] and B = [bij] are conformable for addition (subtraction), their sum (dif-

ference) will be another matrix C with the same order as A and B, where each element of C

is the sum (difference) of the corresponding elements of A and B, i.e., C = A£+B = [a;; £ b;;]
e [f k is any scalar (a positive or negative number), and not [k ] which is a 1 x 1 matrix, then

multiplication of a matrix A by the scalar k, is the multiplication of every element of A by k.

® Two matrices A and B are said to be conformable for multiplication A - B in that order, only
when the number of columns of matrix A is equal to the number of rows of matrix B. That is,
the product A-B (but not B - A) is conformable for multiplication only if A is an m x p and
matrix B is an p x n matrix. The product A - B will then be an m x n matrix.

e For matrix multiplication, the operation is row by column. Thus, to obtain the product A - B,
we multiply each element of a row of A by the corresponding element of a column of B ; then,
we add these products.

¢ Division of one matrix by another, is not defined.

e A scalar matrix is a square matrix where a;; = a,, = a3 = ... = a,, = k and k is a scalar.

A scalar matrix with k = 1, is called an identity matrix I .
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e The MATLAB eye(n) function displays an n x n identity matrix and the eye(size(A)) func-
tion displays an identity matrix whose size is the same as matrix A.

. T . . . .
¢ The transpose of a matrix A, denoted as A", is the matrix that is obtained when the rows and

columns of matrix A are interchanged.

¢ The determinant of a square matrix A where

813 Qg 13 -+ Qg
Ay Ay 8pz --- Ayp

dgy Agp gz ... Agp

_anl 8p2 8pg --- App
is denoted as detA and it is defined as

detA = A118py833...8y, T A1p8p3834...8; + A138p4835...8, + ...

—a .. g5 ..~ ... Qgg814 — Apy... Apgds — -
e [f from a matrix A be defined as
ayp Qg 13 -.- Qg

8y 8y 8pz -.. Ayp
A= lag ag ag ... ag,

_anl 82 8pg --- dApp
we remove the elements of its ith row, and jth column, the determinant of the remaining

n—1 square matrix is called the minor of determinant A, and it is denoted as [MU] .

¢ The signed minor (—1)i +l [Mij] is called the cofactor of a;; and it is denoted as a;.

® [et A be a square matrix of any size; the value of the determinant of A is the sum of the prod-
ucts obtained by multiplying each element of any row or any column by its cofactor. We must
use this procedure to find the determinant of a matrix A of order 4 or higher.

e Some useful properties of determinants are:

a. If all elements of one row or one column are zero, the determinant is zero.
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b. If all the elements of one row or column are m times the corresponding elements of
another row or column, the determinant is zero.

c. If two rows or two columns of a matrix are identical, the determinant is zero.

e Cramer’s rule states that if a system of equations is defined as

apX+apy+a;z = A
Ay X +anY+az =B
g X+ agpy+azz =C
and we let
app dgp g3 A ag ap; ap A ag ap ap A
A= dp1 dpp Ay D=1 B ay ay D2 =12, B ay Ds=1a, ay B

gy 83y dAs3 C as ag ag C ag ag ag C

the unknowns x, y, and z can be found from the relations

D D D
X:—l y:——2 Z:__3

A A A

provided that the determinant A (delta) is not zero.

e We can find the unknowns in a system of two or more equations also by the Gaussian elimina-
tion method. With this method, the objective is to eliminate one unknown at a time. This can
be done by multiplying the terms of any of the equations of the system by a number such that
we can add (or subtract) this equation to another equation in the system so that one of the
unknowns will be eliminated. Then, by substitution to another equation with two unknowns,
we can find the second unknown. Subsequently, substitution of the two values found can be
made into an equation with three unknowns from which we can find the value of the third
unknown. This procedure is repeated until all unknowns are found.

® If A isan n square matrix and a; is the cofactor of a;;, the adjoint of A, denoted as adjA, is

j )
defined as the n square matrix below.

Qg Ogp Ogp ... Opg

Olgp Ogp Oz ... Opa

adjA = Oly3 Olyg Olgg ... Olpg
Olgp Olpp Olgp v Ol
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An n square matrix A is called singular if detA = 0;if detA=0, A is called non-singular.

If A and B are n square matrices such that AB = BA = |, where | is the identity matrix, B is

called the inverse of A, denoted as B = A™, and likewise, A is called the inverse of B, that is,

-1
A=B
If a matrix A is non-singular, we can compute its inverse from the relation

A adjA

~ detA
Multiplication of a matrix A by its inverse A~ produces the identity matrix I, that is,

AA =1 or ATA=1
If A and B are matrices whose elements are known, X is a matrix (a column vector) whose ele-

ments are the unknowns and A and X are conformable for multiplication, we can use the rela-

tion X=A"'B to solve any set of simultaneous equations that have solutions. We refer to this
method as the inverse matrix method of solution of simultaneous equations.

The matrix left division operation is defined as X = A \ B; this is MATLAB’s solution of A™'B
for the matrix equation A - X = B, where matrix X is the same size as matrix B.
We can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT (Matrix Multipli-

cation) functions, to solve any set of simultaneous equations that have solutions. However, we
cannot use them to compute matrices that include complex numbers in their elements.
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4.13 Exercises

For Exercises 1 through 3 below, the matrices A, B, C and D are defined as:

5

N

1-1-4 9-3 4 6
1 -2
A=|5 72| B=|_2 8 2| C=|_3 8 D=[36ﬂ
3-5 6 -4 6 5 -2 - B

~

1. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.
a. A+B b. A+C c¢.B+D d.C+D e. A-B f. A-C g. B-D h.C-D
2. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.
a. A-B b.A-C ¢.B-D d.C-D e B-A f. C-A g¢. D-A h.D-C
3. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.
a. detA b. detB c. detC d. detD e. det(A-B) f. det(A-C)

4. Solve the following system of equations using Cramer’s rule. Verify your answers with Excel or
MATLAB.

4
9

Xy — 2%y + X3

—2Xq1 + 3Xy + X3

5. Repeat Exercise 4 using the Gaussian elimination method.
6. Use the MATLAB det(A) function to find the unknowns of the system of equations below.
—Xq +2X, —3X3+5X, = 14
Xy +3Xy+2X3—X4 = 9
3X1—=3X, + 2X3 + 4%, = 19
4%, + 2X, +5Xg + X, = 27

7. Solve the following system of equations using the inverse matrix method. Verify your answers

with Excel or MATLAB.

1 3 4| [X1 -3
3 1.2 |x)| = |-2
235 |x |0
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8. Use Excel to find the unknowns for the system

2 4 32| [%1 1
2 -4 1 3| |X| _| 10
1 3-4 2| |x ~14
2-2 2 1 |x, 7

Verify your answers with the MATLAB left division operation.
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4,14 Solutions to Exercises
1.

1+5 -1+9 -4-3 6 8 -7

a.A+B=|5_2 748 —2+2/=13 15 0 b. A+C not conformable for addition

3+7 -5-4 6+6 10 -9 12

c. B+ D not conformable for addition d. C+ D not conformable for addition

1-5 -1-9 -4+3] |-4-10-1

e.A-B=|5,2 7.8 -_2_-2|=|7 -1 _4 f. A—C not conformable for subtraction

3-7 -5+4 6-6] |-4-10

g. B—D not conformable for subtraction h. C-D not conformable for subtraction

2.
_1><5+(—l)><(—2)+(—4)><7 Ix9+(-1)x8+(-4)x(-4) 1Ix(-3)+(-1)x2+(-4)x6
A-B =1 5x547x(=2)+(-2)x7 5x9+7x8+(=2)x (-4) 5x(-3)+7x2+(-2)x6
3x5+(-5)x(-2)+6x7 3x9+(-5)x8+6x(-4) 3x(-3)+(-5)%x2+6x6
a. }
=21 17 -29
= 1-3 109 -13
| 67 -37 17
Check with MATLAB:
A=[1 -1 4,57 -2;3 -5 6];B=[59 -3;,-2 8 2,7 -4 6]; A"'B
ans =
-21 17 -29
-3 109 -13
67 -37 17
Ix4+(=1)x(=3)+(-4)x5 1x6+(-1)x8+(=4) x (=2) -13 6
b. \vC = | 5x44+7x(-3)+(-2)x5 5x6+7x8+(-2)x(<2) | = |-11 90
3x4+(-5)x(-3)+6x5 3x6+(-5)x8+6x(-2) 57 -34

c. B-D not conformable for multiplication

Ax1+6x(-3)  4x(-2)+6x6 4%3+6x(-4) _14 28 -1
d D = |(L3)x1+8x(=3) (=3)x(-2)+8x6 (-3)x3+8x(<4) | = |-27 54 4
5xl+(-2)x(-3) 5x(<2)+(-2)x6 5x3+(=2)x(-4) 11 22 23
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5x14+9x5+(-3)x3 (-2)x1+8x5+2x%x3 Tx1+(-4)x5+6x3
B-A = |5x(-1)+9x7+(=3)x(<5) (-2)x(-1)+8x7+2x(=5) 7x(=1)+(-4)x7+6x(-5)
5x(=4)+9x(<2)+(=3)x6  (-2)x (-4)+8x(=2)+2x6 Tx(-4)+(-4)x(-2)+6x6

41 73 56
= |44 48 4
5 65 16

f. C-A not conformable for multiplication

D.-A = Ix1+(-2)x5+3x3 Ix(-1)+(-2)x7+3x(-5) Ix(-4)+(-2)x(-2)+3x6
(-3)x1+6x5+(-4)x3 (-3)x(-1)+6x7+(-4)x(-5) (-3)x(-4)+6x(-2)+(-4)x6

_ |0 -30 18
15 65 —24

LD.Co [ 1x4+(2)x(-3)+3x5 1><6+(—2)><8+3><(—2)} _ [25 —16}
(

“3)x4+6x(-3)+(-4)x5 (-3)x6+6x8+(-4)x(-2) -50 38
3.
1-1-4 1 -1
detA= 5 7.2 5 7
a. 3-5 6 3 -5
=1Ix7x6+(-1)x(-2)x3+(-4)x5x(-5)—[3x7x(-4)+(-5) x(-2) x 1 +6 x5 x (-1)]
= 42+ 6+ 100 — (-84) — 10 — (-30) = 252
5 9-3 5 9
detB= 2 g 2 -2 8
b. 746 7-4

=5x8x6+9%x2x7+(=3)x(-2)x(-4)-[7Tx8x(-3)+(-4)x2x5+6x(-2)x9]
= 240 + 126 — 24 — (-168) + 40 — (-108) = 658

c. detC does not exist; matrix must be square

d. detD does not exist; matrix must be square
e. let(A-B) = detA - detk and from parts (a) and (b), det(A-B) = 252 x 658 = 165816

f. det(A-C) does not exist because detC does not exist
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4.
1-2 1 1-2
A= 23 1-23
34-5 34
=1x3x(-5)+(-2)xIx3+1x(-2)x4-[3x3x1+4x1x1+(-5)x(-2)x(-2)]
= _15-6-8-9-4+20=-22
-4-2 1 4-2
D;= 93193
0 4-50 4
= 4x3x(-5)+(-2)x1x0+1x9x4-[0x3x1+4x1x4+(-5)x9Ix(-2)]
=60+0+36-0+16-90 =22
1-4 1 1-4
D= 29 1-2 9
3 0530
= 1x9x(-5)+(-4)x1x3+1x(-2)x0-[3x9x1+0x1x1+(=5)x(-2)x(-4)]
= _45-12-0-27-0+40 =44
1-2-4 1-2
Dg= 23 9-2 3
340 3 4
= 1x3x0+(=2)x9x3+(-4) x(-2)x4-[3x3x(-4)+4x9Ix1+0x(-2) x (-2)]
=0-54+32+36-36-0=-22
D D D
X1=—1=2—=—1 X2=—g=:-4—4=2 X3——§—:2=1
A =22 A =22 A =22
5.
X, —2X, + X3 = -4 (1)
3X; +4x,-5x3 = 0 (3)
Multiplication of (1) by 2 yields
Addition of (2) and (4) yields
X, +3%x3 =1 (5)
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Multiplication of (1) by -3 yields
3%, + 6x,-3%x5 = 12 (0)

Addition of (3) and (6) yields
10x, - 8x;3 = 12 (7)
Multiplication of (5) by 10 yields
~10x, +30%; = 10 (8)

Addition of (7) and (8) yields

22%, = 22 (9)
or
xg =1 (10)
Substitution of (10) into (7) yields
10x,-8 = 12 (11)
or

and substitution of (10) and (12) into (1) yields
X,~4+1 = -4 (13)

or

x, = -1 (14)

Delta=[-1 2 -3 5;1 3 2 -1;3 -3 2 4;4 2 5 1];
D1=[14 2 -3 5;9 3 2 -1;19 -3 2 4;27 2 5 1];
D2=[-1 14 -3 5;1 9 2 -1;3 19 2 4;4 27 5 1];
D3=[-1 2 14 5;1 3 9 -1;3 -3 19 4;4 2 27 1];
D4=[-1 2 -3 14;1 3 2 9;3 -3 2 19;4 2 5 27];
x1=det(D1)/det(Delta), x2=det(D2)/det(Delta),...
x3=det(D3)/det(Delta), x4=det(D4)/det(Delta)

x1=1 X2=2 x3=3 x4=4

4-38 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition

Orchard Publications
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1.
13 413
detA = 3 1-2 31
23 5 23
=1x1Ix5+3x(-2)x2+4x3x3-[2x1x4+3x(-2)x1+5%x3x3]
=5-12+36-8+6-45=-18
11 -3 -10
adjA = |_19 -3 14
7 3 -8
1 _ 11 -3 -10 -11/18 3/18 10/18
= Jeta 2dA = 5|19 -3 14| = | 19/18 3/18 -14/18
7 3 -8 -7/18 -3/18  8/18
X1 -11/18 3/18 10/18||-3 33/18-6/18+0 27/18 1.50
X = X5l = | 19/18 3/18 -14,/18||-2| = |-57/18-6/18+0| = |-63/18| = |-3.50
X3 -7/18 -3/18 8/18]| 0 21/18+6/18+0 27/18 1.50
K Spreadsheet for Matrix Inversion and
2 |Matrix Multiplication - Exercize 7
2
4 1.00 300 400 -3.00
‘5 | A=| 300 100 -2.00 B=| -2.00
B 200 300 500 0.00
Z
S 061 017 0456 1.50
2 A 1.060 017 078 #=| -3.50
10 039 017 044 1.50
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8.
&LB | &1 B | E | E H |
1 |=preadsheet for Matrix lnversion and
2 |Matrix Multiplication - Exercise 8
3
4 200 400 300 -200 1.00
5| A= 200 -400 1.00 300 10.00
B -1.00 300 -400 200 -14.00
7 200 -200 200 1.00 7.00
g
g 158 408 117 BY5 -11.50
10 [ A 058 108 017 -1.75 1.50
11 1680 350 -1.00 -550 12.00
1% 133 333 067 -500 8.00
A=[2 43 2,2 413,-13-42;,2-221]
B=[1 10 -14 7]'; AB
ans =
-11.5000
1.5000
12.0000
9.0000
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Chapter 5

Differential Equations, State Variables, and State Equations

his chapter is a review of ordinary differential equations and an introduction to state vari-
ables and state equations. Solutions of differential equations with numerical methods will be
discussed in Chapter 9.

5.1 Simple Differential Equations

In this section we present two simple examples to show the importance of differential equations in
engineering applications.

Example 5.1

The current and voltage in a capacitor are related by

io(t) = cdd—vtC (5.1)

where ig(t) is the current through the capacitor, vc(t) is the voltage across the capacitor, and the

constant C is the capacitance in farads (F). For this example C = 1 F and the capacitor is being
charged by a constant current I. Find the voltage v across this capacitor as a function of time

given that the voltage at some reference time t = 0 is V.

Solution:

It is given that the current, as a function of time, is constant, that is,

ic(t) = | = constant (5.2)
By substitution of (5.2) into (5.1) we get
dt
and by separation of the variables,
dve = ldt (5.3)
Integrating both sides of (5.3) we get
Ve(t) = It+k (5.4)

where k represents the constants of integration of both sides.
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We can find the value of the constant k by making use of the initial condition, i.e., at t = 0,
Ve =V, and (5.4) then becomes

Vo = 0+k (5.5)

or k = V,, and by substitution into (5.4),
ve(t) = 1t+V, (5.6)
This example shows that when a capacitor is charged with a constant current, a linear voltage is pro-

duced across the terminals of the capacitor.

Example 5.2

Find the current i (t) through an inductor whose slope at the coordinate (t,1i,) is cost and the
current i, passes through the point (n/2,1).
Solution:

We are given that
di,

i cost (5.7)

By separating the variables we get
di, = costdt (5.8)

and integrating both sides we get
iL(t) = sint+Kk (5.9

where k represents the constants of integration of both sides.

We find the value of the constant k by making use of the initial condition. For this example,
o = 1 and thusat ot = t = /2, i, = 1. With these values (5.9) becomes

1= sin§+k (5.10)

or k = 0, and by substitution into (5.9),
i (t) = sint (5.11)

5.2 Classification
Differential equations are classified by:
1. Type - Ordinary or Partial

2. Order - The highest order derivative which is included in the differential equation
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3. Degree - The exponent of the highest power of the highest order derivative after the differential
equation has been cleared of any fractions or radicals in the dependent variable and its deriva-
tives

For example, the differential equation
d* ? d® * d® ° dy\® 2 2
(_Y] +5[_YJ +6(—Y] +3(_Y L =y

dx* dx® dx? d 41

is an ordinary differential equation of order 4 and degree 2.

If the dependent variable y is a function of only a single variable x, that is, if y = f(x) , the differ-

ential equation which relates y and x is said to be an ordinary differential equation and it is abbrevi-
ated as ODE.

The differential equation

2
Ay, 3%, 5 _ 5c0s4t

is an ODE with constant coefficients.

The differential equation

2
x2d—¥+xda¥+(x2—n2) =0
dt

is an ODE with variable coefficients.

If the dependent variable y is a function of two or more variables such as y = f(x, t), where x and
t are independent variables, the differential equation that relates y, x, and t is said to be a partial
differential equation and it is abbreviated as PDE.

An example of a partial differential equation is the well-known one-dimensional wave equation
shown below.

2 2
ay _ aza_g
ot? ox

Most engineering problems are solved with ordinary differential equations with constant coeffi-
cients; however, partial differential equations provide often quick solutions to some practical
applications as illustrated with the following three examples.

Example 5.3

The equivalent resistance Ry of three resistors R;, R,, and Ry in parallel is obtained from
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Given that initially R, = 5Q, R, = 20 Q, and R; = 4 Q, compute the change in Ry if R, is
increased by 10% and R; is decreased by 5% while R, does not change.
Solution:

The initial value of the equivalent resistance is Ry = 5(/201/4 = 2 Q.

Now, we treat R, and R; as constants and differentiating Ry with respect to R, we get

(ARt 1 o Ry (R_T)z
Similarly,

6R; (Ry)2 OR;  (Rr\2
___T:(_I) and __I:(_T)
R, Ry 9R3 Rs

and the total differential dRy is

R+

S+ Sty = () om (7 ey (e

OR
oR, oR, R, R, R,

By substitution of the given numerical values we get

dR; = (% )2(0)+(%)2(2)+(§)2(-o.2) = 0.02-0.05 = -0.03

Therefore, the eequivalent resistance decreases by 3%.
Example 5.4

In a series RC electric circuit that is excited by a sinusoidal voltage, the magnitude of the imped-

ance Z is computed from Z = R+ X.” . Initially, R = 4 Q and X = 3 Q. Find the change in

the impedance Z if the resistance R is increased by 0.25 Q (6.25%) and the capacitive reactance
Xc is decreased by 0.125 Q (-4.167%).

Solution:
_ . . o oZ 0z o
We will first find the partial derivatives R and ok then we compute the change in impedance
C
from the total differential dZ. Thus,

5-4 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



Solutions of Ordinary Differential Equations (ODE)

%z—R and Ez—xc
oR R2+XC2 oX¢ /R2+XC2
and
R dR + X dX
dz = Z gr+ 2% dx, = —— el

OR 0X¢ /R 2 N XCZ

and by substitution of the given values

_ 4(025)+3(-0.125) _ 1 -0375
e :

Therefore, if R increases by 6.25% and X decreases by 4.167%, the impedance Z increases by

4.167%.

dz = 0.125

Example 5.5

A light bulb is rated at 120 volts and 75 watts. If the voltage decreases by 5 volts and the resis-
tance of the bulb is increased by 8 Q, by how much will the power change?

Solution:

AtV = 120 volts and P = 75 watts, the bulb resistance is

2 2
V1200 _ 900
P 75
and since
2 2
P=\L then @ZQ/ and @z—\L
R oV R R~ g2
and the total differential is
_oP P .o 2V V2 2(120) 120 ..
dP = 55 dV+ 50 dR = 2 dV—RZdR T (—5)—1922(8) - _9.375

That is, the power will decrease by 9.375 watts.

5.3 Solutions of Ordinary Differential Equations (ODE)

A function y = f(X) is a solution of a differential equation if the latter is satisfied when y and its

derivatives are replaced throughout by f(x) and its corresponding derivatives. Also, the initial
conditions must be satisfied.
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For example a solution of the differential equation

2
g—%+y =0
dx
is
y = kysinx + k,cosx

since y and its second derivative satisfy the given differential equation.

Any linear, time-invariant system can be described by an ODE which has the form

N L P < Y
ndtn n—ldtn,l 1dt 0
d"x d™ 'x dx
_ bmdt—m+bm_1F+...+bl&+b0X (5.12)

Excitation (Forcing) Function x(t)
NON-HOMOGENEOUS DIFFERENTIAL EQUATION

If the excitation in (B12) is not zero, that is, if x(t) # 0, the ODE is called a non-homogeneous ODE.
If x(t) = 0, it reduces to:

dy,, 4"y dy oy =
andt” +an_ldt”’l Tt tagy = 0 (5.13)

HOMOGENEOUS DIFFERENTIAL EQUATION

The differential equation of (5.13) above is called a homogeneous ODE and has n different linearly
independent solutions denoted as y,(t), y,(t), y5(t), ..., Y, (1).

We will now prove that the most general solution of (5.13) is:
V() = Ky (D) + Ky Yo () + kg ys(t) + ... + Ky, (1) (5.14)

where the subscript H on the left side is used to emphasize that this is the form of the solution of
the homogeneous ODE and k, k, ks, ..., k, are arbitrary constants.

Proof:
Let us assume that y,(t) is a solution of (5.13); then by substitution,
d"y, d"” 1y1 dy,
anF-'_an_ldtn_l ot T Ay = 0 (5.15)
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A solution of the form k;y,(t) will also satisty (5.13) since

n n-1

d d d
an@(kl y1) + an—l@-_—z(kl Y+ ...+ ala‘t(kl Y1) +ag(ky yp)

] - (5.16)
_ K dy, d 'y, dy; ~0
= Ky| ap ot +a,_4 1 oA Ty =

Ify = y,(t) and y = y,(t) are any two solutions, then y = y,(t) + y,(t) will also be a solution

since
dnyl dn_lYl dy,
a, " +a,_4 R ot Tt agY) = 0
and
dnyz dn_le dy,
a, " +a,_ IR toetA T Ay, = 0
Therefore,
dn dn71 d
an@(y1 +Y,) + an_lm_l(y1 +Yo)+ ...+ ald—t(y1 +Y,) +ag(Yy +Ys) (5.17)
n n-1
d
= anﬁ y1+an_1dtn_ly1+...+a1d_ty1+aoy1
n n-1
d
+an@y2+a”‘ld_tn—1y2+“'+a1d_t Yo+ayY, =0

In general, if
y= Kyy1(1), kpy1 (), Kgys(t), ..o Kpyn(t)

are the n solutions of the homogeneous ODE of (5.13), the linear combination

is also a solution.

In our subsequent discussion, the solution of the homogeneous ODE, i.e., the complementary
solution, will be referred to as the natural response, and will be denoted as yy (t) or simply yy . The
particular solution of a non-homogeneous ODE will be referred to as the forced response, and will
be denoted as yg(t) or simply yg . Accordingly, we express the total solution of the non-homoge-
neous ODE of (5.12) as:

Y(O) = Y Natural *Y Forced = YNTYE (5'18)

Response Response
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The natural response y, contains arbitrary constants and these can be evaluated from the given
initial conditions. The forced response yg , however, contains no arbitrary constants. It is impera-

tive to remember that the arbitrary constants of the natural response must be evaluated from the
total response.

5.4 Solution of the Homogeneous ODE

Let the solutions of the homogeneous ODE

d’y d"" 'y dy
a”dt”+a”‘1dtn*1+'”+aldt+a0y = (5.19)
be of the form
y = ke (5.20)

Then, by substitution of (5.20) into (5.19) we get

t -1 st t t
a ks'e” +a, ,ks" "e" +..+a kse” +a ke’ =0

or

(a,s"+a, ;5" T+..+a;5+a,)ke” = 0 (5.21)
We observe that (5.21) can be satisfied when
(a,s"+a, ;" "+..+a;5+a) =0 or k=0 or s = - (5.22)

but the only meaningful solution is the quantity enclosed in parentheses since the latter two yield
trivial (meaningless) solutions. We, therefore, accept the expression inside the parentheses as the
only meaningful solution and this is referred to as the characteristic (auxiliary) equation, that is,

as'+a .s" '+ .. +a;s+a, =0
n n-1 1 0 —
(5.23)

Characteristic Equation

Since the characteristic equation is an algebraic equation of an nth-power polynomial, its solutions
are Sy, Sy, S, ---» Sy, and thus the solutions of the homogeneous ODE are:

s,t

— ke (5.24)

st s,t S,t
y1=klel, y2=k2e2, y3=k363,, yn n
Case I - Distinct Roots

If the roots of the characteristic equation are distinct (different from each another), the n solu-
tions of (5.23) are independent and the most general solution is:
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st 5t St
yN:kle +k2e +...+kne

FOR DISTINCT ROOTS

(5.25)

Case II - Repeated Roots

If two or more roots of the characteristic equation are repeated (same roots), then some of the
terms of (5.24) are not independent and therefore (5.25) does not represent the most general solu-
tion. If, for example, s; = s,, then,

5.t

st 5, t

5t 5.t 5 t
kle + kze = kle + kze = (kl + kz)e = k3e

and we see that one term of (5.25) is lost. In this case, we express one of the terms of (5.25), say

5;t 5, , ,
ke ' as kyte . These two represent two independent solutions and therefore the most general

solution has the form:

yy = (kg + kzt)eSlt + k3eS3t +oF kneSnt (5.26)

If there are m equal roots the most general solution has the form:

_1. Sit S,t syt
yy = (kK +kot+ . +k t" e +k,_ e’ +... +ke (5.27)

FOR M EQUAL ROOTS

Case III - Complex Roots

If the characteristic equation contains complex roots, these occur as complex conjugate pairs.
Thus, if one root is 5; = —a +jB where a and B are real numbers, then another root is

s, = —a—jp. Then,

ST Syt Gt Pt —aipt ot Jpt Bt
ket +kpe? = ke “HP e TIPS e el ke P

e (K, cospt + jk, sin Bt + k, cos Bt—jk,sinBt)

e *[(ky + k,)cosBt + j(k; — k,)sinpt]

e *(kycospt + k,sinpt)= e *'kcos(Bt + ¢)
FOR TWO COMPLEX CONJUGATE ROOTS

(5.28)

If (5.28) is to be a real function of time, the constants k; and k, must be complex conjugates. The

other constants kg, k,, ks, and the phase angle ¢ are real constants.

The forced response can be found by

a. The Method of Undetermined Coefficients or
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b. The Method of Variation of Parameters
We will study the Method of Undetermined Coefficients first.

5.5 Using the Method of Undetermined Coefficients for the Forced Response

For simplicity, we will only consider ODEs of order 2. Higher order ODEs are discussed in differ-
ential equations textbooks.

Consider the non-homogeneous ODE

a;lTZ + bdgty +cy = f(x) (5.29)

where a, b, and ¢ are real constants.

We have learned that the total (complete) solution consists of the summation of the natural and
forced responses.

For the natural response, if y; and y, are any two solutions of (5.29), the linear combination

Y3 = kyy; +kyy,, where k; and k, are arbitrary constants, is also a solution, that is, if we know

the two solutions, we can obtain the most general solution by forming the linear combination of
y; and y,. To be certain that there exist no other solutions, we examine the Wronskian Determi-

nant defined below.

Y1 Yo d d
W(y,. Y2 )= g d = NhgYe Vo # 0 (5.30)
dx 1 dx?2
WRONSKIAN DETERMINANT

If (5.30) is true, we can be assured that all solutions of (5.29) are indeed the linear combination of
y, and y,.

The forced response is obtained by observation of the right side of the given ODE as it is illus-
trated by the examples that follow.

Example 5.6
Find the total solution of the ODE

2
Y, 4 3y - 0 (5.31)
at? dt
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subject to the initial conditions y(0) = 3 and y'(0) = 4 where y' = dy/dt
Solution:

This is a homogeneous ODE and its total solution is just the natural response found from the char-

acteristic equation s” +4s+3 = 0 whose roots are 5, = —1 and s, = -3. The total response is:
~t -3t
The constants k; and k, are evaluated from the given initial conditions. For this example,

or
k,+k, =3 (5.33)
Also,
y) =4 =% - ket 3ke™
at),_,
or
_k, -3k, = 4 (5.34)

Simultaneous solution of (5.33) and (5.34) yields k; = 6.5 and k, = -3.5. By substitution into
(5.32), we get

y(t) = yy(t) = 65e " -35e (5.35)
Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4")

y:
(=7/2*%exp(-3*t) *exp(t)+13/2) /exp(t)

pretty(y)
- 7/2 exp(-3 t) exp(t) + 13/2

The function y = f(t), shown in Figure 5.1 was plotted with the use of the MATLAB command
ezplot(y,[0 10]).
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1372 exp(1)-7/2 exp{-3 1)
T T T T T T T T

Figure 5.1. Plot for the function y = f(t) of Example 5.6.

Example 5.7
Find the total solution of the ODE

dy , ,dy _ g2t
+4=L 43y = 3e (5.36)
at? At

subject to the initial conditions y(0) = 1 and y'(0) = -1
Solution:

The left side of (5.36) is the same as that of Example 5.6.Therefore,
(We must remember that the constants k; and k, must be evaluated from the total response).

To find the forced response, we assume a solution of the form
Vg = Ae™ (5.38)

We can find out whether our assumption is correct by substituting (5.38) into the given ODE of
(5.36). Then,

4Ae " _8Ae " +3Ae7 = 37 (5.39)
from which A = -3 and the total solution is
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-3t

y(t) = yy+ Ve = ke +kpe 3¢ (5.40)

The constants k; and k, are evaluated from the given initial conditions. For this example,

y(0) = 1 = ke’ +ke’ -3¢’

or
ki +k, =4 (5.41)
Also,
vy g dy I -3t -2t
y'(0) = -1 = dtt:o_ ke —3k,e " +6e o
or
-k; -3k, = -7 (5.42)

Simultaneous solution of (5.41) and (5.42) yields k; = 2.5 and k, = 1.5. By substitution into
(5.40), we get

y(t) = yN+YE = 25+ 153 3¢ (5.43)
Check with MATLAB:

y=dsolve(D2y+4*Dy+3*y=3*exp(-2*t)', 'y(0)=1', 'Dy(0)=-1)

y =
(-3*exp (-2*t) *exp (t)+3/2%*exp (-3*t) *exp(t)+5/2) /exp(t)
pretty(y)
-3 exp(-2 t) exp(t) + 3/2 exp(-3 t) exp(t) + 5/2
exp(t)
ezplot(y,[0 8])

The plot is shown in Figure 5.2

Example 5.8
Find the total solution of the ODE

dy , ody _
22 +6=%+9y =0 (5.44)
dt2 dt

subject to the initial conditions y(0) = -1 and y'(0) = 1
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Figure 5.2. Plot for the function y = f(t) of Example 5.7.

Solution:

This is a homogeneous ODE and therefore its total solution is just the natural response found

. .2
from the characteristic equation s+ 6s+9 = 0 whose roots are s; = s, = -3 (repeated roots).
Thus, the total response is

y(t) = yy = ke Ptk te™! (5.45)
N 1 2

Next, we evaluate the constants k; and k, from the given initial conditions. For this example,

y(0) = -1 = ke’ +k,(0)e’

or
o - -1 (5.46)
Also,
y) =1 =% = _3ke+ke -3k te™
dt|, _, t=0
or
3k, +ky = 1 (5.47)

From (5.46) and (5.47) we get yields k; = -1 and k, = —2. By substitution into (5.45),

y(1) e o™ (5.48)

Check with MATLAB:
y=dsolve(D2y+6*Dy+9*y=0', 'y(0)=—1', Dy(0)=1)
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y:
—exp(-3*t)-2*exp(-3*t) *t

ezplot(y,[0 4])
The plot is shown in Figure 5.3.

exp{-31)2 exp(-31)t
T

Figure 5.3. Plot for the function y = f(t) of Example 5.8.

Example 5.9
Find the total solution of the ODE

dy g4y, 6y = 3¢ (5.49)
2 dt

Solution:

No initial conditions are given; therefore, we will express the solution in terms of the constants k,
and k, . By inspection, the roots of the characteristic equation of (5.48) are s; = -2 and s, = -3

and thus the natural response has the form

-2t -3t

Yy = ke T +k,e (5.50)
Next, we find the forced response by assuming a solution of the form
Vg = Ae™* (5.51)

We can find out whether our assumption is correct by substitution of (5.51) into the given ODE of

(5.49). Then,
4Ae ' —10Ae ' + 6Ae Y = 3¢ (5.52)
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but the sum of the three terms on the left side of (5.52) is zero whereas the right side can never be
zero unless we let t — o and this produces a meaningless result.

The problem here is that the right side of the given ODE of (5.49) has the same form as one of the

terms of the natural response of (5.50), namely the term k; e .

To work around this problem, we assume that the forced response has the form
yp = Ate™ (5.53)

that is, we multiply (5.51) by t in order to eliminate the duplication of terms in the total response.
Then, by substitution of (5.53) into (5.49) and equating like terms, we find that A = 3. There-
fore, the total response is

y(t) = yy+ Vg = kle_2t+ k2e_3t+ 3te™ (5.54)
Check with MATLARB:
y=dsolve('D2y+5*Dy+6*y=3"exp(-2*1)')

y:
-3*exp(-2*t)+3*t*exp (-2*t)+Cl*exp (-3*t) +C2*exp (-2*t)

We observe that the first and last terms of the displayed expression above have the same form and
thus they can be combined to form a single term C3*exp (-2*t) .
Example 5.10

Find the total solution of the ODE
ﬂ+ 5gy+6y = 4cosbt (5.55)
atzdt

Solution:

No initial conditions are given; therefore, we will express solution in terms of the constants k;

and k,. We observe that the left side of (5.55) is the same of that of Example 5.9. Therefore, the

natural response is the same, that is, it has the form

-2t

yy = ke ke (5.56)

Next, to find the forced response and we assume a solution of the form

yg = Acosbt (5.57)

We can find out whether our assumption is correct by substitution of the assumed solution of
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(5.57) into the given ODE of (5.56). Then,
— 25Acos5t — 25Asin5t + 6Acos5t = — 19Acos5t — 25Asin5t = 4cos5t

but this relation is invalid since by equating cosine and sine terms, we find that A = —-4,/19 and
also A = 0. This inconsistency is a result of our failure to recognize that the derivatives of Acos5t

produce new terms of the form Bsin5t and these terms must be included in the forced response.
Accordingly, we let
Y = kgsin5t + k,cos5t (5.58)

and by substitution into (5.54) we get

—25k4sin5t — 25k, cos5t + 25k, cos5t — 25k, sin5t + 6k5sin5t + 6k, cos5t = 4cos5t

Collecting like terms and equating sine and cosine terms, we obtain the following set of equations

19K, + 25k, = 0

(5.59)
25k, 19k, = 4
We use MATLAB to solve (5.59)
format rat; [k3 k4]=solve(19*x+25y, 25*x—19*y—4)
k3 =
50/493
kd =
-38/493
Therefore, the total solution is
-2t -3t 50 . -38
y(t) = yy+Ye(t) = ke " +ke T+ 193 sin5t + 293 cos5t (5.60)

Check with MATLAB:
y=dsolve('D2y+5*Dy+6*y=4*cos(5*t)"); y=simple(y)

y:
-38/493*cos (5*t)+50/493*sin(5*t)+Cl*exp (-3*t)+C2*exp (-2*t)

In most engineering problems the right side of the non-homogeneous ODE consists of elementary

functions such as k (constant), x" where n is a positive integer, e, coskx, sinkx, and linear
combinations of these. Table 5.1 summarizes the forms of the forced response for a second order
ODE with constant coefficients.

We must remember that if f(t) is the sum of several terms, the most general form of the forced
response Yg(t) is the linear combination of these terms. Also, if a term in yg(t) is a duplicate of a
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term in the natural response yy(t), we must multiply yg(t) by the lowest power of t that will

eliminate the duplication.

TABLE 5.1 Form of the forced response for 2nd order differential equations

2
Forced Response of the ODE ad—Y + bd—)f/ +cy = f(b)

dt* d
f (1) Form of Forced Response yg (1)
k (constant) K (constant)
kt" (n= positive integer) Kot"+K; "+ K, t+K,
ke" (r =real or complex) Ke'

kcosat or ksinat (a =constant) | K;cosat + K,sinat

kt"e ' cosat or kt"e 'sinat (Kot"+ K t" T 4K, t+K e cosat

1

+ (Kot"+ K t" T+ K, g t+ K e sinat

Example 5.11

Find the total solution of the ODE
d_zy + 4gy +4y = te 2 e (5.61)
dt2 dt
Solution:
No initial conditions are given; therefore we will express solution in terms of the constants k; and
k,. The roots of the characteristic equation are equal, that is, s; = s, = -2, and thus the natural

response has the form
yy = ke 2k te ! (5.62)

To find the forced response (particular solution), we refer to the table of the previous page and
from the last row we choose the term kt"e"'cosat. This term with n = 1, r = =2, and a = 0,
reduces to kte ?'. Therefore the forced response will have the form

Ve = (kgt+kye™ (5.63)

But the terms e %' and te ™' are also present in (5.61); therefore, we multiply (5.62) by t? to
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obtain a suitable form for the forced response which now is
ye = (kyt® + Kk t)e™ (5.64)

Now, we need to evaluate the constants k; and k,. This is done by substituting (5.64) into the
given ODE of (5.61) and equating with the right side. We use MATLAB do the computations as

shown below.

syms t k3 k4 % Define symbolic variables
fO=(k3*t"3+k4*t"2)*exp(-2*t); % Forced response (5.64)

f1=diff(f0); f1=simple(f1) % Compute and simplify first derivative

f1 =

-t*exp (-2*t) * (-3*k3*t-2*k4+2*k3*t"2+2*kd*t)

f2=diff(f0,2); f2=simple(f2) % Compute and simplify second derivative

f2 =

2%exp (-2*t) * (3*k3*t+kd-6*k3*t"2-4*kd*t+2*k3*£"3+2*kd*£"2)
f=f2+4*f1+4*f0; f=simple(f) % Form and simplify the left side of the given ODE

f = 2% (3*k3*t+kd) *exp(-2*t)
Finally, we equate £ above with the right side of the given ODE, that is

23Kkt + ket = te X - e (5.65)
and we find k; = 1/6 and k, = —-1/2. By substitution of these values into (5.64) and combining
the forced response with the natural response, we get the total solution

_ - -2
+k,te 2y %tse 2 %tze t (5.66)

y(t) = ke

We verify this solution with MATLAB as follows:
z=dsolve('D2y+4*Dy+4*y=t*exp(—2*t)-exp(—2*t)')

7z =
1/6%exp (-2*t)*t"3-1/2%exp (-2*t) *t"2
+Cl*exp (-2*t)+C2*t*exp (-2*t)

5.6 Using the Method of Variation of Parameters for the Forced Response

In certain non-homogeneous ODEs, the right side f(t) cannot be determined by the method of
undetermined coefficients. For these ODEs we must use the method of variation of parameters.
This method will work with all linear equations including those with variable coefficients such as
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d—zg + a(t)gY +B(h)y = f(t) (5.67)
dt dt
provided that the general form of the natural response is known.

Our discussion will be restricted to second order ODEs with constant coefficients.

The method of variation of parameters replaces the constants k; and k, by two variables u; and

u, that satisfy the following three relations:

y=Uuhth, (5.68)
dy, du,
it =0 (5.69)

du, dy, du, dy,
gt dt Tt gt - (5.70)

Simultaneous solution of (5.68) and (5.69) will yield the values of du, /dt and du,/dt; then, inte-
gration of these will produce u; and u,, which when substituted into (5.67) will yield the total

solution.
Example 5.12
Find the total solution of
2
d—Y+4g*Y+3y =12 (5.711)
gt dt

in terms of the constants k; and k, by the

a. method of undetermined coefficients
b. method of variation of parameters
Solution:

With either method, we must first find the natural response. The characteristic equation yields
the roots s; = -1 and s, = 3. Therefore, the natural response is

a. Using the method of undetermined coefficients we let yp = k3 (a constant). Then, by substitu-

tion into (5.70) we get k; = 4 and thus the total solution is
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t

y(1) = YN+ YE = kle_t+k2e_3 +4

(5.73)

b. With the method of variation of parameters we start with the natural response found above as

(5.71) and we let the solutions y, and y, be represented as

y, = e and Y, = e (5.74)
Then by (5.68), the total solution is
y = Uy +Uzy,
or
y= ule_t + uze_3t (5.75)
Also, from (5.69),
du, du,
a2 =0
or
du; ; du, 5
T =0 (5.76)
and from (5.70),
du, dy; du, dy,
g dttar e o
or
du, o du, g
e+ —2(3e ) = 12 (5.77)
Next, we find du, /dt and du,/dt by Cramer’s rule as follows:
0 o3t
-3t -3t -3t
du; _ 12 : _3e3t _ _1fte _ = _12e4t _ 66! (5.78)
dt e e -3¢ +e -2e
e 3¢
and
e 0
d ot —t
au, _ |-e . 12 _ 12e4t _ _gedt (5.79)
dt -2e -2e
Now, integration of (5.78) and (5.79) and substitution into (5.75) yields
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u, = GJ‘etdt = 6e' +k, u, = —6je3tdt = 2% 4k, (5.80)
y = ule_t+ uze_3t = (6et+ kl)e_t+ (—2e3t+ kz)e_3t (5.81)
We observe that the last expression in (5.81) is the same as (5.73) of part (a).
Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=12")
y' =
(d*exp(t)+Cl*exp (-3*t) *exp (t)+C2) /exp (t)
Example 5.13
Find the total solution of
2
dY | 4y = tan2t (5.82)

dt?
in terms of the constants k; and k, by any method.

Solution:

This ODE cannot be solved by the method of undetermined coefficients; therefore, we will use
the method of variation of parameters.

The characteristic equation is s +4 = 0 from which s = +j2 and thus the natural response is

We let
y; = cos2t and vy, = sin2t (5.84)
Then, by (5.68) the solution is
Yy = WY, +UyY, = U;C0S2t+ u,sin2t (5.85)
Also, from (5.69),
du,  du,
FTRRArTE VA 0
or
du; du, .
m cos2t + —dt—sm2t =0 (5.86)
5-22 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition

Orchard Publications



Expressing Differential Equations in State Equation Form

and from (5.70),

du, dy, du2 dy,

du
b e f(t)———( 2sm2t)+—(2coszt)_ tan 2t (5.87)

Next, we find du;/dt and du,/dt by Cramer’s rule as follows:

0 sin2t sin’2t
du _ Jtan2t 2c052t‘ _ ~ cos2t _ —sin’2t (5.88)
dt cos2t sin2t 200522t + 2sin?2t  2C0S2t
‘—ZsinZt ZCOSZt‘
and
cos2t 0
C_i(;tg _ ‘—ZSiHZt . tanZt‘ _ sir;Zt (5.89)

Now, integration of (5.88) and (5.89) and substitution into (5.85) yields

sin 2t _ sm2t
2J- cosZt In(seth + tan2t) + k; (5.90)
1o _ _ cos2t
u, = 2J‘s.mtht == +k, (5.91)

sin2tcos2t 1 sin2tcos 2t

Yy = Wy, +Uy, = 2 ZcosZtIn(seth + tan2t) + k, cos2t — +Kk,sin2t
(5.92)
= - %cosZtIn(seth + tan2t) + k; cos2t + k,sin2t
Check with MATLAB:

y=dsolve('D2y+4*y=tan(2*t)')

y =
-1/4*cos(2*t)*log((1l+sin(2*t))/cos(2*t))+Cl*cos(2*t)+C2*sin(2*t)
5.7 Expressing Differential Equations in State Equation Form

A first order differential equation with constant coefficients has the form

alda),f +a, Y(t) = x(t) (5.93)

In a second order differential equation the highest order is a second derivative.

An nth-order differential equation can be resolved to n first-order simultaneous differential equa-
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tions with a set of auxiliary variables called state variables. The resulting first-order differential
equations are called state space equations, or simply state equations. The state variable method offers
the advantage that it can also be used with non-linear and time-varying systems. However, our
discussion will be limited to linear, time-invariant systems.

State equations can also be solved with numerical methods such as Taylor series and Runge-Kutta
methods; these will be discussed in Chapter 9. The state variable method is best illustrated
through several examples presented in this chapter.

Example 5.14

A system is described by the integro-differential equation
Coodi 1pt L et
Ri + Ldt+ CJ.,ooldt =e (5.94)

Differentiating both sides and dividing by L we get

d’t  Rdi 1. 1. jot

dt2+Ldt+LC| = [loe (5.95)
or

d’t _ Rdi 1. 1. jot

—dtz = qt Lc Tiiee (5.96)

Next, we define two state variables x; and x, such that

X, = i (5.97)
and
_di _odxg _
=g T N (5.98)
Then,
x, = d%i/dt? (5.99)

where x, denotes the derivative of the state variable x, .

From (5.96) through (5.99), we obtain the state equations

X1=X2

R
X2 = —[Xz

L+ Loe! (5100
Lot
It is convenient and customary to express the state equations in matrix form. Thus, we write the
state equations of (5.100) as
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X 0 1 X 0
M=l 1 Rt ey (5.101)
X, e X | lee
We usually write (5.101) in a compact form as
X = Ax+bu (5.102)
where
X o 1 X 0 .
x= " A = 4 R, x=1", b=1q, jof» @nd u = any input (5.103)
*, L X, [ Joe

The output y(t) is expressed by the state equation
y = Cx+du (5.104)

where C is another matrix, and d is a column vector. Therefore, the state representation of a sys-
tem can be described by the pair of the of the state space equations

X = AX+bu
= Cx+du (5.105)
The state space equations of (5.105) can be realized with the block diagram of Figure 5.1.
) i ¢
U b ) [t c @ y
+ +
A
d
Figure 5.4. Block diagram for the realization of the state equations of (5.105)

We will learn how to solve the matrix equations of (5.105) in the subsequent sections.
Example 5.15
A fourth-order system is described by the differential equation
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dty d%y dy _dy
;T g A taig +a y(t) = u(t) (5.106)
dt dt dt
where y(t) is the output and u(t) is any input. Express (5.15) as a set of state equations.

Solution:

The differential equation of (5.106) is of fourth-order; therefore, we must define four state vari-
ables that will be used with the resulting four first-order state equations.

We denote the state variables as x;, X,, X5, and X,, and we relate them to the terms of the given
differential equation as

d d? d’
=yt = == x == (5.107)
dt dt? dt®
We observe that
Xl = XZ
Xz = X3
X3 = X, (5.108)
dYy _y, - -a
a = Xa = XXy — 8pX3—asX, + u(t)
dt
and in matrix form
Xy 0 1 0 O0f[X |0
X 10 0 1 00X 10,4 (5.109)
X, |0 0 0 1l|xj |o
X, - —a; -8, -] [x,| |1
In compact form, (5.109) is written as
X = Ax+bu (5.110)
where
Xy 0 1 0 O X1 0
X = XZ, A=| 0 0 1 0, x = |*2|, b=0, and u = u(t)
%5 0 0 0 1 Xs 0
X, —dp —a; —a; —a4 X, 1
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5.8 Solution of Single State Equations

Let us consider the state equations
X

aX + Bu

J — oxs ko (5.111)

where o, B, k;, and k, are scalar constants, and the initial condition, if non-zero, is denoted as
We will now prove that the solution of the first state equation in (5.111) is

(t-

o t
X(t) = e tU)xo+e°‘t.|‘ e “"pu(r)de (5.113)
ty

Proof:

First, we must show that (5.113) satisfies the initial condition of (5.112). This is done by substitu-
tion of t = t; in (5.113). Then,

(t

t
X(ty) = € 7t°)x0+eatj' 0ef(”Bu(r)dr (5.114)
t0

The first term in the right side of (114) reduces to X, since

eot(to—to)

Xo = €%y = Xq (5.115)

The second term of (5.114) is zero since the upper and lower limits of integration are the same.
Therefore, (5.114) reduces to X(t;) = X, and thus the initial condition is satisfied.

Next, we must prove that (5.113) satisfies also the first equation in (5.111). To prove this, we dif-
ferentiate (5.113) with respect to t and we get

, _ Q a(t-1p) g at t -t
X(t) = dt(e X°)+dt{e J.toe Bu(r)dr}

t-1to)

t
x(t) = ae™ x0+ae‘“j e *pu(t)dr + e [e"pu()]|, _,
ty

t-t t_ _
= o{ea( 0)xo + e‘“j e OLTBu(r)dr} +e*'e 'pu(t)
ty

t
X(1)= OL[ea(t-to)XoJrJ- ea(t_T)Bu(r)dr}+Bu(t) (5.116)

ty
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We observe that the bracketed terms of (5.116) are the same as the right side of the assumed solu-
tion of (5.113). Therefore,

X = oX+ Bu

and this is the same as the first equation of (5.111). The second equation of (5.111) is an algebraic
equation whose coefficients are scalar constants.

In summary, if a and p are scalar constants, the solution of

X = aX+pBu (5.117)
with initial condition
X = X(tp) (5.118)
is obtained from the relation
a(t-ty) at t -at
x(t) = e Xp+e | e Bu(r)dr (5.119)

)

5.9 The State Transition Matrix
Let us again consider the state equations pair

X = AXx+bu

y = Cx+du (5.120)

where for two or more simultaneous differential equations A and C are 2 x 2 or higher order
matrices, and b and d are column vectors with two or more rows. In this section we will intro-

. . At . . 1 .
duce the state transition matrix e, and we will prove that the solution of the matrix differential
equation

X = Ax+bu (5.121)
with initial conditions
is obtained from the relation
~ t
x(t) = " t°)x0+eAtj e “bu(t)dt (5.123)

)

Proof:

Let A be any n x n matrix whose elements are constants. Then, another n x n matrix denoted as

o(t), is said to be the state transition matrix of (5.34), if it is related to the matrix A as the matrix
power series

At 1,22 1,33 1 nn
o(t)=e =I+At+2—!At +§At +"'+n_!At (5.124)
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where | is the n x n identity matrix.
From (5.124), we find that

A

00) = e = 1+A0+ ...

Differentiation of (5.124) with respect to t yields

o't = d%e’“ = 0+A-1+A%+

and by comparison with (5.124) we get

d At
= = A
dte e

At

. (5.125)

o= A+ AT (5.126)

(5.127)

To prove that (5.123) is the solution of the first equation of (5.120), we must prove that it satisfies

both the initial condition and the matrix differentia
from the relation

Aty —ty)
0 OX

Aty o -At
X(ty) = e o+e I e "bu(t)dt
ty

| equation. The initial condition is satisfied

= e"%,+0 = Ix, = X, (5.128)

where we have used (5.125) for the initial condition. The integral is zero since the upper and lower

limits of integration are the same.

To prove that the first equation of (5.120) is also satisfied, we differentiate the assumed solution

A(t-t, t_
X(t) = e ( 0)xo+eAt e "bu(t)dr

with respect to t and we use (5.127), that is,

d At
—e = Ae
dt
Then,
Adt-t L
X(t) = Ae ( °)x0+AeAtj e
to
or

At-t t_
x(t) = A[e ( 0)xo+e‘“j e " "bu(t
ty

t

At

bu(t)dt + eAtefAtbu(t)

)dr} + e Mpu(t) (5.129)

We recognize the bracketed terms in (5.129) as x(t), and the last term as bu(t) . Thus, the expres-

sion (5.129) reduces to
X(t) = Ax+

bu
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In summary, if A is an n x n matrix whose elements are constants, n>2, and b is a column vec-
tor with n elements, the solution of

X(t) = Ax+bu (5.130)
with initial condition
Xp = X(tg) (5.131)
is
B t
X(t) = ! to)x0+eAtI e *"bu(t)dt (5.132)
to

Therefore, the solution of second or higher order systems using the state variable method, entails

. . At . ‘
the computation of the state transition matrix e, and integration of (5.132).

. .o . At
5.10 Computation of the State Transition Matrix €

Let A be an n x n matrix, and | be the nxn identity matrix. By definition, the eigenvalues ;,

i =1,2,...,n of A are the roots of the nth order polynomial

det[A—Al] = 0 (5.133)

We recall that expansion of a determinant produces a polynomial. The roots of the polynomial of
(5.133) can be real (unequal or equal), or complex numbers.

Evaluation of the state transition matrix "' is based on the Cayley-Hamilton theorem. This theo-
rem states that a matrix can be expressed as an (n —1)th degree polynomial in terms of the matrix
A as

eM = al+a,A+a,A’+ ... +a, A"! (5.134)

where the coefficients a; are functions of the eigenvalues A . We accept (5.134) without proving

it. The proof can be found in Linear Algebra and Matrix Theory textbooks.

Since the coefficients a; are functions of the eigenvalues A, we must consider the following cases:

Case I: Distinct Eigenvalues (Real or Complex)

It Ay#hy#hg#... £ L, that is, if all eigenvalues of a given matrix A are distinct, the
coefficients a; are found from the simultaneous solution of the following system of equa-

tions:
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2 n-1 At
a0+a17\.1+a27\.1+...+an717\41 =€

2 n-1 Aot

3.0+ 6117\,2 + 6127\,2 + ...+ an_ly\,z =€ (5.135)
2 -1 At

Qo+ ah, +ah +...+a, Ay =€

Example 5.16

Compute the state transition matrix "' given that A = {_2 1}
0 —

Solution:

We must first find the eigenvalues A of the given matrix A. These are found from the expan-
sion of

det[A—Al] = 0
For this example,

deﬂA—lH-dﬁ{[Q ]}—x{l 0}}=(mtﬁ2_x‘ 1} -0
0 - 0 1 0 -1-1

(—2-2)(=1-2)=0

or
v+ 1)(L+2) = 0
Therefore,
Ay =-1 and %,=-2 (5.136)

Next, we must find the coefficients a; of (5.134). Since A is a 2 x 2 matrix, we only need to

consider the first two terms of that relation, that is,

e = a l +a,A (5.137)

The coefficients a, and a; are found from (5.137). For this example,

Ayt
3.0 + 6117\,1 =€
Aot
ap+aA, = €
or
ag+a(-1) = e
o+ y(=1) 2 (5.138)
a+a,(-2) =e !
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Simultaneous solution of (5.138) yields

-t -2t
a, = 2e -—e
(5.139)
-t -2t
a, =e -e
and by substitution into (5.137),
eAt _ (2e7t—efzt) 1 0 +(e7t—e72t) -2 1
0 1 0 -1
or
-2t -t -2t
At _ e e —e (5.140)
0 e

In summary, we compute the state transition matrix "' for a given matrix A using the follow-

ing procedure:

1. We find the eigenvalues A from det[A—Al] = 0. We can write [A—Al] at once by sub-
tracting A from each of the main diagonal elements of A. If the dimension of A isa 2 x 2
matrix, it will yield two eigenvalues; if it is a 3 x 3 matrix, it will yield three eigenvalues,

and so on. If the eigenvalues are distinct, we perform steps 2 through 4; otherwise we refer
to Case II below.

2. If the dimension of A is a 2 x 2 matrix, we use only the first 2 terms of the right side of the
state transition matrix

eM = al+a,A+a,A’+ ... +a, A" (5.141)

If A matrix is a 3 x 3 matrix, we use the first 3 terms, and so on.

3. We obtain the a; coefficients from

2 n-1 At
ao+al7\«l+az7\«l+...+an_l7\al =€

2 n-1 Aot
a0+al}\42+a2}\42+...+an_17\,2 =€

Aqt

n

2 -1
Qo+ A, +ahi+ ... +a, Ay = e
We use as many equations as the number of the eigenvalues, and we solve for the coeffi-

cients a;.

4. We substitute the a; coefficients into the state transition matrix of (5.141), and we sim-

plify.
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Example 5.17

i At
Compute the state transition matrix " given that

5 7 -5
A = 0 4 -1 (5142)
2 8 -3

Solution:
1. We first compute the eigenvalues from det[A—Al] = 0. We obtain [A-Al] at once, by

subtracting A from each of the main diagonal elements of A. Then,

5-A 7 -5
det[A-Al] = det| o 4-) -1 | =0 (5.143)

2 8 -3-A

and expansion of this determinant yields the polynomial

2261 +114-6 = 0 (5.144)
We will use MATLAB roots(p) function to obtain the roots of (5.57).

p=[1 -6 11 —6]; r=roots(p); fprintf(' \n'); fprintf(lambdal = %5.2f \t, r(1));...
fprintf('lambda2 = %5.2f \t', r(2)); fprintf(‘lambda3 = %5.2f", r(3))

lambdal = 3.00 lambda2 = 2.00 lambda3 = 1.00

and thus the eigenvalues are
=1 =2  A3=3 (5.145)

2. Since A is a 3 x 3 matrix, we need to use the first 3 terms of (5.134), that is,

e = aol +a,A + a,A’ (5.146)

3. We obtain the coefficients a,, a;, and a, from

2
ao + 6117\,1 + 6127\,1 =€

2 Aot
aO + 8.17\,2 + 8.27\,2 =€
2 gt
ao + 8.17\.3 + 8.27\.3 =€
or
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t

ao+al+a2 =€
2t
a,+2a,+4a, = e (5.147)
3t
a,+3a,+9%a, = e

We will use the following MATLAB code for the solution of (5.147).

B=sym([1 1 1;1 2 4;1 3 9]); b=sym('[exp(t); exp(2*t); exp(3*1)]"); a=B\b; fprintf(' \n');...
disp('a0 ="); disp(a(1)); disp(‘a1 = '); disp(a(2)); disp(‘a2 ="); disp(a(3))

a0 =
3*exp(t)-3*exp(2*t) +exp(3*t)
al =
-5/2*%exp(t)+4*exp (2*t) -3 /2*exp (3*t)
a2 =
1/2*exp(t)-exp(2*t)+1/2*exp(3*t)
Thus,

a, = 3e'—3e’' + e

5t 2t 3 3t
a, = —Ee +4e —Ee (5.148)
_ 1l 2t 13t
a, = 2e e -+2e

4. We also use MATLAB to perform the substitution into the state transition matrix, and to
perform the matrix multiplications. The code is shown below.

syms t; a0 = 3*exp(t)+exp(3*t)-3*exp(2*1); a1 = —-5/2*exp(t)-3/2*exp(3*t)+4*exp(2*1);...
a2 = 1/2%exp(t)+1/2*exp(3*t)—exp(2*t);...
A=[57 -5; 0 4 —1; 2 8 -3]; eAt=a0"eye(3)+al*A+a2*AN2

eAt =

[-2%exp (t)+2*exp (2*t)+exp (3*t),-6%*exp (L) +5*exp (2*t) +exp (3*t),
d*exp(t)-3*exp(2*t)-exp(3*t) ]
[-exp(t)+2*exp(2*t) —exp (3*t),-3*exp(t)+5*exp (2*t) -exp(3*t),
2*exp (t) -3*exp (2*t) +exp (3*t) ]

[-3*exp(t)+4*exp(2*t) -exp(3*t),-9%exp(t)+10*exp(2*t) -exp (3*t),
6*exp(t)-6*exp(2*t)+exp (3*t) ]

Thus,
—2e'+ 2e2t + e3t —6e' + 5e2t + e3t 4e' - 3e2t - e3t
At
€ = | Loty _3e'ye?t_e® 2e'_ 3%t 4 ¥
~3e'+ 4e2t - e3t —9¢e'+ 10e2t - e3t 6e'— 6’ + e
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Case II: Multiple Eigenvalues
In this case, we will assume that the polynomial of
detfA—2l] = 0 (5.149)

has n roots, and m of these roots are equal. In other words, the roots are

7\41 = 7\42= 7\,3... = 7\.m, ;\.m+1 y ;\.n (5-150)
The coefficients a; of the state transition matrix
e = agl+a,A+aA’+ . +a, A" (5.151)
are found from the simultaneous solution of the system of equations of (5.65) below.
_ At
ao+al7\al+a27\ai+...+an_l7\«2 ! =€ '
d 2 n-1 d Mt
_(a0+a1}\41+a2}\41++a _17\41 ) = —¢
di, " da,
d’ 2 n-1 d? ot
_(a0+a1}\41+a2}\41++a _17\41 ) = —¢
da? " da?
(5.152)
m-1 m-1
2 n-1 d Mt
_7(a0+a1}\41+a2}\41++a _17\41 ) = — e
dal? " day?
2 n-1 At
a0+a17\4m+1+a27\4m+1+...+an_l7\,m+l =€
. Dt
A+, A+ .. +a, A =g

Example 5.18

. At
Compute the state transition matrix " given that

=12

1. We first find the eigenvalues A of the matrix A and these are found from the polynomial of
det[A—Al] = 0. For this example,

Solution:
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det[A—al] = det|~ 1% 0] _g
2 —-1-x
= (c1-2)(=1-2)=0
= (A+1)%=0
and thus,
}\41 = }\42 = _1
2. Since A is a 2 x 2 matrix, we only need the first two terms of the state transition matrix,
that is,
e = a l+a,A (5.153)

3. We find a, and a; from (5.65). For this example,

At

|
D

d _d Mt
dxl(ao + 3.17\.1) - d7\'1e

or

|
9}

and by substitution with A, = A, = -1 , we get

—t
—t
Simultaneous solution of the last two equations yields

—t —t
a, = e +te

(5.154)
a; = te”
4. By substitution of (5.67) into (5.66), we get
“t
eM = (e +te) {1 0} +te™ {_1 0} —eftoe 0 (5.155)
0 1 2 -1 ote ! e

We can use the MATLAB eig(x) function to find the eigenvalues of an n x n matrix. To find out
how it is used, we invoke the help eig command.
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We will first use MATLAB to verify the values of the eigenvalues found in Examples 5.6 through
5.8, and we will briefly discuss eigenvectors on the next section.

For Example 5.6
A= [-2 1; 0 —-1]; lambda=eig(A)

lambda =
-2
-1

For Example 5.7
B=[57 -5 0 4 —1; 2 8 —3]; lambda=eig(B)

lambda =
1.0000
3.0000
2.0000

For Example 5.8
C =[-1 0;2 -1]; lambda=eig(C)

lambda =
-1
-1

5.11 Eigenvectors

Consider the relation
AX = AX (5.156)

where A is an n x n matrix, X is a column vector, and A is a scalar number. We can express this
relation in matrix form as

ayq 8gp ... Agp) | Xy X1
Anq Apg -+ App| | Xp Xn
We write (5.157) as
(A-AD)X = 0 (5.158)
or
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(A —A)Xy  apXy, ... Ay X,
Xy (Bp=A)Xp ... @)X, =0 (5.159)
a,1Xq a oX, (ann_}\')xn

The equations of (5.159) will have non-trivial solutions if and only if its determinant is zero , that
is, if

(A —2A) ap ... ay,
a,; a,, ... (@y—A)

Expansion of the determinant of (5.160) results in a polynomial equation of degree n in A, and it
is called the characteristic equation.

We can express (5.73) in a compact form as
det(A-Al) = 0 (5.161)

As we know, the roots A of the characteristic equation are the eigenvalues of the matrix A, and
corresponding to each eigenvalue A, there is a non-trivial solution of the column vector X, i.e.,
X #0. This vector X is called eigenvector. Obviously, there is a different eigenvector for each
eigenvalue. Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to
unit length. This is done by dividing each component of the eigenvector by the square root of the
sum of the squares of their components, so that the sum of the squares of their components is
equal to unity.

o o . T T
In many engineering applications the unit eigenvectors are chosen such that X - X' = | where X
is the transpose of the eigenvector X, and | is the identity matrix.

Two vectors X and Y are said to be orthogonal if their inner (dot) product is zero. A set of eigen-
vectors constitutes an orthonormal basis if the set is normalized (expressed as unit eigenvectors)
and these vector are mutually orthogonal. An orthonormal basis can be formed with the Gram-
Schmidt Orthogonalization Procedure; we will discuss it in Chapter 14.

The example that follows, illustrates the relationships between a matrix A, its eigenvalues, and
eigenvectors.

*, This is because we want the vector X in (5.158) to be a non-zero vector and the product (A-L1)X to be zero.
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Example 5.19

Given the matrix

5 7 -5
A=10 4 1
2 8 -3

a. Find the eigenvalues of A

b. Find eigenvectors corresponding to each eigenvalue of A

c. Form a set of unit eigenvectors using the eigenvectors of part (b).

Solution:

a. This is the same matrix as in Example 5.17, where we found the eigenvalues to be

=1  A=2  Ay=3
b. We start with

AX = AX
and we let
X1
X = X,
X3
Then,
5 7 5% X1
0 4 —1/|x| = Alx, (5.162)
2 8 -3J|xg X5
or
5X;  7X, -b5Xg AXq
2X; 8%, —-3X4 AXg
Equating corresponding rows and rearranging, we get
(5-2)x, X, —5X3 0
0 (4-M)x, X, | =10 (5.164)
2X, 8x, —(3-=2)X3 0
For A = 1, (5.164) reduces to
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3%, — % = 0 (5.165)

By Crame’s rule, or MATLAB, we get the indeterminate values
X; = 0/0 X, = 0/0 Xg = 0/0 (5.166)

Since the unknowns X;, X,, and x; are scalars, we can assume that one of these, say x,, is known,

and solve x; and x; in terms of x,. Then, we get x; = 2X,, and X5 = 3X,.

Therefore, an eigenvector for A = 1 is

X1 2X, 2
Xpc1= |X| = | %, | = X2|1] = |1 (5.167)
X3 3X%, 3
since any eigenvector is a scalar multiple of the last vector in (5.167).
Similarly, for A = 2, we get X; = X,, and X; = 2X,. Then, an eigenvector for A = 2 is
Xy Xz 1 1
Xpco= |X,| = | %, | = X2|1] = |1 (5.168)
X3 2X, 2 2
Finally, for A = 3, we get X, = —X,, and X3 = X,. Then, an eigenvector for L = 3 is
X1 —X3 -1 -1
Xozsz= |X| = [ X, | = X2| 1] = | 1 (5.169)
X3 X, 1 1

c. We find the unit eigenvectors by dividing the components of each vector by the square root of
the sum of the squares of the components. These are:

J22+1%4+3% = 14
J12+1%2+2%2 = . f6
J(-1)Y2+1%+1% = /3
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The unit eigenvectors are

2 1 -1
J14 /6 NE
3 2 1
J14] /6 J3|

We observe that for the first unit eigenvector the sum of the squares is unity, that is,
2 ) 2 ( 1 ) 2 ( 3 ) 2 4 1 9
— + | — +| — = — 4 — 4+ — = 1 (5171)
(A/14 J14 J14 14 14 14

and the same is true for the other two unit eigenvectors in (5.170).

5.12 Summary
¢ Differential equations are classified by:
Type - Ordinary or Partial
Order - The highest order derivative which is included in the differential equation

Degree - The exponent of the highest power of the highest order derivative after the differen-
tial equation has been cleared of any fractions or radicals in the dependent variable and its
derivatives

e [f the dependent variable y is a function of only a single variable x, that s, if y = f(x) , the dif-
ferential equation which relates y and x is said to be an ordinary differential equation and it is

abbreviated as ODE.

e If the dependent variable y is a function of two or more variables such as y = f(x, t), where x
and t are independent variables, the differential equation that relates y, x, and t is said to be
a partial differential equation and it is abbreviated as PDE.

e A function y = f(x) is a solution of a differential equation if the latter is satisfied when y and
its derivatives are replaced throughout by f(x) and its corresponding derivatives. Also, the ini-
tial conditions must be satisfied.

e The ODE
d"y d"ty dy _d"™x d" 'x dx
a, o +an_ldt”’l totag tagy = bmdt_m + bm_lF +...+ bla +byx
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is a non-homogeneous differential equation if the right side, known as forcing function, is not
zero. If the forcing function is zero, the differential equation is referred to as homogeneous dif-
ferential equation.

¢ The most general solution of an homogeneous ODE is the linear combination

where the subscript H is used to denote homogeneous and k, k,, kg, ..., k,, are arbitrary con-

stants.

¢ Generally, in engineering the solution of the homogeneous ODE, also known as the comple-
mentary solution, is referred to as the natural response, and is denoted as yy (t) or simply yy .
The particular solution of a non-homogeneous ODE is be referred to as the forced response,
and is denoted as yg(t) or simply yg . The total solution of the non-homogeneous ODE is the

summation of the natural and forces responses, that is,

Y(O) = Y Natural TY Forced = YNt VYE
Response Response

The natural response yy contains arbitrary constants and these can be evaluated from the
given initial conditions. The forced response y , however, contains no arbitrary constants. It is

imperative to remember that the arbitrary constants of the natural response must be evaluated
from the total response.

e For an nth order homogeneous differential equation the solutions are

st

s,t s,t S,t n
, Yo=koe ', yz=Kkse, .., y,=k,e

y1 = ke

where s,,'s,, ..., s, are the solutions of the characteristic equation

n n-1
a,s +a,_¢S ~+..+a;s+a; =0
and a,,a, i, ..., a;, 8y are the constant coefficients of the ODE

e If the roots of the characteristic equation are distinct, the n solutions of the natural response
are independent and the most general solution is:

St st

st
yy= ke +ket + .. +ke"

e If the solution of the characteristic equation contains m equal roots, the most general solution

has the form:

S1

t s,t s t
ye +k,_;e” "

e +...+k.e

m-1

Yn = (kg + Kot + .o+ Kt
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e [f the characteristic equation contains complex roots, these occur as complex conjugate pairs.

Thus, if one root is s; = —a +jB where a and B are real numbers, then another root is
s, = —o—jPB. Then, for two complex conjugate roots we evaluate the constants from the
expressions

kleSlt + kzeSzt = & *(kgcospt + k,sinpt)= e *'kgcos(Bt + @)

® The forced response of a non-homogeneous ODE can be found by the method of undeter-
mined coefficients or the method of variation of parameters.

e With the method of undetermined coefficients, the forced response is a function similar to the
right side of the non-homogeneous ODE. The form of the forced response for second order
non-homogeneous ODE:s is given in Table 5.1.

® In certain non-homogeneous ODEs, the right side f(t) cannot be determined by the method of
undetermined coefficients. For these ODEs we must use the method of variation of parameters.
This method will work with all linear equations including those with variable coefficients pro-
vided that the general form of the natural response is known.

e For second order ODEs with constant coefficients, the method of variation of parameters
replaces the constants k; and k, by two variables u; and u, that satisty the following three

relations:
y=uyut+thLy,

dy du,
G ht g 2 T 0
du; dy; du, dy,
gt dt Tar ar oW
Simultaneous solution of last two expressions above will yield the values of du;/dt and
du,/dt; then, integration of these will produce u; and u,, which when substituted into the
first will yield the total solution.
¢ An nth-order differential equation can be resolved to n first-order simultaneous differential

equations with a set of auxiliary variables called state variables. The resulting first-order differ-
ential equations are called state space equations, or simply state equations.

e The state representation of a system can be described by the pair of the of the state space equa-
tions

X = AXx+bu
y = Cx+du
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¢ In a system of state equations of the form

X
y

aX+ Bu
kX + k,u

where o, B, k;, and k, are scalar constants, and the initial condition, if non-zero is denoted as

Xo = X(tp), the solution of the first state equation above is
a(t-1tp) ot t -0t
x(t) = e Xo + € j e *"pu(t)dt
t

e [n a system of state equations of the form

X = AX+bu
y = Cx+du

where for two or more simultaneous differential equations A and C are 2 x 2 or higher order
matrices, and b and d are column vectors with two or more rows, the solution of the matrix
differential equation X = Ax+bu with initial conditions x(t,) = X, is obtained from the
relation

(t-t5) arp!

x(t) = ¢ X, + e[ e bu(r)d
tU

o At , . .
where the state transition matrix e is defined as the matrix power series

At 1,22 1 33 1
p(t)=e" = I+ At+ AT + ZAC + .+5Antn
and | is the n x n identity matrix.
e If A isan nxn matrix, and | be the nx n identity matrix, the eigenvalues %;, i = 1,2, ...,n
of A are the roots of the nth order polynomial
det[A—Al] = 0

. o AL, . .
e Evaluation of the state transition matrix e is based on the Cayley-Hamilton theorem. This
theorem states that a matrix can be expressed as an (n - 1)th degree polynomial in terms of

the matrix A as

At 2 -1
e = al+a,A+a,A +...+a, A"

where the coefficients a; are functions of the eigenvalues A .
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® If Ay#h,#hg#... 2L, that is, if all eigenvalues of a given matrix A are distinct, the coeffi-

cients a; are found from the simultaneous solution of the following system of equations:

2 n-1 At
ao+al7\«1+a27\«1+...+an_l7\al =€

2 -1 Aot
QoFah,+ @, + ... +a,_hy =g’

2 -1 At
Qo+ A, + ko + .. +a, Ay =€

e [f the polynomial of detfA—AI] = 0 has n roots, and m of these roots are equal, that is, if
A =Ay= Agee. = Ay, A1 Ay, the coefficients a; of the state transition matrix

At 2 n-1
e =al+aA+a,A +...+a,_ A

are found from the simultaneous solution of the system of equations below.

2 n-1 Mt
ao+al}\/l+a2}\/1+...+an_1}\41 =€
d 2 n-1 d Mt
(a0+a17\.1+a27\.1+...+an_17\.l )= —¢€
d’ 2 -1 d? it
—2(3.0 + 6117\,1 + 3.27\,1 + ...+ an_lxg ) = _2 !
2 da?
m-1 m-1
2 n-1 d At
mil(a0+a17\41+a27\41+...+an_l7\41 )= mile
di, di,
A 32 an-1 Aot
Aot A1t QAnrt o 8y gAne = €

Ant

n

2 -1
g+ Ak, + Ak +...+a, Ay =€

e We can use the MATLAB eig(x) function to find the eigenvalues of an n x n matrix.

e [f A isan nxn matrix, X is a non-zero column vector, and A is a scalar number, the vector X
is called eigenvector. Obviously, there is a different eigenvector for each eigenvalue. Eigenvec-
tors are generally expressed as unit eigenvectors, that is, they are normalized to unit length. This
is done by dividing each component of the eigenvector by the square root of the sum of the
squares of their components, so that the sum of the squares of their components is equal to
unity.
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5.13 Exercises
Solve the following ODEs by any method and verify your answers with MATLAB.

2
1. g—¥+4c—iy+3y

t—1
gtz dt

2
2. i—tg+4da¥+3y = 2¢™

2
3. OI—Y+2g¥+y = cos’t Hint: Use cos’t = L cos2t+1
2 dt 2
dt

2

4. —¥+y = sect
dt

5 Express the integro-differential equation below as a matrix of state equations where
kq, Ky, and kg are constants.

2 t
dv. + ksd—v + kv + klj vdt = sin3t+ cos3t
dt? dt 0

6. Express the matrix of the state equations below as a single differential equation, and let
x(y) = y(0).

Xy 0O 1 0 O X1 0
X5 _ 0 0O 1 O BRY) " 0 u(t)
X3 0 0 0 1 X3 0
X, -1 -2 -3 4 X, 1

7. Compute the eigenvalues of the matrices A, B, and C below.

0 1 0
A:{l 2} B:{a o} c=lo o 1

3 a b 6 11 -6
Hint: One of the eigenvalues of matrix Cis 1.
8. Compute e*' given that
0 1 0
A=10 0 1
-6 -11 -6
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5.14 Solutions to Exercises

1. The characteristic equation of the homogeneous part is s’ +4s+3 = 0 from which s; =-1

and s, = -3. Thus yy = k,e ' +k,e " For the forced response, we refer to Table 5.1 and we

assume a solution of the form yg = kst +k, and the total solution is
y = ke '+ kpe kot +k,

The first and second derivatives of y are

t

dy/dt = —kye ' —3k,e 4+ kg

d?y/dt* = kpe '+ ke
and by substitution into the given ODE

Equating like terms we get

and simultaneous solution of the last two yields k; = 1/3 and k, = -7/9. Therefore,

-t 3t 1 7
y = k;e +kye +§t—§

Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=t—1’); y=simple(y)

v =

-7/9+1/3*t+Cl/exp(t)+C2/exp(t) "3

2. The characteristic equation of the homogeneous part is the same as for Exercise 1 and thus
YN = kle_t + kze_3t . For the forced response, we refer to Table 5.1 and we assume a solution of
the form yg = k3te7t where we multiplied ™ by t to avoid the duplication with k,e™". By sub-

stitution of this assumed solution into the given ODE and using MATLAB to find the first and
second derivatives we get:

y = kle_t + kze_3t + k3te_t
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We will use MATLAB to find the first and second derivatives of this expression.

syms t k3 % Define symbolic variables
y0=k3*t*exp(-t); % Assumed form of total solution
y1=diff(y0); f1=simple(y1) % Compute and simplify first derivative
f1 =

-k3*exp(-t) *(-1+t)
Thus, the first derivative of yg is
dy: /dt = kee " —kgte™
y2=diff(y0,2); f2=simple(y2) % Compute and simplify second derivative

f2 =
k3*exp (-t) * (-2+t)

and the second derivative of y is
d%ye /dt® = — 2kge "+ kyte™

f=y2+4*y1+3*y0; f=simple(f) % Form and simplify the left side of the given ODE

f =
2*k3/exp (t)

and by substitution into the given ODE
2k3e7t = 4e™
or ky = 2. Therefore,
y = kle_t+ k2e_3t+ 2te”
Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=4*exp(-t)'); y=simple(y)
2*t/exp(t)-1/exp(t)+Cl/exp(t)+C2/exp(t) "3

We observe that the second and third terms of the displayed expression above have the same
form and thus they can be combined to form a single term C3/exp (t) .

3. The characteristic equation yields two equal roots s; = s, = —1 and thus the natural response
has the form

—t —t
For the forced response we assume a solution of the form

Yg = k3cos2t+Kk,sin2t + kg
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We will use MATLAB to find the first and second derivatives of this expression.

syms t k1 k2 k3 k4 k5 % Define symbolic variables
y0=k3*cos(2*t)+k4*sin(2*1)+k5; % Assumed form of total solution
y1=diff(y0); f1=simple(y1) % Compute and simplify first derivative
f1 =

-2*k3*sin(2*t)+2*kd*cos (2*t)
Thus, the first derivative of yg is
dye /dt = —2kjssin2t + 2k, cos 2t

y2=diff(y0,2); f2=simple(y2) % Compute and simplify second derivative

f2 =
-4*k3*cos (2*t)-4*kd*sin(2*t)

and the second derivative of y is
d2yF /dt? = —4k;cos2t—4k,sin2t

f=y2+2*y1+y0; f=simple(f) % Form and simplify the left side of the given ODE

£ =
-3*k3*cos (2*t)-3*kd*sin(2*t)-4*k3*sin(2*t)+4*kd*cos (2*t) +kb

Simplifying this expression and equating with the right side of the given ODE we get:

(- 3ky + 4k,) OS2t — (4K + 3k,)sin2t + kg = 20_2% + %

Equating like terms and solving for the k terms we get

—3ky+4k, = 1/2

_4ky-3k, = 0
Simultaneous solution of the first two equations above yields k; = -3/50 and k, = 4/50.

Therefore, the forced response is

Y = (-3/50)cos2t + (4/50)sin2t+1/2

and the total response is

y = ket kote 2 - 3%043"12'[

Check with MATLAR:
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y=dsolve('D2y+2*Dy+y=cos(2*t)/2+1/2"); f=simple(y)
f =

-3/50*cos (2*t)+2/25*sin(2*t)+1/2+Cl*exp (-t) +C2*exp (-t) *t

4. It is very difficult, if not impossible, to assume a solution for the forced response of this ODE.

Therefore, we will use the method of variation of parameters.

The characteristic equation is s“ +1 = 0 from which s = +j and thus the natural response is

YN = klejt+k2e_jt
We let
y, = cost and vy, = sint
Then, by (5.68) the solution is
y = Wy, +Uyy, = u;cost+u,sint (1)
Also, from (5.69),

or
du, ) du, (=0
—L cost + —sint =
dt dt

and from (5.70),

du; dy; du, dyz_
dt dt T dt dt

Next, we find du;/dt and du,/dt by Cramer’s rule as follows:

0 sint

du,
f(t) = —( sint) + == a0t (cost) = sect

sint
du _ Jsect cost| _ __cost  _ —tant _ ... )
dt cost sint cos’t + sint 1
—sint cost
and
cost 0
du, |_sint sect] 1
@ 1 =171 0O

Integration of (2) and (3) above and substitution into (1) yields
u, = J-(—tant)dt = —(=Incost) + k; = Incost +k;

Up = fdt = t+k,
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y = uy; +Uyy, = (Incost+k;)cost+ (t+k,)sint
= kjcost+Kk,sint + tsint + cost(Incost)
Check with MATLAB:
y=dsolve('D2y+y=sec(t)'); f=simple(y)

f
sin(t) *t+log(cos(t)) *cos(t)+Cl*sin(t)+C2*cos (t)

5. Differentiating the given integro-differential equation with respect to t we get
dv’ dv? dv
ls + kg—z + k,=— + k;v = 3cos3t-3sin3t = 3(cos3t- sin3t)
a gt Cdt
or
dv® dv® | dv
is = —k3—2—k2&—k1v +3(cos3t-sin3t) (1)
dt dt
We let
2
dv : dv
Then,
3
dt

and by substitution into (1)

X3:

Thus, the state equations are

and in matrix form

—Kk1X3 —KyX, — KgX5 + 3(cos3t — sin3t)

Xy

= —K;X; —KyX, — KgX5 + 3(cos3t — sin3t)

0 1 0 Xq 0
0 0 1|-|x,*|0f-3(cos3t-sin3t)
—ki —ky —k3] x| |2
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6. Expansion of the given matrix yields
X{ =Xy Xg =Xz Xz =Xy Xq4 = —Xq—2Xy—3X3—4X,+ U(t)

Letting x = y we get
4

3 2
d—L+4gY§+3gy—2+29d¥+y = u(t)

dt*  dt® dt
7.
a.
A=l 2 det(A—M):det[l 21 |1 OJ:detl"“ 2 -9
3 -1 3 - 01 3 -1-A
(1-2)(=1-2)-6=0,-1-A+A+2°-6 =0,1° = 7,and thus &y = /7 %, = -7
b.
B=|20 det(B—2l) = det( a 0)_,|1 Oj —det|2=* 0 | 9
-a b -a b 01 -a b-2
(a-2)(b-1) = 0,and thus A, = a A, =b
c.
0 1 0 0 1 0 100
C=1o 0 1 det(C-Al) = det| | o 0 1!/-2l010
-6 -11 -6 -6 -11 -6 001
- 1 0
=det| 9 _n 1 =0
-6 -11 —-6-A
A2(—6-2) -6 — (—11)(-1) = 2>+ 6A%+ 111 +6 = 0 and it is given that A, = —1. Then,
22+ 60°+110+6 _ .2
= 324546 = A+ 1)(h+2)(L+3) = 0
(A+1)
and thus A, = -1 Ay = =2 A = -3
8.
a. Matrix A is the same as Matrix C in Exercise 7. Then,
A=-1  A,=-2 A =-3
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and since A is a 3 x 3 matrix the state transition matrix is

Then,
2 Aqt —t
Q+yr +ah; = =az-a;+a,=¢€

2 Aot -2t

2 _ Mt -3t
Qo+ g+ a3 =€ =a;-3a;+9%,=¢

symst; A=[1 -1 1;1 -2 4;1 -3 9];...
a=sym('[exp(-1); exp(—2*1); exp(=3*1)]); x=A\a; fprintf(' \n);...
disp(‘a0 =); disp(x(1)); disp(‘a1 = '); disp(x(2)); disp(‘a2 =); disp(x(3))

a0 =

3*exp(-t)-3*exp(-2*t)+exp(-3*t)

al =
5/2*exp(-t)-4*exp(-2*t)+3/2*exp(-3*t)
az2 =
1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)
Thus,

-t -2t -3t
3e —3e " +3e

Q
S
I

a; = 25 —4e* + 157"

a, = 05e - +0.5e™"

Now, we compute ™ of (1) with the following MATLAB code:

syms t; a0=3*exp(-t)-3*exp(-2*t) + exp(-3*1); a1 =5/2*exp(-t)—4*exp(-2*t) +3/2*exp(-3*1);...
a2=1/2*exp(-t)—exp(-2*t) +1/2*exp(-3*t); A=[01 0; 0 0 1; -6 —11 —6]; fprintf(' \n');...
eAt=a0*eye(3)+al*A+a2*AN2

eAt =

[3*exp(-t)-3*exp(-2*t)+exp(-3*t), 5/2*%exp(-t)-4*exp(-2*t)+3/
2%*exp (-3*t), 1/2*%exp(-t)-exp(-2*t)+1/2*exp(-3*t) ]

[-3*exp(-t)+6*exp(-2*t)-3*exp(-3*t), -5/2%exp(-t)+8*exp (-
2*t)-9/2*exp (-3*t), -1/2*exp(-t)+2*exp(-2*t)-3/2*exp(-3*t)]
[3*exp(-t)-12*exp(-2*t)+9*exp (-3*t), 5/2*exp(-t)-16*exp(-
2*t)+27/2*exp (-3*t), 1/2*%exp(-t)-4d*exp(-2*t)+9/2%*exp (-
3*t) ]
Then,
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e -3¢ +e 25¢'-4e?'y15¢ 05e'—e?'+05e7"
At
= |3e '+ 6e -3 25 '+8e 45 _05e 420 -15¢7"
e _12e% 4+ 9e" 25e ' _16e ' +135e"  05et—de 4507
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Chapter 6

Fourier, Taylor, and Maclaurin Series

his chapter is an introduction to Fourier and power series. We begin with the definition of

sinusoids that are harmonically related and the procedure for determining the coefficients of

the trigonometric form of the series. Then, we discuss the different types of symmetry and
how they can be used to predict the terms that may be present. Several examples are presented to
illustrate the approach. The alternate trigonometric and the exponential forms are also presented.
We conclude with a discussion on power series expansion with the Taylor and Maclaurin series.

6.1 Wave Analysis

The French mathematician Fourier found that any periodic waveform, that is, a waveform that
repeats itself after some time, can be expressed as a series of harmonically related sinusoids, i.e.,
sinusoids whose frequencies are multiples of a fundamental frequency (or first harmonic). For

example, a series of sinusoids with frequencies 1 MHz, 2 MHz, 3 MHz, and so on, contains the
fundamental frequency of 1 MHz, a second harmonic of 2 MHz, a third harmonic of 3 MHz, and
so on. In general, any periodic waveform f(t) can be expressed as

f(t) = %ao +a,Cosmt + a,cos2mt + a;cos3mt + a,cos4ot + ... (6.1)

+ b;sinot + b,sin2wt + b;sin3wt + b,sindot + ...
or

f(t) = %ao+ Z (a,cosnot + b, sinnot) (6.2)
n=1
where the first term a,/2 is a constant, and represents the DC (average) component of f(t).

Thus, if f(t) represents some voltage v(t), or current i(t), the term a,/2 is the average value of
v(t) or i(t).

The terms with the coefficients a, and b, together, represent the fundamental frequency compo-

nent o . Likewise, the terms with the coefficients a, and b, together, represent the second har-

monic component 2o, and so on.

* We recall that k, coset + k,sinmt = kcos(wt+0) where 6 is a constant.
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Since any periodic waveform f(t) can be expressed as a Fourier series, it follows that the sum of

the DC, the fundamental, the second harmonic, and so on, must produce the waveform f(t).
Generally, the sum of two or more sinusoids of different frequencies produce a waveform that is
not a sinusoid as shown in Figure 6.1.

Total ;
/ 2nd Harmonic
Fundamental / 3rd Harmonic

Figure 6.1. Summation of a fundamental, second and third harmonic

6.2 Evaluation of the Coefficients

Evaluations of a; and b; coefficients of (6.1) is not a difficult task because the sine and cosine are

orthogonal functions, that is, the product of the sine and cosine functions under the integral evalu-
ated from 0 to 2n is zero. This will be shown shortly.

Let us consider the functions sinmt and cosmt where m and n are any integers, and for conve-
nience, we have assumed that ® = 1. Then,

2n

_[ sinmtdt = 0 (6.3)
0
2n
J' cosmtdt = 0 (6.4)
0
2n
J. (sinmt)(cosnt)dt = 0 (6.5)

0
The integrals of (6.3) and (6.4) are zero since the net area over the 0 to 2n area is zero. The inte-

gral of (6.5) is also is zero since

sinxcosy = %[sin(x+y)+ sin(x-y)]
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This is also obvious from the plot of Figure 6.2, where we observe that the net shaded area above
and below the time axis is zero.

sinx COSX

SiNX - COSX

........

271
Figure 6.2. Graphical proof ofj (sinmt)(cosnt)dt = 0
0

Moreover, if m and n are different integers, then,

2n

_[ (sinmt)(sinnt)dt = 0 (6.6)
0

since
(sinx)(siny) = %[cos(x—y)—cos(x—y)]

The integral of (6.6) can also be confirmed graphically as shown in Figure 6.3, where m = 2 and
n = 3. We observe that the net shaded area above and below the time axis is zero.

3 sin2x - sin3x

2n
Figure 6.3. Graphical proof of.[ (sinmt)(sinnt)dt = 0 form = 2 andn = 3
0
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Also, if m and n are different integers, then,

2n
I (cosmt)(cosnt)dt = 0 (6.7)
0

since

(cosx)(cosy) = %[cos(x+y)+ cos(x-y)]

The integral of (6.7) can also be confirmed graphically as shown in Figure 6.4, where m = 2 and
n = 3. We observe that the net shaded area above and below the time axis is zero.

C0S2X - c0s3X

2n
Figure 6.4. Graphical proof ofI (cosmt)(cosnt)dt = 0 form = 2 andn = 3
0

However, if in (6.6) and (6.7), m = n, then,

2n 2
j (sinmt)~dt
0

(6.8)

Il
a

and

2n 2
I (cosmt)”dt
0

1l
a

(6.9)

The integrals of (6.8) and (6.9) can also be seen to be true graphically with the plots of Figures 6.5
and 6.6.

. . . . * . .
It was stated earlier that the sine and cosine functions are orthogonal to each other. The simpli-
fication obtained by application of the orthogonality properties of the sine and cosine functions,
becomes apparent in the discussion that follows.

* We will discuss orthogonal functions in Chapter 14
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.2
Sin X

.~ s

2n
Figure 6.5. Graphical proof ofj (sinmt)zdt =
0

Cos X

.
~~~~~~

2n
Figure 6.6. Graphical proof ofj (cosmt)zdt =7
0

In (6.1), for simplicity, we let ® = 1. Then,

f(t) = %a0+alcost+a20052t+a30053t+a4cos4t+ (6.10)

+ b,sint + b,sin2t + b,sin3t + b,sindt + ...

To evaluate any coefficient, say b,, we multiply both sides of (6.10) by sin2t. Then,

f(t)sin2t = %aosin 2t + a, costsin2t + a,cos2tsin2t + a;cos3tsin2t + a,cos4tsin2t + ...

b,sintsin2t + b,(sin 2t)2 + bysin3tsin2t + b,sin4tsin2t + ...

Next, we multiply both sides of the above expression by dt, and we integrate over the period 0 to
2n. Then,
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2

T . 1 2
J-o f(t)sin2tdt = zaoj

b 2n 2n
sin2tdt + alj. costsin2tdt + aZJ- cos2tsin2tdt
0

0 0

2n 2n
+ a3j cos3tsin2tdt + a4J- cos4tsin2tdt + ...
0 0

2n 2n 2 2n
+ blj sintsin2tdt + sz (sin2t)’dt + bsj sin3tsin2tdt
0 0 0

2n
+ b4j sin4tsin2tdt + ...
0
We observe that every term on the right side of (6.11) except the term
2n )
bzf (sin2t)?dt
0

is zero as we found in (6.6) and (6.7). Therefore, (6.11) reduces to

2n 2n
j f(t)sin2tdt = sz (sin2t)’dt = b,
0 0
or
l 27[ X
b, = ;IO f(t)sin2tdt

(6.11)

and thus we can evaluate this integral for any given function f(t) . The remaining coefficients can

be evaluated similarly.

The coefficients a,, a,, and b,, are found from the following relations.

1 1 2n
28 = 5= jo f(t)dt (6.12)
1 2n
a, = EJ‘O f(t)cosntdt (6.13)
1p2m .
b, = EJ‘O f(t)sinntdt (6.14)
The integral of (6.12) yields the average (DC) value of f(t).
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6.3 Symmetry

With a few exceptions such as the waveform of Example 6.6, the most common waveforms used
in science and engineering, do not have the average, cosine, and sine terms all present. Some
waveforms have cosine terms only, while others have sine terms only. Still other waveforms have
or have not DC components. Fortunately, it is possible to predict which terms will be present in
the trigonometric Fourier series, by observing whether or not the given waveform possesses some
kind of symmetry.

We will discuss three types of symmetry that can be used to facilitate the computation of the trig-
onometric Fourier series form. These are:

1. Odd symmetry — If a waveform has odd symmetry, that is, if it is an odd function, the series will
consist of sine terms only. In other words, if f(t) is an odd function, all the a; coefficients
including a,, will be zero.

2. Even symmetry — If a waveform has even symmetry, that is, if it is an even function, the series
will consist of cosine terms only, and a, may or may not be zero. In other words, if f(t) is an

even function, all the b; coefficients will be zero.

3. Half-wave symmetry — If a waveform has half-wave symmetry (to be defined shortly), only odd
(odd cosine and odd sine) harmonics will be present. In other words, all even (even cosine and
even sine) harmonics will be zero.

We will now define even and odd functions and we should remember that even functions have
nothing to do with even harmonics, and odd functions have nothing to do with odd harmonics.

A function f(t) is an even function of time if the following relation holds.

f(-t) = f(t) (6.15)

that is, if in an even function we replace t with —t, the function f(t) does not change. Thus,
polynomials with even exponents only, and with or without constants, are even functions. For

instance, the cosine function is an even function because it can be written as the power series

Other examples of even functions are shown in Figure 6.7.

* We will discuss power series later in this chapter.
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f(t) f(t) f(t)
t2+k

0 0 0

Figure 6.7. Examples of even functions

A function f(t) is an odd function of time if the following relation holds.

—f(-t) = f(t) (6.16)

that is, if in an odd function we replace t with —t, we obtain the negative of the function f(t). Thus,
polynomials with odd exponents only, and no constants are odd functions. For instance, the sine
function is an odd function because it can be written as the power series

3 5 7
sint = t-—+ 5L
31 51 7!

Other examples of odd functions are shown in Figure 6.8.

f(t) f(t) f(t)

mt t3 T
0 t 0 t | 0 t

Figure 6.8. Examples of odd functions

We observe that for odd functions, f(0) = 0. However, the reverse is not always true; that is, if

f(0) = 0, we should not conclude that f(t) is an odd function. An example of this is the function
f(t) = t* in Figure 6.7,

The product of two even or two odd functions is an even function, and the product of an even func-
tion times an odd function, is an odd function.

Henceforth, we will denote an even function with the subscript e, and an odd function with the sub-

script 0. Thus, f (t) and f (t) will be used to represent even and odd functions of time respectively.

Also,
T T
j f(t)dt = 2j f.(t)dt (6.17)
T 0
and
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;
j f.(Hdt = 0 (6.18)
.

A function f(t) that is neither even nor odd can be expressed as

fo (D) = S0 + -] (6.19)

or as

fo(0) = 3IFO-f(-0)] (6.20)

By addition of (6.16) with (6.17), we get

f(t) = f (1) +f (1) (6.21)

that is, any function of time can be expressed as the sum of an even and an odd function.

To understand half-wave symmetry, we recall that any periodic function with period T, is
expressed as

f(t) = f(t+T) (6.22)

that is, the function with value f(t) at any time t, will have the same value again at a later time
t+T.

A periodic waveform with period T, has half-wave symmetry if
f(t+T/2) = f(b) (6.23)

that is, the shape of the negative half-cycle of the waveform is the same as that of the positive
half-cycle, but inverted.

We will test the waveforms of Figures 6.9 through 6.13 for any of the three types of symmetry.

1. Square waveform

For the waveform of Figure 6.9, the average value over one period T is zero, and therefore,
a, = 0. It is also an odd function and has half-wave symmetry since —f(-t) = f(t) and
—f(t+T/2) = f(b).

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 6-9
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27

Figure 6.9. Square waveform test for symmetry

| f(a)

ot

An easy method to test for half-wave symmetry is to choose any half-period T/2 length on the
time axis as shown in Figure 6.9, and observe the values of f(t) at the left and right points on the

time axis, such as f(a) and f(b). If there is half-wave symmetry, these will always be equal but
will have opposite signs as we slide the half-period T/2 length to the left or to the right on the

time axis at non-zero values of f(t).

2. Square waveform with ordinate axis shifted

If we shift the ordinate axis n/2 radians to the right, as shown in Figure 6.10, we see that the

square waveform now becomes an even function and has half-wave symmetry since f(-t) = f(t)
and —f (t+T/2) = f(t). Also, a, = 0.

T
| |
A
| YR 2n
21 - 0 P '
| ‘ : |
T2 < T2
— A |

—_—
1

Figure 6.10. Square waveform with ordinate shifted by ©/2

ot

Obviously, if the ordinate axis is shifted by any other value other than an odd multiple of n/2,

the waveform will have neither odd nor even symmetry.

3. Sawtooth waveform

For the sawtooth waveform of Figure 6.11, the average value over one period T is zero and there-

fore, a; = 0. It is also an odd function because —f(-t) = f(t), but has no half-wave symmetry
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since —f (t+T/2) = f(t)

e T !
I
/ A

—2n —T b 27 ot
1 1 0 1
| | | [
I<T/[2> I<T/2>
T2 <1722 /
| |_A 1 |

Figure 6.11. Sawtooth waveform test for symmetry

4. Triangular waveform

For this triangular waveform of Figure 6.12, the average value over one period T is zero and
therefore, a, = 0. It is also an odd function since —f(-t) = f(t). Moreover, it has half-wave sym-

metry because —f (t+ T/2) = f(t)

“~—T—>

A_
—275/\ / ot
/ r 0 n\/Zn
| -
| 12— | AL T2

Figure 6.12. Triangular waveform test for symmetry

5. Fundamental, Second and Third Harmonics of a Sinusoid

Figure 6.13 shows a fundamental, second, and third harmonic of a typical sinewave where the
half period T/2, is chosen as the half period of the period of the fundamental frequency. This is
necessary in order to test the fundamental, second, and third harmonics for half-wave symmetry.
The fundamental has half-wave symmetry since the a and —a values, when separated by T/2,
are equal and opposite. The second harmonic has no half-wave symmetry because the ordinates
b on the left and b on the right, although are equal, there are not opposite in sign. The third
harmonic has half-wave symmetry since the ¢ and —c values, when separated by T/2 are equal
and opposite. These waveforms can be either odd or even depending on the position of the ordi-

nate. Also, all three waveforms have zero average value unless the abscissa axis is shifted up or
down.
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Figure 6.13. Fundamental, second, and third harmonic test for symmetry

In the expressions of the integrals in (6.12) through (6.14), the limits of integration for the coeffi-
cients a, and b, are given as 0 to 2x, that is, one period T. Of course, we can choose the limits

of integration as —n to +n. Also, if the given waveform is an odd function, or an even function,
or has half-wave symmetry, we can compute the non-zero coefficients a, and b, by integrating

from 0 to n only, and multiply the integral by 2. Moreover, if the waveform has half-wave sym-
metry and is also an odd or an even function, we can choose the limits of integration from 0 to
n/2 and multiply the integral by 4. The proof is based on the fact that, the product of two even

functions is another even function, and also that the product of two odd functions results also in
an even function. However, it is important to remember that when using these shortcuts, we must

evaluate the coefficients a,, and b, for the integer values of n that will result in non-zero coeffi-

cients. This point will be illustrated in Example 6.2.

We will now derive the trigonometric Fourier series of the most common periodic waveforms.

6.4 Waveforms in Trigonometric Form of Fourier Series

Example 6.1

Compute the trigonometric Fourier series of the square waveform of Figure 6.14.

T |
A
2
- r r of
A
Figure 6.14. Square waveform for Example 6.1
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Solution:

The trigonometric series will consist of sine terms only because, as we already know, this wave-
form is an odd function. Moreover, only odd harmonics will be present since this waveform has
half-wave symmetry. However, we will compute all coefficients to verify this. Also, for brevity, we
will assume that o = 1.

The a; coefficients are found from

.

- A (sinnt—0—-sinn2x + sinnm) = A(25innn— sinn2m)
nm nm

2 2

f(t)cosntdt = 715 Uo Acosntdt+.[n (—A)cosntdt}z HAE (sinnt|; - sinnt|in)

0 (6.24)

and since n is an integer (positive or negative) or zero, the terms inside the parentheses on the
second line of (6.24) are zero and therefore, all a; coefficients are zero, as expected, since the

square waveform has odd symmetry. Also, by inspection, the average (DC) value is zero, but if
we attempt to verify this using (6.24), we will get the indeterminate form 0/0. To work around
this problem, we will evaluate a, directly from (6.12). Then,

8 = %tUOnAdH |

The b; coefficients are found from (6.14), that is,

b, = l.[ f(t)sinntdt = 1 U Asinntdt+.[ (—A)sinntdt}: A (—cosnt|; + cosntyzn)
Ty T [J i nm 0 m (6.26)
% (-cosnmt+ 1+ cos2nm—cosnm) = % (1-2cosnmw + cos2nm)

Zn(—A)dt} _Ar_0-2n4m) =0 (6.25)

T

T

2 2

For n = even, (6.206) yields
A
bn = F]'T—[(l—2+1) =0

as expected, since the square waveform has half-wave symmetry.

For n = odd, (6.21) reduces to

_A - 4A
b, = nn(1+2+1) =
and thus
bl = 4_A\
T
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b3=4LA
3n
b5=4LA
5n

and so on.

Therefore, the trigonometric Fourier series for the square waveform with odd symmetry is

: 1. 1. ) _4A 1.
smoot+35|n3mt+53|n5mt+... = z nsmnmt (6.27)
n = odd

It was stated above that, if the given waveform has half-wave symmetry, and it is also an odd or an
even function, we can integrate from 0 to n/2, and multiply the integral by 4. We will apply this
property to the following example.

Example 6.2

Compute the trigonometric Fourier series of the square waveform of Example 1 by integrating
from 0 to n/2, and multiplying the result by 4.

Solution:

Since the waveform is an odd function and has half-wave symmetry, we are only concerned with
the odd b, coefficients. Then,

n/2

_ 41 i _ A w2y AA( en
b, = 4nIO f(t)sinntdt = nn( cosnt|, ") = nn( cosn2+1) (6.28)
For n = odd, (6.28) becomes
_4A _4A
b, = nn( 0+1) = — (6.29)

as before, and thus the series is the same as in Example 1.

Example 6.3
Compute the trigonometric Fourier series of the square waveform of Figure 6.15.
Solution:

This is the same waveform as in Example 6.1, except that the ordinate has been shifted to the
right by n/2 radians, and has become an even function. However, it still has half-wave symmetry.
Therefore, the trigonometric Fourier series will consist of odd cosine terms only.
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T I
A
n/2 3n/2
= ot
0 T 2n
—A

Figure 6.15. Waveform for Example 6.3

Since the waveform has half-wave symmetry and is an even function, it will suffice to integrate
from 0 to n/2, and multiply the integral by 4. The a, coefficients are found from

1?2 472 AN, . w2, AA(.
a, = 4“'[0 f(t)cosntdt = - Uo Acosntdt} = (sinnt|,"%) = — (smnz) (6.30)

We observe that for n = even, all a, coefficients are zero, and thus all even harmonics are zero

as expected. Also, by inspection, the average (DC) value is zero.

For n = odd, we observe from (6.30) that S.inn%T , will alternate between +1 and -1 depending

on the odd integer assigned to n. Thus,

a, = + -0 (6.31)

nm
Forn = 1,5, 9, 13, and so on, (6.30) becomes

4A
an=ﬁ

and for n = 3,7, 11, 15, and so on, it becomes

_ —4A

a
n nm

Then, the trigonometric Fourier series for the square waveform with even symmetry is

(n-1)
_ 4A 1 1 _ _4A 4 2 1
f(t) = - (coswt 3c053mt + 5c055mt ) = z (-1) ncosnmt (6.32)
n=odd
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Alternate Solution:
Since the waveform of Example 6.3 is the same as of Example 6.1, but shifted to the right by ©./2

radians, we can use the result of Example 6.1, i.e.,

_ 4 (Gnots Lsingots Ls
f(t) = - (smmt+3sm3mt+55m5cot+...) (6.33)

and substitute ot with ot+ n/2, that is, we let ot = o1+ n/2. With this substitution, relation
(6.33) becomes

f(r) = %[Sin(mr + E) + lSin3((m: + E) + lSinS((M + E) + }
i 2/ 3 2/ 5 2
(6.34)
= 4—A[sin(m + 71) + lsin(Bm + ?ﬂ) + lsin(5m + 5—“) + }
T 2/ 3 2 5 2
and using the identities sin(x+n/2) = cosx, sin(x+3n/2) = —cosx, and so on, we rewrite
(6.34) as
f(r) = 4—;_?[0080)1 - %cos3m + %cos5m - } (6.35)

and this is the same as (6.27).

Therefore, if we compute the trigonometric Fourier series with reference to one ordinate, and
afterwards we want to recompute the series with reference to a different ordinate, we can use the
above procedure to save time.

Example 6.4

Compute the trigonometric Fourier series of the sawtooth waveform of Figure 6.14.

I% T - |
| |
A |
-2 0 2n ot
AT
Figure 6.16. Sawtooth waveform
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Solution:

This waveform is an odd function but has no half-wave symmetry; therefore, it contains sine
terms only with both odd and even harmonics. Accordingly, we only need to evaluate the b,

coefficients. By inspection, the DC component is zero. As before, we will assume that ® = 1.
If we choose the limits of integration from 0 to 2n we will need to perform two integrations since

A

-t O<t<m
T

f(t) = A
;t—ZA n<t<2x

However, we can choose the limits from —n to +r, and thus we will only need one integration
since

f(t):ét —-n<t<m
T
Better yet, since the waveform is an odd function, we can integrate from 0 to m, and multiply the
integral by 2 ; this is what we will do.

From tables of integrals,

jxsinaxdx = %sinax—gcosax (6.36)
a
Then,
T Y n
b, = gJ‘ Atsinntdt = 2—'3_[ tsinntdt = 2—2‘(lsinnt—lcosnt)

oy m n2J, 72 \n2 n

0 (6.37)
2A . n_ 2A .
= nz—nz(smnt—ntcosnt)|0 = nz—nz(smnn—nncosnn)

We observe that:
1.If n = even, sinnt = 0 and cosnn = 1. Then, (6.37) reduces to

_2A _ 2A
bn - nznz(_nn) - _E

that is, the even harmonics have negative coefficients.
2.If n = odd, sinnt = 0, cosnt = —1. Then,

2A 2A
= ——(Nn = —
" n2g2 ™) nm

that is, the odd harmonics have positive coefficients.
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Thus, the trigonometric Fourier series for the sawtooth waveform with odd symmetry is

- 2(ginot - Lsinzot + Leinsat - Ls ) = 2y il
f(t) = . sinot 25|n2(0t+38|n3(0t 4SIn40)t+... = 7TZ( 1) nsmnoot (6.38)

Example 6.5

Find the trigonometric Fourier series of the triangular waveform of Figure 6.17. Assume o = 1.

/ - 0 2 n\/Zn ot
_A

Figure 6.17. Triangular waveform for Example 6.5

Solution:

This waveform is an odd function and has half-wave symmetry; then, the trigonometric Fourier
series will contain sine terms only with odd harmonics. Accordingly, we only need to evaluate the
b, coefficients. We will choose the limits of integration from 0 to n/2, and will multiply the

integral by 4.

By inspection, the DC component is zero. From tables of integrals,

Ixsinaxdx = %sinax—gcosax (6.39)
a
Then,
n/2 n/2 n/2
b, = L—lj 2—Atsinntdt = 8—?"‘ tsinntdt = %‘ (%sinnt—ﬁcosnt)
Tdg T Yo o on n 0
(6.40)
8A . /2 8 oMW T
= ——(sinnt—ntcosnt)|," " = —; (smn—— n—cosn—)
n’n’ ©  n% 2 22

We are only interested in the odd integers of n, and we observe that:

T
cosn2 =0

For odd integers of n, the sine term yields
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1 for n=1,5,9,... then, bn:8—A

2 2

. T nm
Slnnz = 8A
-1 for n =3,7,11, ... then, bn:——2

nn

Thus, the trigonometric Fourier series for the triangular waveform with odd symmetry is

(n-1)

n
- 8 (ginot Lsingot + Lsinsot - L )-8 s ) 2 L
f(t) = 2 sinot 98|n30)t+255|n50)t 498|n7c0t+... = Z (-1) Ssinnot | (6.41)

n=odd n

Example 6.6

A half-wave rectification waveform is defined as

f(1) = {Slnmt O<ot<m (6.42)

0 n<ot<2n
Express f(t) as a trigonometric Fourier series. Assume o = 1.
Solution:

The waveform for this example is shown in Figure 6.18.

-2 - ! 0 T 2n
Figure 6.18. f(t) for Example 6.6

By inspection, the average is a non-zero value, and the waveform has neither odd nor even sym-
metry. Therefore, we expect all terms to be present. The a,, coefficients are found from

2n
a, = 7%5-[0 f(t)cosntdt

For this example,

m 2n
a, = AJ sintcosntdt+éj Ocosntdt
oo T dn
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and from tables of integrals

.[(sin mx)(cosnx)dx = — 0025((mm_—nn))x - czs((g:nn))x (m2 # nz)
Then,
_A {_1[cos(1 —n)t, cos(l+ n)t}’n}
a, = +
| 2 1-n 1+n
(6.43)
__A {[cos(n—nn) + cos(m + nn)}_[ 1 + 1 }}

27 1-n l1+n 1-n n+1

Using the trigonometric identities
COS(X —Y) = COSXCOSY + sinxsiny
and
COS(X +Y) = COSXCOSY — sinxsiny

we get

cos(m—nNm) = COSTCOSNT + SinwsSinnt = —cosnm
and

cos(m+Nm) = cosSmcosnm — sinwsSinnt = —cosnm
Then, by substitution into (6.43),

a, = A {[—cosnn + —cosnn} 2 } _A “cosnn + cosnn} L2 }
2n |[L 1-n 1+n 1_n? 2n |L1-n  1+nd q_p?
(6.44)

_ A(cosnn+ncosnn+cosnn—ncosnn+ 2 )_A(cosnn+1
2

= - 1
2n (1_n2) ) n=

1-n? 1-n¥ @
Next, we can evaluate all the a,, coefficients, except a,, from (6.44).

First, we will evaluate a, to obtain the DC value. By substitution of n = 0, we get a, = 2A/n
Therefore, the DC value is

1
S0 = % (6.45)

We cannot use (6.44) to obtain the value of a, ; therefore, we will evaluate the integral

T
a, = AI sintcostdt
T
From tables of integrals,

I(sinax)(cosax)dx = %l(s.inax)2
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and thus,
_ A 2t
a, = 2Tt(smt) 0 =0 (6.46)
From (6.44) with n = 2,3,4,5, ..., we get
A/cos2m+ 1 2A
= ALosantly) _ 2A 6.47
2, = & (1_22)) 22 (6.47)
a, = AgcosSn;rl) -0 (6.48)
n(1-3%
We see that for odd integers of n, a, = 0. However, for n = even, we get
a4 — A( COS47T'2|'1) — _125_& (6.49)
n(l-47) n
ae — A( 00567'[;'1) — _325_& (6.50)
n(1-62) n
a8 — A( COS87T'2|'1) — _625& (6.51)
n(1-8%) n
and so on.
Now, we need to evaluate the b, coefficients. For this example,
2n b 2n
b, = AlJ- f(t)sinntdt = AJ- sintsinntdt+AJ. Osinntdt
o T LR
and from tables of integrals,
'[(sin mx)(sinnx)dx = S';((nr?__:))x - mg((::::))x (m2 # n2)
Therefore,
b, = é.l{[sin(l—n)t sin(1+n)t”n}
o= _
T 2 1-n l+n
0
_ A[sin(l—n)n_sin(1+n)n_0+0J =0 (n=1)
2n 1-n 1+n
that is, all the b, coefficients, except by, are zero.
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We will find b, by direct substitution into (6.14) for n = 1. Thus,

o = Bt - 322 <59 - 6

Combining (6.45) and (6.47) through (6.52), we find that the trigonometric Fourier series for the
half-wave rectification waveform with no symmetry is

A A A[cosZt . Cos4t  cos6t  cos8t J (6.53)

f(t) = =+ =sint— -
() = Z+5sint="13 15 35 ' 63

Example 6.7
A full-wave rectification waveform is defined as
f(t) = |Asinot] (6.54)

Express f(t) as a trigonometric Fourier series. Assume o = 1.

Solution:

The waveform is shown in Figure 6.19 where the ordinate was arbitrarily chosen as shown.

-2n - 0 n 2m

Figure 6.19. Full-wave rectified waveform with even symmetry

By inspection, the average is a non-zero value. We choose the period of the input sinusoid so that
the output will be expressed in terms of the fundamental frequency. We also choose the limits of

integration as —n and +m, we observe that the waveform has even symmetry.
Therefore, we expect only cosine terms to be present. The a,, coefficients are found from

1 21[
a, = TCJ.O f(t)cosntdt

where for this example,
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a, = 7%:.[ Asintcosntdt = %A'[o sintcosntdt (6.55)

and from tables of integrals,

; _ cos(m—n)x cos(m+n)x 2 2
I(smmx)(cosnx)dx = 2nom 2(m+ 1) (m”~#n")
Since
CoS(X—Y) = cos(y—X) = COSXCOSY + sinxsiny
we express (6.55) as
a = 2A 1 [cos(n—l)t_cos(n+1)t}ﬁ
n T 2 n-1 n+1
_A [cos(n—l)n_cos(n+1)n}_[ 1 1 J (6.56)
s n-1 n+1 n-1 n+1

_ A[l— cos(nm+m) . Cos(Nm—m)— 1}
b n+1 n-1

To simplify the last expression in (6.56), we make use of the trigonometric identities

cos(Nm + ) = COSNTCOST — SinnmsSinT = —cosNm
and

cos(Nm—m) = COSNTCOST + SiNNmSinT = —cosnm
Then, (6.56) simplifies to

a = A[1+cosnn_1+ cosnn} _ A[—2+(n—1)cosnn—(n+1)cosnn
nl n+1 n-1 T nZ_1
(6.57)

—2A(cosnt+1) N1

n(n®-1)

Now, we can evaluate all the a,, coefficients, except a,, from (6.57). First, we will evaluate a, to

obtain the DC value. By substitution of n = 0, we get

ao = %
n
Therefore, the DC value is
L1a, = 2A (6.58)
2 i
From (6.57) we observe that for all n = odd, other thann = 1, a, = 0.
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To obtain the value of a;, we must evaluate the integral

1¢7 .
a, = TJo sintcostdt
From tables of integrals,
j(sinax)(cosax)dx = %l(s.inax)2
and thus,
a, = l(sint)2 " =0 (6.59)
Y7 2n 0

For n = even, from (6.57) we get

a, = —2A(cos2n+1) _ 4A (6.60)
2" 2 Y '
n(2°-1)
o = Z2A(cos4m+1) _ _4A (6.61)
‘T 2 " 15¢: '
n(4° - 1)
o = —2A(cOSbm+1) _ _4A (6.62)
6~ 2 ~ 35n '
n(6°—1)
a, = —2A(COSSTC+1) _ _4_A_ (6 63)
8- 2 " 63n '
n(8" -1)

and so on. Then, combining the terms of (6.58) and (6.60) through (6.63) we get

f(t) = 2A _4A)cos2ot  cosdot  cosbwt  cos8wt =~ (6.64)
T N 3 15 35 63

Therefore, the trigonometric form of the Fourier series for the full-wave rectification waveform with
even symmetry is

f(t):g-p-‘_% z 21 cosnomt (6.65)
T 7rn—2,4,6 (n"-1)

This series of (6.65) shows that there is no component of the fundamental frequency. This is
because we chose the period to be from —n and +n . Generally, the period is defined as the short-

est period of repetition. In any waveform where the period is chosen appropriately, it is very
unlikely that a Fourier series will consist of even harmonic terms only.
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6.5 Alternate Forms of the Trigonometric Fourier Series

We recall that the trigonometric Fourier series is expressed as

f(t) = %ao + a,cosmt + a,c0s2mt + a;cos3wt + a,c0s4wt + ... (6.66)

+ b;sinot + b,sin2mt + bysin3wt + b,sindot + ...

If a given waveform does not have any kind of symmetry, it may be advantageous of using the
alternate form of the trigonometric Fourier series where the cosine and sine terms of the same fre-
quency are grouped together, and the sum is combined to a single term, either cosine or sine.
However, we still need to compute the a, and b, coefficients separately.

We use the triangle shown in Figure 6.20 for the derivation of the alternate forms.

n n n
Pn
Cn
a a . b b
by cos0, = " =L sing, = —L— = 2O
5 a,+ bn Ch ja, + bn Ch
n
a

i _ b, a,

cosO, = sing, 0, = atana— ¢, = atanb—

n n

Figure 6.20. Derivation of the alternate form of the trigonometric Fourier series

We assume o = 1,andforn = 1,2, 3, ..., we rewrite (6.60) as

a b, . a b, .
f(t) = tag+c, (—%ost + —13|nt) +C, (—2c052t + —23|n2t) + ...
2 C; c, c, C,

an bn H
+c, (—cosnt+ —smnt)
Cn Cn

cos0,cost + sinB, sint

1 c0s6,cos2t + sinB,sin2t
=—a0+C1( )+Cz( )
2 cos(t—0,) cos(2t-0,)
cos6,cosnt + sin@sinnt
il )
cos(nt—-0,)

and, in general, for o # 1, we get

_ 1 S _ 1 S by
f(t) = 58+ Zlcncos(noot -0, = 58+ Zlcncos(nmt— atan a—n) (6.67)
n= n=
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Similarly,

sing, cost + cos¢, sint

sin(t+ ;) )
sing,c0s2t + cos@,sin2t

o _ ) eren _ )
sin(2t + ¢,) sin(nt+ o,)

1

sing, cosnt + cosg,sinnt

and, in general, where @ # 1, we get

f(t) = %a0+ z c,sin(not+e,) = %a0+ z cnsin(nmt+ atan%) (6.68)

n=1 n=1 n

The series of (6.67) and (6.68) can be expressed as phasors. Since it is customary to use the cosine
function in the time domain to phasor transformation, we choose to use the transformation of

(6.63) below.

Lo 3 coo0s( ) Loy § by
580+ Z C,Cos| Nt — atana <S80+ Z Cc,Z—atan (6.69)

a
n=1 n=1 n

Example 6.8

Find the first 5 terms of the alternate form of the trigonometric Fourier series for the waveform of

Figure 6.21.
f(t)

i } | ] t

/2 T 3w/2 2¢;

Figure 6.21. Waveform for Example 6.8

Solution:

The given waveform has no symmetry; thus, we expect both cosine and sine functions with odd
and even terms present. Also, by inspection the DC value is not zero.

We will compute the a, and b, coefficients, the DC value, and we will combine them to get an
expression in the form of (6.63). Then,
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n/2 2n n/2 2n
a, = l_[ (3)cosntdt+lj (1)cosntdt = isinnt +isinnt
T 0 T /2 nm 0 nm /2 (670)
3 .. m 1 . 1 .. n 2 . &
= —=sinnz + —=sinn2r——sinn= = —=sinn =
nm 2 nm nm 2 nm 2
We observe that for n = even, a, = 0.
For n = odd,
a, = 2 (6.71)
T
and
a; = -2 (6.72)
3n
The DC value is
1 1 ™2 12 1 om/2 . . 2n
28 = 5= jo (3)dt+ 5= jm(l)dt = 53ty T+t o
S L(m )L _3 |
=52\3 +2m > —2n(7c+27t)—2
The b,, coefficients are
n/2 2n n/2 2n
b, = l.[ (3)sinntdt+lj' (1)sinntdt = _—3cosnt +_—1003nt
TJo T nm o Nm /2 (6.74)
= _—3<:osnT—E + 3 + _—1cosn2n + lc:osn’—t = i(3 —cosn2n) = 2
nm 2 nx nm nm 2 nm nm
Then,
b, = 2/n (6.75)
by = 2/3n (6.77)
From (6.69),
1 > b 1 i b
520+ z cncos(nmt— atané—rr:) SR Z cnz—atana—:
n=1 n=1
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where

b b
c,Z-atan— = /a§+b§4—atana—” = Ja’+b2z-0, = a,-jb, (6.79)

an n

Thus, for n = 1,2, 3, and 4, we get:

—jb, = %—j% = @2+(2 24—45o

(6.80)
- F4_45° _242 ) e Z—ﬁcos(wt—45°)
2 T i
TC
Similarly,
b, =0-j% =1,/-00° = Lcos(20t - 90°) (6.81)
2 TC T T
i — l l — 2_’\/2 o 2’\/7
a;—jby=— 30327 3, /-135 cos(3mt— 135°) (6.82)
and
. 1 1 1
~jby = 0-j5= = 5-2-90° & == cos (4ot - 90°) (6.83)

Combining the terms of (6.73) and (6.80) through (6.83), we find that the alternate form of the

trigonometric Fourier series representing the waveform of this example is
3.1 o .
(= 2+7 [2./2cos(ot - 45°) + cos(20t - 90°)

r [ (6.84)

282 00s(30t — 135°) + = cos(4wt—90 ]

6.6 The Exponential Form of the Fourier Series

The Fourier series are often expressed in exponential form. The advantage of the exponential
form is that we only need to perform one integration rather than two, one for the a,,, and another

for the b, coefficients in the trigonometric form of the series. Moreover, in most cases the inte-

gration is simpler.
The exponential form is derived from the trigonometric form by substitution of

jot —jot

coswt = % (6.85)

and
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jot —jot

sinot = &—=% (6.86)
]2
into f(t). Thus,
1 ejmt+e—jmt ej2mt+e—j2mt

() = Loyt ) g (22 657)

jot —jot j2ot —j2ot
€ —€ € —€
...+b1( 2 )+bz( 72 )+

and grouping terms with same exponents, we get

f(t) = ... +(a52—;)—22)e_j2°)t+(%1—;)—21)e_j°’t+%ao+(%+%)ejmt+(a§2+?—22)ej2m (6.88)

The terms of (6.88) in parentheses are usually denoted as

_1 byy _ 1 -
Co = 5(a=22) = 5@ +ib0) (6.89)

_1 by _ 1. .
Cn = 3(an+ ) = J(ariby (6.90)

1
Co = 2a, (6.91)
Then, (6.88) is written as

f(t) = ...+ C,e %'+ C e+ Co+ Cet® 4 Ce1 % + . (6.92)

We must remember that the C; coefficients, except C,, are complex and occur in complex con-

jugate pairs, that is,
C,=C>* (6.93)
We can derive a general expression for the complex coefficients C,, by multiplying both sides of

(6.92) by e 1" and integrating over one period, as we did in the derivation of the a, and b,

coefficients of the trigonometric form. Then, with o = 1,
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J

2n . 2n . . 2n L
f(tye"dt = ... +J- C_,e e Mt +I c_eedMdt (6.94)
0 0 0

2n . 2n .
+ I Coe Mdt + J. c,el'e?Mat
0 0
2n . . 2n . .
+_[ C,e e Mdt+ ... +_[ c.eMe  Mdt
0 0
We observe that all the integrals on the right side of (6.97) are zero except the last one. There-
fore,
2n . 2n . . 2n
[ fwe™™de= [ cpe™e?Mdt= [ cudt = 2nC,
0 0 0
or

_ L et
Co = 3= jo f(t)e "dt

and, in general, for o = 1,

_ l 2n —jnmt
Co= 5= jo f(t)e"'d(ot) (6.95)
or
T .
c =1 [ e d(ot) (6.96)
n T 0

We can derive the trigonometric Fourier series from the exponential series by addition and sub-
traction of the exponential form coefficients C, and C_,. Thus, from (6.89) and (6.90),

1 . )
C,+C, = E(a” —-jb,+a,+]jb,)
or
an = Cn + C—n (697)
Similarly,
1 . )
C,-C, = E(an—an—an—an) (6.98)
or
b, = J(C,-C_) (6.99)

Symmetry in Exponential Series

1. For even functions, all coefficients C; are real
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We recall from (6.89) and (6.90) that

_1 by _ 1 i
C,= Z(a”_ j) = 2(an+an) (6.100)
and
_1 by _ 1. .
C, = 2(an+ j) = 2(an—jbn) (6.101)

Since even functions have no sine terms, the b, coefficients in (6.100) and (6.101) are zero.
Therefore, both C_, and C,, are real.

2. For odd functions, dll coefficients C; are imaginary

Since odd functions have no cosine terms, the a,, coefficients in (6.100) and (6.101) are zero.

Therefore, both C_, and C,, are imaginary.

3. If there is half-wave symmetry, C, = 0 for n = even

We recall from the trigonometric Fourier series that if there is half-wave symmetry, all even
harmonics are zero. Therefore, in (6.100) and (6.101) the coefficients a, and b, are both zero

for n = even, and thus, both C_, and C, are also zero for n = even.
4. If there is no symmetry, f(t) is complex.
5. C,, = C,* dlways

This can be seen in (6.100) and (6.101)

Example 6.9

Compute the exponential Fourier series for the square waveform of Figure 6.22 below. Assume

that ® = 1.
|

ot

-A

Figure 6.22. Waveform for Example 6.9
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Solution:

This is the same waveform as in Example 6.1, and as we know, it is an odd function, has half-wave
symmetry, and its DC component is zero. Therefore, the C, coefficients will be imaginary,

C, =0 forn = even,and C, = 0. Using (6.95) with ® = 1, we get

O
1l

i 2m —jnt _i T —jnt i 2m —jnt
] znj'o f(t)e dt_znjo Ae dt+2nL —Ae Mgt

and forn = 0,
LT A gt [ e gt ] = A _
C, = ZnUO Aeldt+ [ (-Ae dt} = B-2mem) =0

T

as expected.

For n#0,
b . 2n . TR YA
C, = L U Ae_‘”tdt+j —Ae_”"dt} = L | B Ay
2n [J, i 2n | o -In -
_ l A —jnm A -jn2m _ _-jnm j|_ A i -jn2m _ _-jnn (6102)
= 5 [_jn(e D+ ") = g1 e e
_ A —jn2n Jnn —jn‘r:_ 2
~ 2jmn lve )= ercn( 2
For n = even, "™ = 1; then,
C _ A —jnTE_ 2 _
n=even 2jnn(e 2 = 2jn n(1 ) (6.103)
as expected.
For n = odd, e " - -1. Therefore,
C _ A —jnTt_ 2 _ A 1 2 2A
n = odd 2j7rn(e b 2jmn 1-1) 2] n ) Jnn (6.104)
Using (6.92), that is,
f(t) = ...+ C_e7%" v C_e "+ + Cre 1+ C e 120

we obtain the exponential Fourier series for the square waveform with odd symmetry as
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f(t) = 275(...-

1 j3ot —jot j
e Pt _e 0ty e

jm 3 3

(6.105)

The minus (-) sign of the first two terms within the parentheses results from the fact that
C_, = C,*. For instance, since C; = 2A/j3n, it follows that C_; = C;* = -2A/j3n. We

observe that f(t) is purely imaginary, as expected, since the waveform is an odd function.

To prove that (6.105) and (6.22) are the same, we group the two terms inside the parentheses of
(6.105) for which n = 1; this will produce the fundamental frequency sinwt. Then, we group
the two terms for which n = 3, and this will produce the third harmonic sin3wt, and so on.

6.7 Line Spectra

When the Fourier series are known, it is useful to plot the amplitudes of the harmonics on a fre-
quency scale that shows the first (fundamental frequency) harmonic, and the higher harmonics
times the amplitude of the fundamental. Such a plot is known as line spectrum and shows the

spectral lines that

would be displayed by a spectrum analyzer .

Figure 6.23 shows the line spectrum of the square waveform of Example 6.1.

by

4/n

Figure 6.23. Line spectrum for square waveform of Example 6.1

| | l L L not
o 1 2 3 4 5 6 7 & 9

Figure 6.24 shows the line spectrum for the half-wave rectification waveform of Example 6.6.

A2
Alrt

2 4 6 8 o
t ()]
0 ) l ' '

Figure 6.24. Line spectrum for half-wave rectifier of Example 6.6

* An instrument that displays the spectral lines of a waveform.
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The line spectra of other waveforms can be easily constructed from the Fourier series.

Example 6.10

Compute the exponential Fourier series for the waveform of Figure 6.25, and plot its line spectra.
Assume » = 1.

—>| Tl |«

' 0 ‘ ' ot
21 — -n/K | /K T o

Figure 6.25. Waveform for Example 6.11
Solution:

This recurrent rectangular pulse is used extensively in digital communications systems. To deter-
mine how faithfully such pulses will be transmitted, it is necessary to know the frequency compo-
nents.

As shown in Figure 6.25, the pulse duration is T/k. Thus, the recurrence interval (period) T, is k
times the pulse duration. In other words, k is the ratio of the pulse repetition time to the duration
of each pulse.

For this example, the components of the exponential Fourier series are found from

3 i T —jnt _ A Tf/k —jnt
Co = 3= LAe dt = >~ L/k e Mat (6.106)

The value of the average (DC component) is found by letting n = 0. Then, from (6.106) we get

n/k

A1) -8 o0

-n/k

For the values for n # 0, integration of (6.1006) yields

. n/k jne/k _—jnm/k
C, = _A_ e = Ae - A sin(rﬂ)
—-jn2n -n/k - nm j2 nm k (6.108)
_ Asingnn/k) _ A sin(nn/k)
- nmw ~k nn/k
and thus,
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_ w~ A sin(nn/k)
f(t) = PR—— (6.109)
n = -0

The relation of (6.109) has the sinx/x form, and the line spectrum is shown in Figures 6.26
through 6.28, fork = 2, k = 5 and k = 10.

sin(nn/k)/(nn/k)

k=2

10 s+ 412 0 21,:1 6 "+ s 10
Figure 6.26. Line spectrum of (6.109) for k = 2

sin(nn/K)/(nm/k)

k

F B e

Figure 6.27. Line spectrum of (6.109) for k = 5

sin(nzn/K)/(nn/k)

k=10
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- .
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Figure 6.28. Line spectrum of (6.112) for k = 10
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The spectral lines are separated by the distance 1/k and thus, as k gets larger, the lines get closer

together while the lines are further apart as k gets smaller. Although the space between lines
seems to be the same in each case, we should observe that the number of lines between line cross-
ings, are different.

6.8 Numerical Evaluation of Fourier Coefficients

Quite often, it is necessary to construct the Fourier expansion of a function based on observed
values instead of an analytic expression. Examples are meteorological or economic quantities
whose period may be a day, a week, a month or even a year. In these situations, we need to evalu-
ate the integral(s) using numerical integration.

The procedure presented here, will work for both the waveforms that have an analytical solution
and those that do not. Even though we may already know the Fourier series from analytical meth-
ods, we can use this procedure to check our results.

Consider the waveform of f(x) shown in Figure 6.29, were we have divided it into small pulses of
width Ax. Obviously, the more pulses we use, the better the approximation.

If the time axis is in degrees, we can choose Ax to be 2.5° and it is convenient to start at the zero
point of the waveform. Then, using a spreadsheet, such as Microsoft Excel, we can divide the
period 0° to 360° in 2.5° intervals, and enter these values in Column A of the spreadsheet.

f(x)

U
Figure 6.29. Waveform whose analytical expression is unknown

Since the arguments of the sine and the cosine are in radians, we multiply degrees by =
(3.1459...) and divide by 180 to perform the conversion. We enter these in Column B and we
denote them as x. In Column C we enter the corresponding values of y = f(x) as measured from
the waveform. In Columns D and E we enter the values of cosx and the product ycosx respec-
tively. Similarly, we enter the values of sinx and ysinx in Columns F and G respectively.
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Next, we form the sums of ycosx and ysinx, we multiply these by Ax, and we divide by = to
obtain the coefficients a; and b; . To compute the coefficients of the higher order harmonics, we

form the products ycos2x, ysin2x, ycos3x, ysin3x, and so on, and we enter these in subsequent
columns of the spreadsheet.

Figure 6.30 is a partial table showing the computation of the coefficients of the square waveform,
and Figure 6.31 is a partial table showing the computation of the coefficients of a clipped sine

waveform. The complete tables extend to the seventh harmonic to the right and to 360° down.

6.9 Power Series Expansion of Functions

A power series has the form

Z akxk = ag+aX+axX + ... (6.110)
K=0

Some familiar power series expansions for real values of x are

2 3 4

e = Lax+ 4l X4 (6.111)
2! 3! 4
<X X

SINX = X—"=+=-=+... (6.112)
3! 5! 7!
2 4 6

cosx = 1-=+% X, (6.113)
2! 4! 6!

The following example illustrates the fact that a power series expansion can lead us to a Fourier
Series.

Example 6.11

If the applied voltage v is small (no greater than 5 volts), the current i in a semiconductor diode
can be approximated by the relation

i = a(e®-1) (6.114)
where a and k are arbitrary constants, and the input voltage is a sinusoid, that is,

V =V .cCosot (6.115)

Express the current i in (6.114) as a power series.
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Figure 6.30. Numerical computation of the coefficients of the square waveform (partial listing)
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Figure 6.31. Numerical computation of the coefficients of a clipped sine waveform (partial listing)
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Solution:

The term e’ inside the parentheses of (6.114) suggests the power series expansion of (6.111).
Accordingly, we rewrite (6.114) as

2 3 4 2 3 4
i = a(1+kv+(kv) L (k) (kv) +...—1) = a(kv+(kv) L k) (kv) +) (6.116)
2! 3! 4! 2! 3! 4!

Substitution of (6.115) into (6.116) yields,

2 3 4
kV,coswt kV, coswt kV, coswt
i:a(kaaXCOScot+( pCosel) +( peosel) +( pCosel) +) (6.117)
21 3! 4
This expression can be simplified with the use of the following trigonometric identities:
cos’x = l+ 1c:os2x
2 2
cos’x = %cosx+ %cosSx (6.118)
cos’x = 3 + 1c:os2x + lcos4x
8 2 8

Then, substitution of (6.118) into (6.117) and after simplification, we obtain a series of the fol-
lowing form:

i = Ay+ A cosot+A,cos20t + Ajcos3at + Ajcosdot + ... (6.119)
We recall that the series of (6.119) is the trigonometric series form of the Fourier series. We
observe that it consists of a constant term, a term of the fundamental frequency, and terms of all

harmonic frequencies, that is, higher frequencies which are multiples of the fundamental fre-
quency.

6.10 Taylor and Maclaurin Series

A function f(x) which possesses all derivatives up to order n at a point X = X, can be expanded
in a Taylor series as

: £ (%, SRR COPINN
f(x) = f(xg) + ' (Xg)(X—Xg) + o (X=Xp) + ...+ o (X —Xp) (6.120)
If x, = 0, (6.120) reduces to
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" f(n) 0
F(x) = f(0)+f'(0)x+f——2%@x2+ +——H,(——)x”

(6.121)

Relation (6.121) is known as Maclaurin series, and has the form of power series of (6.110) with

a, = £™)/n!.

To appreciate the usefulness and application of the Taylor series, we will consider the plot of Fig-
ure 6.32, where i(v) represents some experimental data for the current-voltage (i-v) characteris-

tics of a semiconductor diode operating at the 0 <v <5 volts region.

i(v)

0

Figure 6.32. Current-voltage (i-v) characteristics for a typical semiconductor diode

Now, suppose that we want to approximate the function i(v) by a power series, in the neighbor-
hood of some arbitrary point P(vy, iy) shown in Figure 6.33. We assume that the first n deriva-

tives of the function i(v) exist at this point.

We begin by referring to the power series of (6.110), where we observe that the first term on the
right side is a constant. Therefore, we are seeking a constant that it will be the best approxima-
tion to the given curve in the vicinity of point P . Obviously, the horizontal line i, passes through

point P, and we denote this first approximation as a, shown in Figure 6.34.
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1%

Figure 6.33. Approximation of the function i(v) by a power series

i(v)

Figure 6.34. First approximation of i(v)

The next term in the power series is the linear term a,x. Thus, we seek a linear term of the form
a, + a,X . But since we want the power series to be a good approximation to the given function for

some distance on either side of point P, we are interested in the difference v -v,. Accordingly,
we express the desired power series as

f(v) = ag+a,(v—Vy) +a,(V—Vy)" +ag(v—vy) +a,(v-vy)' + ... (6.122)

Now, we want the linear term a, + a,(v -V,) to be the best approximation to the function i(v) in

the vicinity of point P. This will be accomplished if the linear term has the same slope as the
given function as shown in Figure 6.35.
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Figure 6.35. Second approximation of i(v)

It is evident that the slope of i(v) at v, is i'(vy) = a, and therefore, the linear term
a+a,(V—V,) can be expressed as i(vy) + 1 (Vo) (V= V).

The third term in (6.122), that is, a,(v - V0)2 is a quadratic and therefore, we choose a, such that

it matches the second derivative of the function i(v) in the vicinity of point P as shown in Fig-
ure 6.36.

i a+a(v-v)+a(v-v)2
'(V)\ I/o 1 o)t 0
/7
2\

P(vo, Io) a9+ a,(V—Vy)

Figure 6.36. Third approximation of i(Vv)

n 1 . . . .
Then, 2a, =i (vy) or a, = i (vy)/2. The remaining coefficients as, a,, a5, and so on of

(6.122) are found by matching the third, fourth, fifth, and higher order derivatives of the given
function with these coefficients. When this is done, we obtain the following Taylor series.
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1

i (Vo) , i (Vo)

i(v) = i(v0)+i'(vo)(V—vo)+——2—!——(V—vo) + (V=vg)+ ... (6.123)

We can also describe any function that has an analytical expression, by a Taylor series as illus-
trated by the following example.

Example 6.12
Compute the first three terms of the Taylor series expansion for the function
y = f(x) = tanx (6.124)
ata = n/4.
Solution:

The Taylor series expansion about point a is given by

e

f(x) =f(a)+f'(a)(x-a)+ uz,@(x —a)’+ %ﬂ(x —a)Y s (6.125)
and since we are asked to compute the first three terms, we must find the first and second deriva-
tives of f(x) = tanx.

2 2 , . .
From math tables, ditanx = sec“x, so f'(x) = sec’x. To find f"(x) we need to find the first
X
. 2 2 . d
derivative of sec“x, so we let z = sec“x. Then, using R SECx = seex- tanx, we get

dz _ Zsecxisecx = 2secx(secx - tanx) = 2sec’x - tanx (6.126)

dx dx

Next, using the trigonometric identity

sec’x = tan’x + 1 (6.127)
and by substitution of (6.127) into (6.126), we get,

g_)z( = "(x) = 2(tan’x + 1)tanx (6.128)

Now, at point a = n/4 we have:

f(a)= f(g) = tan(g) -1 f'(a)= f'(f) —1+1=2 f (a)= f”(g) _2(1%+1)1=4 (6.129)

and by substitution into (6.125),
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fn(x)=1+2(x-§)+2(x-§)2+... (6.130)

We can also obtain a Taylor series expansion with the MATLAB taylor(f,n,a) function where f
is a symbolic expression, n produces the first n terms in the series, and a defines the Taylor
approximation about point a. A detailed description can be displayed with the help taylor com-
mand. For example, the following code will compute the first 8 terms of the Taylor series expan-
sion of y = f(x) = tanx about a = n/4.

x=sym('x'); y=tan(x); z=taylor(y,8,pi/4); pretty(z)

2 3 4
1 +2x - 1/2 pi + 2(x - 1/4 pi) + 8/3(x - 1/4 pi) + 10/3(x - 1/4 pi)

64 5 244 6 2176 7
+ -- (x - 1/4 pi) + --—- (x - 1/4 pi) + ---- (x - 1/4 pi)
15 45 315
Example 6.13

Express the function

y="ft)=¢ (6.131)

in a Maclaurin’s series.
Solution:

A Maclaurin’s series has the form of (6.132), that is,

" (n)
f(x) = f(0)+f'(0)x+f42‘9)x2+ +fﬁ92xn (6.132)

For this function, we have f(t) = ' and thus f(0) = 1. Since all derivatives are €', then,

£'(0) = £"(0) = f"(0) = ... = 1 and therefore,
o
fn(t) = 1+t+z+a+... (6133)

MATLARB displays the same result.
t=sym('t'); fn=taylor(exp(t)); pretty(fn)

2 3 4 5
1+t +1/2t +1/6 t + 1/24 t + 1/120 t
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Example 6.14
In a semiconductor diode D, the instantaneous current iy and voltage vy, are related as

vD/nVT

ip(Vp) = Ipe (6.134)

where I is the DC (average) component of the current, the constant n has a value between 1
and 2 depending on the material and physical structure of the diode, and V7 is the thermal voltage

which depends on the temperature, and its value at room temperature is approximately 25 mV .

Expand this relation into a power series that can be used to compute the current when the volt-
age is small and varies about vp = 0.

Solution:

Since the voltage is small and varies about v = 0, we can use the following Maclaurin’s series.

: : L ip(0) ip (0)
ip(Vp) = ip(0) +ip(0)vp + D2! v+ D3! e+ (6.135)

The first term i5(0) on the right side of (6.135) is found by letting v = 0 in (6.134). Then,
ip(0) = Ip (6.136)

To compute the second and third terms of (6.135), we must find the first and second derivatives
of (6.134). These are:

., d . 1 vV /NnV. ., 1
ID(VD) = a;;lD = Hv; . IDe D T and ID(O) = Hv'_‘r . ID (6137)
2
1 d” . 1 vp/nv o 1
ip(Vp) = ——ip = 5 Ipe T and i5(0) = - Ib (6.138)
Vp n"Vs n"Vs

Then, by substitution of (6.136), (6.137), and (6.138) into (6.135) we get

ip(Vp) = ID[1+LVD+2L2V2D+ ] (6.139)
nVy n“Vy
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6.11 Summary

e Any periodic waveform f(t) can be expressed as

f(t) = %ao + i (a,cosnmt + b, sinnwt)
n=1
where the first term a,/2 is a constant, and represents the DC (average) component of f(t).
The terms with the coefficients a; and b, together, represent the fundamental frequency
component o . Likewise, the terms with the coefficients a, and b, together, represent the sec-
ond harmonic component 2w, and so on. The coefficients a,, a,, and b,, are found from the

following relations:

1 1 2n
>80 = ano f(t)dt

¥

0

2n
f(t)cosntdt

e
b, = “Io f(t)sinntdt
e If a waveform has odd symmetry, that is, if it is an odd function, the series will consist of sine
terms only. Odd functions are those for which —f(-t) = f(t).

e If a waveform has even symmetry, that is, if it is an even function, the series will consist of
cosine terms only, and a, may or may not be zero. Even functions are those for which

f(=t) = f(t)
e A periodic waveform with period T, has half-wave symmetry if
—f (t+T/2) = (1)

that is, the shape of the negative half-cycle of the waveform is the same as that of the positive
half-cycle, but inverted. If a waveform has half-wave symmetry only odd (odd cosine and odd
sine) harmonics will be present. In other words, all even (even cosine and even sine) harmon-
ics will be zero.

e The trigonometric Fourier series for the square waveform with odd symmetry is

- Bsinot+ Ls 1 )=
f(t) = - smmt+3sm3mt+55m5mt+... = z nsmnmt
n = odd

The trigonometric Fourier series for the square waveform with even symmetry is
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4A 1 4A = 1
—_— — _l -— —_ ) —_— — —_ 2 —_—
f(t) = - (cosa)t 30053mt+50055mt o) = 2 (-1) ncosn(ot
n = odd

The trigonometric Fourier series for the sawtooth waveform with odd symmetry is

1 1 1 ) _ 2A 1
f(t) = (smmt—25m2mt+3sm3mt—4sm4mt+ = Z( )" smnmt

The trigonometric Fourier series for the triangular waveform with odd symmetry is

n-1)

f(t) = 2 (smcot %sm3mt+%sm5mt ‘%smmu ): = Z (-1) 2 n%sinncot
n =odd

The trigonometric Fourier series for the half-wave rectification waveform with no symmetry is

f(t) = A+Asint—A[C°SZt+ cos4t  cos6t  cos8t J
™2 3 15 35 63

The trigonometric Fourier series for the full-wave rectification waveform with even symmetry is

f(t) = 2A_24A Z 21 cosnomt
T dae. (-1

The Fourier series are often expressed in exponential form as
“j20t —jot jot 20t
f(t) = ... +C,e7 " +C e’ +Cy+ Cre!” +C,e " +

where the C; coefficients are related to the trigonometric form coefficients as

_1 byy _ 1 -
Cfn - Z(an_T) = Z(an"'an)
1 b 1 :
C, = E(an+-j—”) = z(an—an)
1
CO = an

o The C; coefficients, except Cy, are complex, and appear as complex conjugate pairs, that is,

C,=Cr*

-n n

e In general, for o= 1,
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T . 2n .
C, = % jo f(He " d(wt) = i IO f(te " d(wt)

e We can derive the trigonometric Fourier series from the exponential series from the relations
a, = C,+C_,
and
b, = j(C,-C_)
e For even functions, all coefficients C; are real

e For odd functions, all coefficients C; are imaginary
e If there is half-wave symmetry, C, = 0 for n = even

e C_, = C.* always
e A line spectrum is a plot that shows the amplitudes of the harmonics on a frequency scale.
e The frequency components of a recurrent rectangular pulse follow a sinx/x form.

e We can evaluate the Fourier coefficients of a function based on observed values instead of an
analytic expression using numerical evaluations with the aid of a spreadsheet.

e A power series has the form

e k 2
Zakx = g+ aX+aX + ...
K=0

e A function f(x) that possesses all derivatives up to order n at a point x = X, can be expanded
in a Taylor series as

, £ (x0) " (x)
F00 = f(xg) + 1 (X)X =Xg) + — 1 (X=Xg)" + ... + (= xp)"
If x, = 0, the series above reduces to
" f(n) 0
f(x) = f(0)+f'(0)x+fJ2'9)x2+...+ nf )xn

and this relation is known as Maclaurin series

e We can also obtain a Taylor series expansion with the MATLAB taylor(f,n,a) function where
f is a symbolic expression, n produces the first n terms in the series, and a defines the Taylor
approximation about point a.
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6.12 Exercises

1. Compute the first 5 components of the trigonometric Fourier series for the waveform of Figure
6.37. Assume ® = 1.

f(t)
+ A

NS

I 0 L ot

Figure 6.37. Waveform for Exercise 1

2. Compute the first 5 components of the trigonometric Fourier series for the waveform of Figure
6.38. Assume o = 1.

f(t)
A

| | | | | | ot
| | T | | T

Figure 6.38. Waveform for Exercise 2

3. Compute the first 5 components of the exponential Fourier series for the waveform of Figure
6.39. Assume ® = 1.

f(t)

ot

0

Figure 6.39. Waveform for Exercise 3

4. Compute the first 5 components of the exponential Fourier series for the waveform of Figure
6.40. Assume ® = 1.

f(t)
A/2 —

— -A/2

Figure 6.40. Waveform for Exercise 4
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5. Compute the first 5 components of the exponential Fourier series for the waveform of Figure
6.41. Assume o = 1.

f(t)
A

ot

0

Figure 6.41. Waveform for Exercise 5

6. Compute the first 5 components of the exponential Fourier series for the waveform of Figure
6.42. Assume ® = 1.

AN RVANNYS
NN

Figure 6.42. Waveform for Exercise 6

7. Compute the first 4 terms of the Maclaurin series for each of the following functions.

a. f(x)=e* b. f(x) =sinx c. f(x) = sinhx
Confirm your answers with MATLAB.

8. Compute the first 4 terms of the Taylor series for each of the following functions.

a. f(x) =

X I

about a =-1 b. f(x) = sinx about a = _ch

Confirm your answers with MATLAB.

9. In a non-linear device, the voltage and current are related as

i(v) = k(1+\¥/)1'5

where k is a constant and V is the DC component of the instantaneous voltage v. Expand
this function into a power series that can be used to compute the current i, when the voltage
v is small, and varies about v = 0.
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6.13 Solutions to Exercises
1.

f(t) , |

NS | o

-2n T 0 T 2n

This is an even function; therefore, the series consists of cosine terms only. There is no half-

wave symmetry and the average (DC component) is not zero. We will integrate from 0 to =
and multiply by 2. Then,

_2(7A

a, = 7TEJ. -

T
tcosntdt = 2—AJ- tcosntdt (1)
o T )

From tables of integrals,

1 X .
'[xcosaxdx = —cosax+ asmax
a

and thus (1) becomes
_ %( 1 osnt+ Lsi t)
a, 7\ 3cosnt+ Zsinn

T
= = %(lcosnrwlsinntn—l—o)
2\ 2 2
T n T

n
0 n n

and since sinntr = 0 for all integer n,

N = 2—'2‘(l2cosnn—l) = i(cosnn—l) (2)
2 2 2
T n n nm

We cannot evaluate the average(1/2)/a, from (2); we must use (1). Then, forn = 0,

- 2" 2
Lo = 2] " - A.CF A
2 2170 I 2

T
2

a

0
or
(1/2)/a, = A/2

We observe from (2) that for n = even, a, _ oy en = 0. Then,

forn =1, alz—%, forn = 3, a3:ﬂ, for n =5, a5:—ﬁ, forn=17, a3:ﬁ
2 2 2 2 2 2 2
i 3 5'n A
and so on.
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Therefore,
_ 1 _%( 1 1 1 )_ A 4A & L
f(t) = 2a0 2 cost+gcos3t+250055t+49c037t+... =5 Z nzcos.nt
n = odd
2.
f(t)y | 2A,
A (n
| | | | ot

I I T |

| |
0 n/2 g 3n/2
This is an even function; therefore, the series consists of cosine terms only. There is no half-
wave symmetry and the average (DC component) is not zero.

Average = Lo, = Area _ 2x[(A/2) (n/2)]+An _ 3A-(1/2) _ 3A

2 Period 271 27 4
2 TE/22A 2 T
a, = —I —tcosntdt+—j Acosntdt (1)
Mg T T2

and with

1 X . 1 .
_[xcosaxdx = —zcosax+asmax = —Z(cosax+axsmax)
a a

(1) simplifies to

n/2
a, = i’—z‘[-l—z(cosnn ntsinnt)} + 2—'e‘sinnt|’r/2
2Lln nm m
0
= ﬁ(cosn—Tc + MG 0T_ 1 _ 0) + 2—A(sin nm— sinn—n)
n2n2 2 2 2 nm 2

and since sinntr = 0 for all integer n,

a, = ——C0S—+ —SIN— - —— ——SIN— =

4A nt 2A . nt 4A 2A . nxm 4A( nm )
2.2 2 nm 2 2.2 nm 2 2 2
T nm T

n

forn = 1, al=%‘(0—1)=—4'§, forn = 2, a2:4—A2(—1—1):—%‘
e o 47 T

forn = 3, a3:4—A2(0-1):-ﬁ‘-A-2, forn =4, a,==2(1-1) =0
on 9n ’n

We observe that the fourth harmonic and all its multiples are zero. Therefore,
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ot

f(t) = 3A 4A(cost+$cosZt+écos3t+ )
3.
f(t)
A I
0 T 271

This is neither an even nor an odd function and has no half-wave symmetry; therefore, the
series consists of both cosine and sine terms. The average (DC component) is not zero. Then,

_ i 2m —jnot
Co = 5= jo f(t)e "'d(wt)

and with ® = 1

b . 2n . T
C,= = f(t) e Mgt = [ [ ATt | Oe_'mdt} A [ el
2n 2n Jg ﬁ T Jy
The DC value is
T s
CO=-A—je°dt=-A—t A
2n J, 2n |, 2
Forn=0
A T ot A SGnt]t A _ -inm
Cn = 2n .[0 ¢ dt_—jZnn 0 a j2n7t(1 e
Recalling that
e "™ = cosnn—jsinnn
for n = even, e — 1 andforn = odd, e " = -1. Then,
n=even — J2n -5 —(1-1)=0
and
Choodd = J2n S—[1-(-1)] =
By substitution into the expression
f(t) = ...+ Ce % v Cce + Cy+ Cel®t + CLel % +

we find that
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A A( 1 j3ot —jot jot 1 j3ot )
f) ==+—|...-= - =
() > +ch 3e e’ +e +3e +

The minus (-) sign of the first two terms within the parentheses results from the fact that
C_, = C,*. For instance, since C; = 2A/jn, it follows that C_; = C;* = -2A/jn. We

observe that f(t) is complex, as expected, since there is no symmetry.

f(t)
A/2 —

— -A/2

This is the same waveform as in Exercise 3 where the DC component has been removed.

Then,

_ A( _l —j303t_ —jot jot l j3mt )
f(t) = jnl 3e e’ +e +3e + ...

It is also the same waveform as in Example 6.9 except that the amplitude is halved. This wave-
form is an odd function and thus the expression for f(t) is imaginary.

f(t)

0 ? ot
-n/2 n/2

This is the same waveform as in Exercise 3 where the vertical axis has been shifted to make
the waveform an even function. Therefore, for this waveform C, is real. Then,

1 " —jnt A (™2 —jnt
C,==— f(hhe dt=— e dt
"o 2rn ) 27 J-—Tr/Z
The DC value is
n/2
-2 - 2439 -2
T T\2 2 2
For n#0
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n/2 . .
oMt = _ A (efjnn/Z_e]nn/Z
/2 —j2nn —j2nn

n/2 . .
A J’ —jnt A it )

-n/2

. . jnm/2 —jnm/2
A 2 w2, A(el"—e A .
(ejnn/ _e jnm/ ) _ _Smn_Tt

~j2nm nm
and we observe that for n = even, C, = 0

For n = odd, C, alternates in plus (+) and minus (-) signs, that is,

c,=2 ifn=1509..
nm

C,=-2 ifn=3711,..
nmw

Thus,
f(t) = §+ > (i%te"”““)

n =odd

where the plus (+) sign is used with n = 1,5,9,... and the minus (-) sign is used with

n = 3,711, .... We can express f(t) in a more compact form as
f(t) = A+ (_1)(n—1)/2Aejnmt
2 z nm
n=odd
6.
f(t 2A,
() A —t-1

N TN

We will find the exponential form coefficients C,, from

A P
C = 5 j_nf(t)e dt
From tables of integrals
ax

Ixeaxdx = e—z(ax—l)
a

Then,
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1 O(ZA
C”_Zn[.‘. _?t_

-7

0

Integrating and rearranging terms we get

- —]:_ _ﬁ-'-%(nn'ejnn_e—jnn+ejnn+e—jnn)_
N 2rm n2r n°n j2 2
4A . nmw .
= > —1+nnsmnn+cosnn—-é—smnn
2N«

and since sinng = 0 for all integer n,

2A
n = 5 (cosnm—1)
nn

C

For n = even, C, = 0 and for n = odd, cosnt = -1, and C,, =

Also, by inspection, the DC component C, = 0. Then,

f(t) = —4—?( + %e‘jgwt relot oty %eiSmt

.. -j3
The coefficients of the terms e >

1)e_jmdt+ j (Z—At—l)e_jmdt}
TT

oA " _gdNm
n j2

—4A

2 2
nm

)

t “jot y -
and e’ are positive because all coefficients of C, are

real. This is to be expected since f(t) is an even function. It also has half-wave symmetry and

thus C, = 0 for n = even as we've found.

7.
HOTTRAKCN
f(x) = f(0O)+f'(0)x + op X Het X
a. fx)=¢e*, fO)=1, fx=-" f0=-1, f'"®)=¢" {70) =1,
f"'(x) = e, £"(0) = -1, and so on. Therefore,
XX
fn(X) = 1—X+z—a
MATLARB displays the same result.
x=sym('x'); fn=taylor(exp(—x)); pretty(fn)
2 3 4 5
1 -x+1/2x -1/6 x + 1/24 x - 1/120 x
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b. f(x) = sinx, f(0) =0, f'(x)=cosx, f'(0)=1, f"(x)=-sinx, f"(0)=0,

nr nr

f(x) = —cosx, f (0) = -1, and so on. Therefore,

XX X
fn(X) = X—a+a—ﬂ+
MATLARB displays the same result.
x=sym('x'); fn=taylor(sin(x)); pretty(fn)
3 5

x - 1/6 x + 1/120 x

f(x) = sinhx, f(0) =0, f'(x)=coshx, f'(0)=1, f"(x)=sinhx, f"(0)=0,

nr e

f 7 (x) = coshx, f (0) = 1, and so on. Therefore,

MATLARB displays the same result.
x=sym('x’); fn=taylor(sinh(x)); pretty(fn)

3 5
x + 1/6 x + 1/120 x

8.
f(x) = f(a)+f’(a)(x_a)+——u(x a) +——§—)(x a)y+.
a. f(x) = 1/x, f(a) = f(-1) = -1, f'(x) = -1/x%, f'@@) = £ (1) = -1, £"(x) = 2/%°,
f'@) = £"(=1) = =2, "' (x) = -6/x*, 1""(a) = £"'(~1) = -6, and so on. Therefore,
f(X)=-1-(x+1)- (x+1)° -~ (x+1)° + ...
or
f(X)=-2-x—(x+1)°—(x+1)>+ ...
MATLAB displays the same result.
x=sym('x'); y=1/x; z=taylor(y,4,-1); pretty(z)
2 3
2 - x - (x4 1) - (x+ 1)
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b. f(x) = sinx,

f'(a) = f'(-n/4) = J2/2,

f'(x) = cosx,
f"'(x) = —cosx,

f(a) = f(-n/4) = -J2/2,
f"(x) = —sinx, f"(a) = t"(-n/4) = J2/2,
f"(a) = f"'(-n/4) = —/2/2, and so on. Therefore,

f(X) == 2/2 4 (J2/2)(X+1/8) + (J2/8) (X + 1/8) = (J2/12)(x + 1/4) " +

MATLARB displays the same result.
"); y=sin(x); z=taylor(y,4,—pi/4); pretty(z)
1/2 2

1/2 1/2
+ 1/2 2 (x + 1/4 pi) + 1/4 2 (x + 1/4 pi)

x=sym('x

- 1/2 2

3

1/2
(x + 1/4 pi)

- 1712 2

iv) = k(1+ \%)1'5

The Taylor series for this relation is

(0)(v vo) ! (o(v vo) + .

(V) = i(vg) +i (Vo)(V—Vy) +

Since the voltage v is small, and varies about v = 0, we expand this relation about v = 0 and
the series reduces to the Maclaurin series below.

rn

i(v) = i(0)+i’(0)v+4—2v2+ 1)

By substitution of v = 0 into the given relation we get

The first and second derivatives of i are o
i'(v) = 3k( +\¥/)1/2 i'(0) = g’—\'j
i"(v) = i/k—z(u\!/)_l/z i"(0) = %2
and by substitution into (1)
3k 3—kv2+... k(l+%v+£v +. )

i(v) = k+2V oy
6-59
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MATLARB displays the same result.

x=sym('x'); i=sym(‘’); v=sym(‘v’); k=sym(‘k’); V=sym(‘V’);...
i=k*(1+v/V)M.5; z=taylor(i,4,0); pretty(z)

2 3
kv k v kv
k+3/2 -—— +3/8 -———- - 1/16 —---—-
v 2 3
Y \Y
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Chapter 7

Finite Differences and Interpolation

his chapter begins with finite differences and interpolation which is one of its most impor-

tant applications. Finite Differences form the basis of numerical analysis as applied to other

numerical methods such as curve fitting, data smoothing, numerical differentiation, and
numerical integration. We will discuss these applications in this and the next three chapters.

7.1 Divided Differences

Consider the continuous function y = f(x) and let xo, X5, X5, ..., X X, be some values of x

n-1
in the interval x, <x <X, . It is customary to show the independent variable x, and its correspond-

ing values of y = f(x) in tabular form as in Table 7.1.

TABLE 7.1 The variable xand y = f(x) in tabular form

X f(x)
Xo f(Xg)
Xq f(xy)
X5 f(x,)
Xn_1 f(x,_1)
Xp f(xp)

Let x; and x; be any two, not necessarily consecutive values of x, within this interval. Then, the
first divided difference is defined as:

f(x:)—f(x;)
o) = ———F (7.1)
)
Likewise, the second divided difference is defined as:
f(Xi: Xj) - f(Xj: Xy)
Xi =Xk

f(X;, Xj X)) = (7.2)
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The third, fourth, and so on divided differences, are defined similarly.

The divided differences are indicated in a difference table where each difference is placed
between the values of the column immediately to the left of it as shown in Table 7.2.

TABLE 7.2 Conventional presentation of divided differences

X f(x)
Xo f(Xp)
f(Xg X1)
X1 f(xy) F (g, X1, %)
f(Xg, Xp) f(Xps X15 Xg, X3)
X, f(xz) f (X1, X X3)
f (X9, X3)
X3 f(x3)

Example 7.1

Form a difference table showing the values of x given as 0, 1, 2, 3, 4, 7, and 9, the values of
f(x) corresponding toy = f(x) = x°, and the first through the fourth divided differences.
Solution:

We construct Table 7.3 with six columns. The first column contains the given values of x, the
second the values of f(x), and the third through the sixth contain the values of the first through
the fourth divided differences. These differences are computed from (7.1), (7.2), and other rela-
tions for higher order divided differences. For instance, the second value on the first divided dif-
ference is found from (7.1) as

and third value on the second divided difference is found from (7.2) as

37-93

=14
3-7
Likewise, for the third divided difference we have
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TABLE 7.3 Divided differences for Example 7.1

Function Divided Differences
3 . .
X f(x) = x First Second Third Fourth
0 0
1
1 1 4
13 1
3 27 8 0
37 1
4 64 14 0
93 1
7 343 20
193
9 729
4-8 _
0-4
and for the fourth
1-1_,
0-4

We observe that, if the values of the nth divided difference are the same, as in the fifth column

(third divided differences for this example), all subsequent differences will be equal to zero.

In most cases, the values of x in a table are equally spaced. In this case, the differences are sets of
consecutive values. Moreover, the denominators are all the same; therefore, they can be omitted.
These values are referred to as just the differences of the function.

If the constant difference between successive values of x is h, the typical value of x, is

X, = Xg+kh for k=..-2,-1,0,1,2,... (7.3)
We can now express the first differences in terms of the difference operator A as
Af, = T =1, (7.4)
Likewise, the second differences are
A*f, = A(AR) = Af, | —Af, (7.5)
and, in general, for positive integer values of n
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A", = AA" M) = AN L AT, (7.6)
The difference operator A obeys the law of exponents, that is,
A"(A") = AT, (71.7)
We construct the difference table in terms of the difference operator A as shown in Table 7.4.

TABLE 7.4 Divided differences table in terms of the difference operator A

Function Differences

X f First Second Third Fourth

Xo fo
Afy

X1 fy A%,
Afy A3f0

X2 f Afy A,
Afy A3f1

X3 f3 Azf2
Afy

Xy fy

Xn fn

Example 7.2

Construct a difference table showing the values of x given as 1, 2, 3,4, 5, 6, 7 and 8, the values of
f(x) corresponding to y = f(x) = x°, and the first through the fourth differences.

Solution:

Following the same procedure as in the previous example, we construct Table 7.5.
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TABLE 7.5 Difference table for Example 7.2

Function Differences
C ox f Af, At A% A
1 1 1
7

2 2 8 12
19 6

3 3 27 18 0
37 6

4 4 64 24 0
61 6

5 5 125 30 0
91 6

6 6 216 36 0
127 6

7 7 343 42
169

8 8 512

We observe that the fourth differencesA*f, are zero, as expected.

Using the binomial expansion

we can show that

n
Aty =fn=fin 1+

Fork =0,n =

(T) B j!(nnij)!

nin-1)

21 fk+n—2+

1, 2,3 and 4, relation (7.9) reduces to

A%y = f,—3f,+3f, —

Aty = f, - 4f, + 6f,-4f, +1,

(D) nf L+ (D)

(7.8)

(7.9)

(7.10)

[t is interesting to observe that the first difference in (7.10), is the difference quotient whose limit
defines the derivative of a continuous function that is defined as
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lim éY: lim f(xy + AX) = f(xy)

7.11
Ax—>0 AX  Ax—0 AX ( )
As with derivatives, the nth differences of a polynomial of degree n are constant.
7.2 Factorial Polynomials
The factorial polynomials are defined as
0™ = Xx(x=1)(X=2)...(x—n +1) (7.12)
and
-(n) _ 1
& = D) (7.13)
These expressions resemble the power functions x" and X" in elementary algebra.
Using the difference operator A with (7.12) and (7.13) we get
AO)™ = npo Y (7.14)
and
80" ™ = 0o Y (7.15)

We observe that (7.14) and (7.15) are very similar to differentiation of x" and x .

Occasionally, it is desirable to express a polynomial p(x)as a factorial polynomial. Then, in anal-

ogy with Maclaurin power series, we can express that polynomial as
Pa(X) = ap+ al(x)(l) + az(x)(z) +...+ an(x)(n) (7.16)

and now our task is to compute the coefficientsa, .

For x = 0, relation (7.16) reduces to
ap = p,(0) (7.17)

To compute the coefficient a,, we take the first difference of p,(x)in (7.16). Using (7.14) we get

Ap,(X) = 1x0al + 2a2(x)(1) + 3a3(x)(2) + ..+ nan(x)(nfl) (7.18)
and letting x = 0, we find that
a; = Ap,(0) (7.19)
Differencing again we get
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(n-2)

A’p(x) = 2-1a,+3- 22,00 + ...+ n(n—1)a,(x) (7.20)
and for x = 0,
2 2
A%p.(0)  A%p.(0
2.1 21
In general,
Alp.(0
SO o jo0n2 (7.22)

]

Factorial polynomials provide an easier method of constructing a difference table. With this
method we perform the following steps:

1. We divide p,(x)in (7.16) by x to get a quotient gy(x) and a remainder r, which turns out to

be the constant term a,. Then, we express (7.16) as
PL(X) = I+ Xgy(X) (7.23)

2. We divide qo(x) in (7.23) by (x-1) to get a quotient g,(x)and a remainder r, which turns

out to be the constant term a, . Then,
do(X) = Iy + (x=1)q5(x) (7.24)
By substitution of (7.24) into (7.23), and using the form of relation (7.16), we get
P(X) = Fo+X[ry+(X=1)q;00] = Fo+r00Y +x(x = 1)qy (%) (7.25)

3. We divide g,(x) in (7.25) by (x—2) to get a quotient g,(x)and a remainder r, which turns

out to be the constant term a,, and thus

4:(%) = rp+(X=2)qx(x) (7.26)

By substitution of (7.26) into (7.25), we get

PL(X) = Fo+ 1,00 4 x(x = 1)[F, + (X = 2)0,(X)]

(7.27)

ro+ 1,00 + 1,00% + X(X = 1)(X — 2)q(X)

Continuing with the above procedure, we get a new quotient whose degree is one less than pre-
ceding quotient and therefore, the process of finding new quotients and remainders terminates
after (n+1) steps.

The general form of a factorial polynomial is
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pn(x) =Iy+ rl(x)(l) + rz(x)(z) + ...+ rn_l(x)

and from (7.16) and (7.22),

or

Example 7.3

Express the algebraic polynomial

(n-1) . I’n(X)(n)

j
r = a = 2P0

Ap,(0) = jlr,

p(x) = x' - 5x3+3x+4

as a factorial polynomial. Then, construct the difference table with h = 1.

Solution:

(7.28)

(7.29)

(7.30)

(7.31)

Since the highest power of the given polynomial p(x) is 4, we must evaluate the remainders

lg, 1, I, I3 and r,; then, we will use (7.28) to determine p,(x). We can compute the remainders

by long division, but for convenience, we will use the MATLAB deconv(p,q) function which

divides the polynomial p by q.
The MATLAB code is as follows:

px=[1 -5 0 3 4];
do=[1 0J;
[90,r0]=deconv(px,d0)
di=[1 -1];
[91,r1]=deconv(q0,d1)
d2=[1 -2];
[g2,r2]=deconv(q1,d2)
d3=[1 -3];
[93,r3]=deconv(g2,d3)
d4=[1 -4];
[94,r4]=deconv(q3,d4)

% Coefficients of given polynomial

% Coefficients of first divisor, i.e, x

% Computation of first quotient and remainder

% Coefficients of second divisor, i.e, x—1

% Computation of second quotient and remainder
% Coefficients of third divisor, i.e, x-2

% Computation of third quotient and remainder

% Coefficients of fourth divisor, i.e, x-3

% Computation of fourth quotient and remainder
% Coefficients of fifth (last) divisor, i.e, x—4

% Computation of fifth (last) quotient and remainder

a0 =
1 -5 0 3
r0 =
0 0 0 0 4
al =
1 -4 -4
rl =
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0 0 0 -1
gz =

1 -2
r2 =

0 0 -8
a3 =

1
r3 =

0 1
ad =

0
rd =

1

Therefore, with reference to (7.28), the factorial polynomial is
p,(¥) = 4— 0P =800)? + (0@ + 0™ (7.32)

We can verify that (7.32) is the same polynomial as (7.31), by expansion of the factorials using
(7.12). This can be easily done with the MATLAB collect(‘s_expr’) function, where ‘s_expr’ is
a symbolic expression. For this example, the MATLAB code is

syms x; px=collect((x*(x—1)*(x=2)*(x=3))+(x*(x—1)*(x=2))—(8*x*(x—1))—x+4)

px =
XM -5*x"3+3*x+4

We observe that this is the same algebraic polynomial as in (7.31).

We will now compute the leading entries for the difference table using (7.30) and (7.32). Then,

A°p(0) = 0!-4 = 4
A'p(0) = 11-(-1) = -1
A%p(0) = 2!-(-8) = 16
A’p(0) =31-1=86
A'p(0) = 41.1 = 24
A°p(0) = 5!1-0 =0

(7.33)

1. We enter the values of (7.33) in the appropriate spaces as shown in Table 7.6.
2. We obtain the next set of values by crisscross addition as shown in Table 7.7.

3. The second crisscross addition extends the difference table as shown in Table 7.8.
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TABLE 7.6 Leading entries of (7.33) in table form

X p(x) A A A AY AR

4

-16

24

TABLE 7.7 Crisscross addition to find second set of values

X p(X) A A A NN
4
1
P
3 16
-17 6
Ve
~10 24
yd
30 0
24 ]

TABLE 7.8 Second crisscross addition to find third set of values

X 0() A A’ A® At A
4
-1
3 —16
-17 6
—14/ -10 24
277 30 0
20~ 24
547
7-10 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition

Orchard Publications



Antidifferences

4. Continuation of this procedure produces the complete difference table. This is shown in Table

7.9.

TABLE 7.9 Complete difference table for Example 7.3

X o) | A A? A® At A
4
=]
3 16
17 6
14 -10 24
27 30 0
n” 20 24
77 54
rd
—48 74
67
P
19

7.3 Antidifferences

We recall from elementary calculus that when we know the first derivative of a function, we can
integrate or antidifferentiate to find the function. By a similar method, we can find the antidifference

of a factorial polynomial. We denote the antidifference as A_lpn(x) . It is computed from

(n+1)
Atoo™ = (7.34)
(n+1)
Example 7.4

Compute the antidifference of the algebraic polynomial
p(x) = x'—5x3+3x+4 (7.35)
Solution:

This is the same algebraic polynomial as that of the previous example, where we found that the
corresponding factorial polynomial is
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p, () = 4— () =800 + (0P + 0™ (7.36)

Then, by (7.34), its antidifference is

@00 @
2

; ; +40)P +C (7.37)

)
A7py0 = Yl X

where C is an arbitrary constant.

Antidifferences are very useful in finding sums of series. Before we present an example, we need
to review the definite sum and the fundamental theorem of sum calculus. These are discussed
below.

In analogy with definite integrals for continuous functions, in finite differences we have the defi-
nite sum of p,(x) which for the interval a<x<a+ (n-1)h is denoted as

o+(n-1)h
z P(X) = pp(a) +p,(aa+h)+p (a+2h)+ ... +p,[o+(n-1)h] (7.38)

X=a

Also, in analogy with the fundamental theorem of integral calculus which states that
b
j f(x)dx = f(b)—f(a) (7.39)
a

we have the fundamental theorem of sum calculus which states that
a+(n-1)h

S py0 = AT p 0 (7.40)

o
X=a

Example 7.5

Derive a simple expression, in closed form, that computes the sum of the cubes of the first n odd
integers.

Solution:

An odd number can be expressed as 2m -1, and thus its cube is (2m - 1)3. To use (7.40), we
must express this term as a factorial polynomial. Recalling from (7.12) that

)™ = x(x=1)(x=2)...(x=n+1) (7.41)
and using the MATLAB expand(f) function where f is a symbolic expression, we execute
syms m; f = (2*'m-1)A3; expand(f)

and we get
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ans =
8*m"~3-12*m"2+6*m-1

Thus
p(m)= (2m-1)° =8m*~12m*+6m-1 (7.42)
Following the procedure of Example 7.3, we find p,(m)with MATLAB as
pm=[8 -12 6 —1];
do=[1 0];
[90,r0]=deconv(pm,d0)

di=[1 —1];
[91,r1]=deconv(q0,d1)

d2=[1 -2];
[q2,r2]=deconv(q1,d2)
d3=[1 -3];
[03,r3]=deconv(g2,d3)
a0 =

8 -12 6
r0 =

0 0 0 -1
al =

8 -4
rl =

0 0 2
az =

8
r2 =

0 12
as =

0
r3 =

8
Therefore,

p,(m) = 8(m)™ + 12(m)® +2(m)™ -1 (7.43)

Taking the antidifference of (7.43) we get

(4) (3) (2)
Ailpn(m) _ 8(m) + 12(m) + 2(m) (m)(l)
4 3 2 (7.44)
_ 2(m)(4)+4(m)(3)+ (m)(z)_(m)(l)
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and with (7.40)

n+1
3 cubes = 2@ + 4m)® + (@ - (m)H) -
=2n+H)n(n-L)(n-2)+4(n+)n(n-L)+(n+L)n-(n+1) (7:45)
_2(1)(4)_4(1)(3) B (1)(2) + (1)(1)
Since
W)W = 11-1)1-2)(1-3) =0
WP = 1(1-1)1-2) =0 (7.46)
WP =11-1)=0
MY =1
relation (7.45) reduces to
Zcubes =2n+LHn(n-DH(n=-2)+4(n+)n(n-D)+(n+1)n-(n+1)+1 (7.47)
and this can be simplified with the MATLAB collect(f) function as follows.
syms n; sum=collect(2*(n+1)*n*(n—1)*(n-2)+4*(n+1)*n*(n—1)+(n+1)*n—(n+1)+1)
sum =
2*n™4-n"2
that is,
ZCUbes =2n*_n? = n2(2n2— 1) (7.48)

We can verify that this is the correct expression by considering the first 4 odd integers
1,3,5, and 7. The sum of their cubes is

1+27+125+ 343 = 496
This is verified with (7.48) since

n“(2n’-1) = 4%(2-4°-1) = 16-31 = 496

One important application of finite differences is interpolation. We will discuss the Newton’s
divided-difference interpolation method, Lagrange’s interpolation method, Gregory-Newton for-
ward, and Gregory-Newton backward interpolation methods. We will use spreadsheets to facili-
tate the computations. We will also discuss interpolation using MATLAB.
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7.4 Newton’s Divided Difference Interpolation Method

This method, has the advantage that the values X, X, X,, ..., X, need not be equally spaced, or

taken in consecutive order. It uses the formula

f(x) = f(Xg) + (X = Xo) F(Xg, X1 ) + (X = Xg) (X = X1 ) F (X, Xy, Xp) (7.49)
+ (X = Xg) (X = X1 ) (X = X5) F(Xgy Xg5 X9, X3) ’

where f(Xq, X;), f(Xg, X1, X5), and f(Xg, X, X5, X3) are the first, second, and third divided differ-

ences respectively.

Example 7.6

Use Newton’s divided-difference method to compute f(2) from the experimental data shown in
Table 7.10.

TABLE 7.10 Data for Example 7.6

x 1.0 0.0 0.5 1.0 2.5 3.0
y=fx)| 30 20 | 0375 | 30 | 16125 | 19.0

Solution:
We must compute the first, second, and third divided differences as required by (7.49).

The first divided differences are:

—2.000 —3.000 _ 5000
0—(<1.0)
~0.375-(=2.000) _ 4 55
05-0.0
3.000- (<0375) _ ¢ 70
1.0-0.5 . (7.50)
16.125 - 3.000 _ 4 7z,
25-1.0
19.000 — 16.125 - 5750
3.0-25
The second divided differences are:
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3.250 — (~5.000) _

= 5.500
0.5-(-1.0)
6.7158 — g.(Z)SO — 3500
' ' (7.51)
8.750 - 6.750 _ 1.000
25-05
5.750 — 8.750
= — = = _1.500
3.0-1.0
and the third divided differences are:
3.500 -5.500 _ ~1.000
1.0-(-1.0)
1.000 - 3.500
== = _1.000 .
25-0.0 (7.52)
—1.500 - 1.000
—_ ——— = _1.000
3.0-05
With these values, we construct the difference Table 7.11.
TABLE 7.11 Difference table for Example 7.6
1Ist Divided Difference 2nd Divided Difference  3rd Divided Difference
X f(X) f(X09 X]_) f(X09 X]_? X2) f(XO’ X]_: X27 X3)
-1.0 3.000
-5.000
0.0 -2.000 5.500
3.250 —1.000
0.5 —-0.375 3.500
6.750 —1.000
1.0 3.000 1.000
8.750 —1.000
2.5 16.125 -1.500
5.750
3.0 19.000

Now, we have all the data that we need to find f(2). We start with x, = 0.00," and for x in

(7.49), we use x = 2. Then,

* We chose this as our starting value so that f(2) will be between (1) and (2.5)
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f(2)

~2.0+(2-0)(3.250) + (2 — 0)(2 - 0.5)(3.500) + (2 — 0)(2 — 0.5)(2 — 1)(~1.000)
~20+65+105-3

12

This, and other interpolation problems, can also be solved with a spreadsheet. The Excel spread-
sheet for this example is shown in Figure 7.1.

A | B | C | D | E F
1 |interpolation with Newton's Divided Difference Formula
2 ]f(x) = f(Xo)+(X-Xo)F(X0,X1)+(X-X0) (X-X1)F (X0, X1,X2) +(X-X0) (X-X1) (X-X2)F(X0,X1,X2,X5)
3 |in this example, we want to evaluate f(x) at x= 2
4 1st divided 2nd divided 3rd divided
5 difference difference difference
6 X f(x) f(Xo, X1) f(Xo, X1, X2) f(X0,X1,X2,X3)
7 -1.00| 3.000
8 -5.000
9 0.00| -2.000 5.500
10 3.250 -1.000
11 0.50| -0.375 3.500
12 6.750 -1.000
13 1.00| 3.000 1.000
14 8.750 -1.000
15 2.50] 16.125 -1.500
16 5.750
17 3.00| 19.000
18 |We use the above formula with starting value x, = {0.00
19 |f(2)=B12+(E3-E18)*C13+(E3-E18)*(E3-A14)*D14+(E3-E18)*(E3-A14)*(E3-A16)*E15
20 [or f2)= | 12.00] \
21 |The plot below verifies that our answer is correct
22| -1.000| 3.000 '
23| 0.000| -2.000 o i
24| o.500] -0.375 o 10 ] —
25| 1.000] 3.000 =] /
26 2.500| 16.125 s
27 | 3.000| 19.000 e o0 e 20 *0
28 X
29 | | |

Figure 7.1. Spreadsheet for Example 7.6
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7.5 Lagrange’s Interpolation Method
This method uses the formula
(X=X )(X=X5)...(X=X,) ¢ (X=Xp)(X=X5)...(X=X,)
(Xo) +
(Xg =X (Xg—X5)...(Xg — X)) (Xg = Xp)(Xg = X5)...(Xg = X))

(X=Xg)(X=Xg)...(X=X,,_1)
(Xn_xo)(xn_xz)---(xn_Xn—l)

f(x) = f(xy)

(7.53)

f(Xn)

and, like Newton’s divided difference method, has the advantage that the values Xq, Xy, Xy, ..., X,

need not be equally spaced or taken in consecutive order.

Example 7.7
Repeat Example 7.6 using Lagrange’s interpolation formula.
Solution:

All computations appear in the spreadsheet of Figure 7.2 where we have used relation (7.53).

Al B|] c | D E F G H | J K L

1 [Lagrange's Interpolation Method

Z | Numer. |Denom. [Division

S |Interpol. at x= 2 Partial Partial of Partial

4 Prods Prods Prods

|5} X f(x) X-X1 X-X3 X-X3 X-X4 X-X5 f(Xo)

[§} Xo| -1.00 3.000 2.000 1.500 1.000| -0.500| -1.000 3.000 4.500

4 x1|  0.00[ -2.000[ X¢-X3 Xo-X2 Xo-X3 Xo-X4 Xo-X5 -0.107
o X2 0.50 -0.375 -1.000[ -1.500 -2.000] -3.500] -4.000 -42.000

1) x3| 1.00 3.000{ Xx-Xo X=X X-X3 X-X4 X-Xs f(x1)
10 X4 2.50| 16.125 3.000 1.500 1.000| -0.500| -1.000( -2.000 -4.500
11 xs| 3.00[ 19.000( xi-Xo X1-X2 X1-X3 X1-X4 X1-X5 -1.200
1Z 1.000] -0.500 -1.000] -2.500] -3.000 3.750
13 X-Xo X-X1 X-X3 X-X4 X-Xs (x2)
14 3.000 2.000 1.000| -0.500| -1.000( -0.375 -1.125
15 X2-Xo X2-X1 X2-X3 X2-X4 X2-Xs 0.600
10 1.500 0.500 -0.500] -2.000] -2.500 -1.875
1/ X-Xo X-X1 X=Xz X-X4 X-Xs (x3)
13 3.000 2.000 1.500/ -0.500| -1.000 3.000 13.500

19 X3-Xo X3-X1 X3-X2 X3-X4 X3-Xs 4.500
ZU 2.000 1.000 0.500] -1.500] -2.000 3.000
21 X-Xo X-X1 X=Xz X-X3 X-Xs f(X4)
22 3.000 2.000 1.500 1.000| -1.000| 16.125| -145.125
23 X4-Xo X4-X1 X4-X2 X4-X3 X4-Xs 11.057
4 3.500] 2.500 2.000 1.500] -0.500 -13.125
29 X-Xo X-X1 X=Xz X-X3 X-X4 (Xs)
20 3.000 2.000 1.500 1.000| -0.500| 19.000( -85.500
2/( X5-Xo X5-X1 X5-X2 X5-X3 X5-X4 -2.850
O 4.000 3.000 2.500 2.000 0.500 30.000
P4°)
aU f(2)= Sum= 12
Figure 7.2. Spreadsheet for Example 7.7
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7.6 Gregory-Newton Forward Interpolation Method

This method uses the formula

f(x) = fo+rafy+ H%Azfo + ﬁr;lgx!ﬂffo + ... (7.54)

where f; is the first value of the data set, Afy, Azfo, and A3f0 are the first, second, and third for-

* . .
ward  differences respectively.

The variable r is the difference between an unknown point x and a known point x; divided by
the interval h, that is,

r= (X=Xy)

. (7.55)

The formula of (7.54) is valid only when the values xg, X, X,, ..., X, are equally spaced with inter-

val h. It is used to interpolate values near the smaller values of x, that is, the values near the
beginning of the given data set. The formula that we will study on the next section, is used to
interpolate values near the larger values of x, that is, the values near the end of the given data
set.

Example 7.8

Use the Gregory-Newton forward interpolation formula to compute f(1.03) from the following
data.

TABLE 7.12 Table for Example 7.8

x 1.00 1.05 1.10 1.15 1.20 1.25
y = f(x) | 1.000000 | 1.257625 | 1.531000 | 1.820875 | 2.128000 | 2.453125

Solution:

We enter the given x and f(x) values in a difference table; then, we compute the first, second,
and third differences. These are not divided differences and therefore, we simply subtract the sec-
ond value of f(x) from the first, the third from the second, and so on, as shown in Table 7.13.

For this example,

* This is an expression to indicate that we use the differences in a forward sequence, that is, the first entries on the columns
where the differences appear.
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TABLE 7.13 Difference table for Example 7.8

Ist Difference 2nd Difference 3rd Difference

x f(x) f (X, X1) f (X X1, X7) f (X X1, X3, X3)

1.00 1.000000

0257625
1.05 1.257625 0.015750

0.273375 0.000750
1.10 1.531000 0.016500

0.289875 0.000750
1.15 1.820875 0.017250

0.307125 0.000750
1.20 2.128000 0.015000

0.325125

1.25 2.453125

f, = f(1.00) = 1.000000
h=x,-X, = 1.05-1.00 = 0.05

X—X;  1.03-1.00

= = 0.60
h 0.05

r =

and with these values, using (7.54), we get

(0.60) - (0.60 — 1)

f(1.03) = 1.000000 + (0.60) - (0.257625) + >

(0.60) - (0.60 — 1)(0.60 — 2)
* 3l '

(0.000750) = 1.152727
The spreadsheet of Figure 7.3 shows the layout and computations for this example.

7.7 Gregory-Newton Backward Interpolation Method

This method uses the formula

rir+1),2 r(r+1)(r+2),s3
f(x) = f0+rAf_1+iT2A f_2+i—ﬂ—23! A+

(7.56)

(7.57)

(7.58)

where f, is the first value of the data set, Af |, A*f_,, and A%f , are the first, second and third

backward differences, and
_(x=Xq)
= h
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Al B | C | D E F G
1 |Gregory-Newton Forward Interpolation Method
2
3 |See expressions (7.54) and (7.55)
4 |
5 |interpolate f(x) at x= 1.03
6
7 X f(x) Af A2f A3f
8 1.00| 1.000000
9 0.257625
10 1.05| 1.257625 0.015750
11 0.273375 0.000750
12 1.10| 1.531000 0.016500
13 0.289875 0.000750
14 1.15| 1.820875 0.017250
15 0.307125 0.000750
16 1.20| 2.128000 0.018000
17 0.325125
18 1.25| 2.453125
19
20 h=|A10-A8= |0.05 r=|(D5-A8)/C20=|0.6
21
22 |(1.12)= |B8+F20*C9+(F20*(F20-1)*D10)/FACT (2)+(F20*(F20-1)*(F20-2)*E11)/FACT(3)
23 =|1.152727
24
25 1.00| 1.000000
26 1.05| 1.257625 3.00
27 1.10| 1.531000 2.50
28 1.15| 1.820875 200 |
29 1.20| 2.128000
30| 125] 2453125 | 1.50
31 1.00
32 0.50 -
33 0.00 ; ; ; ;
34 1.00 1.05 1.10 1.15 1.20 1.25
35
36 | | | |

Figure 7.3. Spreadsheet for Example 7.8

Expression (7.58) is valid only when the values Xg, X;, X,, ..., X, are equally spaced with interval

h. It is used to interpolate values near the end of the data set, that is, the larger values of x.
Backward interpolation is an expression to indicate that we use the differences in a backward
sequence, that is, the last entries on the columns where the differences appear.
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Example 7.9

Use the Gregory-Newton backward interpolation formula to compute f(1.18) from the data set of

Table 7.14.
TABLE 7.14 Data for Example 7.9

x 1.00 1.05 1.10 1.15 1.20 1.25
y = f(x) | 1.000000 | 1.257625 | 1.531000 | 1.820875 | 2.128000 | 2.453125

Solution:

We arbitrarily choose f, = 2.128000 as our starting point since f(1.18) lies between f(1.15) and

f(1.20). Then,
h =120-1.15 = 0.05
and
r=(x-x;)/h = (1.18-1.20)/0.05 = -0.4
Now, by (7.58) we have:

f(118) = 2.128 + (~0.4)(0.307125) + 24N

(~0.4)(— 0.4 + 1)(— 0.4 + 2)
* 3l

2'0'4 *+1) 0.01725)

(0.00075)= 2.003032

The computations were made with the spreadsheet of Figure 7.4.

If the increments in x values are small, we can use the Excel VLOOKUP function to perform
interpolation. The syntax of this function is as follows.

VLOOKUP(lookup_value, table_array, col_index_num, range lookup)

where:

lookup_value is the value being searched in the first column of the lookup table
table_array are the columns forming a rectangular range or array
col_index_num is the column where the answer will be found

range lookup is a logical value (TRUE or FALSE) that specifies whether we require VLOOKUP to
find an exact or an approximate match. If TRUE is omitted, an approximate match is returned. In
other words, if an exact match is not found, the next largest value that is less than the
lookup value is returned. If FALSE is specified, VLOOKUP will attempt to find an exact match,
and if one is not found, the error value #N/A will be returned.

A sample spreadsheet is shown in Figure 7.5 where the values of x extend from -5 to +5 volts.
Only a partial table is shown
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A | B | [ | D E F G
1 [Gregory-Newton Backward Interpolation Method
2 |
3 |Seeformula7.58
4 |
5 |interpolate f(x) at x= 1.18
6
7 X f(x) Af A2f A3f
8 1.00 1.000000
9 0.257625
10 1.05 1.257625 0.015750
11 0.273375 0.000750
12 1.10 1.531000 0.016500
13 0.289875 0.000750
14 1.15 1.820875 0.017250
15 0.307125
16 1.20 2.128000
17
18 h=|A16-A14= 0.05 r=|(C5-A16)/C18= |-0.4
19
20 [f(1.18)= |B16+F18*C15+(F18*(F18+1)*D14)/FACT(2)+(F18*(F18+1)*(F18+2)*E13)/FACT(3)
21 = 2.003032 \ | | | ~ |
22 2,500 |
23 1.00 1.000000
24 2.000 1 |
25 1.05 1.257625] | 4 o | _— B
26 / -
27| 110 1.531000| | 1.000 1 |
28 0.500 -
29 1.15 1.820875 N
30 0.000 T
31 120 2 128000 1.00 1.05 1.10 1.15 120 [
32 | | | —

Figure 7.4. Spreadsheet for Example 7.9

7.8 Interpolation with MATLAB

MATLAB has several functions that perform interpolation of data. We will study the following:

1. interp1(x,y,X;) performs one dimensional interpolation where x and vy are related as y = f(x)
and x; is some value for which we want to find y(x;) by linear interpolation, i.e., “table lookup”.
This command will search the x vector to find two consecutive entries between which the
desired value falls. It then performs linear interpolation to find the corresponding value of y.
To obtain a correct result, the components of the x vector must be monotonic, that is, either in
ascending or descending order.
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A B |c|p|] E | F | G H
1 Vv | ' '
2 | -2.000| -0.0330 ZfZ P
3 | -1.975| -0.0326 o0
4 | -1.950| -0.0323 005 ] /
5] -1.925 -0.0320 000 ‘ ‘
6 | -1.000| -0.0316 P —
7 | -1.875| -0.0313 . .
8 | -1.850/ -0.0309 A B
9 | -1.825| -0.0306 8 -1.8500| -0.03092657 <
10| -1.800| -0.0302 9 -1.8250| -0.03058033
11| -1.775] -0.0209 \
12| -1.750| -0.0295 =VLOOKUP(-1.8375,A2:B282,2) = -0.0309266
13| -1.725| -0.0292 =VLOOKUP(-1.8375,A2:B282,2, TRUE) = -0.0309266
14| -1.700| -0.0288 =VLOOKUP(-1.8375,A2:B282,2,FALSE) = #N/A
15| -1.675| -0.0285 \ ] |
16| -1.650| -0.0281 A B
17| -1.625| -0.0277 264 4.5500| 0.14843225%__
18| -1.600| -0.0274 265 4.5750| 0.14967753
19| -1575] -0.0270 \
20| -1.550| -0.0267 =VLOOKUP(4.5535,A2:B8282,2) = 0.14843225

Figure 7.5. Using the Excel VLOOKUP function for interpolation

2. interp1(x,y,x;,’method’) performs the same operation as interp1(x,y,x;) where the string
method allows us to specify one of the methods listed below.

nearest — nearest neighbor interpolation
linear — linear interpolation; this is the default interpolation
spline — cubic spline interpolation; this does also extrapolation
cubic - cubic interpolation; this requires equidistant values of x
3. interp2(x,y,z,X,y;) is similar to interp1(x,y,X;) but performs two dimensional interpolation;

4. interp2(x,y,z,x;,y;,; method’) is similar to interp1(x,y,x;,’method’) but performs two dimen-
sional interpolation. The default is linear. The spline method does not apply to two dimen-
sional interpolation.

We will illustrate the applications of these functions with the examples that follow.

Example 7.10

The i—v (current-voltage) relation of a non-linear electrical device is given by
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i(t) = 0.1(e%?V _1) (7.59)

where v is in volts and i in milliamperes. Compute i for 30 data points of v within the interval
—(2<v<5), plot i versus v in this range, and using linear interpolation compute i when
v = 1.265 volts.

Solution:

We are required to use 30 data points within the given range; accordingly, we will use the MAT-
LAB linspace(first_value, last_value, number_of_values) command. The code below pro-
duces 30 values in volts, the corresponding values in milliamperes, and plots the data for this
range. Then, we use the interp1(x,y,X;) command to interpolate at the desired value.

% This code is for Example_7_10.m

% It computes the values of current (in milliamps) vs. voltage (volts)

% for a diode whose v-i characteristics are i=0.1(exp(0.2v)-1).

% We can use the MATLAB function 'interp1' to linearly interpolate

% the value of milliamps for any value of v within the specified interval.

%

v=linspace(-2, 5, 30); % Specify 30 intervals in the -2<=v<=5 interval

a=0.1." (exp(0.2 .* v)-1); % We use "a" for current instead of "i" to avoid conflict
% with imaginary numbers

v_a=[v;al}; % Define "v_a" as a two-column matrix to display volts

% and amperes side-by-side.
plot(v,a); grid;
title(‘volt-ampere characteristics for a junction diode');
xlabel('voltage (volts)');
ylabel(‘current (milliamps)');
fprintf("  volts milliamps \n'); % Heading of the two-column matrix
fprintf(' \n');
disp(v_a); % Display values of volts and amps below the heading
ma=interp1(v,a,1.265); % Linear (default) interpolation
fprintf(‘current (in milliamps) @ v=1.265 is %2.4f \n', ma)

The data and the value obtained by interpolation are shown below.
volts milliamps

-2.0000 -0.0330

-1.7586 -0.0297
-1.5172 -0.0262
-1.2759 -0.0225
-1.0345 -0.0187
-0.7931 -0.0147
-0.5517 -0.0104
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-0.3103 -0.0060

-0.0690 -0.0014
0.1724 0.0035
0.4138 0.0086
0.6552 0.0140
0.8966 0.0196
1.1379 0.0256
1.3793 0.0318
1.6207 0.0383
1.8621 0.0451
2.1034 0.0523
2.3448 0.0598
2.5862 0.0677
2.8276 0.0760
3.0690 0.0847
3.3103 0.0939
3.5517 0.1035
3.7931 0.1135
4.0345 0.1241
4.2759 0.1352
4.5172 0.1468
4.7586 0.1590
5.0000 0.1718

current (in milliamps) @ v=1.265 is 0.0288

The plot for this example is shown in Figure 7.6.

wolt-ampene chamctenstics for a junction diode

02 i : T ! T ;
g
E 0.1 |
s
E- 0.05
P! I S (S S B S
2 -1 ] 1 2 3 4 ]
voltage (volts)
Figure 7.6. Plot for Example 7.10
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Example 7.11
Plot the function

y = f(x) = cos®x (7.60)

in the interval 0<x<2nwith 120 intermediate values. Then, use the MATLAB
interp1(x,y,X;,’method’) function to interpolate at n/8, n/4, 3n/5, and 3n/7. Compare the
values obtained with the linear, cubic, and spline methods, with the analytical values.

Solution:
The code below plots (7.60) and produces the values of analytical values, for comparison with

the linear, cubic, and spline interpolation methods.

% This is the code for Example_7_11

%

x=linspace(0,2*pi,120); % We need these two
y=(cos(x)) A 5; % statements for the plot
%

analytic=(cos([pi/8 pi/4 3*pi/5 3*pi/7]') A B);

%

plot(x,y); grid; title('y=cos”5(x)"); xlabel('x'); ylabel('y");

%

linear_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7], 'linear’);
% The label 'linear' on the right side of the above statement
% could be have been omitted since the default is linear

%

cubic_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]', ‘cubic');

%

spline_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]','spline");
%

y=zeros(4,4);% Construct a 4 x 4 matrix of zeros
y(:,1)=analytic; % 1st column of matrix
y(:,2)=linear_int; % 2nd column of matrix
y(:,3)=cubic_int; % 3rd column of matrix
y(:,4)=spline_int; % 4th column of matrix
fprintf(' \n'); % Insert line

fprintf('Analytic \t Linear Int \t Cubic Int\t Spline Int\n’)

fprintf(* \n');

fprintf('%8.5f\t %8.5\t %8.5f\t %8.5f\n",y")

fprintf(' \n');

%

% The statements below compute the percent error for the three

% interpolation methods as compared with the exact (analytic) values
%
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error1=(linear_int-analytic).*100 ./ analytic;
error2=(cubic_int-analytic).*100 ./ analytic;
error3=(spline_int—analytic).*100 ./ analytic;
%

z=zeros(4,3);
z(:,1)=error1;
z(:,2)=errorz;

% Construct a 4 x 3 matrix of zeros
% 1st column of matrix

% 2nd column of matrix
z(:,3)=error3; % 3rd column of matrix

% fprintf(' \n'); % Insert line

disp('The percent errors for each interpolation method are:')
fprintf(' \n');

fprintf('Linear Int \t Cubic Int \t Spline Int \n")

fprintf(' \n');

fprintf('%8.5f\t %8.5\t %8.5f\n",z')

fprintf(' \n');

The plot for the function of this example is shown in Figure 7.7.
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Figure 7.7. Plot the function of Example 7.11

The analytical and interpolated values are shown below for comparison.

Analytic Linear Int Cubic Int Spline Int
0.67310 0.67274 0.67311 0.67310
0.17678 0.17718 0.17678 0.17678

-0.00282 -0.00296 -0.00281 -0.00282
0.00055 0.00062 0.00054 0.00055

The percent errors for each interpolation method are:
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Linear Int Cubic Int Spline Int

-0.05211 0.00184 0.00002
0.22707 -0.00012 0.00011
5.09681 -0.40465 -0.01027

13.27678 -0.64706 -0.07445

Example 7.12

For the impedance example of Section 1.7 in Chapter 1 whose code and plot are shown below,
use the spline method of interpolation to find the magnitude of the impedance at

o = 792 rad/s.
Solution:

% The file is Example_7_12.m

% It calculates and plots the impedance Z(w) versus radian frequency w.

%

% Use the following five statements to obtain |Z| versus radian frequency w

w=300:100:3000;

z=zeros(28,2);

z(:,1)=w';

z(:,2)=(10+(10.A4—j.*10.26./w)./(10+}.*(0.1.*w—10./5./w)))";

fprintf('%2.0f\t %10.3f\n',abs(z)")

%

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500....
1600 1700 1800 1900 2000 2100 2200 2300....
2400 2500 2600 2700 2800 2900 3000];

z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056 1014.938...
469.830 266.032 187.052 145.751 120.353...
103.111 90.603 81.088 73.588 67.513 62.481...
58.240 54.611 51.468 48.717 46.286 44.122...
42.182 40.432 38.845];

semilogx(w,z); grid;

title('Magnitude of Impedance vs. Radian Frequency');

xlabel('w in rads/sec'); ylabel('|Z] in Ohms');

%

zi=interp1(w,z,792,'spline'");

fprintf(' \n')

fprintf('Magnitude of Z at w=792 rad/s is %6.3f Ohms \n', zi)

fprintf(' \n')

The plot for the function of this example is shown in Figure 7.8.
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Magnitude of Impedance vs. Radan Frequency
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Figure 7.8. Plot for the function of Example 7.12

MATLAB interpolates the impedance at ® = 792 rad/s and displays the following message:
Magnitude of Z at w=792 rad/s is 217.034 Ohms

Two-dimensional plots were briefly discussed in Chapter 1. For convenience, we will review the
following commands which can be used for two-dimensional interpolation.

1. mesh(Z) — Plots the values in the matrix Z as height values above a rectangular grid, and con-
nects adjacent points to form a mesh surface.

2. [X,Y]=meshgrid(x,y) — Generates interpolation arrays which contain all combinations of the
x and y points which we specify. X and Y comprise a pair of matrices representing a rectangular
grid of points in the x —y plane. Using these points, we can form a function z = f(x,y) where
Z is a matrix.

Example 7.13
Generate the plot of the function

_ sinR
7 = 2 (7.61)

in three dimensions X, y, and z. This function is the equivalent of the function y = sinx/x in
two dimensions. Here, R is a matrix that contains the distances from the origin to each point in
the pair of [X, Y] matrices that form a rectangular grid of points in the x —y plane.
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Solution:

The matrix R that contains the distances from the origin to each point in the pair of [X, Y]

matrices, is
R = JX%+Y? (7.62)

We let the origin be at (Xy, Yy) = (0,0), and the plot in the intervals -2z <x<2rn and
—2n <y <2n. Then, we write and execute the following MATLAB code.

% This is the code for Example_7_13

x=-2pi: pi/24: 2*pi; % Define interval in increments of pi/24

y=X; % y must have same number of points as x
[X,Y]=meshgrid(x,y); % Create X and Y matrices

R=sqrt(X A2 +Y A2); % Compute distances from origin (0,0) to x-y points
Z=sin(R) ./ (R+eps); % eps prevents division by zero

mesh(X,Y,Z); % Generate mesh plot for Z=sin(R)/R

xlabel('x"); ylabel('y'); zlabel('z');
title('Plot for the Three-dimensional sin(R) / R Function')

The plot for the function of this example is shown in Figure 7.9.

Plot for the Three-dimensional sin@) / R Function

Figure 7.9. Plot for Example 7.13
Example 7.14

Generate the plot of the function

z=x+ y3 - 3xy (7.63)
in three dimensions X, y, and z. Use the cubic method to interpolate the value of z at x = -1
andy = 2.
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Solution:
We let the origin be at (X, Yo) = (0,0), and the plot in the intervals -10<x<10 and
-10<y <10 . Then, we write and execute the following code.

% This is the code for Example_7_14

x=—10: 0.25: 10; % Define interval in increments of 0.25
Y=X; % y must have same number of points as x
[X,Y]=meshgrid(x,y); % Create X and Y matrices

Z=XN3+Y N3-3."X.*Y;

mesh(X,Y,2); % Generate mesh plot

xlabel('x'); ylabel('y'); zlabel('z");

title('Plot for the Function of Example 7.14');

z_int=interp2(X,Y,Z, -1,2,'cubic");

fprintf(' \n')

fprintf('Interpolated Value of zat x = -1 and y = 2 is z = %4.2f \n',z_int)
fprintf(' \n')

The plot for the function of this example is shown in Figure 7.10.

Flot for the Function of Example 7.14

Figure 7.10. Plot for Example 7.14

Interpolated Value of z at x = -1 and y = 2 is z = 13.00

Example 7.15

A land surveyor measured and recorded the data below for a rectangular undeveloped land which
lies approximately 500 meters above sea level.

500.08 500.15 500.05 500.08 500.14 500.13 500.09 500.15
500.12 500.01 500.11 500.18 500.15 500.12 500.05 500.15
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500.13 500.12 500.09 500.11 500.11 500.05 500.15 500.02
500.09 500.17 500.17 500.14 500.16 500.09 500.02 500.11
500.08 500.09 500.13 500.18 500.14 500.14 500.14 500.15
500.15 500.10 500.11 500.11 500.12 500.13 500.14 500.12
500.17 500.12 500.13 500.18 500.13 500.15 500.17 500.11
500.13 500.14 500.13 500.09 500.14 500.16 500.17 500.14
500.15 500.09 500.14 500.18 500.17 500.08 500.13 500.09
500.12 500.15 500.14 500.01 500.16 500.12 500.11 500.10
500.02 500.19 500.01 500.08 500.12 500.02 500.16 500.12
500.19 500.21 500.17 500.03 500.17 500.09 500.14 500.17

This rectangular land parcel is 175 meters wide and 275 meters deep. The measurements shown
above were made at points 25 meters apart.

a. Denoting the width as the x — axis, the depth as the y —axis and the height as the z - axis,
plot the given data to form a rectangular grid.

b. Interpolate the value of z at x = 108 m, and y = 177 m.

c. Compute the maximum height and its location on the x —y plane.
Solution:

The MATLAB code and plot are shown below and explanations are provided with comment
statements.

% This code is for Example_7_15

%

x=0: 25: 175; % x-axis varies across the rows of z

y=0: 25: 275; % y-axis varies down the columns of z

z=[500.08 500.15 500.05 500.08 500.14 500.13 500.09 500.15;
500.12 500.01 500.11 500.18 500.15 500.12 500.05 500.15;
500.13 500.12 500.09 500.11 500.11 500.05 500.15 500.02;
500.09 500.17 500.17 500.14 500.16 500.09 500.02 500.11;
500.08 500.09 500.13 500.18 500.14 500.14 500.14 500.15;
500.15 500.10 500.11 500.11 500.12 500.13 500.14 500.12;
500.17 500.12 500.13 500.18 500.13 500.15 500.17 500.11;
500.13 500.14 500.13 500.09 500.14 500.16 500.17 500.14;
500.15 500.09 500.14 500.18 500.17 500.08 500.13 500.09;
500.12 500.15 500.14 500.01 500.16 500.12 500.11 500.10;
500.02 500.19 500.01 500.08 500.12 500.02 500.16 500.12;
500.19 500.21 500.17 500.03 500.17 500.09 500.14 500.17];

%

mesh(x,y,z); axis([0 175 0275 500 502]); grid off; box off

xlabel('x-axis, m'); ylabel('y-axis, m'); zlabel('Height, meters above sea level'); title('Parcel map')

% The pause command below stops execution of the program for 10 seconds

% so that we can see the mesh plot
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pause(10);

z_int=interp2(x,y,z,108,177,'cubic');

disp('Interpolated z is:'); z_int

[xx,yyl=meshgrid(x,y);

xi=0: 2.5: 175; % Make x-axis finer

% size(xi); % Returns a row vector containing the size of xi where the

% first element denotes the number of rows and the second is the number
% of columns. Here, size(xi) =1 71

disp('size(xi)'); size(xi)

yi=0: 2.5: 275; % Make y-axis finer

disp('size(yi)'); size(yi)

[xxi,yyi]=meshgrid(xi,yi); % Forms grid of all combinations of xi and yi
% size(xxi) = size(yyi) = size(zzi) =111 71

disp('size(xxi)'); size(xxi); disp(‘size(yyi)'); size(yyi); disp('size(zzi)'); size(zzi)
size(xxi), size(yyi), size(zzi)

zzi=interp2(x,y,z,xxi,yyi,'cubic'); % Cubic interpolation - interpolates

% all combinations of xxi and yyi and constructs the matrix zzi

mesh(xxi,yyi,zzi); % Plot smoothed data
hold on;
[xx,yyl=meshgrid(x,y); % Grid with original data

plot3(xx,yy,z,"k'); axis([0 175 0275 500 503]); grid off; box off
xlabel('x-axis, m'); ylabel('y-axis, m'); zlabel('Height, meters above sea level’);
title('Map of Rectangular Land Parcel')

hold off;

% max(x) returns the largest element of vector x

% max(A) returns a row vector which contains the maxima of the columns

% in matrix A. Likewise max(zzi) returns a row vector which contains the

% maxima of the columns in zzi. Observe that size(max(zzi)) =1 71

% and size(max(max(zzi))) =1 1

zmax=max(max(zzi)) % Estimates the peak of the terrain

% The 'find' function returns the subscripts where a relational expression

% is true. For Example,

% A=[a11 a12 a13; a21 a22 a23; a31 a32 a33] or

% A=[-103;23-4;-256];

% [i,j]=find(A>2)

% returns

% i=

%
%
%
%
%
%
%
% j=

W=whN
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%
%
%
%
%
% That is, the elements a22=3, a32=5, a13=3 and a33=6

% satisfy the condition A>2

% The == operator compares two variables and returns ones when they
% are equal, and zeros when they are not equal

%

[m,n]=find(zmax==zzi)

% m =

%

% 65

%

% n =

%

% 36

%

% that is, zmax is located at zzi = Z(65)(36)

%

% the x-cordinate is found from

xmax=xi(n)

% xmax =

%

% 1.7500 % Column 36; size(xi) =1 71

% and the y-coordinate is found from

ymax=yi(m)

% ymax =

%

% 3.2000 % Row 65; size(yi) =1 111

% Remember that i is the row index, j is the column index, and x-axis

% varies across the rows of z and y-axis varies down the columns of z

wwMhhN

Interpolated z is:
z_int =
500.1492

size(xi)

ans =
1 71

size(yi)

ans =
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1 111
size(xxi)
ans =
111 71
size(yyi)
ans =
111 71

zzi=interp2(x,y,z,xxi,yyi,'cubic'); % Cubic interpolation - interpolates
% all combinations of xxi and yyi and constructs the matrix zzi

size(zzi)

ans =
111 71

zmax=max(max(zzi)) % Estimates the peak of the terrain

zmax =
500.2108

ymax =
275

These values indicate that z_,, = 500.21 where the x and y coordinates are x = 20 and

max

y = 275. The interpolated value of z at x = 108 m and y = 177 mis z = 500.192. The plot is
shown in Figure 7.11.
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Figure 7.11. Plot for Example 7.15

7.9 Summary
e The first divided difference is defined as:
f(x:) — f(x;
f(xi, Xj) = M

Xi—Xj

where x; and X; are any two, not necessarily consecutive values of x, within an interval.

e Likewise, the second divided difference is defined as:

f(Xia XJ) - f(Xja Xk)
X =Xk

f(xp Xja Xk) =

and the third, fourth, and so on divided differences are defined similarly.

e If the values of x are equally spaced and the denominators are all the same, these values are
referred to as the differences of the function.

e If the constant difference between successive values of x is h, the typical value of x, is
X, = Xg+kh for k= ...2,-1,0,1,2, ...

e We can now express the first differences are usually expressed in terms of the difference oper-
ator A as
Afg = 1T
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¢ Likewise, the second differences are expressed as
A*f, = A(Af) = Af, |- Af,

and, in general, for positive integer values of n

A", = AA" ) = A" AT

e The difference operator A obeys the law of exponents which states that
Am(Anfk) _ Am+nfk
® The nth differences Anfk are found from the relation

n n(n-1) n-1 n

For k = 0, n = 1,2, 3 and 4, the above relation reduces to

A%y = f,—3f,+3f,

Ay = f, - 4f,+ 6f,-4f, +1,

e As with derivatives, the nth differences of a polynomial of degree n are constant.
e The factorial polynomials are defined as
)™ = x(x=1)(x=2)...(x=n +1)
and

-(n) _ 1
C(x=1)(Xx=2)...(x+n)

()

Using the difference operator A with the above relations we get

A00™ = neo™ Y
and

A ™ = —neo ™Y

These are very similar to differentiation of x" and x .
Y
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® We can express any algebraic polynomial f,(x) as a factorial polynomial p,(x). Then, in anal-

ogy with Maclaurin power series, we can express that polynomial as

P,(X) = ag+ al(x)(l) + az(x)(z) +...+ an(x)(n)

where

for j=0,1,2,...,n

Alp(0)
8 = ——

e Factorial polynomials provide an easier method of constructing a difference table. The proce-
dure is as follows:
1. We divide p,(x) by x to get a quotient qo(x)and a remainder ry which turns out to be the
constant term a,. Then, the factorial polynomial reduces to
Pn(X) = g+ X0o(X)

2. We divide qq(x) by (x—1), to get a quotient d,(x) and a remainder r; which turns out to

be the constant term a, . Then,
Qo(X) = ry+(x—1)q5(x)

and by substitution we get
PL(X) = Fo+X[r+(X=1)q;(0)] = g+, (0" +x(x=1)g,(x)

3. We divide g,(x) by (x-2), to get a quotient g,(X)and a remainder r, which turns out to

be the constant term a,, and thus
Ay(X) = ry+(X=2)0,(x)

and by substitution we get

ro+ 1 (0™ + X(X = 1)[r, + (X = 2)0,(X)]

ro+ 1,00 + 1,00% + x(x = 1)(x - 2)0,(%)

Pr(X)

and in general,
1 2 -1 n
P(X) = rg+ O +r,00% + .+ rn_l(x)(n " rn(x)( )
where

L Apy(0)
J | j!
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¢ The antidifference of a factorial polynomial is analogous to integration in elementary calculus.

It is denoted as Aflpn(x), and it is computed from

(N+1)
A_l(X)(n) — ‘X’
(n+1)
¢ Antidifferences are very useful in finding sums of series.
® The definite sum of p,(x) for the interval a<x<a+(n-1)h is

o+(n-1)h

Z P(X) = py(a) +p(a+h)+p (a+2h)+ ... +p[a+(n-1)h]

X=o
¢ [n analogy with the fundamental theorem of integral calculus which states that
b

j f(x)dx = f(b)—f(a)

a
we have the fundamental theorem of sum calculus which states that
a+(n=1)h

S P00 = ATp 00

o
X=a

¢ One important application of finite differences is interpolation.
¢ Newton’s Divided Difference Interpolation Method uses the formula
f(x) = f(Xp) + (X =Xg) F(Xg, Xq) + (X = Xp) (X = X1 ) F (Xq, X, X5)
+ (X =Xg) (X =X ) (X = X5) F(Xg, Xq, X5, X3)
where f(Xg, X;), f(Xg, X1, X)), and f(Xg, Xy, X5, X3) are the first, second, and third divided differ-

ences respectively. This method has the advantage that the values xg, X4, X5, ..., X, need not be
equally spaced, or taken in consecutive order.

e Lagrange’s Interpolation Method uses the formula

(X=X (X=X5)...(X=X,) (X=Xg)(X=X5)...(X=X,)
f = f f
) (Xo—X1)(Xg = X5)...(Xg = X;,) (%) + (Xg = Xg)(Xy = Xp)...(X; = X;,) (x1)
(X=Xg)(X=X1)...(X=X,_1) f(x)

(Xn - Xo)(xn - XZ)---(Xn - Xn—l)

and, like Newton’s divided difference method, has the advantage that the values
Xg» X15 X5, ..., X, Need not be equally spaced or taken in consecutive order.
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® The Gregory-Newton Forward Interpolation method uses the formula

r(r-1), 2 r(r-1)(r-2),3
00 = o+ rafy+ L=ta% o L2200

where f; is the first value of the data set, Afy, Azfo, and A3f0 are the first, second, and third

forward differences respectively. The variable r is the difference between an unknown point x
and a known point x, divided by the interval h, that is,

B (X=X4)
T

This formula is valid only when the values Xg, Xy, X5, ..., X, are equally spaced with interval h.

It is used to interpolate values near the smaller values of x, that is, the values near the begin-
ning of the given data set, hence the name forward interpolation.

® The Gregory-Newton Backward Interpolation method uses the formula

r(r+1),2 r(r+1)(r+2),3
F0) = forrafy+ (CERA% TERNE2)0

where f, is the first value of the data set, Af ;, A’f ,, and A*f_; are the first, second and third

backward differences, and
_(xX=xp)
= h

This formula is valid only when the values Xg, Xy, X5, ..., X, are equally spaced with interval h.

It is used to interpolate values near the end of the data set, that is, the larger values of x. Back-
ward interpolation is an expression to indicate that we use the differences in a backward
sequence, that is, the last entries on the columns where the differences appear.

e [f the increments in X values are small, we can use the Excel VLOOKUP function to perform
interpolation.

e We can perform interpolation to verify our results with the MATLAB functions
interp1(x,y,X;), interp1(x,y,x;,’method’) where method allows us to specify nearest (nearest
neighbor interpolation), linear (linear interpolation, the default interpolation), spline (cubic
spline interpolation which does also extrapolation), cubic (cubic interpolation which requires
equidistant values of x), and interp2(x,y,z,x;,y;) which is similar to interp1(x,y,x;) but per-
forms two dimensional interpolation;
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7.10 Exercises

1. Express the given polynomial f(x) below as a factorial polynomial p(x), calculate the leading
differences, and then construct the difference table with h = 1.

2. Use the data of the table below and the appropriate (forward or backward) Gregory-Newton

formula, to compute:

f(x) = X =2+ 43— x +6

a. 4/50.2
b. ./55.9
X 50 51 52 53 54 55 56
«/)7( 7.071 7.141 7.211 7.280 7.348 7.416 7.483
3. Use the data of the table below and Newton’s divided difference formula to compute:
a. f(1.3)
b. f(1.95)
X 1.1 1.2 1.5 1.7 1.8 2.0
y=f(x) 1.112 1.219 1.636 2.054 2.323 3.011
7-42
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7.11 Solutions to Exercises
1.

f(x) = - 2x"+4x3 —x + 6

The highest power of the given polynomial f(x) is 5, we must evaluate the remainders

Fg» Iy, 9 I3, Iy and re; then, we will use (7.28), given below, to determine p,(x).

p,(X) = rg+ 1,000 +1,00% + o+, 00" P rr 0

We can compute the remainders by long division but, for convenience, we will use the MAT-
LAB deconv(p,q) function which divides the polynomial p by q.

The MATLAB code is as follows:

px=[1 -2 4 0 -1 6];
do=[1 0J;
[90,r0]=deconv(px,d0)
di=[1 -1];
[q1,r1]=deconv(q0,d1)
d2=[1 -2];
[q2,r2]=deconv(q1,d2)
d3=[1 -3];
[03,r3]=deconv(q2,d3)
d4=[1 -4];
[04,r4]=deconv(q3,d4)
d5=[1 -5];
[g5,r5]=deconv(g4,d5)

% Coefficients of given polynomial

% Coefficients of first divisor, i.e, x

% Computation of first quotient and remainder

% Coefficients of second divisor, i.e, x—1

% Computation of second quotient and remainder
% Coefficients of third divisor, i.e, x-2

% Computation of third quotient and remainder

% Coefficients of fourth divisor, i.e, x-3

% Computation of fourth quotient and remainder
% Coefficients of fifth divisor, i.e, x-4

% Computation of fifth quotient and remainder

% Coefficients of sixth (last) divisor, i.e, x-5

% Computation of sixth (last) quotient and remainder

Orchard Publications

a0 =
1 -2 0 -1
r0 =
0 0 0 0 6
al =
1 -1 3
rl =
0 0 0 2
Q2 =
1 1
r2 =
0 0 13
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g3 =

1 4
r3 =

0 0 17
qd =

1
rd =

8
a5 =
0

rb =

Therefore, with reference to (7.28), the factorial polynomial is
p,(¥) = 6+200)" +1300)? + 1700 +800)@ + (0®

We will verify that p,(x) above is the same polynomial as the given f_(x) by expansion of the
factorials using (7.12), i.e.,

0™ = x(x=1)(x=2)...(x=n+1)
with the MATLAB collect(‘s_expr’) function.
syms Xx; px=collect((x*(x—1)*(x—2)*(x—3)*(x-4)+(8*x*(x—1)*(x—2)*(x-3))+(17*x*(x—1) *(Xx-2)) +...
(13"x*(x=1))+2*x+86))

px =
XN5-2*x"N4+4*x"3-X+6

We observe that this is the same algebraic polynomial as f(x).

We will now compute the leading entries for the difference table using (7.30), i.e,

Ajpn(O) = j!r; and p,(x) above

A’p(0) = 0!-6 = 6 A'p(0) = 11.2 =2 A%p(0) = 21-13 = 26
A%p(0) = 3!-17 = 102 A'p(0) = 41.8 = 192 A°p(0) = 5!-1 = 120
APp(0) = 6!-0 = 0

We enter these values in the appropriate spaces as shown on the table below.
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p(X) A

26

102

192

120

0

We obtain the remaining set of values by crisscross addition as shown on the table below.

p(X) A A A A* A A
6
2
8 26
28 102
36 128 192
156 294 120
192 422 312 0
578 606 120
770 1028 432
1606 1038
2376 2066
3672
6048
2.
X 50 51 52 53 54 55 56
ﬁ 7.071 7.141 7.211 7.280 7.348 7.416 7.483

a. We will use the differences in a forward sequence, that is, the first entries on the columns

where the differences appear. This is because the value of 1/50.2 should be in the interval
50 < x <51. We enter the given x and f(x) values in a difference table; then, we compute
the first, second, and third differences. These are not divided differences and therefore, we
simply subtract the second value of f(x) from the first, the third from the second, and so

on, as shown below.
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1Ist Difference 2nd Difference 3rd Difference

x f(x) f (%o, X1) f(Xp, X1, X3) f (X X1, Xp, X3)
30 7.071

0.070
51 7.141 0.000

0.070 -0.001
52 7.211 -0.001

0.069 0.000
53 7.280 -0.001

0.068 0.001
54 7.348 0.000

0.068 -0.001
55 7.416 -0.001

0.067
56 7.483

f, = f(50) = 7.071

h 1

and with these values, using (7.54), we get

f(50.2) = 7.071 +(0.20) - (7.071

)4 (020)(0.20-1)
21

(0.20) - (0.20 — 1)(0.20 — 2)
* 31 '

(0.001) = 7.085

The spreadsheet below shows the layout and computations for Part (a).

Check with MATLAB:

x =[50 51 52 53 54 55 56];

fx=[7.071 7.141 7.211 7.280 7.348 7.416 7.483];
spline_interp=interp1(x,fx,[50.2]','spline"); fprintf(\n');...
fprintf('spline interpolation yields f(50.2) = \n'); disp(spline_interp)

spline interpolation yields f£(50.2) =
7.0849
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A |l B | C | D | E | F G H
1 [Gregory-Newton Forward Interpolation Method for Exercise 7.2(a)
2 | |
3 |See expressions (7.54) and (7.55)
4
5 |interpolate f(x) at x= 50.2
6
7 X f(x) Af A2f A3f A4f AS5f A6f
8 50.0 7.071
9 0.070
10 51.0 7.141 0.000
11 0.070 -0.001
12 52.0 7.211 -0.001 0.001
13 0.069 0.000 0.000
14 53.0 7.280 -0.001 0.001 -0.003
15 0.068 0.001 -0.003
16 54.0 7.348 0.000 -0.002
17 0.068 -0.001
18 55.0 7.416 -0.001
19 0.067
20 56.0 7.483
21
22 h=|A10-A8= |1.00 r=|(D5-A8)/C22= |0.2
23
24 |(50.2)= |round(B8+F22*C9+(F20*(F20-1)*D10)/FACT(2)+(F20*(F20-1)*(F20-2)*E11)/FACT(3),3)
25 =|7.085
26
27 50 7.071
28 51 7.141 7.50
29 52 7.211 740
30 53 7.280
31 54 7.348 7.30
32 55 7.416 720
33 56 7.483
34 7.10
35 7.00 ‘ ‘ ; ; ;
36 50 51 52 53 54 55 56
37
38 | | | |

b. Since the value of /55.9 is very close to the last value in the given range, we will use the
backward interpolation formula

r(r+1),2 r(r+1)(r+2),3
F0) = forrafy + (A% IEROE2)5
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where f; is the first value of the data set, Af ;, Aszz , and A3f73 are the first, second and
third backward differences, and

(X=X1)
r= -1
h
We arbitrarily choose f, = 7.483 as our starting point since f(55.9) lies between f(55) and
f(56). Then,
h=56-5 =1
and

r=(x-x;)/h = (55.9-56.0)/1 = -0.1
Now, by (7.58) we have:

2'0.1 +1) 0,000)

(—0.001)= 7.476

f(55.9) = 7.483 + (~0.1)(0.070) + S

(—0.1)(= 0.1+ 1)(= 0.1+ 2)
* 31

Check with MATLAB:

x =[50 51 52 53 54 55 56];

fx=[7.071 7.141 7.211 7.280 7.348 7.416 7.483];
spline_interp=interp1(x,fx,[55.9]','spline"); fprintf(\n");...
fprintf(‘spline interpolation yields f(55.9) = \n'); disp(spline_interp)

spline interpolation yields f£(55.9) =

7.4764
3.
X 1.1 1.2 1.5 1.7 1.8 2.0
y=f(x) 1.112 1.219 1.636 2.054 2.323 3.011
a. The first divided differences are:
1.219-1.112 — 1.070 1.636-1.219 — 1.390 2.054 —1.636 — 2090
12-11 15-1.2 1.7-15
2.323 -2.054 — 2690 3.011 - 2.323 = 3.440
18-17 20-1.8
The second divided differences are:
1390-1.070 _ ygo0  2090-1390 _ 4 400
15-11 1.7-1.2
2.690 -2.090 _ 5 5ng 3.440 -2.690 _ , 5ng
18-15 20-1.7
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and the third divided differences are:

1.400 — 0.800
17-11

2000-1400 _ ;999  2500-2.000 _ 4 gq

= 1.000
18-12 20-15

With these values, we construct the difference table below.

Ist Divided 2nd Divided 3rd Divided
Difference Difference Difference
X f(x) f(Xp» X1) f(Xg» Xq5 X5) f(Xg» Xq5 X9, X3)
1.1 1.112
1.070
1.2 1.219 0.800
1.390 1.000
1.5 1.636 1.400
2.090 1.000
1.7 2.054 2.000
2.690 1.000
1.8 2.323 2.500
3.440
2.0 3.011

To find f(1.3). We start with X, = 1.1 and for x in (7.49), we use x = 1.3. Then,

f(1.3) =

f(x)

= f(Xg) + (X —=Xp) F(Xg, X1) + (X = Xg) (X = X ) F (X, X1, X5)

+ (X = Xg) (X = X1 ) (X = X)) F(Xg, X1, X5, X3)

1112 + (1.3 - 1.1)(1.07) + (13- 1.1)(1.3 = 1.2)(1.4) + (1.3 - 1.1)(1.3 - 1.2)(1.3 - 1L.5)(1)
1.112 + 0.214 + 0.028 — 0.004

1.350

b.To find f(1.95) we start with x, = 2.0 and for x in (7.49), we use x = 1.95. Then,

f(1.95)

f(x) = f(Xp) + (X —=Xg) F(Xg, X1) + (X = Xg)(X = X1 ) F (Xg, Xq, X5)

+ (X = X) (X =X ) (X = X%2) F(Xg, Xy, X5, X3)

3.011 + (1.95 — 2)(3.44) + (1.95 — 2)(1.95 — 1.8)(2.5) + (1.95 — 2)(1.95 — 1.8)(1.95 — 1.7)(1)
3.011-0.172 - 0.019 — 0.002

2.818

The spreadsheet below verifies our calculated values.

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 7-49
Orchard Publications



Chapter 7 Finite Differences and Interpolation

A B C D E F

1 1stdivided |2nd divided |3rd divided

2 difference |difference |difference

3 X f(x) f(x0, x1) | f(x0, x1, x2) | f(x0,x1,x2,x3)

4 1.1 1.112

5 1.070

6 1.2 1.219 0.800

7 1.390 1.000

8 1.5 1.636 1.400

9 2.090 1.000

10 1.7 2.054 2.000

11 2.690 1.000

12 1.8 2.323 2.500

13 3.440

14 2.0 3.011

15

16

17 1.1 1.112 ™~

18 1.2 1.219 3.50 ]

19 1.5 1.636

20 1.7 2.054 3.00 1 il

21 1.8 2.323 = 2.50 - L

22 2| 3011 £, |

23 ]

24 1.50

25 1.00 ‘ ‘ ||

26 10 13 15 18 20 ||

27 N

28 X |

29 . /
Check with MATLAB:

x=[ 1.1 1.2 1.5 1.7 1.8 2.0];

fx=[ 1.112 1.219 1.636 2.054 2.323 3.011];
spline_interp=interp1(x,fx,[1.3]','spline"); fprintf(\n");..
fprintf(‘spline interpolation value of f(1.3): \n\n'); dlsp(spllne interp)

spline interpolation value of f£(1.3):
1.3380

spline_interp=interp1(x,fx,[1.95]','spline'); fprintf(\n');...
fprintf('spline interpolation value of f(1.95): \n\n'); disp(spline_interp)

spline interpolation value of £(1.95):
2.8184
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Chapter 8

Linear and Parabolic Regression

his chapter is an introduction to regression and procedures for finding the best curve to fit
a set of data. We will discuss linear and parabolic regression, and regression with power
series approximations. We will illustrate their application with several examples.

8.1 Curve Fitting

Curve fitting is the process of finding equations to approximate straight lines and curves that best
fit given sets of data. For example, for the data of Figure 8.1, we can use the equation of a straight
line, that is,

y = mx+b (8.1)

Figure 8.1. Straight line approximation.

For Figure 8.2, we can use the equation for the quadratic or parabolic curve of the form

y = ax’ +bx+c (8.2)

Figure 8.2. Parabolic line approximation

In finding the best line, we normally assume that the data, shown by the small circles in Figures
8.1 and 8.2, represent the independent variable x, and our task is to find the dependent variable
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y. This process is called regression.

Regression can be linear (straight line) or curved (quadratic, cubic, etc.) and it is not restricted to
engineering applications. Investment corporations use regression analysis to compare a portfolio’s
past performance versus index figures. Financial analysts in large corporations use regression to
forecast future costs, and the Census Bureau use it for population forecasting.

Obviously, we can find more than one straight line or curve to fit a set of given data, but we inter-
ested in finding the most suitable.
Let the distance of data point x; from the line be denoted as d,, the distance of data point x,

from the same line as d,, and so on. The best fitting straight line or curve has the property that

df+d22+ +d§ = minimum (8.3)

and it is referred to as the least-squares curve. Thus, a straight line that satisfies (8.3) is called a least
squares line. If it is a parabola, we call it a least-squares parabola.

8.2 Linear Regression

We perform linear regression with the method of least squares. With this method, we compute the
coefficients m (slope) and b (y-intercept) of the straight line equation

y = mx+b (8.4)

such that the sum of the squares of the errors will be minimum. We derive the values of m and b,
that will make the equation of the straight line to best fit the observed data, as follows:

Let x and y be two related variables, and assume that corresponding to the values
X1, X9 X3, -.., X, , Wwe have observed the values y;, Yy, Y3, ..., ¥, - Now, let us suppose that we have
plotted the values of y versus the corresponding values of x, and we have observed that the points
(X35 ¥1)s (X2, ¥2)s (X35 Y3)s -5 (X Y) @pproximate a straight line. We denote the straight line equa-
tions passing through these points as

y, = mx,;+Db
Y3 = MXxg+Db (8.5)
Yo = MX,+Db

In (8.5), the slope m and y-intercept b are the same in all equations since we have assumed that
all points lie close to one straight line. However, we need to determine the values of the unknowns
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m and b from all n equations; we will not obtain valid values for all points if we solve just two

. . b
equations with two unknowns.

The error (difference) between the observed value y,, and the value that lies on the straight line,
is y; — (mx; + b). This difference could be positive or negative, depending on the position of the

observed value, and the value at the point on the straight line. Likewise, the error between the
observed value y, and the value that lies on the straight line is y, — (mx, + b) and so on. The

straight line that we choose must be a straight line such that the distances between the observed
values, and the corresponding values on the straight line, will be minimum. This will be achieved
if we use the magnitudes (absolute values) of the distances; if we were to combine positive and
negative values, some may cancel each other and give us an erroneous sum of the distances.
Accordingly, we find the sum of the squared distances between observed points and the points on
the straight line. For this reason, this method is referred to as the method of least squares.

Let the sum of the squares of the errors be

quuares = [yl—(mx1+b)]2+[yz—(mx2+b)]2+ (8.6)

+[y,— (mx, + b)]2

Since ZSquares is a function of two variables m and b, to minimize (8.6) we must equate to

zero its two partial derivatives with respect to m and b. Then,

a%}quuares = — 2% [y; — (Mmx; + b)] = 2%,[y, —(mx, + b)] — ... 87

=2X,[y,—(mx,+b)] =0
and

%quuares = = 2[y; —(mxy + b)] - 2[y, — (MX, + b)] — ... 8.8)

-2[y,—(mx,+b)] =0
The second derivatives of (8.7) and (8.8) are positive and thus ZSquares will have its minimum
value.

Collecting like terms, and simplifying (8.7) and (8.8) we get

* A linear system of independent equations that has more equations than unknowns is said to be overdetermined and no
exact solution exists. On the contrary, a system that has more unknowns than equations is said to be underdetermined and
these systems have infinite solutions.
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(=x®)m + (Ex)b
(ZX)m +nb

Xy (8.9)
2y

where

X = sum of the numbers x

2y = sum of the numbersy

¥xy = sum of the numbers of the product xy

$x* = sum of the numbers x squared

n = number of data x

We can solve the equations of (8.9) simultaneously by Cramer’s rule, or with Excel, or with MAT-
LAB using matrices.

With Cramer’s rule, m and b are computed from

D D
m=—1  po 2 (8.10)
A A
where
A= | 2% X D, = | DV XX D, = | 2" Zxy 8.11)
X n Zy n IX Xy
Example 8.1

In a typical resistor, the resistance R in Q (denoted as y in the equations above) increases with an
increase in temperature T in °C (denoted as x). The temperature increments and the observed

resistance values are shown in Table 8-1. Compute the straight line equation that best fits the
observed data.

TABLE 8.1 Data for Example 8.1 — Resistance versus Temperature

T (OC) X 0 10 20 30 40 50 60 70 80 90 100

R (Q) y 27.6 | 31.0 | 34.0 | 37 40 | 42.6 | 455 | 483 | 51.1 | 54 | 56.7

Solution:

There are 11 sets of data and thus n = 11. For convenience, we use the spreadsheet of Figure 8.3
where we enter the given values and we perform the computations using spreadsheet formulas.
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A]l B | c | D E F G H [
1 |Spreadsheet for Example 8.1

0 2
:23 x(C) | y(© X Xy Resistance versus Temperature e
4 0| 276 0 0 60.0 |
5 10| 31.0] 100 310 .
6 20| 340/ 400 680 g 50.0 1 R |
7 30/ 3700 900 1110 % 400 R ]
8 40| 40.0| 1600, 1600 T ]
9 50/ 42.6] 2500 2130 200 | | | |
10 60 455 3600 2730 o 20 40 60 8 100 L
11 70| 483] 4900] 3381
12 80| 511 6400] 4088 Temperature /;
13 90| 540/ 8100/ 4860
14| 100| 56.7] 10000/ 5670
15| 550/ 467.8] 38500/ 26559
16
17| =x? =X 38500 550
18 = =/ 121000
19] =x n 550 11
20 m=D,/A=|  0.288
21| =xy | 3x 26559 550
22 = = 34859
23| =y n 467.8 11
24 b=D,/A=| 28.1227
25| =x? | =xy 38500, 26559
26 = =| 3402850
27| =x Ty 550| 467.8

Figure 8.3. Spreadsheet for Example 8.1

Accordingly, we enter the x (temperature) values in Column A, and y (the measured resistance

corresponding to each temperature value) in Column B. Columns C and D show the x2 and xy
products. Then, we compute the sums so they can be used with (8.10) and (8.11). All work is
shown on the spreadsheet of Figure 8.3. The values of m and b are shown in cells 120 and 124
respectively. Thus, the straight line equation that best fits the given data is

y = mx+b = 0.288x + 28.123 (8.12)

We can use Excel’s Add Trendline feature to produce quick answers to regression problems. We
will illustrate the procedure with the following example.

Example 8.2
Repeat Example 8.1 using Excel’s Add Trendline feature.
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Solution:

We first enter the given data in columns A and B as shown on the spreadsheet of Figure 8.4.

A B C D
1 -
0
2 | x(C) | y(© Straight line for Example 8.2
3
4 0| 276 60 B
5 10 31.0 w
0 |
6 20/ 340 s 50 / n
7 30| 37.0 Pt /
40 —
8 40| 40.0 g e ]
9 50| 42.6 § 30 |1 |
10 60| 455 i B
11 70 48.3 ? 0 20 40 E;O 86 100 [
12 80| 511 _ B
13 90 54.0 Temperature (degrees Celsius) ]
14 100 56.7

Figure 8.4. Plot of the straight line for Example 10.2

To produce the plot of Figure 8.4, we perform the following steps:

1.

We click on the Chart Wizard icon. The displayed chart types appear on the Standard Types
tab. We click on XY (Scatter) Type. On the Chart sub-types options, we click on the top (scat-
ter) sub-type. Then, we click on Next>Next> Next>Finish, and we observe that the plot
appears next to the data. We click on the Series 1 block inside the Chart box, and we press the
Delete key to delete it.

. To change the plot area from gray to white, we choose Plot Area from the taskbar below the

main taskbar, we click on the small (with the hand) box, on the Patterns tab we click on the
white box (below the selected gray box), and we click on OK. We observe now that the plot
area is white. Next, we click anywhere on the perimeter of the Chart area, and observe six
square handles (small black squares) around it. We click on Chart on the main taskbar, and on
the Gridlines tab. Under the Value (Y) axis, we click on the Mgjor gridlines box to deselect it.

We click on the Titles tab, and on the Chart title box, we type Straight line for Example 8.2, on
the Value X-axis, we type Temperature (degrees Celsius), and on the Value Y-axis, we type Resis-
tance (Ohms). We click anywhere on the x-axis to select it, and we click on the small (with the
hand) box. We click on the Scale tab, we change the maximum value from 150 to 100, and we
click OK. We click anywhere on the y-axis to select it, and we click on the small (with the
hand) box. We click on the Scale tab, we change the minimum value from O to 20, we change

the Major Unit to 10, and we click on OK.

To make the plot more presentable, we click anywhere on the perimeter of the Chart area, and
we observe the six handles around it. We place the cursor near the center handle of the upper
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side of the graph, and when the two-directional arrow appears, we move it upwards by moving
the mouse in that direction. We can also stretch (or shrink) the height of the Chart area by
placing the cursor near the center handle of the lower side of the graph, and move it down-
wards with the mouse. Similarly, we can stretch or shrink the width of the plot to the left or to
the right, by placing the cursor near the center handle of the left or right side of the Chart
area.

5. We click anywhere on the perimeter of the Chart area to select it, and we click on Chart above
the main taskbar. On the pull-down menu, we click on Add Trendline. On the Type tab, we
click on the first (Linear), and we click on OK. We now observe that the points on the plot
have been connected by a straight line.

We can also use Excel to compute and display the equation of the straight line. This feature will
be illustrated in Example 8.4. The Data Analysis Toolpack in Excel includes the Regression Analysis
tool which performs linear regression using the least squares method. It provides a wealth of infor-
mation for statisticians, and contains several terms used in probability and statistics.

8.3 Parabolic Regression
We find the least-squares parabola that fits a set of sample points with
y=ax +b+c (8.13)
where the coefficients a, b, and ¢ are found from
(sz)a +(Zx)b+nc= Xy
(=x}a+ (Ex°)b + (Ex)c= Txy (8.14)
(Zx4)a + (sz)b + (2x2)0= szy

where n = number of data points.

Example 8.3

Find the least-squares parabola for the data shown in Table 8.2.

TABLE 8.2 Data for Example 8.3

X 1.2 15 18 2.6 3.1 4.3 49 5.3
y 4.5 5.1 5.8 6.7 7.0 7.3 7.6 7.4
X 5.7 6.4 7.1 7.6 8.6 9.2 9.8
y 7.2 6.9 6.6 51 4.5 3.4 2.7
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Solution:

We construct the spreadsheet of Figure 8.5, and from the data of Columns A and B, we compute
the values shown in Columns C through G. The sum values are shown in Row 18, and from these
we form the coefficients of the unknown a, b, and c.

A B C D E F G
1] x y X x° x* Xy X%y
2 1.2 4.5 1.44 1.73 2.07 5.40 6.48
3 15 51 2.25 3.38 5.06 7.65 11.48
4 1.8 5.8 3.24 5.83 10.50, 10.44 18.79
5 2.6 6.7 6.76 17.58 4570 17.42 45.29
6 3.1 7.0 9.61 29.79 92.35| 21.70 67.27
7 4.3 7.3 18.49 79.51 341.88| 31.39| 134.98
8 4.9 7.6| 24.01| 117.65 576.48| 37.24| 182.48
9 5.3 7.4, 28.09| 148.88 789.05| 39.22| 207.87
10 5.7 7.2 32.49| 185.19| 1055.60| 41.04| 233.93
11 6.4 6.9/ 40.96| 262.14| 1677.72| 44.16| 282.62
12 7.1 6.6/ 50.41| 357.91| 2541.17| 46.86| 332.71
13 7.6 5.1 57.76| 438.98| 3336.22| 38.76| 294.58
14 8.6 45| 73.96| 636.06|] 5470.08| 38.70| 332.82
15 9.2 3.4 84.64| 778.69| 7163.93| 31.28| 287.78
16 9.8 2.7/ 96.04| 941.19| 9223.68| 26.46| 259.31
17 [sx= |5y=  |=x%= 3= x*= xy=  |=xXPy=
18| 79.1| 87.8| 530.15| 4004.50| 32331.49| 437.72| 2698.37

Figure 8.5. Spreadsheet for Example 8.3

By substitution into (8.14),

530.15a + 79.1b + 15c= 87.8
4004.50a + 530.15b + 79.1c= 437.72 (8.15)
32331.49a + 4004.50b + 530.15¢c= 2698.37

We solve the equations of (8.15) with matrix inversion and multiplication, as shown in Figure 8.6.
The procedure was presented in Chapter 4.

Al B | c | b lel F| ¢
1 |Matrix Inversion and Matrix Multiplication for Example 8.3
2
3 530.15| 79.10| 15.00 Yy= 87.80
4 A=| 4004.50| 530.15| 79.10 Exy=| 437.72
5 32331.49| 4004.50| 530.15 x’y=| 2698.37
6
7 0.032| -0.016| 0.002 a= -0.20
8 A= -0.385| 0.181| -0.016 b= 1.94
9 0.979| -0.385| 0.032 c= 2.78

Figure 8.6. Spreadsheet for the solution of the equations of (8.15)
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Therefore, the least-squares parabola is

The plot for this parabola is shown in Figure 8.7.

Example 8.4

y = —0.20x" + 1.94x + 2.78
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Figure 8.7. Parabola for Example 8.3

The voltages (volts) shown on Table 8.3 were applied across the terminal of a non-linear device
and the current ma (milliamps) values were observed and recorded. Use Excel’s Add Trendline
feature to derive a polynomial that best approximates the given data.

Solution:

We enter the given data on the spreadsheet of Figure 8.8 where, for brevity, only a partial list of
the given data is shown. However, to obtain the plot, we need to enter all data in Columns A and

B.
TABLE 8.3 Data for Example 8.4
Experimental Data
Volts || 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50
ma 0.00 | 0.01 | 0.03 | 0.05 | 008 | 0.11 | 0.14 | 0.18 | 0.23 | 0.28 | 0.34
Volts || 2.75 | 3.00 | 3.25 | 3.50 | 3.75 | 4.00 | 4.25 | 4.50 | 4.75 | 5.00
ma 042 | 050 | 0.60 | 0.72 | 0.85 | 1.00 | 1.18 | 1.39 | 1.63 | 1.91
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A B C D

Volts | Amps

2.00

0.00) 0.00|| 1.75 4
025 001| 1.50 |Y=0:0182x’-0.0403x* + 0.1275x - 0.0177

2_
0.50| 0.03|| 1.25 - R®=0.9997

0.75/ 0.05/| 1.00
1.00| 0.08]| 0.75 1 /

9 | 1.25] 0.11]| os0

10| 150 0.14] 025 ~

11| 1.75] 0.18]| 000 b ‘ ‘

12| 2.00] 023 0 1 2 3 4 5

13| 2.25/ 0.28 ‘
14| 2.50] 0.34 |

N[OOI WIN|F-

Figure 8.8. Plot for the data of Example 8.4

Following the steps of Example 8.2, we create the plot shown next to the data. Here, the smooth
curve was chosen from the Add trendline feature, but we clicked on the polynomial order 3 on the
Add trendline Type tab. On the Options tab, we clicked on Display equation on chart, we clicked on

Display R squared value on chart, and on OK. The quantity R is a measure of the goodness of fit
for a straight line or, as in this example, for parabolic regression. This is the Pearson correlation coef-

3 . . . . . 2 K . . * . . .
ficient R; it is discussed in probability and statistics textbooks . The correlation coefficient can
2 . : . .
vary from O to 1. When R“ =0, there is no relationship between the dependent y and indepen-

dent x variables. When R®~ 1, there is a nearly perfect relationship between these variables.
Thus, the result of Example 8.4 indicates that there is a strong relationship between the variables
x and y, that is, there is a nearly perfect fit between the cubic polynomial and the experimental
data.

With MATLAB, regression is performed with the polyfit(x,y,n) command, where X and y are the
coordinates of the data points, and n is the degree of the polynomial. Thus, if n = 1, MATLAB
computes the best straight line approximation, that is, linear regression, and returns the coeffi-
cients m and b. If n = 2, it computes the best quadratic polynomial approximation and returns
the coefficients of this polynomial. Likewise, if n = 3, it computes the best cubic polynomial
approximation, and so on.

Let p denote the polynomial (linear, quadratic, cubic, or higher order) approximation that is com-
puted with the MATLAB polyfit(x,y,n) function. Suppose we want to evaluate the polynomial p

* It is also discussed in Mathematics for Business, Science, and Technology, Orchard Publications
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at one or more points. We can use the polyval(p,x) function to evaluate the polynomial. If X is a
scalar, MATLAB returns the value of the polynomial at point x. If X is a row vector, the polyno-
mial is evaluated for all values of the vector X.

Example 8.5

Repeat Example 8.1 using the MATLAB's polyfit(x,y,n) function. Use n = 1 to compute the
best straight line approximation. Plot resistance R versus temperature T in the range
-10<T<110 °C. Use also the polyval(p,x) command to evaluate the best line approximation p
in the 0<T <100 range in ten degrees increments, and compute the percent error (difference
between the given values and the polynomial values).

Solution:
The following MATLAB code will do the computations and plot the data.

% This is the code for Example 8.5
%

T=[ 0 10 2030 40 50 60 70 80 90 100]; % x-axis data
R=[27.6 31 34 37 40 426 455 483 51.1 54 56.7]; % y-axis data
axis([-10 110 20 60)); % Establishes desired x and y axes limits
plot(T,R,™b"); % Display experimental (given) points with asterisk

% and smoothed data with blue line
grid; title('R (Ohms) vs T (deg Celsius, n=1"); xlabel('T"); ylabel('R’);

hold % Hold current plot so we can add other data
p=polyfit(T,R,1); % Fits a first degree polynomial (straight line since n =1) and returns
% the coefficients m and b of the straight line equation y = mx + b
a=0: 10: 100; % Define range to plot the polynomial
g=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial
% Display the coefficients m and b
fprintf(\n') % Insert line
disp(‘Coefficients m and b are:'"); fprintf(\n'); disp(p);
format bank % Two decimal place display will be sufficient

disp(‘'Smoothed R values evaluated from straight line are:');
R_smoothed=polyval(p,T) % Compute and display the values of the fitted
% polynomial at same points as given
% (experimental) values of R
R_exper =R % Display the experimental values of R for comparison
% The statement below computes the percent error between
% the fitted polynomial and the experimental data
disp('% Error at points of given values is:')
% The percent error is computed with the following statement
error=(R_smoothed-R_exper).*100./R_exper
format short % Return to default format
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The plot for the data of this example is shown in Figure 8.9.

60

50 A

) /
7

35 g

L

25

0 20 40 60 80 100

Figure 8.9. Plot for Example 8.5

MATLARB also displays the following data:

Coefficients m and b are:
0.2881 28.1227

Smoothed R values evaluated from straight line are:
R_smoothed =

Columns 1 through 5
28.12 31.00 33.88 36.77 39.65

Columns 6 through 10
42.53 45.41 48.29 51.17 54.05

Column 11
56.93

R_exper =
Columns 1 through 5
27.60 31.00 34.00 37.00 40.00

Columns 6 through 10
42.60 45.50 48.30 51.10 54.00

Column 11
56.70

Q

% Error at points of given values is:
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error =

Columns 1 through 5
1.89 0.01 -0.34 -0.63 -0.88

Columns 6 through 10
-0.17 -0.20 -0.02 0.14 0.09

Column 11
0.41

We can make the displayed data more presentable by displaying the values in four columns. The
following MATLAB code will do that and will display the error in absolute values.

T=[0 10 20 30 40 50 60 70 80 90 100}; % x-axis data
R=[27.6 31.0 34.0 37.0 40.0 42.6 45.5 48.3 51.1 54.0 56.7]; % y-axis data
p=polyfit(T,R,1); R_smoothed=polyval(p,T); R_exper = R;
error=(R_smoothed-R_exper).*100./R_exper;

y=zeros(11,4); % Construct an 11 x 4 matrix of zeros
y(:,1)=T" % 1st column of matrix
y(:,2)=R_exper’; % 2nd column of matrix
y(:,3)=R_smoothed % 3rd column of matrix
y(:,4)=abs(error)’; % 4th column of matrix

fprintf(* \n'); % Insert line

fprintf('Temp \t Exper R\t Smoothed R \t |Error| \n')

fprintf(' \n'); % Insert line

fprintf('%3.0f\t %5.41\t %5.41\t %5.4f\n",y")

fprintf(' \n'); % Insert line

When this code is executed, MATLAB displays the following where the error is in percent.

Temp Exper R Smoothed R |Error|

0 27.6000 28.1227 1.8939
10 31.0000 31.0036 0.0117
20 34.0000 33.8845 0.3396
30 37.0000 36.7655 0.6339
40 40.0000 39.6464 0.8841
50 42.6000 42.5273 0.1707
60 45.5000 45.4082 0.2018
70 48.3000 48.2891 0.0226
80 51.1000 51.1700 0.1370
90 54.0000 54.0509 0.0943

100 56.7000 56.9318 0.4089
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8.4 Regression with Power Series Approximations

In cases where the observed data deviate significantly from the points of a straight line, we can
draw a smooth curve and compute the coefficients of a power series by approximating the deriva-
tives di/dv with finite differences Ai/Av. The following example illustrates the procedure.

Example 8.6

The voltages (volts) shown in Table 8.4, were applied across the terminal of a non-linear device,
and the current ma (milliamps) values were observed and recorded. Use the power series method
to derive a polynomial that best approximates the given data.

TABLE 8.4 Data for Example 8.6

Experimental Data

Volts || 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50
ma 0.00 | 0.01 | 0.03 | 0.05 | 0.08 | 0.11 | 0.14 | 0.18 | 0.23 | 0.28 | 0.34
Volts || 2.75 | 3.00 | 3.25 | 3.50 | 3.75 | 4.00 | 4.25 | 4.50 | 4.75 | 5.00
ma 042 | 0.50 | 0.60 | 0.72 | 0.85 | 1.00 | 1.18 | 1.39 | 1.63 | 1.91

Solution:
We start by plotting the given data and we draw a smooth curve as shown in Figure 8.10.

Using the plot of Figure 8.10 we read the voltmeter reading and the corresponding smoothed ma
readings and enter the values in Table 8.5.

Next, we compute A;/A, fori = 1,2,...20

To facilitate the computations, we enter these values in the spreadsheet of Figure 8.11. In cell E4
we enter the formula =(B5-B4)/(A5-A4) and we copy it down to E5:E23.

Next, we plot the computed values of Ai/Av versus v and again we smooth the data as shown in
the spreadsheet of Figure 8.12.

The smoothed values of the plot of Figure 8.12 are shown in Figure 8.13, and from these we com-

pute A%i/ A%,
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A |l B |C D E
1 Experimental
2 | volts ma
3 Smoothed Experimental Data
4 0.00 0.00
5 0.25 0.01 2.00
6 0.50 0.03 1.80 1 /
7 0.75 0.05 1:28’
8| 100 008 120 /
9 1.25 0.11 s 1.00 - /
10| 150 0.14 E 0.80 1 /
11| 175 0.18 0.60 1
12| 200 023 ped //

0.20 -
13 2.25 0.28 0.00 ‘
14 2.50 0.34 -0.20
15 2.75 0.42 0 1 3 4
16 3.00 0.50 v
17 3.25 0.60
18 3.50 0.72
19 3.75 0.85| |From this plot, i | y=o = i(0) = -0.02
20 4.00 1.00
21 4.25 1.18
22 4.50 1.39
23 4.75 1.63
24 5.00 1.91
Figure 8.10. Spreadsheet for Example 8.6
TABLE 8.5
Smoothed Data for Computation of Ai/ Av

Volts || 0.00 | 025 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50
ma —0.02 | 001 | 0.04 | 006 | 009 | 011 | 0.14 | 0.18 | 022 | 0.27 | 0.33
Volts || 2.75 | 3.00 | 3.25 | 3.50 | 3.75 | 4.00 | 425 | 450 | 4.75 | 5.00
ma 041 | 049 | 060 | 0.72 | 085 | 1.0 | 1.20 | 1.40 | 1.63 | 1.89

Finally, we plot A%/ A%y versus volts and again we smooth the data as shown in Figure 8.14.

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
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A B C D E
1 Smoothed Computed
2 | Volts ma Ai / Av
3
4 0.00 -0.02| Ai; / Av;=|(0.01-(-0.02))/(0.25-0.00)= 0.12
5 0.25 0.01| Ai,/ Av,=| (0.04-(0.01))/(0.25-0.00)= 0.12
6 0.50 0.04 0.08
7 0.75 0.06 0.12
8 1.00 0.09 0.08
9 1.25 0.11 0.12
10 1.50 0.14 0.16
11 1.75 0.18 0.16
12 2.00 0.22 0.20
13 2.25 0.27 0.24
14 2.50 0.33 0.32
15 2.75 0.41 0.32
16 3.00 0.49 0.44
17 3.25 0.60 0.48
18 3.50 0.72 0.52
19 3.75 0.85 0.64
20 4.00 1.01 0.76
21 4.25 1.20 0.80
22 4.50 1.40 0.92
23 4.75 1.63| Aiyg / Avyo=| (1.89-(1.63))/(0.25-0.00)= 1.04
24 5.00 1.89

Figure 8.11. Spreadsheet for computation of Ai/Av in Example 8.6

Following the same procedure we can find higher order derivatives. However, for this example we

will consider only the first three terms of the polynomial whose coefficients i, Ai/Av and Ai®/AV?,

all three evaluated at v

the given data is

i(v)

= 0 and are read from the plots. Therefore, the polynomial that best fits

—0.04v2 +0.12v — 0.02

i(0)+i'(0)+%i (0)+... = —0.02 + 0.12v + 0.5(~0.08)v*

(8.16)

8-16
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A B C
Computed
Volts Ai / Av
Smoothed Ai / Av
0.00 0.12
0.25| 0.12 1.2

050/ 0.08 10
075 0.2

1.00] 008 081 /

125 012 0.6 ) I
10| 150/ o.16 0.4 /
11| 175 o016 02 |

12 2.00] 0.20 I DU g

13 2.25| 0.24 0.0
14 2.50| 0.32
15| 275 o032 volts
16 3.00| 0.44
17 3.25| 0.48 |From this plot, (Ai/ AV) | y-o =i'(0) = 0.12
18 3.50| 0.52
19 3.75| 0.64
20 4.00) 0.76
21 425/ 0.80
22 450 0.92
23 4.75 1.04

Olo|N|o|o|lw|IN]| -

At/ Av

Figure 8.12. Plot to obtain smoothed data for Ai/Av in Example 8.6

Example 8.7

Repeat Example 8.4 using the MATLAB polyfit(x,y,n) function. Use n = 3 to compute the best
cubic polynomial approximation.

Solution:

With MATLAB, higher degree polynomial regression is also performed with the polyfit(x,y,n)
function, where n>2. In this example we will use n = 3 as we did with Excel. The MATLAB
code below computes the smoothed line and produces the plot shown on Figure 8.15.
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A B C D E
1 Smoothed Computed
2 | volts Ai/Av A% [ AV?
3
4 0.00 0.12| A% /AvA=| (0.11-0.12)/(0.25-0.00)= -0.04
5 0.25 0.11| A% /A= (0.10-011)/(0.25-0.00)= -0.04
6 0.50 0.10 0.00
7 0.75 0.10 0.04
8 1.00 0.11 0.04
9 1.25 0.12 0.08
10 1.50 0.14 0.12
11 1.75 0.17 0.12
12 2.00 0.20 0.16
13 2.25 0.24 0.20
14 2.50 0.29 0.24
15 2.75 0.35 0.24
16 3.00 0.41 0.28
17 3.25 0.48 0.32
18 3.50 0.56 0.32
19 3.75 0.64 0.36
20 4.00 0.73 0.36
21 4.25 0.82 0.40
22 4.50 0.92 0.44
23 4.75 1.03| A%y / AVP5=| (1.03-0.92)/(0.25-0.00)= 0.44
24 5.00

Figure 8.13. Spreadsheet for computation of Ai%/AV in Example 8.6

v=[00.250.50.7511.251.51.7522.25252.75 3....

3.253.53.754 42545 4.75 5]; % x-axis data
ma=[0 0.01 0.03 0.05 0.08 0.11 0.14 0.18 0.23 0.28....

0.34 0.42 0.50 0.60 0.72 0.851.00 1.18 1.39 1.63 1.91]; % y-axis data
axis([-1 6 -1 2]); % Establishes desired x and y axes limits
plot(v,ma,'+r'); grid % Indicate data points with + and straight line in red
%
hold % hold current plot so we can add other data
disp('Polynomial coefficients in descending order are: ')

%
p=polyfit(v,ma,3) % Fits a third degree polynomial to

% the data and returns the coefficients
% of the polynomial (cubic equation for
% this example since n=3)

a=0:0.25:5; % Define range to plot the polynomial

g=polyval(p,a);% Calculate p at each value of a

% continued on the next page
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A B C
1 Computed
2 | volts | A%/ AV?
3 .2 2
Smoothed Ai° / Av
4 0.00| -0.04
5 0.25| -0.04
0.5
6 0.50|  0.00 .
7 0.75 0.04 0.4 -
8 1.00 0.04 . ¢
9| 125 o008 " 0.3 /
10 150 0.12 Ng 0.2
11 1.75 0.12 ]
12 2.00/ 0.16 0.1 1
13 2.25|  0.20 2
0.0
14| 250 o024 e
15 2.75 0.24 -0.1
16 3.00 0.28 0 1 2 3 4 5
17 3.25| 0.32 v
18 3.50 0.32
19 3.75 0.36
20| 4.00| 036 |From this plot, (Ai° / AV®) | ,-o = i"(0) = —0.08
21 4.25 0.40
22 4.50 0.44

Figure 8.14. Plot to obtain smoothed data of Ai®/AVin Example 8.6

%

plot(a,q); title('milliamps vs volts, n=3");...

xlabel('v'); ylabel('ma’) % Plot the polynomial

% Display actual, smoothed and % error values

ma_smooth=polyval(p,v); % Calculate the values of the fitted polynomial
ma_exper = ma;

% The following statement computes the percent error between the

% smoothed polynomial and the experimental (given) data
error=(ma_smooth-ma_exper).*100./(ma_exper+eps);

%

y=zeros(21,4); % Construct a 21 x 4 matrix of zeros
y(:,1)=V} % 1st column of matrix
y(:,2)=ma_exper’; % 2nd column of matrix
y(:,3)=ma_smooth’; % 3rd column of matrix
y(:,4)=abs(error)’; % 4th column of matrix

fprintf(* \n'); % Insert line

% continued on the next page
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milliarmnps vs volts, n=3

st & 1 1 4 & F F § ]
o

Figure 8.15. Plot for Example 8.7

fprintf(‘volts \t Exper ma\t Smoothed ma \t |%%Error| \n');
fprintf(' \n');

fprintf(‘%3.2f\t %7.50\t %7.50\t %7.5An',y")

fprintf(' \n');

MATLAB computes and displays the following data.

Polynomial coefficients in descending order are:
p:
0.0182 -0.0403 0.1275 -0.0177

volts Exper ma Smoothed ma |%Error|

0.00 0.00000 -0.01766 7955257388080461.00000
0.25 0.01000 0.01197 19.74402

0.50 0.03000 0.03828 27.61614

0.75 0.05000 0.06298 25.95052

1.00 0.08000 0.08775 9.69226

1.25 0.11000 0.11433 3.93513

1.50 0.14000 0.14441 3.14852

1.75 0.18000 0.17970 0.16677

2.00 0.23000 0.22191 3.51632

2.25 0.28000 0.27275 2.58785

2.50 0.34000 0.33393 1.78451

2.75 0.42000 0.40716 3.05797

3.00 0.50000 0.49413 1.17324

3.25 0.60000 0.59657 0.57123
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3.50 0.72000 0.71618 0.53040
3.75 0.85000 0.85467 0.54911
4.00 1.00000 1.01374 1.37399
4.25 1.18000 1.19511 1.28020
4.50 1.39000 1.40048 0.75362
4.75 1.63000 1.63155 0.09538
5.00 1.91000 1.89005 1.04436

We will conclude this chapter with one more example to illustrate the uses of the MATLAB
polyfit(x,y,n) and polyval(p,x) functions.

Example 8.8

Use MATLAB to

a. plot the function
y = sinx/x (8.17)
in the interval 0 < x £ 16 radians.

b. compute y(0),y(2), y(4), y(6),y(8), y(10), y(12), y(14), y(16)

c. plot y versus x for these values and use the MATLAB polyfit(x,y,n) and polyval(p,x) func-
tions to find a suitable polynomial that best fits the x and y data.

Solution:
a. The fplot function below plots y = sinx/x. We added eps to avoid division by zero.

fplot('sin(x)./(x+eps),[0 16 -0.5 2)); grid;...
title('(sinx)/x curve for x > 0')

The plot for the function of (8.17) is shown in Figure 8.16.
b. We use the code below to evaluate y at the specified points.
x=0:2:16; y=sin(x)./(x+eps)

y =
0 0.4546 -0.1892 -0.0466 0.1237 -0.0544 -0.0447 0.0708 -0.0180

c. The code for finding a suitable polynomial is listed below.

x=[0 2 4 6 8 10 12 14 16];

y=[1 0.4546 -0.1892 —-0.0466 0.1237 -0.0544 -0.0447 0.0708 —0.0180];
p5=polyfit(x,y,5); % Fits the polynomial to the data
p7=polyfit(x,y,7); % of x and y with fifth, seventh,
p9=polyfit(x,y,9); % and ninth degree polynomials

% continued on the next page
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(sime)fx curve forx =0

s i L I S i
a
Figure 8.16. Plot for Example 8.8

x_span=0: 0.1: 16; % Specifies values for x-axis
p5_pol=polyval(p5, x_span); % Compute the polynomials for this range of x values.
p7_pol=polyval(p7, x_span); p9_pol=polyval(p9, x_span);
plot(x_span,p5_pol,'--', x_span,p7_pol,'-.", x_span,p9_pol,'-',x,y,"™");

% The following two statements establish coordinates for three legends
% in x and y directions to indicate degree of polynomials

x_ref=[2 5.3]; y_ref=[1.3,1.3];

hold on;

% The following are line legends for each curve

plot(x_ref,y_ref,'--' x_refy_ref-0.2,'-." x_ref,y_ref-0.4,'-");

% The following are text legends for each curve

text(5.5,1.3, '5th degree polynomial’);

text(5.5,1.1, '7th degree polynomial’);

text(5.5,0.9, '9th degree polynomial'); grid;

hold off

format short e % Exponential short format

disp(‘'The coefficients of 5th order polynomial in descending order are:')
p5_coef=polyfit(x,y,5)

disp(‘The coefficients of 7th order polynomial in descending order are:')
p7_coef=polyfit(x,y,7)

disp(‘The coefficients of 9th order polynomial in descending order are:')
p9_coef=polyfit(x,y,9)

format short % We could just type format only since it is the default

The 5th, 7th, and 9th order polynomials are shown in Figure 8.17.
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Figure 8.17. Polynomials for Example 8.8

The coefficients of the 5th, 7th, and 9th order polynomials are shown below.

The coefficients of 5th order polynomial in descending order are:

p5_coef =
6.5865e-006 -1.4318e-004 -1.5825e-003
6.0067e-002 -4.6529e-001 1.0293e+000

The coefficients of 7th order polynomial in descending order are:

p7_coef =
Columns 1 through 6

2.6483e-006 -1.6672e-004 4.1644e-003
-5.2092e-002 3.3560e-001 -9.9165e-001
Columns 7 through 8
7.2508e-001 9.9965e-001

The coefficients of 9th order polynomial in descending order are:

p9_coef =
Columns 1 through 6
-1.0444e-008 1.1923e-006 -4.8340e-005
9.5032e-004 -9.7650e-003 4.9437e-002
Columns 7 through 10
-8.4572e-002 -1.0057e-001 0 1.0000e+000
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8.5 Summary

e Curve fitting is the process of finding equations to approximate straight lines and curves that
best fit given sets of data.

® Regression is the process of finding the dependent variable y from some data of the independent
variable x. Regression can be linear (straight line) or curved (quadratic, cubic, etc.)

¢ The best fitting straight line or curve has the property that d 12 + d22 .+ d:f = minimum and it

is referred to as the least-squares curve. A straight line that satisfies this property is called a least
squares line. If it is a parabola, we call it a least-squares parabola.

e We perform linear regression with the method of least squares. With this method, we compute
the coefficients m (slope) and b (y-intercept) of the straight line equation y = mx + b such

that the sum of the squares of the errors will be minimum. The values of m and b can be found
from the relations

(=x®)m + (x)b
(Zx)m +nb

Xy
Zy

where
Zx = sum of the numbers x, £y = sum of the numbersy

¥xy = sum of the numbers of the product xy, =x* = sum of the numbers x squared
n = number of data x

The values of m and b are computed from

D D
m = —1 b = —2
A A
where
A = | =X° 2x D, = | 2XV XX D, = =x° Xy
X n Zy n X Xy

o We find the least-squares parabola that fits a set of sample points with y = ax” + b + ¢ where the
coefficients a, b, and ¢ are found from
(sz)a +(ZxX)b+nc= Xy
(2x>)a + (2xH)b + (2x)c= =xy
=xhHa+ (@x3)b + (2x%)c= Xy

where n = number of data points.
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Summary

e With MATLAB, regression is performed with the polyfit(x,y,n) command, where x and y are
the coordinates of the data points, and n is the degree of the polynomial. Thus, if n = 1,
MATLAB computes the best straight line approximation, that is, linear regression, and returns
the coefficients m and b. If n = 2, it computes the best quadratic polynomial approximation

and returns the coefficients of this polynomial. Likewise, if n = 3, it computes the best cubic
polynomial approximation, and so on.

In cases where the observed data deviate significantly from the points of a straight line, we can
draw a smooth curve and compute the coefficients of a power series by approximating the
derivatives dy/dx with finite differences Ay/Ax.
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8.6 Exercises

1. Consider the system of equations below derived from some experimental data.

2X+y = -1
Xx-3y = -4
X+4y = 3
3x-2y = -6
—-X+2y =3
X+3y =2

Using the relations (8.10) and (8.11), find the values of x and y that best fit this system of

equations.

2. In a non-linear device, measurements yielded the following sets of values:

millivolts

100

120

140

160

180

200

milliamps

0.45

0.55

0.60

0.70

0.80

0.85

Use the procedure of Example 8.1 to compute the straight line equation that best fits the given

data.

3. Repeat Exercise 8.2 using Excel’s Trendline feature.

4. Repeat Exercise 8.2 using the MATLAB’s polyfit(x,y,n) and polyval(p,x) functions.

5. A sales manager wishes to forecast sales for the next three years for a company that has been in
business for the past 15 years. The sales during these years are shown on the next page.

8-26
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Year Sales
1 89,149,548
2 13,048,745
3 19,147,687
4 28,873,127
5 39,163,784
6 54,545,369
7 72,456,782
8 89,547,216
9 112,642,574
10 130,456,321
11 148,678,983
12 176,453,837
13 207,547,632
14 206,147,352
15 204,456,987

Using Excel’s Trendline feature, choose an appropriate polynomial to smooth the given data
and using the polynomial found, compute the sales for the next three years. You may round

the sales to the nearest thousand.

6. Repeat Exercise 8.5 using the MATLAB polyfit(x,y,n) and polyval(p,x) functions.
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8.7 Solutions to Exercises

1. We construct the spreadsheet below by entering the given values and computing the values
from the formulas given.

AlB|CID|E|[F|[G] H [ J
1 |Spreadsheet for Exercise 8.1
2
3 a | b |c|a’lab|b? ac bc
4
5 2| 1]-1] 4] 2| 1] -2 -1
6 1] -3/-4 1| -3] 9] -4 12
7 1 4] 3| 1| 4|16 3 12
8 3] -2|-6/ 9| -6| 4| -18 12
9 -1 2| 3| 1| -2| 4, -3 6
10 1 3| 2] 1 3| 9 2 6
11
121 X 7 5|-3| 17| -2|43| -22 47
13
14 za’ | zab 17| -2
151 A = =| 727
16 zab | £b? 2| 43
17 x=D,/A=| -1.172
18 Tac | Zab 22| -2
19| D, = =| -852
20 Tbc | =h? 47| 43
21 y=D,/A=| 1.039
22 za’ | zac 17| -22
23| D, = =| 755
24 Yab | Zbc -2| 47

Thus, x = -1.172 and y = 1.039
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2. We construct the spreadsheet below by entering the given values and computing the values
from the formulas given.

Al B ] c | D E F G H
1 |Spreadsheet for Exercise 8.2
2
2

j x (mV)] y(mA) X Xy 4 Milliamps versus Millivolts \f
5| 100 045 10000 45 ]

1.00 -
6 120/ 0.55 14400 66 |
7 140/ 0.60 19600 84 2 0.80 il
8 160/ 0.70, 25600 112 <_§ — |
9| 180/ 0.80] 32400 144 S 060 | /
10| 200| 0.85] 40000 170 0.40 ] |
E 900] 3.95] 142000 621 100 120 140 160 180 200 H
13 Millivolts /;
14
15
16 | =x° =X 142000 900
17 = = 42000
18| =x n 900 6
19 m=D,/A=|  0.004
20| =xy | =x 621 900
21 = = 171
22| zy n 4.0 6
23 b=D,/A=| 0.04762
24| =x* | =xy 142000 621
25 = = 2000
26| =x Ty 900 4.0

Thus, y = mx+b = 0.004x + 0.0476
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3. Following the procedure of Example 12.2, we get the trendline shown below.

Al B | c | D E F G H [
1 |Trendline for Exercise 8.3
2
2

i X (mV)| y(mA) X Xy 4 Milliamps versus Millivolts Y

5 100/ 0.45| 10000 45 100 |

6 120/ 0.55| 14400 66

7 140/ 0.60| 19600 84 2 0.80 1 il

8 | 160/ 0.70] 25600 112 & / 1

9 180| 0.80| 32400 144 S 060 *

10| 200/ 0.85] 40000 170 040 '/ I |

E 900] 3.95| 142000 621 100 120 140 160 180 200

13 Millivolts M

14 ]

15

16| =x* | =x 142000 900

17 = = 42000

18] =x n 900 6

19 m=D,/A=|  0.004

20| Zxy X 621 900

21 = = 171

22| zy n 4.0 6

23 b=D,/A=| 0.04762

24| =x* | =xy 142000 621

25 = = 2000

26| ZX=x Ty 900 4.0

4.
mv=[100 120 140 160 180 200]; % x-axis data
ma=[0.45 0.55 0.60 0.70 0.80 0.85]; % y-axis data
axis([100 200 0 1]); % Establishes desired x and y axes limits
plot(mv,ma,"”b"); % Display experimental (given) points with
% asterisk and smoothed data with blue line
grid; title('ma (milliamps) vs mv (millivolts, n=1'); xlabel('mv'); ylabel('ma’);
hold % Hold current plot so we can add other data
p=polyfit(mv,ma,1); % Fits a first degree polynomial (straight line since n =1) and returns
% the coefficients m and b of the straight line equation y = mx + b
a=0: 10: 200; % Define range to plot the polynomial
g=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial
% Display the coefficients m and b
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fprintf('\n') % Insert line
disp(‘Coefficients m and b are:"); fprintf(\n'); disp(p);
format bank % Two decimal place display will be sufficient
ma_smoothed=polyval(p,mv); % Compute the values of the fitted polynomial at
% same points as given (experimental) values of ma

ma_exper = ma; % Display the experimental values of ma for comparison

% The statement below computes the percent error between

% the fitted polynomial and the experimental data

% disp('% Error at points of given values is:");

% The percent error is computed with the following statement
error=(ma_smoothed-ma_exper).*100./ma_exper;

format short % Return to default format
y=zeros(6,4); % Construct an 6 x 4 matrix of zeros
y(:,1)=mv’; % 1st column of matrix
y(:,2)=ma_exper % 2nd column of matrix
y(:,3)=ma_smoothed'; % 3rd column of matrix
y(:,4)=abs(error)’; % 4th column of matrix

fprintf(' \n'); % Insert line

fprintf('mv \t Exper ma\t Smoothed ma \t |Error| percent \n')
fprintf(' \n'); % Insert line

fprintf('%3.0f\t %5.4f\t %5.4f\t %5.4f\n',y")

fprintf(' \n'); % Insert line

Coefficients m and b are:

0.0041 0.0476
mv Exper ma Smoothed ma |Error| percent
100 0.4500 0.4548 1.0582
120 0.5500 0.5362 2.5108
140 0.6000 0.6176 2.9365
160 0.7000 0.6990 0.1361
180 0.8000 0.7805 2.4405
200 0.8500 0.8619 1.4006
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rma (milliamps) vs mv (millvolts), n=1 {straight ling)

0 i i i i i i i i i
0 20 40 & = 100 120 140 160 180 200
v

5. Following the procedure of Example 8.4, we choose Polynomial 4 and we get the trendline
shown below.

1 9149548 " . .

5 13048745 258000000 y =-17797x" + 4363252):0é 2E+06x" + 1E+07x -

3 19147687 2_

4 28873127 | 208000000 R = {9960

5 39163784 | 158000000 |

6 54545369

; Soa5g7gy | 108000000 | /

8 89547216 58000000 e

9 112642574 4000000 " |
10 130456321 0 . o 1 20
11 148678983

12 176453837
13 207547632
14 206147352
15 204456987

The sales for the next 3 years are from the equation above produced by Excel.

V1o = — 17797x" +436354x° - 2 x 10°x* + 10'x -2 x 10°| _ . = 266961792
Y17 = —17797x" + 436354x° — 2 x 10°X” + 10'x -2 x 10°| _ ., = 247383965
Vis = - 17797x" +436354x° - 2 x 10°x* +10'x -2 x 10°| _ . = 206558656

These results indicate that non-linear interpolation is, in most cases, unreliable. We will
compare these values with the results of Exercise 6.
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6.
year=[1 23456789 10 11 12 13 14 15]; % x-axis data
sales=[9149548 13048745 19147687 28873127 39163784 ...
54545369 72456782 89547216 112642574 130456321 ...
148678983 176453837 207547632 206147352 204456987]; % y-axis data
plot(year,sales,b'); % Display experimental (given) points with
% asterisk and smoothed data with blue line
hold % Hold current plot so we can add other data
grid; title('Yearly Sales vs Years, n=4"); xlabel('Years'); ylabel('Yearly Sales");
p=polyfit(year,sales,4); % Fits a first degree polynomial (n=4) and returns
% the coefficients of the polynomial
a=linspace(0, 15, 15); % Define range to plot the polynomial
g=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial
% Display coefficients ofpolynomial
fprintf(\n') % Insert line
disp(‘Coefficients are:"); fprintf(\n'); disp(p);
sales_smoothed=polyval(p,year); % Compute the values of the fitted polynomial at
% same points as given (experimental) values of ma
sales_exper = sales; % Display the experimental values of ma for comparison
% The statement below computes the percent error between
% the fitted polynomial and the experimental data
% The percent error is computed with the following statement
error=(sales_smoothed-sales_exper).*100./sales_exper;
y=zeros(15,4); % Construct an 15 x 4 matrix of zeros
y(:,1)=year % 1st column of matrix
y(:,2)=sales_exper"; % 2nd column of matrix
y(:,3)=sales_smoothed’; % 3rd column of matrix
y(:,4)=abs(error)’; % 4th column of matrix
fprintf(' \n');
fprintf('year\t Exper sales\t Smoothed sales \t |Error| percent \n')
fprintf(' \n');
fprintf('%2.0f\t 9%9.0f\t %9.0f\t  %5.2f\n"y")
fprintf(' \n');
Coefficients are:
1.0e+007 *
-0.0018 0.0436 -0.2386 1.1641 -0.2415
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25 T T

Yearly Sales
B L+l

2
o

4.5 i -
a

Years

vear Exper sales Smoothed sales |Error| percent

1 9149548 7258461 20.67
2 13048745 14529217 11.35
3 19147687 21374599 11.63
4 28873127 29344934 1.63
5 39163784 39563426 1.02
6 54545369 52726163 3.34
7 72456782 69102111 4.63
8 89547216 88533118 1.13
9 112642574 110433913 1.96
10 130456321 133792104 2.56
11 148678983 157168183 5.71
12 176453837 178695519 1.27
13 207547632 196080363 5.53
14 206147352 206601848 0.22
15 204456987 207111986 1.30

From the coefficients produced by MATLAB, shown on the previous page, we form the poly-
nomial

y = — 1.8 x10°x* + 4.36 x 10°x> - 2.386 x 10°%” + 1.1641 x 10'x — 2.415 x 10°

and from it we find the values of y (the yearly sales) as follows:
x=16; y16=—1.8"10"4*x"+4.36*10"5*x"3-2.386" 106" x"2+1.1641*10/7*x-2.415*10/6;

x=17; y17=-1.8"10"4*x"4+4.36*10"5*x"3-2.386"10/6*x"2+1.1641*10"7*x-2.415*106;
x=18; y18=-1.8"10"4*x"4+4.36*10"5*x"3-2.386"10/6*x"2+1.1641*10"7*x-2.415*106;
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y16,y17,y18
vlie =
1.7923e+008
v17 =
1.4462e+008
v1l8 =
8.7243e+007

These values vary significantly from those of Exercise 5. As stated above, non-linear interpola-
tion especially for polynomials of fourth degree and higher give inaccurate results. We should
remember that the equations produced by both Excel and MATLAB represent the equations
that best fit the experimental values. For extrapolation, linear regression gives the best

approximations.
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NOTES
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Chapter 9

Solution of Differential Equations by Numerical Methods

his chapter is an introduction to several methods that can be used to obtain approximate
solutions of differential equations. Such approximations are necessary when no exact solu-
tion can be found. The Taylor, Runge-Kutta, Adams’, and Milne’s methods are discussed.

9.1 Taylor Series Method

We recall from Chapter 6 that the Taylor series expansion about point a is
n (n)
y,= f(x) = f(a)+f'(a)(x-a)+u—2(x a) +. fAmQ)(X—a)n 9.1)

Now, if X, >a is a value close to a, we can find the approximate value y, of f(x;) by using the
first k+ 1 terms in the Taylor expansion of f(x;) about x = a. Letting h; = x-a in (9.1), we
get:

' 1 1 TR 1 4), 4
y, = y0+y0h1+2‘y0h 1+3Y0 h1+EYO( )h1+ (9.2)

Obviously, to minimize the error f(x,) -y, we need to keep h; sufficiently small.

For another value x, > X, , close to x,, we repeat the procedure with h, = x, —x, ; then,

' 1 1 TR 1 4), 4
y, = y1+y1h2+2‘y1h2+3!y1 h2+ay1( )h2+ (9.3)
In general,
1. @44
y,+1—y|+y,h|+1+2'y|h|+1 2 h|+1 4!y| h|+1+"' (9.4)

Example 9.1
Use the Taylor series method to obtain a solution of
y = Xy (9.9)

correct to four decimal places for values x, = 0.0, x;, = 0.1, x, = 0.2, x; = 0.3, x, = 0.4, and

Xs = 0.5 with the initial condition y(0) =
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Solution:

For this example,
and by substitution into (9.4),

Yi,, = ¥;+0.1y +0.005y +0.000167y;" +0.000004y,"

1
fori =0,1,2,3, and 4.
The first through the fourth derivatives of (9.5) are:

’

y' =Xy

I!

' = —xy -y = —X(=xy)-y = (= 1)y

v = C 1)y +2xy = (G = 1) (=xy)2xy = (= x> +3x)y
v = (O30 (xy) + (=32 +3)y = (X —6x2+3)y

We use the subscript i to express them as

’

Yi = XY
v = 06 - 1)y,
V" = (X +3%),

2
yf“') = (xf’ -6x; +3)y;

where x; represents X, = 0.0, x; = 0.1, x, = 0.2, X3 = 0.3, and x, = 0.4.

(9.6)

(9.7)

(9.8)

Using the values of the coefficients of y; in (9.8), we construct the spreadsheet of Figure 9.1.

Al B ] c¢c | b [ E F G H
1 |Differential Equation is y' = —xy
2 |Numerical solution by Taylor method follows
3
4 Xj Xiz Xi3 Xi4 =X Xiz-l 'Xi3+3xi Xi4-6Xi2+3
5
6 | 0.0/ 0.00, 0.0000/ 0.0000 0.0/ -1.00/ 0.000/ 3.0000
7| 0.1 0.01| 0.0010| 0.0001 -0.1| -0.99| 0.299| 2.9401
8 | 0.2/ 0.04/ 0.0080| 0.0016 -0.2| -0.96| 0.592| 2.7616
9| 0.3] 0.09] 0.0270| 0.0081 -0.3| -0.91| 0.873] 2.4681
10| 0.4/ 0.16] 0.0640/ 0.0256 -0.4| -0.84| 1.136] 2.0656
Figure 9.1. Spreadsheet for Example 9.1
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The values in E6:E10, F6:F10, G6:G10, and H6:H10 of the spreadsheet of Figure 9.1, are now

substituted into (9.8), and we obtain the following relations:
Yo = XoYo = —0yp = 0
y; = Xy, = 0.1y,
Yo = XY, = 0.2y, (9.9)
Y3 = —X3Y3 = -0.3y;
Y4 = —X4Y4 = 0.4y,

Yo = (o= 1)¥o = Y

¥y = (-1)y, = -0.99y,

Yy = (-1)y, = ~0.96y, (9.10)
Ys = (5-1)y; = ~0.91y,

Y, = (G-1)y, = -0.84y,

e

3

Y1
Yy = (= Xo+3X,)Y, = 0592y, (9.11)

= (=X +3x,)y; = 0.299y,

e 3
e 3

Yy = (=X;3+3X,)Yy, = 1.136y,
4 4 2

yé) = (Xp—6Xy+3)yg = 3Yq

YW= (x-6x5+3)y, = 2.9401y,

yo) = (x5-6X5+3)y, = 2.7616y, (9.12)

v = (X3-6X5+3)y, = 24681y,

v = (x;-6X;+3)y, = 2.0656y,

By substitution of (9.9) through (9.12) into (9.6), and using the given initial condition y, = 1,
we get:
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Yo + 0.1y} + 0.005y} + 0.000167y4" + 0.000004y}"

1 +0.1(0) + 0.005(~1) + 0.00167(0) + 0.000004(3)
1 - 0.005 + 0.000012
0.99501

Y1

Similarly,
Y, = Yy +0.1y; + 0.005y; +0.000167y}" + 0.000004y\"
= (1-0.01 - 0.00495 + 0.00005 + 0.00001)y,

= 0.98511(0.99501)
= 0.980194

Ys = Y, + 0.1y} +0.005y4 + 0.000167y" + 0.000004y5"”
= (1-0.02 - 0.0048 + 0.0001 + 0.00001)y,

= 0.97531(0.980194)
= 0.955993

Y4 = Y5+ 0.1y} +0.005y4 + 0.000167y}" + 0.000004y"”
= (1-0.03 - 0.00455 + 0.00015 + 0.00001)y,

= 0.9656(0.955993)
= 0.923107

Y = Y, + 0.1y, +0.005y + 0.000167y," + 0.000004y. "
= (1-0.04 - 0.0042 + 0.00019 + 0.00001)y,

= 0.95600(0.923107)
= 0.88249

The differential equation g—YX = —Xy of this example can be solved analytically as follows:

dy _ _ dy _ _ _ L
y " xdx Iy = _[xdx Iny = 2x +C

and with the initial condition y = 1 when x = 0,

1 1
Inl = -2(0)+C C=0 Iny = —5x

or
—X/2

(9.13)

(9.14)

(9.15)

(9.16)

(9.17)

(9.18)

9-4 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



Runge-Kutta Method

For x; = 0.5 (9.18) yields

y = e 1 = 0.8825

and we observe that this value is in close agreement with the value of (9.17).

We can verify the analytical solution of Example 9.1 with MATLAB’s dsolve(s) function using
the following code:

Syms Xy z
z=dsolve('Dy=—x*y",'y(0)=1",'x")

7 =
exp(-1/2*x"2)

The procedure used in this example, can be extended to apply to a second order differential
equation

y' = f(xy,y) (9.19)

In this case, we need to apply the additional formula

! ! n 1 e 2 1 3
Yier = Yityih+ 2y + Sy n’ (9.20)

9.2 Runge-Kutta Method

The Runge-Kutta method is the most widely used method of solving differential equations with
numerical methods. It differs from the Taylor series method in that we use values of the first

derivative of f(x,y) at several points instead of the values of successive derivatives at a single
point.

For a Runge-Kutta method of order 2, the following formulas are applicable.

k; = hf(x,,y,)
k, = hf(x,+h,y,+h)
1 (9.21)
yn+1 = yn+§(kl+k2)

For Runge-Kutta Method of Order 2

When higher accuracy is desired, we can use order 3 or order 4. The applicable formulas are as
follows:
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I, = hf(x,.y,) = k;

h ly
o = hf (x4 Dy, + )

l, = hf(x, +h,y, +2l,—1,) (9.22)

1

For Runge-Kutta Method of Order 3

m, = hf(xn+g,yn+m71) =1,

h m
m; = hf(xn+§,yn+?2)

m, = hf(x,+h,y,+mj3)

(9.23)

1
Yns1 = yn+é(m1+2m2+2m3+m4)

For Runge-Kutta Method of Order 4

Example 9.2

Compute the approximate value of y at X = 0.2 from the solution y(x) of the differential equa-
tion

y' =X +y2 (9.24)
given the initial condition y(0) = 1. Use order 2, 3, and 4 Runge-Kutta methods with h = 0.2.

Solution:

a. For order 2, we use (9.21). Since we are given that y(0) = 1, we start with x = 0,andy = 1.
Then,

k, = hf(x,,y,) = 02(0+1%) = 0.2
kp = hf(x,+h,y, +h) = 0.2[0+02+(1+02%)] = 0328
and
Y1 = Yo+ %(kl +ky) =1+ %(0.2 +0.328) = 1.264 (9.25)
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b. For order 3, we use (9.22). Then,

hf(x,.y) =k, = 0.2

n=yn

nf (g + 2y + '51) =02[(0+3-02) +(1+3- 02)’ |= 0262 (9.26)

hf(x,+h,y, +2l,— 1) = 0.2[(0+0.2) + (1 +2x 0.262 -0.2)°] = 0.391

o
1]

y, = y0+%(|1+4|2+ 1) = 1+%(0.2+4x0.262+0.391) — 1273 (9.27)

c. For order 4, we use (9.23). Then,
m; = hf(x,,y,) =1, = k; =02

my = f (x,+ 2y, + 2 = 1, = 0262
. , (9.28)
my = f (x,+ 1y, + 22) = 0.2[0+0—é3+(1+9;22§3) | = 0276
m, = hf(x, +h,y, +my) = 0.2[0+0.2+(1+0276)°] = 0.366
and
1
(9.29)

1+ % (02+2x0.262 +2 x0.276 + 0.366) = 1.274

The Runge-Kutta method can also be used for second order differential equations of the form
y' = f0xy.y) (9.30)

. . . . *
For second order differential equations, the pair of 3rd-order formulas are:

* Second and fourth order formulas can also be used, but these will not be discussed in this text. They can be found in differ-
ential equations and advanced mathematics texts.
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l; = hf (X, Y. V)

’

' Il
I, = h(yn+5)
- h I_l ' Ii;-
I, = hf(xn+2, yn+2, yn+§)
ly = h(y,+2l,-1) (9.31)

ly = hf(x,+h, y,+2l,—1;, yr+2l,- 1)
1
, ’ 1 [ r [

For Runge-Kutta Method of Order 3
2nd Order Differential Equation

Example 9.3
Given the 2nd order non-linear differential equation
y'-2y* =0 (9.32)

with the initial conditions y(0) = 1, y'(0) = -1, compute the approximate values of y and y" at
x =02.Useh =0.2.

Solution:

We are given the values of x, = 0, y, = 0, y; = -1 and we are seeking the values of y; and y;
at x; = 0.2. We willuse h = x; —x, = 0.2.

We rewrite the given equation as

y' =2y =0-x+2y° (9.33)
and using (9.31) we get:
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hys = 02(-1) = -0.2
= hf (Xe Vg Vo) = 02(0+2x1°+0) = 0.4

=
|

- h(y6+%) - 0.2(—1+%‘) = 0.6

-
|

_ hf(x0+2, yo+%,y6+%) = 0.2[0+2(1+%)3+0}

-
|

(9.34)
0.2[2(1-0.1)*] = 0.2(1.458) = 0.2916
= h(yg+2l,-1)) = 02(-1+2x0.2916 - 0.4) = —0.1634

o
|

= hf(Xg+h,yo+2l,— 1y, yo+2l,- 1))

o
|

0.2 {0 +2[1+2(-0.16) - (~0.2)]* + 0}
0.2[2(1-0.32 +0.2)%] = 0.2[2(0.88)%] = 0.2726

By substitution into the last two formulas of (9.31), we get:

Y, = Yo+ %(l1 FALtly) = 1+ é(_ 0.2+ 4(0.16)— 0.1634) = 0.8328
. . (9.35)
Y1 = Yo+ é(li +4ly+13) = -1+ £(04+4(0.2916) +0.2726) = -0.6935

MATLAB has two functions for computing numerical solutions of Ordinary Differential Equa-
tions (ODE). The first, ode23, uses second and third-order Runge-Kutta methods. The second,
ode45, uses fourth and fifth-order Runge-Kutta methods. Both have the same syntax; therefore,
we will use the ode23 function in our subsequent discussion.

The syntax for ode23 is ode23(‘f’,tspan,y0). The first argument, f, in single quotation marks, is
the name of the user defined MATLAB function. The second, tspan, defines the desired time
span of the interval over which we want to evaluate the function y = f(x). The third argument,
y0, represents the initial condition or boundary point that is needed to determine a unique solu-
tion. This function produces two outputs, a set of x values and the corresponding set of y values
that represent points of the function y = f(x).

Example 9.4

Use the MATLAB ode23 function to find the analytical solution of the second order nonlinear
equation

Y —2y® =0 (9.36)
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Chapter 9 Solution of Differential Equations by Numerical Methods

with the initial conditions y(0) = 1 and y'(0) = —1. Then, plot the numerical solution using the
function ode23 for the tspan interval 0 <x < 1. Compare values with those of Example 9.3, at

points y(0.2) and y'(0.2).
Solution:
If we attempt to find the analytical solution with the following MATLAB code

syms X y
y=dsolve('D2y=2*y"3,y(0)=1,Dy(0)=—1',x)

MATLARB displays the following message:
Warning: Explicit solution could not be found.

This warning indicates that MATLAB could not find a closed-form solution for this non-linear
differential equation. This is because, in general, non-linear differential equations cannot be
solved analytically, although few methods are available for special cases. These can be found in
differential equations textbooks.

The numerical solution for this non-linear differential equation is obtained and plotted with the
following code, by first writing a user defined m-file which we denote as fex9_4. The code is
shown below.

function d2y=fex9_4(x,y);
d2y=[y(2);2*y(1)"3]; % Output must be a column

This file is saved as fex9_4. Next, we write and execute the code below to obtain the plots for y
and y’.

tspan=[0 1]; % Interval over which we want to evaluate y=f(x)

y0=[1;-1]; % Given initial conditions

[x,y]=0de23('fex9_4', tspan, y0); % Use 2nd and 3rd Order Runge-Kutta
% Plot numeric values with the statements below

plot(x, y(:,1), '+r-', X, y(:,2), 'Ob--")

titte('Numerical Solution for Differential Equation of Example 9.4),...
xlabel('x"), ylabel('y (upper curve), yprime (lower curve)'), grid

The plots for y and y' are shown in Figure 9.2. We observe that the values at points y(0.2) and
y'(0.2), compare favorably with those that we found in Example 9.3.
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Numerical Solution for Differential Equation of Example 3.4

y (upper curve), yprime {lower cune)
& o
b n o
|

=]
o

[=]
w

Figure 9.2. Plot for Example 9.4
Example 9.5

Use MATLARB to find the analytical solution of
X2y —xy’ =3y = x’Inx (9.37)

with the initial conditions y(1) = -1 and y'(1) = 0. Then, compute and plot the numerical
solution using the command ode23 along with points of the analytical solution, to verify the
accuracy of the numerical solution.

Solution:

The analytical solution of (9.37) with the given initial conditions is found with MATLAB as fol-
lows:

syms X y

y=dsolve('x"2*D2y—x*Dy-3"y=x"2*log(x), Dy(1)=0, y(1)=-1", 'x’)

y =

1/9* (-3*x"3*log(x)-2*x"3-7)/x

y=simple(y)

y =

(-1/3*1log(x)-2/9)*x72-7/9/x

pretty(y)
2

(- 1/3 log(x) - 2/9) x - 7/9 1/x

and therefore, the analytical solution of (9.37) is
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_ (1 2\y2_ T
y = (—slnX—g)x o (9.38)

Next, we create and save a user defined m-file, fex9_5.

function d2y=fex9_5(x,y); % Produces the derivatives of Example 9.5
% xN2*y"—x*y'-3*y=x"2*log(x) where y"=2nd der, y'=1st der, logx=Inx

%

% we let y(1) =y and y(2)=y', then y(1)'=y(2)

%

% and y(2)'=y(2)/x"2+3*y(1)/x"2+log(x)

%

d2y=[y(2); y(2)/x+3*y(1)/x"2+log(x)]; % output must be a column

The following MATLAB code computes and plots the numerical solution values for the interval
1<x<4 and compares these with the actual values obtained from the analytical solutions.

tspan=[1 4]; % Interval over which we want to evaluate y=f(x)

y0=[-1;0]; % Given initial conditions

[x,y]=0de23('fex9_5', tspan, y0); % Use 2nd and 3rd Order Runge-Kutta
anal_y=((-1./3).*log(x)-2./9).*x.A2-7./(9.*x); % This is the...

% analytic solution of the 2nd order differential equation of (9.38)
anal_yprime=((-2./3).*log(x)-7./9).*x+7./(9.*x."2); % This is the first derivative of (9.38)
% Plot numeric and analytic values with the statements below

plot(x, y(:,1), '+', x, anal_y, -, x, y(:,2), 'O', x, anal_yprime, -),...

title('Numeric and Analytic Solutions of Differential Equation of Example 9.5"),...
xlabel('x"), ylabel('y (line with +), yprime (line with O)"), grid

The numeric and analytical solutions are shown in Figure 9.3.

Mumeric and Anahytic Solutions of Differential Equation of Example 2.5

w (line with +), yprime (line with O
[
¥
¥
|

Figure 9.3. Plot for Example 9.5
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9.3 Adams’ Method

In this method, the step from y, toy, , ; is performed by a formula expressed in terms of differ-

ences of f(x,y).

Adams’ method uses the formula

where
h =Xy -%,
fh = Xpo Yp)
Af = f —f
N’ = Af —Af
and so on.

Obviously, to form a table of differences, it is necessary to have several (4 or more) approximate
values of y(x) in addition to the given initial condition y(0). These values can be found by
other methods such as the Taylor series or Runge-Kutta methods.

Example 9.6

Given the differential equation
y' = 2y+x (9.40)
with the initial condition y(0) = 1,

compute the approximate values of y for x = 0.1,0.2,0.3,0.4 and 0.5 by the third-order

Runge-Kutta method. Then, find the value of y corresponding to x = 0.6 correct to three deci-
mal places using Adams’ method.

Solution:

The spreadsheet of Figure 9.4 shows the results of the computations of y;,y,, Y3, ¥4, and ys
using the third-order Runge-Kutta method as in Example 9.2.

Next, we compute the following values to be used in Adams’ formula of (9.39). These are shown
below.
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Xn Vo o fa=Xa 2V, Af, A%, A%,

0.0 1.0000 2.0000

0.5534
0.1 1.2267 2.5534 0.1224

0.6758 0.0272
0.2 1.5146 3.2292 0.1496

0.8254 0.0330
0.3 1.8773 4.0546 0.1826

1.0080 0.0406
0.4 2.3313 5.0626 0.2232

1.2312
0.5 2.8969 6.2938

and by substitution into (7.39)
1 5 3
Yo = 2.8969 + 0.1[6.2638 +5(12312) + 7(02232) + 5(0.0406)} — 3,599 (9.41)

As with the other methods, Adams’ method can also be applied to second order differential equa-

tions of the form y" = f(x,y,y ) with initial conditions y(Xo) = Yo and y'(Xg) = Yo.
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A | B C D [E|F
1 |Differential Equation y' = x + 2y
2 |Numerical solution by Runga-Kutte method follows
4 h= x(1)-x(0)= 0.1000 Xo=| 0.0
5 x(0)= (given) 0.0000 X1=| 0.1
6 y(0)= Initial condition (given) 1.0000 X=| 0.2
7 X3=| 0.3
8 X4=| 0.4
9 L(1)= h*f(Xn,Yn) h*(0+2*1)=|0.2000| xs=| 0.5
10| L= h*f(x,+0.5*h,y,+0.5*L (1)) | h*[(0+0.5*h)+2*(1+0.5*L(1))]=| 0.2250
11] LE)= h*f(x,+h,yn+2*L(2)-L(1))| h*[(0+h)+2*(1+2*L(2)-L(1))]=|0.2600
13| y(1)=|y(0) +(L(1) + 4*L(2) + L(3))/6 1.2267
15 h= x(2)-x(1)= 0.1000
16 | x(0.1)= Next value x(0) + h 0.1000
17| y(1)=| From previous computation 1.2267
19| L@)= h*(X,Yn) h*(0.1+2*1.2267)=| 0.2553
20| L@= h*f(x,+0.5*h,y,+0.5*L(1)) | h*[(0+0.5*h)+2*(1+0.5*L(1))]=| 0.2859
21| L@)= h*f(x,+h,y,+2*L(2)-L(1))| h*[(0+h)+2*(1+2*L(2)-L(1))]=|0.3286
23| y(2)=|y(1) +(L(1) + 4*L(2) + L(3))/6 1.5146
25 h= x(2)-x(1)= 0.1000
26 | x(0.2)= Next value x(0) + 2*h 0.2000
27| y(2)=| From previous computation 1.5146
29| L= h*f(xn,Yn) h*(0.2+2*1.5146)= 0.3229
30| L@=| h*(x,*+0.5*h,y,+0.5*L(1))| h*[(0+0.5*h)+2*(1+0.5*L(1))]=| 0.3602
31| L= h*f(x,+h,yn+2*L(2)-L(1))| h*[(0+h)+2*(1+2*L(2)-L(1))]=| 0.4124
33| y@)=|y(2) +(L(1) + 4*L(2) + L(3))/6 1.8773
35 h= x(3)-x(2)= 0.1000
36 | x(0.3)= Next value x(0) + 3*h 0.3000
37 y(3)=| From previous computation 1.8773
39| LQ)= h*f(Xn,Yn) h*(0.3+2*1.8773)=| 0.4055
40| L(@2=| h*(x4+0.5%h,y,+0.5*L(1))| h*[(0+0.5%h)+2*(1+0.5*L(1))]=| 0.4510
411 LE)= hf(xo+h,y,+2*L(2)-L(1))| h*[(0+h)+2*(1+2*L(2)-L(1))]=| 0.5148
43| y@)=|y(2) +(LQ) + 4L(2) + L(3))/6 2.3313
45 h= X(4)-x(3)= 0.1000
46 | x(0.4)= Next value x(0) + 4*h 0.4000
47| y(4)=| From previous computation 2.3313
491 L= h*f(Xn,Yn) h*(0.3+2*1.8773)=|0.5063
50| L= h*f(x,+0.5*h,y,+0.5*L (1)) | h*[(0+0.5*h)+2*(1+0.5*L(1))]=| 0.5619
51| L@®)= h*f(x,+h,y,+2*L(2)-L(1))| h*[(0+h)+2*(1+2*L(2)-L(1))]=| 0.6398
53| y(B)=|y() +(L(1) + 4*L(2) + L(3))/6 2.8969

Figure 9.4. Spreadsheet for Example 9.6
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9.4 Milne’s Method

Milne’s method also requires prior knowledge of several values of y. It uses the predictor-correc-
tor pair

4
= yn73+§h[2fn—fn71+2fn72] (9.42)

Ynst

and

1
Yo, =yn_1+§h[fn+1+4fn+fn_1] (9.43)

The corrector formula of (9.43) serves as a check for the value
Yn+1 = fXqy 0 Ynad) (9.44)

Ify,,,and Y in (9.42) and (9.43) respectively, do not differ considerably, we accept Y, _ ,

n+1

as the best approximation. If they differ significantly, we must reduce the interval h.

Example 9.7

Use Milne’s method to find the value of y corresponding to x = 0.6 for the differential equation
y' = 2y+x (9.45)

with the initial condition y(0) = 1.

Solution:

This is the same differential equation as in Example 9.6 where we found the following values:

TABLE 9.1 Table for Example 9.7

n Xn A f=x,+2y,
2 0.2 1.5146 3.2292
3 0.3 1.8773 4.0546
4 0.4 2.3313 5.0626
5 05 2.8969 6.2938

and using the predictor formula we find

4

(9.46)
= 1.5146 + g x 0.1(2 x 6.2938 — 5.0626 + 2 x 4.0546) = 3.599
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Summary

Before we use the corrector formula of (9.43), we must find the value of fg; this is found from
where xg = 0.6, and from Example 9.5 yg = 3.599. Then,

fo = Xg+2ys = 0.6+2x 3599 = 7.7984

and

<
o
|

(9.47)

2.3313 + % x 0.1(7.7984 + 4 x 6.2938 + 5.0626) = 3.599

We see from (9.46) and (9.47) that the predictor-corrector pair is in very close agreement.

Milne’s method can also be extended to second order differential equations of the form

y" = f(x,y,y) with initial conditions y(Xo) = Yo and y(X,) = Yo.

9.5 Summary

e The Taylor series method uses values of successive derivatives at a single point. We can use
this series method to obtain approximate solutions of differential equations with the relation

/ 1 .2 1,3 1,44
yi+1=yi+yihi+1+§yihi+1+§yi hi+1+Ajyi iy

provided that h is sufficiently small such as h = 0.1.

® The Taylor series method can also be extended to apply to a second order differential equa-
tion

y' =fxy.y)
using the relation
' , " 1,2 1 4.3
Yig1 = yi+yih+zyi h +?;yi h”+ ...
® The Runge-Kutta method uses values of the first derivative of f(x,y) at several points. it is
the most widely used method of solving differential equations using numerical methods.

¢ For a Runge-Kutta method of order 2 we use the relations
1
ky = hf(xn,yn) k, = hf(xn+h,yn+h) Yne1 = yn+§(kl+k2)

provided that h is sufficiently small such as h = 0.1.
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¢ For a Runge-Kutta method of order 3 we use the relations

h |
I, = hf(x,.y,) = k; I2:hf(xn+§,yn+—21) Iy = hf(x,+h,y, +20,~ 1)

1

e For a Runge-Kutta method of order 4 we use the relations

h m
m, = hf(x,.y,) = I = k, m2=hf(xn+§,yn+71)=|2

h m
m3=hf(xn+§,yn+—ég) m, = hf(x,+h,y,+mj3)

1
Yni1 = yn+é(m1+2m2+2m3+m4)

® The Runge-Kutta method can also be used for second order differential equations of the form

y' = f(%y,y)

e For second order differential equations, the pair of 3rd-order relations are:

l, = hy, l; = hf (X, Y. V)

P h L, 0
I2=h(yn+—21) IZ:hf(xn+§, yn+5,yn+—21)
Iy = h(y,+2l,-1) ly = hf(x,+h, y,+2l,— 1y, yr+2l,-1;)
1 ’ ’ 1 4 ! !
yn+1=yn+é(|1+4|2+|3) yn+1=yn+é(ll+4lz+l3)

Second and fourth order formulas can also be used but they were not be discussed in this text.
They can be found in differential equations texts.

¢ MATLARB has two functions for computing numerical solutions of Ordinary Differential Equa-
tions (ODE). The first, ode23, uses second and third-order Runge-Kutta methods. The sec-
ond, ode45, uses fourth and fifth-order Runge-Kutta methods. Both have the same syntax;
therefore, we will use the ode23 function in our subsequent discussion.

® The syntax for ode23 is ode23(‘f’,tspan,y0). The first argument, f, in single quotation marks,
is the name of the user defined MATLAB function. The second, tspan, defines the desired
time span of the interval over which we want to evaluate the function y = f(x). The third
argument, y0, represents the initial condition or boundary point that is needed to determine a
unique solution. This function produces two outputs, a set of X values and the corresponding
set of y values that represent points of the function y = f(x).
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* Adams’ method provides the transition from y, to y, , ; is performed by a formula expressed

in terms of differences of f(x,y). This method uses the formula

Yni1 = yn+h[fn+%Afn+%A2fn+§A3fn+ J
where
h =Xy, =%
fn = (Xp: Yn)
Af, =1 —f,

2
A = Af - AF

and so on. To use this method, it is necessary to have several (4 or more) approximate values
of y(x) in addition to the given initial condition y(0). These values can be found by other
methods such as the Taylor series or Runge-Kutta methods.

¢ Milne’s method also requires prior knowledge of several values of y. It uses the predictor-cor-
rector pair

4
Yn+1 = yn—3+§h[2fn_fn—1+2fn—2]
and

Lt

Yo = yn—1+§

ne1t a4+ ]

where y, ., is the predictor formula and Y, ., is the corrector formula. The corrector for-

n+1
mula serves as a check for the value

= f(x

Yn+1 nerYn+1)

Ity,,, andyY do not differ considerably, we accept Y as the best approximation. If

n+1 n+1

they differ significantly, we must reduce the interval h.

Milne’s method can also be extended to second order differential equations of the form
y"' = f(x,y,y ) with initial conditions y(X) = Yo and y'(xg) = yo. The procedure for this
method was not discussed. It can be found in differential equations texts.
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9.6 Exercises
1. Use the MATLAB ode23 function to verify the analytical solution of Example 9.1.

2. Construct a spreadsheet for the numerical solutions of Example 9.2.

3. Use MATLARB to find the analytical solution of
y = f(x) = 3x°

with the initial condition y(2) = 0.5. Then, compute and plot the numerical solution using
the MATLAB function ode23 along with points of the analytical solution to verify the accu-
racy of the numerical solution for the interval 2<x<4.

4. Use MATLAB to plot the numerical solution of the non-linear differential equation

y = —y>+0.2sinx
with the initial condition y(0) = 0.707 using the command ode23 for the interval 0 <x<10.
5. Given the differential equation
y' =X~y
with the initial condition y(0) = 1 and x, = 0.0 find the values of y corresponding to the

values of x,+0.1 and X+ 0.2 correct to four decimal places using the third-order Runge-

Kutta method. It is suggested that a spreadsheet is used to do all computations.
6. Given the differential equation
y'+y = xy
compute the approximate values of y and y" at x,+0.1 and x,+0.2 given that y(0) = 1,

y'(0) = -1, and x, = 0.0 correct to four decimal places, using the third-order Runge-Kutta
method. It is suggested that a spreadsheet is used to do all computations.
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9.7 Solutions to Exercises
1.

We write and save the following function file:

function dy = func_exer9_1(x,y)
dy = —x*y;

Next, we write and execute the MATLAB code below.

tspan=[0 3]; % Interval over which we want to evaluate y=f(x)

y0=[1;-1]; % Given initial conditions

[x,y]=0de23('func_exer9_1', tspan, y0); % Use 2nd and 3rd Order Runge-Kutta
% Plot numeric values with the statements below

plot(x, y(:,1), '+r-', X, y(:,2), 'Ob--")

title('Numeric Solution of Differential Equation of Exercise 9.1'),...

xlabel('x"), ylabel('y (upper curve), yprime (lower curve)'), grid

The plot below shows the function y = f(x) and its derivative dy/dx.

Murmaric Solution of Differential Equation of Exencise 91
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2.
A | B C D
1 |Differential Equationy' = x + y2
2 |Numerical solution by Runga-Kutte method follows
3
4 h= (given) 0.2000
5 x(0)= (given) 0.0000
6 y(0)= Initial condition (given) 1.0000
7
8 k(1)= h*f(Xp,Yn) h*(0+172)=|  0.2000
9 | k@)= h*f(x,*+h,y,+h) h*(0+0.2+(1+0.2)"2)=|  0.3280
10| y@)= y(0)+0.5(k(1)+k(2)) y(0)+0.5%(D11+D12)| 1.2640
11
12| L= h*f(Xp,Yn) h*(0+12)=|  0.2000
13| L= h*f(x,+0.5*h,y,+0.5*L(1)) h*[(0+0.5*h)+(1+0.5*L(1)"2)]=| 0.2620
14| L= h*f(x,+h,y,+2*L(2)-L(1)) h*[(0+h)+(1+2*L(2)-L(1))"2]=| 0.3906
15| y@)= y(0) +(L(1) + 4*L(2) + L(3))/6 1.2731
16
17 | m@)= h*f(X0, Vi) h*(0+172)=|  0.2000
18| m(2)= h*f(x,+0.5*h,y,+0.5*m(1))|  h*[(0+0.5*h)+(1+0.5*m(1))*2]=| 0.2620
19 | m@®)= h*f(x,+0.5*h,y,+0.5*m(2))|  h*[(0+0.5*h)+(1+0.5*m(2))*2]=| 0.2758
20 | m@4)= h*f(x,+h,y,+m(3)) h*[(0+h)+(1+m(3))*2]=| 0.3655
21| y@)=| y(0) +(1/6)*(m(1) + 2*m(2)+2*m(3) + m(4)) 1.2735
3.

The analytical solution is found with

syms Xy

y=dsolve('Dy=3*x"2,y(2)=0.5",'x")

and MATLAB displays

y =

x"3-15/2

Next we write and save the following statements as function file fexer9_3

function Dy=fexer9_3(x,y);

Dy=3*x"2;

The MATLAB code for the numerical solution is as follows:

tspan=[2 4]; % Interval over which we want to evaluate y=f(x)

y0=7.5; % Initial condition: Since y=x"3-15/2 and y(2) = 0.5, it follows that y(0) = 7.5

[x,y]=0de23('fexer9_3', tspan, y0); % Use 2nd and 3rd Order Runge-Kutta

% Plot numeric values with the statements below
plot(x, y, “+r-')

title('Numeric Solution of Differential Equation of Exercise 9.3'),...

xlabel('x'), ylabel('y"), grid
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Murmearic Solution of Differential Equation of Exemrcise 3.3
70 T T

We write and save the following statements as function file fexer4

function Dy=fexer4(x,y);
Dy=-—y"3+0.2*sin(x);

The MATLAB code and the plot for the numerical solution are as follows:

tspan=[0 10]; x0=[0.707];

[x,num_x]=0de23('fexer4',tspan,x0); plot(x,num_x,'+', x,num_x, '-),...
title('Numeric solution of non-linear differential equation dy/dx=-x"3+0.2sinx'),...
xlabel('x'), ylabel('y=f(x)"), grid

Murmeric solution of non-inear difierential equation dffdx:-xam 25inx
0.8 T T T T

5. The spreadsheet is shown on the following two pages.
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A B C D E F
1 |Differential Equationisy' = x” - y
2 |Numerical solution by Runga-Kutte method follows
3
4 h= X(1)-x(0)= 0.1000 Xo=| 0.0
5 x(0)= (given) 0.0000 x=| 0.1
6 y(0)= Initial condition (given) 1.0000 X=| 0.2
7
8
9 L(1)= h*f(Xn,Yn) h*(0-1)=| -0.1000
10 L(2)= h*f(x,+0.5*h,y,+0.5*L(1)) h*[(0+0.5*h)"2-(1+0.5*L(1))]=| -0.0948
11 L(3)= h*f(x,+h,y,+2*L(2)-L(1)) h*[(0+h)"2-(1+2*L(2)-L(1))]=| -0.0901
12
13 y(1)= y(0) +(L(1) + 4*L(2) + L(3))/6 0.9052
14
15 h= X(2)-x(1)= 0.1000
16 x(0.1)= Next value x(0) + h 0.1000
17 y(1)= From previous computation 0.9052
18
19 L(1)= h*f(Xn,Yr) h*(0.1/2-0.9052)=| -0.0895
20 L(2)= h*f(x,+0.5%h,y,+0.5*L(1))| h*[(0+0.5*h)"2-(0.9052+0.5*L (1))]=| -0.0838
21 L(3)= h*f(x,+h,y,+2*L(2)-L(1)) |n*[(0.1+h)"2-(0.9052+2*L(2)-L(1))]=| -0.0787
22
23 y(2)= y(1) +(L(1) + 4*L(2) + L(3))/6 0.8213
24
25 h= X(2)-x(1)= 0.1000
26 x(0.2)= Next value x(0) + 2*h 0.2000
27 y(2)= From previous computation 0.8213
28
29 L(1)= h*f(Xn,Yr) h*(0.2+2*1.5146)=| 0.1843
30 L(2)= h*f(x,+0.5*h,y,+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]=| 0.2077
31 L(3)= h*f(x,+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]=| 0.2405
32
33 y@3)=| () +(L(1) + 4*L(2) + L(3))/6 1.0305
34
35 h= X(3)-x(2)= -0.2000
36 x(0.3)= Next value x(0) + 3*h -0.6000
37 y(3)= From previous computation 1.0305
38
39 L(1)= h*f(Xn,Yr) h*(0.3+2*1.8773)=| -0.2922
40 L(2)= h*f(x,+0.5*h,y,+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]=| -0.2138
41 L(3)= h*f(x,+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]=| -0.1981
42
43 y(4)= y(2) +(L(1) + 4*L(2) + L(3))/6 0.8063

continued on next page

9-24 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition

Orchard Publications



Solutions to Exercises

A B C D E F

44

45 = X(4)-x(3)= 0.0000

46 x(0.4)= Next value x(0) + 4*h 0.0000

47 y(3)= From previous computation 0.8063

48

49 L(1)= h*f(Xn,Yn) h*(0.3+2*1.8773)=| 0.0000

50 L(2)= h*f(x,+0.5*h,y,+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]=| 0.0000

51 L(3)= h*f(x,+h,y,+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]=| 0.0000

52

53 y(4)= y(2) +(L(1) + 4*L(2) + L(3))/6 0.8063

6.
A | B C

1 [Differential Equation is y"+y'=xy or y"'=xy-y"'
2 |Numerical solution by Runga-Kutte method follows
3
4 h= x(1)-x(0)= 0.1000
5 x(0)= Initial condition (given) 0.0000
6 y(0)= Initial condition (given) 1.0000
7 y'(0)= Initial condition (given)| -1.0000
8
9 L(1)= h*y'(0)=| -0.1000
10 L'(1)= h*f(x(0), y(0), y'(0))= 0.1000
11 L(2)= h*(y'(0) + 0.5*L'(1))=| -0.0950
12 L'(2)= h*f(x(0) + 0.5*h, y(0) + 0.5*L(1), y'(0) + 0.5*L(1))= 0.0998
13 L(3)= h*(y'(0) + 2*L'(2) - L'(1))=| -0.0901
14 L'(3)= h*f(x(0) + h, y(0) + 2*L(2) - L(1), y'(0) + 2*L'(2) - L'(1))= 0.0992
15
16 y(1)= y(0) +(L(1) + 4*L(2) + L(3))/6 0.9050
17 y'(1)= y'(0) + (L'(2) + 4*L'(2) + L'(3))/6=| -0.9003
18
19 h= x(1)-x(0)= 0.1000
20 x(0.1)= Next value x(0) + h 0.1000
21 y(1)= From previous computation 0.9050
22 y'(1)= From previous computation| -0.9003
23

continued on next page
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A B C

24 L(1)= h*y'(1)=| -0.0900
25 L'(1)= h*f(x(1), y(1), y'(1))= 0.0991
26 L(2)= h*(y'(1) + 0.5*L'(1))=| -0.0851
27 L'(2)= h*f(x(1) + 0.5*h, y(1) + 0.5*L(1), y'(1) + 0.5*L'(1))= 0.0980
28 L(3)= h*(y'(1) + 2*L'(2) - L'(1))=| -0.0803
29 L'(3)=| h*f(x(1) + h, y(1) + 2*L(2) - L(1), y'(1) + 2*L'(2) - L'(1))= 0.0968
30

31 y(2)= y(0) +(L(1) + 4*L(2) + L(3))/6 0.8199
32 y'(2)= y'(0) + (L'(2) + 4*L'(2) + L'(3))/6=| -0.8023
33

34 = x(2)-x(1)= 0.1000
35 x(0.2)= Next value x(0) + 2*h 0.2000
36 y(2)= From previous computation 0.8199
37 y'(2)= From previous computation| -0.8023
38

39 L(1)= h*y'(0)=| -0.0802
40 L'(1)= h*f(x(0), y(0), y'(0))= 0.0966
41 L(2)= h*(y'(0) + 0.5*L'(1))=| -0.0754
42 L'(2)= h*f(x(0) + 0.5*h, y(0) + 0.5*L(1), y'(0) + 0.5*L(1))= 0.0949
43 L(3)= h*(y'(0) + 2*L'(2) - L'(1))=| -0.0709
44 L'(3)= h*f(x(0) + h, y(0) + 2*L(2) - L(1), y'0 + 2*L'(2) - L'(1))= 0.0934
45

46 y(3)= y(0) +(L(1) + 4*L(2) + L(3))/6 0.7444
47 y'(3)= y'(0) + (L'(1) + 4*L'(2) + L'(3))/6=| -0.7074
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Chapter 10

Integration by Numerical Methods

his chapter is an introduction to numerical methods for integrating functions which are very

difficult or impossible to integrate using analytical means. We will discuss the trapezoidal

rule that computes a function f(x) with a set of linear functions, and Simpson’s rule that
computes a function f(x) with a set of quadratic functions.

10.1 The Trapezoidal Rule

Consider the function y = f(x) for the interval a<x<b, shown in Figure 10.1.

-
f(x)

Figure 10.1. Integration by the trapezoidal rule

b
To evaluate the definite integral J. f(x)dx, we divide the interval a<x<b into n subintervals
a

each of length Ax = b?a‘ Then, the number of points between x, = a and x, = b is

X, = a+AX, X, = a+2AX, ..., X,_; = a+(n-1)Ax. Therefore, the integral from a to b is the sum
of the integrals from a to X, , from X; to X,, and so on, and finally from x,, ; to b. The total area

is

Ibf(x)dx = Ile(x)dx +Ixzf(x)dx + ... +Ib

a Xn

f(x)dx = ZIXK f(x)dx
-1 K1 Xk-1

The integral over the first subinterval, can now be approximated by the area of the trapezoid
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aP,P,x,; that is equal to %(yo +Y,)AX plus the area of the trapezoid x,P,P,X, that is equal to

%(y1 +Y,)AX, and so on. Then, the trapezoidal approximation becomes

1 1 1
T = E(yo +Y1)AX + E(y1 +Y)AX+ ..+ E(y”*1 + Y, )AX

or
1 1
T = (2y0+y1+y2+...+yn71+2yn)Ax (10.1)
Trapezoidal Rule
Example 10.1
Using the trapezoidal rule with n = 4, estimate the value of the definite integral
2 2
j x“dx (10.2)
1
Compare with the exact value, and compute the percent error.
Solution:
The exact value of this integral is
2,0 ¥ 81 7
j xdx =% =2_2 =1L = 233333 (10.3)
) 3, 3 3 3
For the trapezoidal rule approximation we have
X, =b =2
n=4
o _b-a_2-1_1
n 4 4
2
y = f(x) = x
Then,
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Xg=a=1 yO:f(X0)=12=1—g

X; = a+Ax == yl_f(xl):G—DZ:%

xz_a+2Ax=£§1 y2_f(x2):(g)2:%

X3="""‘3AX=LZ1r y3_f(x3)=(£)2=11—2

K= b= 2 vo = foxg = (8) = %
and by substitution into (10.1),

Tz(%xi—g+i—g+%+i—2+%x%)x%=%x%:£=2.34375 (10.4)

From (10.3) and (10.4), we find that the percent error is

% Error = 234375-233333 15 _ 45 ¢ (10.5)

2.33333

The MATLAB function trapz(x,y,n) where y is the integral with respect to X, approximates the
integral of a function y = f(X) using the trapezoidal rule, and n (optional) performs integration
along dimension n.

Example 10.2
Use the MATLAB function trapz(x,y) to approximate the value of the integral

21
jl ~dx (10.6)

and by comparison with the exact value, compute the percent error when n = 5 and n = 10
Solution:

The exact value is found from
21 2
J- ;dx = Inx|1 = In2-1In1 = 0.6931 -0.0000 = 0.6931
1

For the approximation using the trapezoidal rule, we let x; represent the row vector with n = 5,
and x,, the vector with n = 10, that is, Ax = 1/5 and Ax = 1/10 respectively. The corre-

sponding values of y are denoted as y; and y,,, and the areas under the curve as area5 and
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areal0 respectively. We use the following MATLAB code.

x5=linspace(1,2,5); x10=linspace(1,2,10);
y5=1./x5; y10=1./x10;
areab=trapz(x5,y5), area10=trapz(x10,y10)

areab =
0.6970

areall =
0.6939

The percent error when Ax = 1/5 is used is

% Error = % « 100 = 0.56 %

and the percent error when Ax = 1/10 is used is

% Error = 0—.693())96;)?%6931 x 100

0.12 %

Example 10.3

The integral
t 2
f(t) = j e " dr (10.7)
0

where t is a dummy variable of integration, is called the error function’ and it is used extensively
in communications theory. Use the MATLAB trapz(x,y) function to find the area under this
integral with n = 10 when the upper limit of integration is t = 2.

Solution:

We use the same procedure as in the previous example. The MATLAB code for this example is
t=linspace(0,2,10); y=exp(-t.~2); area=trapz(t,y)

MATLAB displays the following result.

area =
0.8818

u 2
* The formal definition of the error function is erf(u) = %I e " dt
70
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Example 10.4

The i —v (current-voltage) relation of a non-linear electrical device is given by

0.2v(t)

i(t) = 0.1V -1 (10.8)

where v(t) = sin3t.
By any means, find
a. The instantaneous power p(t)

b. The energy W(ty, t;) dissipated in this device from t; = 0 to t; = 10 s.

Solution:

a. The instantaneous power is

p(t) = v(b)i(t) = 0.1sin3t(e®* "' _1) (10.9)

b. The energy is the integral of the instantaneous power, that is,

0.2sin3t

ty 10s
W(tg, t,) = jt p(t)dt = 0.1J'0 sin3t(e ~1)dt (10.10)
0

An analytical solution of the last integral is possible using integration by parts, but it is not
easy. We can try the MATLAB int(f,a,b) function where f is a symbolic expression, and a and
b are the lower and upper limits of integration respectively.

When MATLAB cannot find a solution, it returns a warning. For this example, MATLAB
returns the following message when integration is attempted with the symbolic expression of

(10.10).

t=sym('t);
s=int(0.1*sin(3*t)*(exp(0.2*sin(3*t))~1),0,10)

When this code is executed, MATLAB displays the following message.
Warning: Explicit integral could not be found.

Next, we will find and sketch the power and energy by the trapezoidal rule using the MAT-
LAB trapz(x,y) function. For this example, we choose n = 100, so that Ax = 1/100. The
MATLAB code below will compute and plot the power.

t=linspace(0,10,100);
v=sin(3.*); i=0.1.*(exp(0.2.*v)-1); p=v.%;
plot(t,p); grid; title('Power vs Time'); xlabel('seconds'); ylabel('watts')

The power varies in a uniform fashion as shown by the plot of Figure 10.2.
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Power vs Time
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seconds
Figure 10.2. Plot for the power variation in Example 10.4

The plot of Figure 10.2 shows that the power is uniform for all time, and thus we expect the
energy to be constant.

The MATLAB code below computes and plots the energy.

energy=trapz(t,p), plot(t,energy, '+'); grid; title('Energy vs Time');...
xlabel('seconds'); ylabel(‘joules')

energy =
0.1013

Thus, the value of the energy is 0.1013 joule.
The energy is shown in Figure 10.3.

10.2 Simpson’s Rule

The trapezoidal and Simpson’s rules are special cases of the Newton-Cote rules which use higher
degree functions for numerical integration.

Let the curve of Figure 10.4 be represented by the parabola

Yy = ax>+BX+7y (10.11)
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Energy vs Time

| N O . I OO . S I,

joules

Seconds

Figure 10.3. Plot for the energy of Example 10.4

y

Yo Y1 %

—h 0 h
Figure 10.4. Simpson’s rule of integration
The area under this curve for the interval —h<x<h is

h h

3 2
J‘ (aX2+[3X+y)dX = %+%+yx
-h

Area|_T]

-h
2

3 2

— %h(Zahs + 6y)

3 2 3 3
_ah h _(_ah h™ _ 2ah
= 4 B ( i yh)_—3 +2vh

(10.12)

The curve passes through the three points (-h,y,), (0,y,), and (h,y,). Then, by (10.11) we

have:
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Yo
Y1

Yo

ah?—Bh+y ()

Y

(b)

ah®+ph+y ©)

(10.13)

We can now evaluate the coefficients o, B, y and express (10.12) in terms of h, y,, y; and y,.

This is done with the following procedure.

By substitution of (b) of (10.13) into (a) and (c) and rearranging we get

ah®~Bh = yo-y; (10.14)
ah®+ph = y,—y, (10.15)

Addition of (10.14) with (10.15) yields
20h% = yo— 2y, +Y, (10.16)

and by substitution into (10.12) we get
Area|" = %h(zah3 +6y) = %h[(yo— 2y, +Y,) + 6y, (10.17)

or

Area\_';] = %h(y0 +4y,+Y,) (10.18)

Now, we can apply (10.18) to successive segments of any curve y = f(X) in the interval a<x<b
as shown on the curve of Figure 10.5.

C
A B -
Yo Yo Yo V3| Ya| oo Yn_1|  Yn
—h—
a b

Figure 10.5. Simpson’s rule of integration by successive segments

From Figure 10.5, we see that each segment of width 2h of the curve can be approximated by a

10-8
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parabola through its ends and its midpoint. Thus, the area under segment AB is

Areal, = %h(yo +hy +y,) (10.19)
Likewise, the area under segment BC is

Areal,. = %h(y2+4y3+y4) (10.20)

and so on. When the areas under each segment are added, we get

1
Area = §h(yo +AY +2Y, + Ay + 2y, + o+ 2y, o+ Ay, 1+ Y, (10.21)

Simpson s Rule of Numerical Integration

Since each segment has width 2h, to apply Simpson’s rule of numerical integration, the number n of
subdivisions must be even. This restriction does not apply to the trapezoidal rule of numerical inte-
gration. The value of h for (10.21) is found from

h = b?a n = even (10.22)

Example 10.5

Using Simpson’s rule with 4 subdivisions (n = 4), compute the approximate value of

21
j =dx (10.23)
1 X
Solution:

This is the same integral as that of Example 10.2 where we found that the analytical value of this
definite integral is In= 0.6931. We can also find the analytical value with MATLAB’s int(f,a,b)
function where f is a symbolic expression, and a and b are the lower and upper limits of integra-
tion respectively. For this example,

syms X
Area=int(1/x,1,2)

Area =
log(2)

We recall that log(x) in MATLAB is the natural logarithm.

To use Simpson’s rule, for convenience, we construct the following table using the spreadsheet of

Figure 10.6.
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A | B C D E
1 |Example 10.5
2 |/(1/x)dx evaluated froma=1to b =2 with n = 4
3 |Numerical integration by Simpson's method follows
4 |Given a= 1
5 b= 2
6 n= 4
7 | Then,| h=(b-a)/n= 0.2500
8 Multiplier | Products
9 Xo=a= 1.00000
10 Yo=1/Xo= 1.00000 1.00000
11 x,=a+h= 1.25000
12 yi=1/%,= 0.80000 3.20000
13 Xo=a+2h= 1.50000
14 Yo=1/X,= 0.66667 1.33333
15 Xg=a+3h= 1.75000
16 Ya=1/%5= 0.57143 2.28571
17 X,=h= 2.00000
18 Va=1/X4= 0.50000 0.50000
19 Sum of Products = 8.31905
20 |Area = (h/3)*(Sum of Products) = (1/12)*8.31905 = 0.69325

Figure 10.6. Spreadsheet for numerical integration of (10.23)

By comparison of the numerical with the exact value, we observe that the error is very small when
Simpson’s method is applied.

MATLAB has two quadrature functions for performing numerical integration, the quad and
quad8. The description of these can be seen by typing help quad or help quad8. Both of these
functions use adaptive quadrature methods; this means that these methods can handle irregularities
such as singularities. When such irregularities occur, MATLAB displays a warning message but
still provides an answer.

The quad function uses an adaptive form of Simpson’s rule, while the quad8 function uses the
so-called Newton-Cotes 8-panel rule. The quad8 function detects and handles irregularities more
efficiently.

Both functions have the same syntax, that is, g=quad(‘f’,a,b,tol), and integrate to a relative error

tol which we must specify. If tol is omitted, it is understood to be the standard tolerance of 1072,
The string ‘f’ is the name of a user defined function, and a and b are the lower and upper limits of
integration respectively.
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Example 10.6

Given the definite integral

2 2
y= f(x) = jo e dx (10.24)

a. Use MATLAB’s symbolic int function to obtain the value of this integral

b. Obtain the value of this integral with the q=quad(‘f’,a,b) function

c. Obtain the value of this integral with the g=quad(‘f’,a,b,tol) function where tol = 1070

d. Obtain the value of this integral with the q=quad8(‘f’,a,b) function
e. Obtain the value of this integral with the g=quad8(‘f’,a,b,tol) function where tol = 1070

Solution:

a.
syms Xx; y=int(exp(-x"2),0,2) % Define symbolic variable x and integrate

y =
1/2*erf (2) *pi~(1/2)

pretty(y)
1/2

1/2 erf(2) pi
erf is an acronym for the error function and we can obtain its definition with help erf

b. First, we need to create and save a function m-file. We name it errorfcn1.m as shown below.
We will use format long to display the values with 15 digits.

function y = errorfcn1(x)
y = exp(-x."2);

With this file saved as errorfcn1.m, we write and execute the following MATLAB code.

format long
y_std=quad(‘errorfcn1',0,2)

We obtain the answer in standard tolerance form as

y_std =
0.88211275610253

c. With the specified tolerance, the code and the answer are as follows:
y_tol=quad(‘errorfcn1',0,2,10°-10)

v_tol =
0.88208139076242
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d. With the standard tolerance,
y_std8=quad8(‘errorfcn1',0,2)

y_std8 =
0.88208139076194

e. With the specified tolerance,
y_tol8=quad8(‘errorfcn1',0,2,10"~10)
v_tol8 =

0.88208139076242

We observe that with the 10™° tolerance, both quad and quad8 produce the same result.

Example 10.7

Using the quad and quad8 functions with standard tolerance, evaluate the integral
b
y = f(x) = j Jxdx (10.25)
a

at ((a,b) =(0.2,0.8), (1.4,2.3)), and (3,8). Use the fprintf function to display first the analytical
values, then, the numerical values produced by the quad and quad8 functions for each set of
data.

Solution:
Evaluating the given integral, we get

b 3/2|P

yzj' W12y = X

X2 32 _ 532
a 3/2

= S0 -a"?) (10.26)

a

where a and b are non-negative values. Substitution of the values of the given values of a and b

will be included in the MATLAB code below.

The sqrt function in a built-in function and therefore, we need not write a user defined m-file.
We will include the input function in the code. The code is then saved as Example 10 7.

% This code displays the approximations obtained with the quad and quad8 functions
% with the analytical results for the integration of the square root of x over the

% interval (a,b) where a and b are non-negative.

%

fprintf(' \n'); % Insert line

a=input('Enter first point "a" (non-negative): ');

b=input('Enter second point "b" (non-negative): ');

k=2/3.*(b.~A(1.5)-a.A(1.5));
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kg=quad('sqrt',a,b);
kg8=quad8('sqrt',a,b);
fprintf(' \n");... % Insert line

fprintf(' Analytical: %f \n Numerical quad, quad8: %f %f \n',k,kq,kg8);...
fprintf(' \n'); fprintf(' \n') % Insert two lines

Now, we execute this saved file by typing its name, that is,

Example_10_7

Enter first point "a"
Enter second point "b"

Analytical: 0.417399
Numerical quad, quad8:
Example_10_7

Enter first point "a"
Enter second point "b"

Analytical: 1.221080
Numerical quad, quad$8:
Example_10_7

Enter first point "a"
Enter second point "b"

Analytical: 11.620843

Numerical quad, quad$8:

10.3 Summary

(non-negative) : 0.2
(non-negative) : 0.8

0.417396 0.417399

(non-negative): 1.4
(non-negative) : 2.3

1.221080 1.221080

(non-negative) : 3
(non-negative) : 8

11.620825 11.620843

b
e We can evaluate a definite integral | f(x)dx with the trapezoidal approximation
g
a

1 1
T = (§y0+y1+y2+...+yn_1+§yn)Ax

bydWﬁh@hnmwﬂaSXSbimDnsuﬁnmnqbembffknghAx::QﬁE.TheHMMmrnof

subdivisions can be even or odd.

e The MATLAB function trapz(x,y,n) where y is the integral with respect to X, approximates
the integral of a function y = f(x) using the trapezoidal rule, and n (optional) performs inte-

gration along dimension n.
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e We can perform numerical integration with the MATLAB function int(f,a,b) function where f
is a symbolic expression, and a and b are the lower and upper limits of integration respectively.

b
e We can evaluate a definite integral I f(x)dx with Simpson’s rule of numerical integration
a

using the expression
1
Area = éh(y0+4y1+ 2y, + A4y + 2y, + ..+ 2y, o+ Ay, 1 +Yy)

where the number n of subdivisions must be even.

e The trapezoidal and Simpson’s rules are special cases of the Newton-Cote rules which use
higher degree functions for numerical integration.

e MATLAB has two quadrature functions for performing numerical integration, the quad and
quad8. Both of these functions use adaptive quadrature methods. The quad function uses an
adaptive form of Simpson’s rule, while the quad8 function uses the so-called Newton-Cotes 8-
panel rule. The quad8 function detects and handles irregularities more efficiently. Both func-
tions have the same syntax, that is, q=quad(‘f’,a,b,tol), and integrate to a relative error tol

. . . . o -3
which we must specify. If tol is omitted, it is understood to be the standard tolerance of 107" .
The string ‘f’ is the name of a user defined function, and a and b are the lower and upper limits
of integration respectively.
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10.4 Exercises

1. Use the trapezoidal approximation to compute the values the following definite integrals and
compare your results with the analytical values. Verify your answers with the MATLAB

trapz(x,y,n) function.

a.jzxdx n=4
0

2
b.J- x2dx n =4
0

2
4

c.'[ xdx n
0

Il
N

2
d.j ldx n=4
1 %2

2. Use Simpson’s rule to approximate the following definite integrals and compare your results
with the analytical values. Verify your answers with the MATLAB quad(‘f’,a,b) function.

2
a.f xzdx n=4
0

b.J‘ sinxdx n =14
0
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10.5 Solution to Exercises

1.
1 1
T= §y0+y1+y2+...+yn_1+§yn AX
a. The exact value is
2
2 2
I xdx = 2| =2
0 2 0
For the trapezoidal rule approximation we have
Xg=a=20
X, = b =2
n=4
AX = b;a = 2;0 = l
n 4 2
y = f(x) = x
1 1
x1=a+Ax=§ y1=f(x1)=§
Xo = a+2AX = y, = f(xy) =1
3 3
_(1 1 3,1 ) 1_4.1_
T= (2x0+2+1+2+2x2 ><2 = 4><2_2
x=linspace(0,2,4); y=x; area=trapz(x,y)
area =
2
b. The exact value is
2
2 4
I x3dx =X -4
0 4 0
For the trapezoidal rule approximation we have
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X, = b =2
n=4
AXZH.=H=1
n 4 2
3
y = f(x) =x
1 1
x1=a+Ax:§ Y1 f(xl)_é
X, = a+2Ax =1 Yy, = f(xy) = 1
3 27
x3:a+3Ax:§ y3—f(x3)_§
_ (1 1 27,1 ) l_( Z) 1_
T_(2x0+8+1+8+2><8 x5 5+2 ><2_4.25

x=linspace(0,2,4); y=x./3; area=trapz(x,y)
area =
4.4444

The deviations from the exact value are due to the small number of divisions n we chose.

c. The exact value is

2 2

J-Ox4dx = ngo = % = 6.4
For the trapezoidal rule approximation we have

Xg=a=0

X, =b =2

n=4

o _b-a _2-0_1

n 4 2
y =00 = x'
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1 1
Xl = a+ AXx = 5 yl = f(xl) = I-6-
Xo = a+2Ax =1 yo, = f(xy) = 1

3 81
X3 = a+3Ax = E y3 = f(XS) = §

x=linspace(0,2,4); y=x.*4; area=trapz(x,y)

area =
7.5720
d. The exact value is
2 2
j %dx 41
1X X|, 2
For the trapezoidal rule approximation we have
Xg=a=1
X, = b =2
n=4
Ax = =2 _2-1_1
n 4 4
y = f(x) = 1/x°
5 16
X; = a+AXx = = = f(xy) = =
1 + 2 y1 = 1(Xy) ot
3 4
x2:a+2Ax=§ y2:f(x2):§
7 1
= a 3A = = = f = —
X3 + 3AX y Y3 (X3) 25
h _ _1
X =b =2 y4_f(x4)_Z

(g8, 8,16, 1 1), 1 (3905) 1
T_(2><1+25+9+49+2><4 ><4_ 1918 ><4_0.5090
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x=linspace(1,2,4); y=1./x.2; area=trapz(x,y)

area =
0.5158
2.
A = lh 4 2 4 2 2 4
rea = 3 (Yo+48Y 1 +2Y, +4ys+ 2y, + ...+ 2, _,+4yY,_1+Y,)
a. The exact value is
2
2 3
[ FPax =% = 8 _ 26667
0 3 0 3
To use Simpson’s rule we construct the following table using a spreadsheet.
A | B C D E
1 |Exercise 10.2.a
2 |/x?dx evaluated froma=0tob=2withn=4
3 |Numerical integration by Simpson's method follows
4 |Given a= 0
5 b= 2
6 n= 4
7 | Then,| h=(b-a)n= 0.5000
8 Multiplier | Products
9 Xo=a= 0.00000
10 Vo=Xo = 0.00000 1 0.0000
11 x;=a+h= 0.50000
12 Vi=X,2= 0.25000 4 1.0000
13 X,=a+2h= 1.00000
14 Vo=Xpo= 1.00000 2 2.0000
15 Xg=a+3h= 1.50000
16 Va=Xg = 2.25000 4 9.0000
17 X4=b= 2.00000
18 Ya=X42= 4.00000 1 4.0000
19 Sum of Products = 16.0000
20 |Area = (h/3)*(Sum of Products) = (1/12)*8.31905 = 2.6667
We create and save a function m-file. We name it exer_10_2_a.m as shown below.
function y = exer_10_2_a(x)
y = XA2;
We write and execute the following MATLAB code:
y_std=quad('exer_10_2_a',0,2)
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y_std =
2.6667

b. The exact value is

T
I sinxdx = —cosx|; = —(-1-1) = 2
0

To use Simpson’s rule we construct the following table using a spreadsheet.

A | B C D E
1 |Exercise 10.2.b
2 |/sinxdx evaluated froma=0tob= 7z withn=4
3 |Numerical integration by Simpson's method follows
4 |Given a= 0
5 b= 3.14159
6 n= 4
7 | Then,| h=(b-a)n= 0.7854
8 Multiplier | Products
9 Xg=a= 0.00000
10 Yo=SinXy= 0.00000 1 0.0000
11 X;=a+h= 0.78540
12 y1=sinx,= 0.70711 4 2.8284
13 Xp=a+2h= 1.57080
14 Yo=SinX,= 1.00000 2 2.0000
15 Xz=a+3h= 2.35619
16 Y3=SiNXz= 0.70711 4 2.8284
17 X4=b= 3.14159
18 Y4=SinX,= 0.00000 1 0.0000
19 Sum of Products = 7.6569
20 |Area = (h/3)*(Sum of Products) = (1/12)*8.31905 = 2.0046

We create and save a function m-file. We name it exer_10_2_b.m as shown below.

function y = exer_10_2_b(x)
y = sin(x);

We write and execute the following MATLAB code:
y_std=quad(‘exer_10_2_b',0,pi)

y_std =
2.0000

c. The exact value is
1 1
| L ax = tanx|, = T = 07854
ox +1 4
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To use Simpson’s rule we construct the following table using a spreadsheet.

A ] B C D E
1 |Exercise 10.2.c
2 |/(1/(x?+1))dx evaluated froma=0tob =1 withn = 4
3 [Numerical integration by Simpson's method follows
4 |Given a= 0
5 b= 1
6 n= 4
7 | Then,| h=(b-a)n= 0.2500
8 Multiplier Products
9 Xo=a= 0.00000
10 Yo=1/(X2+1)= 1.00000 1 1.0000
11 x;=a+h= 0.25000
12 yi=1/(x,2+1)= 0.94118 4 3.7647
13 X,=a+2h= 0.50000
14 Yo=1/(X2+1)= 0.80000 2 1.6000
15 Xg=a+3h= 0.75000
16 Ya=1/(xs>+1)= 0.64000 4 2.5600
17 X4=h= 1.00000
18 Vo=1/(x,°+1)= 0.50000 1 0.5000
19 Sum of Products = 9.4247
20 [Area = (h/3)*(Sum of Products) = (1/12)*8.31905 = 0.7854

We create and save a function m-file. We name it exer_10_2_c.m as shown below.

function y = exer_10_2_c(x)
y = 1./(xA2+1);

We write and execute the following MATLAB code:
y_std=quad(‘exer_10_2_c',0,1)

y_std =
0.7854
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NOTES
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Chapter 11

Difference Equations

his chapter is an introduction to difference equations. The discussion is limited to linear
difference equations with constant coefficients. The Fibonacci numbers are defined, and a
practical example in electric circuit theory is given at the end of this chapter.

11.1 Definition, Solutions, and Applications

Difference equations are used in numerous applications such as engineering, mathematics, phys-
ics, and other sciences. A difference equation defines the relationship between the values y, of a

function, and the discrete set of the independent variables x, . For example, the relation

y(n) +bpy(n—1) +bypy(n-1) + byy(n-2) + ... + bp.y(n —k)

(11.2)
= agX(N) +apx(n=1) +ax(N=2) + ... + a.x(n-k)

is a linear difference equation with constant coefficients, and describes the relationship of a dis-

. . . . . . . . *
crete input x(n) and the corresponding discrete output y(n) in a linear and time invariant  sys-
tem. with constant coefficients a; and b;.

In (11.1), the difference order k was chosen to be the same on both sides. However, in most
cases certain coefficients a; and b; are zero and thus, the order k for the left and right sides will

not always be the same.

The general form of a linear, constant coefficient difference equation has the form
(aE +a,E" t+a,_E+a)y = 6(X) (11.2)

where a, represents a constant coefficient and E is an operator similar to the D operator in

ordinary differential equations. The E operator increases the argument of a function by one
interval h, and r is a positive integer that denotes the order of the difference equation.

In terms of the interval h, the difference operator E is

* A time invariant system is defined as one in which the input-output relationship does not change with time. That is, if an
input x produces an output y = f(x) at some time t,, the same input x will produce the same output y at any other time.

All systems in this text are assumed to be time invariant.
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The interval h is usually unity, i.e., h = 1, and the subscript k is normally omitted. Thus, (11.3)
is written as
Ef(x) = f(x+1) =, (11.4)

If, in (11.4), we increase the argument of f by another unit, we get the second order operator E? ,
that is,

E*f(x) = E[Ef(0)] = Ef (x+1) = f(x+2) = f__, (11.5)
and in general,
E'f(x) = f(x+r) = f,, (11.6)

As with ordinary differential equations, the right side of (11.2) is a linear combination of terms

n . . . .
such as kx, coskx, and x, where k is a non-zero constant and n is a non-negative integer.
Moreover, if, in (11.2), ¢ (x) = 0, the equation is referred to as a homogeneous difference equation,
and if @(x) # 0, it is a non-homogeneous difference equation.

If, in (11.2), we let r = 2, we obtain the second order difference equation
(3,E°+a,E+ay)y = 6(X) (11.7)
and if the right side is zero, it reduces to
(a,E*+a,E+ay)y = 0 (11.8)

If y,(x) and y,(x) are any two solutions of (11.8), the linear combination k,y, (X) + k,y,(x) is also

a solution. Also, if the Casorati determinant, analogous to the Wronskian determinant in ordinary
differential equations, is non-zero, that is, if

Cly, (%), Y,(0] = [“X) Y2(%) ] 40 (11.9)
Ey,(X)  Ey,(x)
then, any other solution of (11.8) can be expressed as
Y3(X) = Kyy1(X) + Kpyp(X) (11.10)
where k; and k, are constants.
For the non-homogeneous difference equation
(a,E” +a,E +ay)y = ¢(x) (11.11)

where ¢ (x) =0, if Y(x) is any solution of (11.11), then the complete solution is
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Y = kyy (X) +Kpyo(x) + Y(X) (11.12)

As with ordinary differential equations, we first find the solution of the homogeneous difference
equation; then, we add the particular solution Y(x) to it to obtain the total solution. We find

Y(x) by the Method of Undetermined Coefficients.
We have assumed that the coefficients a; in (11.11) are constants; then, in analogy with the

. . . . ax .
solution of the differential equation of the form y = ke“", for the homogeneous difference equa-
tion we assume a solution of the form
X

y=M (11.13)
By substitution into (11.8), and recalling that Ef(x) = f(x+ 1), we get
a,M 2 ra Mt ra M =0 (11.14)

and this is the characteristic equation of a second order difference equation.

As with algebraic quadratic equations, the roots of (11.14) can be real and unequal, real and

equal, or complex conjugates depending on whether the discriminant aj - 4a,a, is positive, zero,

or negative. These cases are summarized in Table 11.1.

TABLE 11.1 Roots of the characteristic equation in difference equations

Characteristic equation a, M 2, a,M+ay = 0 of (a,E 2 a,E+ag)y =0

Roots M; and M, Discriminant General Solution

2
Real and Unequal 2’ —4a,a,> 0 y = klMlX . kzsz
Ml # |\/|2

k, and k, constants

2
Real and Equal &~ day, = 0 y - k1M1X+ k2xM2X
M, = M,

k, and k, constants

i 2
f/lomplex C_cén]ugates a; —4a,3,<0 y = r'(C,cosOx + C,sin6x)

[2 .2 -1
|V|2=0L—j[3 r=q+a +8 6=tangL

Example 11.1

Find the solution of the difference equation

(E°-6E+8)y = 0 (11.15)
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with initial conditions y, = y(0) = 3 and y; = y(1) = 2. Then, compute y; = y(5).

Solution:

The characteristic equation of (11.15) is

M%6M+8 =0 (11.16)

and its roots are M; = 2 and M, = 4. Therefore, with reference to Table 11.1, we get the solu-

tion
Yy = Y(X) = k2" + k4 (11.17)
To make use of the first initial condition, we let x = 0. Then, (11.17) becomes

Yo = 3 = k2" +k,4°
or

kg +ky = 3 (11.18)
For the second initial condition, we let x = 1. Then, (11.17) becomes

or
2k, + 4k, = 2 (11.19)

Simultaneous solution of (11.18) and (11.19) yields k; = 5 and k, = -2. Thus, the solution is
y, =5-2"-2.4" (11.20)

For x = 5, we get

Yo = 5:2°-2.4° = 5x32-2x1024 = -1888

Example 11.2
Find the solution of the difference equation

(E2+2E+4)y = 0 (11.21)
Solution:

The characteristic equation of (11.21) is

MZ+2M+4 = 0 (11.22)
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and its roots are M; = —1+j4/3 and M, = -1-j./3. From Table 11.1, r = «/(—1)2+(J§)2 =2
and 0 = tan_l(ﬁ%/(—l)) = 2n/3. Therefore, the solution is

y = ZX(Clcos%nx+Czsin%nx) (11.23)

The constants C; and C, can be evaluated from the initial conditions.

For non-homogeneous difference equations of the form of (11.11), we combine the particular
solution with the solution of the homogeneous equation shown in (11.12). For the particular
solution, we start with a linear combination of all the terms of the right side, that is, ¢(x), and we
apply the operator E. If any of the terms in the initial choice duplicates a term in the solution of

the homogeneous equation, this choice must be multiplied by x until there is no duplication of
terms.

Table 11.2 shows the form of the particular solution for different terms of ¢(x).

TABLE 11.2 Form of the particular solution for a non-homogeneous difference equation

Non-homogeneous difference equation(a,E 4 yE+ay)y = 6(x)
¢ (X) Form of Particular Solution Y (x)
o (constant) A (constant)
k e k k-1
aX (k = positive integer) AXT+A X T+ +HAXHA
ak” AK*
aCOSMX or asinmx A;cosmx + A,sinmx
ax* I cosmx or ax“I"sinmx (Akxk +A 1xk_1 + ...+ A+ Ag) I cosmx
+ (B +B,_ X T+ +Byx+ By sinmx

Example 11.3

Find the solution of the difference equation

(E25E+6)y = x+2" (11.24)
Solution:

The characteristic equation of (11.24) is
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M*5M+6 = 0 (11.25)

and its roots are M; = 2 and M, = 3

From Table 11.1, the solution Y,; of the homogeneous difference equation is

Yy, = k2" +k,3 (11.26)

For the particular solution we refer Table 11.2. For the first term x of the right side of (11.24), we

use the term A;x + A, or Ax + B.. For the second term 2", we get A2* or C2* and thus, the par-

ticular solution has the form

Y, = Ax+B+C2" (11.27)

But the term C2” in (11.27), is also a term in (11.26). Therefore, to eliminate the duplication, we

multiply the term C2” by x. Thus, the correct form of the particular solution is

Y, = Ax+B+Cx2" (11.28)

To evaluate the constants A, B, and C, we substitute (11.28) into (11.24). Then, using (11.5)
we get

X+ 2

]-5[A(X+1)+B+C(x+1)-2"""] (11.29)
+6[AX+B+Cx2"] = x+2%

[A(X+2)+B+C(x+2)-2

Using the law of exponents W™ ™" = W™ x W" | simplifying, and equating like terms, we get
g p

2AX + (- 3A+2B)-2C2" = x+2" (11.30)
Relation (11.30) will be true if
2A =1 ~3A+2B =0 2Cc=1

or
A =05 B =0.75 C=-05

By substitution into (11.28), we obtain the particular solution

Yp = 0.5x +0.75-0.5x2" (11.31)

Therefore, the total solution is the sum of (11.26) and (11.31), that is,

Yiotal = Yn+Yp = ky2* +k,3% +0.5x + 0.75-0.5x2" (11.32)
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11.2 Fibonacci Numbers

The Fibonacci numbers are solutions of the difference equation
Yx+2 = Yx+1H¥x (11.33)

that is, in a series of numbers, each number after the second, is the sum of the two preceding
numbers.

Example 11.4
Given that y, = 0 and y; = 1, compute the first 12 Fibonacci numbers.

Solution:
For x = 0, 1, 2, 3 and so on, we obtain the Fibonacci numbers

1,2,3,5,8,13, 21, 34,55, 89, 144, 233, ...
We will conclude this chapter with an application to electric circuit analysis.

Example 11.5

For the electric network of Figure 11.1, derive an expression for the voltage V, at each point P,

where x = 0,1, 2, ...,n, given that the voltage V, at point P, is known.

Figure 11.1. Electric network for Example 11.5

Solution:

We need to derive a difference equation that relates the unknown voltage V, to the known volt-

age V,. We start by drawing part of the circuit as shown in Figure 11.2, and we denote the volt-

ages and currents as indicated.
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Figure 11.2. Part of the circuit of Figure 11.1

By application of Kirchoff’s Current Law (KCL) at node P, , of Figure 11.2, we get

VX+1_VX+VX+1+VX+1_VX+2 -0 (1134)
R 2R R
and after simplification,
2
E(Vy, 725V, V) = 0

Of course, the term 2/R cannot be zero. Therefore, we must have

V,,,25V,  +V, =0 (11.35)

X+2

Relation (11.35) is valid for all points except P, and P, _, * as shown in Figure 11.1; therefore,

we must find the current relations at these two points.

Also, by application of Kirchoff’s current law (KCL) at node P, of Figure 11.1, we get

Vi-Vo Vi ViV
R 2R R

and after simplification,
Vy— 25V, +V, = 0 (11.36)

Likewise, at node P, _, of Figure 11.1, we get

Vo .=V \Y vV, .-V
n-1~""n-2 "n-1 Tn-1""n_
R 2R R

Observing that V, = 0, and simplifying, we get

25V, -V , =0 (11.37)
* The voltages at nodes P, and P, are Vi and V, respectively.
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Relation (11.36) is a difference equation of the form
(E°-25E+1)y = 0

where y = V. . Its characteristic equation is

M?-25M+1 = 0 (11.38)

The roots of the characteristic equation of (11.38) are M; = 0.5 and M, = 2. Thus, the solu-
tion is

y =V, = kj(0.5)" +ky(2)" (11.39)

The constant coefficients k; and k, in (11.39), are found by substitution of this relation into

(11.36) and (11.37). Thus, from (11.39) and (11.36), we get

K, (0.5)% +K,(2)" = 2.5(ky(0.5)" + ky(2)") + Vo = 0
or
0.25k, + 4k, — 1.25k; — 5k, + V, = 0
or
Ky +ky = V, (11.40)

Likewise, from (11.39) and (11.37) we get

1 n-1 _ 1 n-2 _
25(k(3)  +@" ) k(3) k@' =0
or
2.5k 1k _2
2n_—11+2'5k2(2)n —Zn—fz k2" ? =0
or
225)k;  25ky(2)" 4k, ky(2)" .
, T2 o4
or
Ky n
Mk, =0 (11.41)
oh
Simultaneous solution of (11.40) and (11.41) yields
2n
2 -1
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Chapter 11 Difference Equations

Finally, substitution of (11.42) into (11.39) yields a solution of the difference equation in terms of

Vy, that is,
2°" 1\ -1 X
y=V, = 22”_1\/0(5) * Vo2
or
22n X VO
y=V,= [—X—ZJT (11.43)
2 27 -1

We observe that when x = 0,

and when x = n,

11.3 Summary

The general form of a linear, constant coefficient difference equation has the form
(aE +a,E " t+a, E+a)y = (%)

where a, represents a constant coefficient and E is an operator similar to the D operator in

ordinary differential equations. As with ordinary differential equations, the right side is a linear
. . n . .

combination of terms such as kx, coskx, and x , where k is a non-zero constant and n is a

non-negative integer. If ¢ (x) = 0, the equation is referred to as a homogeneous difference
equation, and if @(x)# 0, it is a non-homogeneous difference equation.

The difference operator E is

The interval h is usually unity, i.e., h = 1, and the subscript k is normally omitted. Thus,

(11.3) is written as
Ef(x) = f(x+1) = f,,

and in general,

r
Ef(x) = f(x+r) =1,
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Summary

e If y,(x) and y,(x) are any two solutions of a homogeneous difference equation, the linear
combination K,y;(X) + K,y;(X), where k; and k, are constants, is also a solution.

e [f the Casorati determinant, analogous to the Wronskian determinant in ordinary differential
equations, is non-zero, that is, if

Cly, (0, y,001 = | Y1) Y201
Ey,(X) EYy,(X)

then, any other solution of the homogeneous difference equation can be expressed as
Y3(X) = Ky (X) +Kyo(X)

¢ For the non-homogeneous difference equation
2
(aE" +a;E+ayy = ¢(x)
where @ (x) =0, if Y(x) is any solution of (11.11), then the complete solution is

Y = Kyy1(X) + Koy, (X) + Y(X)

As with ordinary differential equations, we first find the solution of the homogeneous differ-
ence equation; then, we add the particular solution Y(x) to it to obtain the total solution. We
find Y(x) by the Method of Undetermined Coefficients.

e In analogy with the solution of the differential equation of the form y = ke®*, for the homoge-
neous difference equation, we assume a solution of the form

X

y=M
e Since Ef(x) = f(x+ 1), the characteristic equation of a second order difference equation is

X+ X+ X

a,M 2 ra Mt ra Mt = 0

and as with algebraic quadratic equations, the roots can be real and unequal, real and equal, or

complex conjugates depending on whether the discriminant aj - 4a,a, is positive, zero, or

negative. These cases are summarized in Table 11.1.

¢ For non-homogeneous difference equations we combine the particular solution with the solu-
tion of the homogeneous equation. For the particular solution, we start with a linear combina-
tion of all the terms of the right side, that is, ¢(x), and we apply the operator E. If any of the
terms in the initial choice duplicates a term in the solution of the homogeneous equation, this
choice must be multiplied by x until there is no duplication of terms. The form of the particu-
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Chapter 11 Difference Equations

lar solution for different terms of ¢(x) is shown in Table 11.2.
¢ The Fibonacci numbers are solutions of the difference equation
Yx+2 = Yxe1t¥x

that is, in a series of numbers, each number after the second, is the sum of the two preceding
numbers.
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Exercises

11.4 Exercises

Find the total solution of the following difference equations.
1. (E2+7E+12)y = 0

2. (E?+2E+2)y =0

3. (E°—-E-6)y = x+3"

4. (E2+1)y = sinx
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11.5 Solutions to Exercises
1.

(E2+7E+12)y = 0
The characteristic equation is

M2+7M+12 = 0

and its roots are M; = -3 and M, = -4. Therefore, with reference to Table 11.1, we get the
solution

Yy, = YOO = ky(=3) +ky(-4)" (D)

The constants k; and k, can be evaluated from the initial conditions. Since they were not

given, let us assume that y, = y(0) = 1 and y, = y(1) = 2.
To make use of the first initial condition, we let x = 0. Then, (1) becomes

Yo = 1 = ky(=3)" + ky(—4)°
or
ki+k, =1 (2)

For the second initial condition, we let x = 1. Then, (1) becomes

yy =2 = ky(=3)" +ky(-4)"
or
3k, 4k, = 2 (3)

Simultaneous solution of (2) and (3) yields k; = 6 and k, = -5. Thus, the solution is

Y, = Y(X) = 6x(-3)"-5x (-4)"

2.
(E?+2E+2)y = 0
The characteristic equation is
MZ+2M+2 = 0
and its roots are M; = —1+j and M, = —1-j. From Table 11.1, r = A/(—1)2+(1)2 = /2 and
0 = tan"1/(-1) = —n/4. Therefore, the solution is
y = 4/27(C,c08(~m/4)X + Cysin(~m/4)x)
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The constants C, and C, can be evaluated from the initial conditions. For this exercise, they

were not given.

(E’—E-6)y = x+3"
The characteristic equation is
M*-M-6 = 0

and its roots are M; = -2 and M, = 3

From Table 11.1, the solution Y, of the homogeneous difference equation is

Yy = kl(—z)x+k23x )
For the particular solution we refer Table 11.2. For the first term x of the right side of the
given equation we use the term A;x + A, or Ax+B.. For the second term 3, we get A3* or

C3”* and thus, the particular solution has the form

Yp = Ax+B+C3"

But the term C3” is also a term in the given equation. Therefore, to eliminate the duplica-

tion, we multiply the term C3” by x. Thus, the correct form of the particular solution is
Yp = Ax+B+Cx3* (2)

To evaluate the constants A, B, and C, we substitute the last expression above into the given
equation. Then,

[A(X+2) +B+C(x+2)-3*"?]-[A(x + 1) + B+ C(x + 1) - 3**1]
_B[AX+B+Cx3"] = x+3"

Using the law of exponents W™ ™" = W™ x W" | simplifying, and equating like terms, we get

—6AX + (A-6B) + 15C3" = x + 3"
This relation will be true if

—-6A =1 A-6B =0 15C =1
or
A=-1/6 B=1/36 C=1/15
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By substitution into (2), we obtain the particular solution
Yp = (-1/6)x+1/36 + (1/15)x2" (3)

Therefore, the total solution is the sum of (1) and (3), that is,

X

Yeotal = Yn+ Yp = ky(=2)" + k3" + (-1/6)x + 1/36 + (1/15)x2

4.
(E2 +1)y = sinx (1)
The characteristic equation is
M%+1 =0
and its roots are M; = j and M, = —j
From Table 11.1, r = 4/(1)*> = 1 and 0 = tan""1/0 = n/2. Therefore, the homogeneous
part of the solution is
Yy = Cycos(n/2)x + C,sin(n/2)x (2)
For the particular solution we refer Table 11.2 where we find that the solution has the form
A, cosmx + A,sinmx, and for this exercise
Yp = Acosx + Bsinx
Since the cosine and sine terms appear in the complimentary solution, we multiply the terms of
the particular solution by x and we get
Yp = Axcosx + Bxsinx (3)
To evaluate the constants A, B, and C, we substitute the last expression above into (1) and
we get
A(X+2)cos(X +2) +B(x+ 2)sin(x + 2) + AXcosx + Bxsinx = sinx
Using the trig identities
cos(a+b) = cosacosb - sinasinb
sin(a+b) = sinacosb — sinbcosa
expanding, rearranging, equating like terms, and combining the complimentary and particular
solutions we get
= C,C08Zx + C,sinZx + SINX + SiN(x — 2)
y 17772 2702 2(1 + c0s2)
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Chapter 12

Partial Fraction Expansion

we learned how to combine fractions over a common denominator. Partial fraction expan-
sion is the reverse process and splits a rational expression into a sum of fractions having
simpler denominators.

T his chapter is an introduction to partial fraction expansion methods. In elementary algebra

12.1 Partial Fraction Expansion

The partial fraction expansion method is used extensively in integration and in finding the
inverses of the Laplace, Fourier, and Z transforms. This method allows us to decompose a rational
polynomial into smaller rational polynomials with simpler denominators, from which we can eas-
ily recognize their integrals or inverse transformations. In the subsequent discussion we will dis-
cuss the partial fraction expansion method and we will illustrate with several examples. We will
also use the MATLAB residue(r,p,k) function which returns the residues (coefficients) r of a
partial fraction expansion, the poles p and the direct terms k. There are no direct terms if the
highest power of the numerator is less than that of the denominator.

Let

F(s) = [N)J(% (12.1)

where N(s) and D(s) are polynomials and thus (12.1) can be expressed as

CONGs) bos"+b, " b, 8" P4 +bs+by,

(12.2)

n n-1 n-2
D) as"+a, ;5" t+a, 8" CH . +as+a,

The coefficients a, and b, for k = 0, 1, 2, ..., n are real numbers and, for the present discus-
sion, we have assumed that the highest power of N(s) is less than the highest power of D(s), i.e.,
m < n. In this case, F(s) is a proper rational function. If m >n, F(s) is an improper rational function.

It is very convenient to make the coefficient a, of s" in (12.2) unity; to do this, we rewrite it as

1 m-2

ai(bmsm+bm_lsm_ +b,_ 8 “+...+Db;s+by)
F(s) = D&) - T (12.3)
D) sy gt Tnogn-2 o Sig B
n an an a‘n
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The roots of the numerator are called the zeros of F(s), and are found by letting N(s) = 0 in
(12.3). The roots of the denominator are called the poles of F(s) and are found by letting
D(s) = 0.

The zeros and poles of (12.3) can be real and distinct, or repeated, or complex conjugates, or
combinations of real and complex conjugates. However, in most engineering applications we are
interested in the nature of the poles. We will consider the nature of the poles for each case.

Case I: Distinct Poles

It all the poles p;, py, Ps, ..., P, of F(s) are distinct (different from each another), we can factor

the denominator of F(s) in the form

- N(s)
(8=P1) - (S—=P2) - (S—P3) ... - (S—Pp)

F(s) (12.4)

where p, is distinct from all other poles. Then, the partial fraction expansion method allows us to
express (12.4) as

F(s) = SN B | R (12.5)
(s—py) (5-p2) (5-p3) (s—pn)
where ry, r,, r, ..., r, are the residues of F(s).

To evaluate the residue r,, we multiply both sides of (12.5) by (s-p,); then, we let s — p,, that

s,

e = lim (s=p)F(s) = (s=pF(S)| _ (12.6)
S — Py S =P«

Example 12.1

Use partial fraction expansion to simplify F(s) of (12.7) below.

3s+2
F.(s) = ——= 127
165) $2+3s+2 (129
Solution:
Fy(s) = 3s+2  _ 3s+2 o (12.8)
s2+43s+2 (s+1)(s+2) (s+1) (s+2)
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. 35+ 2
r, = lim (s+1)F(s) = ——= =-1
! s—>—1( )F(S) (s+2)|,_ ,
. 35+ 2
r, = lim (s+2)F(s) = —— =4
2 = [N+ 2FE) (s+1),_,
Therefore, by substitution into (12.8), we get
3s+2 -1 4

Fi(s) = (12.9)

= +
s2+3s+2 (s+1) (s+2)
We can us the MATLAB residue(r,p,k) function to verify our answers with the following code:
Ns =[3, 2]; Ds =[1, 3, 2]; [r, p, k] = residue(Ns, Ds)

r =
4
-1

P =
-2
-1

k =

where we have denoted Ns and Ds as two vectors that contain the numerator and denominator
coefficients of F;(s). MATLAB displays the r, p, and k vectors; these represent the residues,

poles, and direct terms respectively. The first value of the vector r is associated with the first value
of the vector p, the second value of r is associated with the second value of p, and so on. The vec-
tor k is referred to as the direct term, and it is always empty (has no value) whenever F(s) is a
proper rational function. For this example, we observe that the highest power of the denominator

is 2 whereas the highest power of the numerator is s and therefore, the direct term k is empty.

Example 12.2

Use partial fraction expansion to simplify F,(s) of (12.10) below.

2
Fo(s) = — 3¢ 42543 (12.10)
$° +125° + 445 + 48

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 12-3
Orchard Publications



Chapter 12 Partial Fraction Expansion

Solution:

First, we will use the MATLAB function factor(s) to express the denominator polynomial of
F,(s) in factored form.” This function returns an expression that contains the prime factors of a

polynomial. However, this function is used with symbolic expressions. These expressions are
explained below.

The functions, like roots(p), which we have used before, are display numeric expressions, that is,
they produce numerical results. Symbolic expressions, on the other hand, can manipulate mathe-
matical expressions without using actual numbers. Some examples of symbolic expressions are

given below.

2
sin’x ey = d—2(3t3—4t2+5t+8) u = jldx
dt X

MATLAB contains the so-called Symbolic Math Toolbox. This is a collection of tools (functions)
which are used in solving symbolic expressions; they are discussed in detail in MATLAB User’s
Manual. For the present, our interest is in using the factor(s) to express the denominator of
(12.10) as a product of simple factors.

Before using symbolic expressions, we must create a symbolic variable x, y, s, t etc. This is done
with the sym function. For example, s = sym (‘s’) creates the symbolic variable s. Alternately,
we can use the syms function to define one or more symbolic variables with a single statement.
For example,

syms x y z al k2

defines the symbolic variables x, y, z, al and k2.
Returning to Example 12.2 and using MATLAB we have:
syms s; den=s"3+12*s"2+44*s+48; factor(den)

ans =
(s+4) * (s+2) * (s+6)

and thus,

3°+2s+45  _ _ 3°+2s+45 _ M . T, Ty
53+1252+44s+48 (s+2)(s+4)(s+6) (s+2) (s+4) (s+6)

Fa(s) =

Next, we find the residues ry, r,, and r;. These are

* Of course, we can use the roots(p) function. The factor(s) function is a good alternative.
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3542545 9 o 35742545 37 _ 35742545 89

s+ sH6),_, 8 7 Gr)s+B)|_, 4 T (+2c+h|_, 8

Therefore,

2
3s"+2s+5 _ 9/8 +—37/4+ 89/8

Fo(s) = =
1125’ 1445148 (5+2) (5+4) (s+6)

Case II: Complex Poles

Quite often, the poles of a proper rational function F(s) are complex, and since complex poles
occur in complex conjugate pairs, the number of complex poles is even. Thus if p, is a complex

pole, then its complex conjugate p,* is also a pole. The partial fraction expansion method can

also be used in this case, as illustrated by the following example.

Example 12.3

Use partial fraction expansion to simplify F4(s) of (12.11) below.

Fa(s) = — 33 (12.11)
$°+55°+12s+8

Solution:

As a first step, we express the denominator in factored form to identify the poles of F5(s). Using

the MATLAB code
syms s; factor(s"3 + 5*s"2 + 12*s + 8)
we get

ans =
(s+1) *(s"2+4*s+8)

Since the factor(s) function did not factor the quadratic term”, we will use the roots(p) function
to find its roots by treating it as a polynomial.
p=[1 4 8]; roots_p=roots(p)

roots_p =
-2.0000+2.00001
-2.0000-2.00001

* For some undocumented reason, the factor(s) function does not seem to work with complex numbers.

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 12-5
Orchard Publications



Chapter 12 Partial Fraction Expansion

Then,
s+3 _ s+3
$i5 412548 (FDE+2+)2)(s+2-j2)

_ s+3 L E SN S
$i5s 412548 8+ (5+2+)j2) (s+2-j2)

F3(s)
(12.12)

and the residues are

s+ 3

a1l

r1=

2
S"+4s+8
s=-1

_ o 1-j2 _ a-j2
s p  C1o12)(4) T T84

o= sS+3
27 (s+1)(s+2-j2)

_(-j2) (8-j4)_-16+j12_ 1,3
(-8+j4)(-8-j4) "~ 80 5+120
s+3 1-j2  _ 1-j2

I, = - = - - = -
PUGHDGH2+2)__,,, (1+j2)(4) -8-j4

_ (1-j2) (—8+J'4)_(—16)—J'12__l_ji
T (-8-j4)(-8+j4)~ 80 ~ 5 20

Of course, the last evaluation was not necessary since r; = r,* or

_(_1 -_3_)* __1 .3
f3 = ( 5720 T 757120
and this is always true since complex roots occur in conjugate pairs. Then, by substitution into
(12.12), we get

Fy(s) = 2/5 +—1/5+j3/20+—1/5—j3/20 (12.13)
(s+2) (s+2+)2) (s+2-2)

We can express (12.13) in a different form if we want to eliminate the complex presentation.
This is done by combining the last two terms on the right side of (12.13) to form a single term and
now is written as
2/5 1 (2s+1)
—=. 12.14
(s+2) 5 (s?+4s+8) ( )

Case III: Multiple (Repeated) Poles

Fa(s) =

In this case, F(s) has simple poles but one of the poles, say p, , has a multiplicity m. Then,

F(s) = . N(s) (12.15)
(s=py) (5=P2)---(S=Pn_1)(S—Pp)
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and denoting the m residues corresponding to multiple pole p; as ry;, rqp, ... Iy, the partial

fraction expansion of (12.15) can be expressed as

F(s) = N + o 4 M3 + 4 Mm
-~ — —
(s=p)" (s-py)" " (s-py)" LY 12.16)
+ 2 + 3 + o
(s—=p2) (s=p3) (5—-Ppp)
For the simple poles p;, p,, ... p, we proceed as before, that is,

e = sli_>mp (s— pk)F(S) = (S B pk)F(S)‘S = P

To find the first residue ry; of the repeated pole, we multiply both sides of (12.16) by (s—p;)" .
Then,

(5-p1)"F(8) = Iy +(S—pyryp+(5- p1)2r13 +o 4 (-p)"

IR s . (12.17)
+(5=Py) (<s—p2)+<s—p3)+‘“+(s—pn>)

Next, taking the limit as s — p, on both sides of (12.17), we get
lim (s—py)"F(s)
S—> Py

. 2 m-1
= r11+SIme[(s-pl)r12+(s—p1) Fi3+...+(s=py) Mm] (12.18)

1

+ sImel[(s - pl)m((s _rzpz) + (s I3p3) ot (s Inpn))J

or

ry = S|me (s—py)"F(s) (12.19)

and thus (12.19) yields the residue of the first repeated pole.

To find the second residue ry, of the second repeated pole p;, we first differentiate the relation

of (12.18) with respect to s; then, we let s — p,, that s,
. d m
Fip = lim = [(s—py) F()] (12.20)
s—p, S

To find the third residue r;; of the repeated pole p,, we differentiate (12.18) twice with respect

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 12-7
Orchard Publications



Chapter 12 Partial Fraction Expansion

to s; then, we let s —» p,, that is,

2
e = lim -[(s-p)"F(s)]
S—)plds

This process is continued until all residues of the repeated poles have been found.

In general, for repeated poles the residue ry, can be derived from the relation

(s—P)"F(S) = Iy +Tp(S—Py)+Ta(S—py)°+ ...
whose (m - 1)th derivative of both sides is

) dk—l
(k=D!ry = lim =——[(s—p;)"F(s)]
S—>p; ds

or

1 k-1

r,, = lim
T Sk —1)! gk

[(s—p;)"F(s)]

Example 12.4

Use partial fraction expansion to simplify F,(s) of (12.25) below.

S+ 3

Fy(s) = —23
(s+2)(s+1)

Solution:

(12.21)

(12.22)

(12.23)

(12.24)

(12.25)

We observe that there is a pole of multiplicity 2 at s = -1 and thus, (12.25) in partial fraction

expansion form is

3 r Pl I
Fu(s) = —22 - + + (12.26)
* (s+2)(s+1)2 (5+2) (s41)2 (5+1)
The residues are
r = s+ 3 : -1
(s+1) A
_ S+3 _
r21_(s+2)s=_1 2
d/s+3 (s+2)-(s+3)
r22 = —| — ‘ = = —1
ds(s+2)sz1 (s+2)2 .
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Then, by substitution into (12.26),

s+3 __1 N 2 N -1
(s+2)s+1)2 (8+2) (s+1)% (s+1)

Fa(s) =
Instead of differentiation, the residue r,, could be found by substitution of the already known

values of r; and r,, into (12.26), and letting s = 0", that s,

s+3 _ 1
s+1)°s+2)|,_, ©+2)

r
L T2
(s+1)

s=0

+ 2 >
s=0 (s+1)

s=0

or 3/2 = 1/2+2+r,, from which r,, = -1 as before.

To check our answers with MATLAB, we will use the expand(s) function. Like the factor(s)
function, expand(s) is used with symbolic expressions. Its description can be displayed with the
help expand command.

Check with MATLAB:

syms s % Create symbolic variable s
expand((s + 1)"2) % Express it as a polynomial
ans =

s™"2+2*s+1

Ns=[1 3] % Coefficients of the numerator N(s)

di1=[1 2 1]; % Coefficients of (s + 1)A2 = s"2 + 2*s + 1 term in D(s)

d2=[0 1 2]; % Coefficients of (s + 2) term in D(s)

Ds=conv(d1,d2); % Multiplies polynomials d1 and d2 to express denominator D(s) as polynomial
[r,p,K]=residue(Ns,Ds)

r =
1.0000
-1.0000
2.0000
p =
-2.0000
-1.0000
-1.0000
k =
[]
*  We must remember that (2.45) is an identity, and as such, it is true for any value of s.
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Example 12.5

Use partial fraction expansion to simplify Fg(s) of (12.27) below.

82+ 3s+1
Fs(s) = (—s T1)i(s+ 2y (12.27)

Solution:
We observe that there is a pole of multiplicity 3 at s = -1, and a pole of multiplicity 2 at s = -2.

Then, in partial fraction expansion form

r r r r r
: (s+1)° (s+1)® G+D (5422 (+2)

We find the residue ry; by evaluating F5(s) atass = -1

32+3s+1

> =-1 (12.29)
(s+2)

s=-1

rga =

The residue ry, is found by first taking the first derivative of F¢(s), and evaluating itat s = -1.
Thus,

; _d s“+3s+1
#ds( (s42)7

s=-1 (12.30)
_ (3+2)%(25+3)-2(s+2)(s* +3s+1) _s+4 g,
(s+2)" o, +2)°
The residue ry5 is found by taking the second derivative of F5(s) and evaluating it at s = -1.
Then,
. :;d_2(32+3s+1j :;g{g[s%ssuﬂ
B 20982 (s+2)7 2ds| ds\ (s 4 2)?
S =— = —
Ld(sxd 1{(S+2)3—3(S+2)2(S+4)} (12.31)
2dsh s 42| _ 2 (s+2)°
=%(S+2—3S;12) _ —S—54 —_4
(s+2) so1 (5+2)7| _
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Similarly, the residue r,, if found by evaluating F¢(s) at s = -2, and the residue r,, is found by

first taking the first derivative of Fg(s) and evaluating it at s = -2. Therefore,

_ s?+3s+1

My = 3 =1
(s+1)

s=-2

S d s“+3s+1
2 s (541

_ (3+1)°(2s+3)-3(s+ 1)’ +3s+1)

(s+1)° -
(o (s+1)(2s+3)-3(s’+3s+1) __s?_4s _ 4
22~ 4 - 4 B
(s+1) L, s+

By substitution of these residues into (12.28), we get F(s) in partial fraction expansion as

1 ,_3 4 1 4

Fe(s) = + + +
° (s+1)° (s+1)° G+D (5427 (5+2)

(12.32)

We will now verify the values of these residues with MATLAB. Before we do this, we introduce
the collect(s) function that we can use to multiply two or more symbolic expressions to obtain
the result in a polynomial form. Its description can be displayed with the help collect command.
We must remember that the conv(p,q) function is used with numeric expressions, i.e., polyno-
mial coefficients only.

The MATLAB code for this example is as follows.

sSyms s; % We must first define the variable s in symbolic form
% The function "collect" below multiplies (s+1)3 by (s+2)2
Ds=collect(((s+1)"3)*((s+2)"2))

Ds =
s"5+7*s"4+19*%s"3+25*s"2+16*s+4

% We now use this result to express the denominator D(s) as a

% polynomial so we can use its coefficients with the "residue” function
%

Ns=[1 3 1]; Ds=[1 7 19 25 16 4]; [r,p,k]=residue(Ns,Ds)

r =
4.0000
1.0000
-4.0000
Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 12-11
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3.0000
-1.0000

-2.0000
-2.0000
-1.0000
-1.0000
-1.0000

(]

Case form >n

Our discussion thus far, was based on the condition that F(s) is a proper rational function, that
is, the highest power m of the numerator is less than the highest power n of the denominator,
i.e., m<n.If m>n, F(s) is an improper rational function, and before we apply the partial frac-
tion expansion, we must divide the numeraror N(s) by the denominator D(s) to obtain an
expression of the form

F(s) = k0+kls+k252+...+kmnsm_n+gi(% (12.33)

so that m<n.

Example 12.6

Express Fg(s) of (12.34) below in partial expansion form.

= _sz+25+2 734
6(5)—T (12.34)

Solution:

In (12.34), m>n and thus we need to express F4(s) in the form of (12.33). By long division,

2
s+2s+2 1 .9 (12.35)

Fy(s) =
6(5) s+1 s+1

Check with MATLAB:
Ns=[1 2 2];Ds=[1 1];[r, p, k] = residue(Ns, Ds)

r =
1
p =
-1
k =
12-12 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
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1 1

The direct terms k = [1 1] are the coefficients of the s term and the constant in (2.54).

12.2 Alternate Method of Partial Fraction Expansion

The partial fraction expansion method can also be performed by the equating the numerators proce-
dure thereby making the denominators of both sides the same, and then equating the numerators.
We assume that the degree on the numerator N(s) is less than the degree of the denominator. If
not, we first perform a long division and then work with the quotient and the remainder as
before.

We also assume that the denominator D(s) can be expressed as a product of real linear and qua-
dratic factors. If these assumptions prevail, we let s—a be a linear factor of D(s) and we suppose

that (s—a)" is the highest power of s —a that divides D(s). Then, we can express F(s) as

_ N _ 1 Iy 'm
Fs) = D(s) s-z:1+(s—a)2+ C(s—a)m (12.36)

Next, let s?+ as + B be a quadratic factor of D(s) and suppose that(s? + as + p)" is the highest
power of this factor that divides F(s). Now, we perform the following steps:

1. To this factor, we assign the sum of n partial fractions as shown below.

ri;s+k r,s+Kk r,s+Kk

B S . B (12.37)
sS“tas+PB  (s°+as+p) (s° +as+P)

2. We repeat Step 1 for each of the distinct linear and quadratic factors of D(s).

3. We set the given F(s) equal to the sum of these partial fractions.

4. We multiply each term of the right side by the appropriate factor to make the denominators of
both sides equal.

5. We arrange the terms of both sides in decreasing powers of s.
6. We equate the coefficients of corresponding powers of s.

7. We solve the resulting equations for the residues.

Example 12.7

Express F,(s) of (12.38) below as a sum of partial fractions using the equating the numerators

procedure.
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Fr(s) = — —25+4 . (12.38)
(s"+1)(s-1)

Solution:

By Steps 1 through 3 above,

_ A
F(s) = 2s + 4 _ s+ 4 21 I'22 (12.39)

+
(+1)(s-1)° (s?+1) (s-1)% (-1
By Step 4,

—25+4 = (15 +A)S— 12+ 1y (S5 + 1)+ 1pp(s—1)(s° + 1) (12.40)

and by Steps 5, 6, and 7,

— 2544 = (M +71,,)8° + (= 2r  + A= Ty, + IS
(ry+ry))8”+(=2r; 22+ T21) (12.41)
+(r —2A+7T15)s+(A—-Ty+1y)

Relation (12.41) is an identity in s; therefore, the coefficients of each power of s on the left and
right sides are equal. Accordingly, by equating like powers of s, we get

0 =r+ry
e
4 = A-rTy+1y
Subtracting the second equation from the fourth in (12.42), we get
4 =2r, or ry =2 (12.43)
and by substitution into the first equation of (12.42), we get
0 =241y OF Iy, = -2 (12.44)
Next, substitution of (12.43) and (12.44) into the third equation of (12.42), yields
2=2-2A-2o0rA=1 (12.45)
and using the fourth equation of (12.42, we get:
4 =142+ry Orry=1 (12.46)
Therefore F,(s) in partial fraction expansion form becomes
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—25+4 _ 25+1+ 1 2
(s°+1)(s—-1)> (s°+1) (s—-1)> (¢-1)

Fi(s) =

Example 12.8

Use the equating the numerators procedure to obtain the partial fraction expansion of Fg(s) in

(12.47) below.

Fo(s) = —3+3 (12.47)
S+5s +12s+8

Solution:

This is the same rational function as that of Example 12.3, where we found that the denominator
can be expressed in factored form of a linear and a quadratic factor, that is,

Fa(s) = 223 (12.48)
(s+1)(s"+4s+8)

and in partial fraction expansion form,

F,(s) = s+3 - h o, B8rh (12.49)
(s+1)(s?+4s+8) S+1 s24+4s+8

As in Example 12.3, we first find the residue of the linear factor as

s+3 _ 2

= 7> = 12.50
! s2+4s+8| _ , O ( )

To compute r, and r;, we use the equating the numerators procedure and we get
(s+3) = rl(sz+4s+8)+(rzs+r3)(s+1) (12.51)

Since r, is already known, we only need two equations in r, and r;. Equating the coefficient of

s2 on the left side, which is zero, with the coefficients of s? on the right side of (12.51), we get

O=r,+1, (12.52)

With r, = 2/5, (12.52) yields r, = -2/5 . To find the third residue r5, we equate the constant

terms of (12.51), thatis, 3 = 8r; +ry, and with r; = 2/5, we get r; = -1/5. Then, by substitu-
tion into (12.49), we get
2/5 1_(2s+1)
Fo(s) = -
! (5+2) 5(s®+4s+8)
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as before. The remaining steps are the same as in Example 12.3.

We will conclude the partial fraction expansion topic with a few more examples, using the resi-
due(r,p,k) function.

Example 12.9

Use the residue(r,p,k) function to compute the poles and residues of the function

Fo(s) = 5 23%2 (12.53)
s +3s+2

Solution:

Let p; and p, be the poles (the denominator roots) and r; and r, be the residues. Then, Fq(s)

can be written as

r r
1 + 2
S+p1 S+p2

The MATLAB code for this example is as follows:

num=[0 8 2]; % The semicolon suppress the display of the row vector typed

% and zero is typed to make the numerator have same number

% of elements as the denominator; not necessary, but recommended
den=[1 3 2]; [r,p,k]=residue(num,den)

Fy(s) = (12.54)

r =
14
-6
p =
-2
-1
k =

(]

Therefore, Fy(s) in partial fraction expansion form is written as

Fo(s) = —1_ 4 2 - 14 , -6 (12.55)
s+p; s+p, s+2 s+1

Example 12.10

Use the residue(r,p,k) function to compute the poles and residues of F,(s) in (12.56) below.

Fio(s) = s+J (12.56)
(s+1)(s"+4s+8)
12-16 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition

Orchard Publications



Alternate Method of Partial Fraction Expansion

Solution:

Let p;, p,, and p; be the poles (the denominator roots) and ry, r,,and r; be the residues of

F10(s). Then, it can be written as

r r r
F = - = 12.57
10(8) s+p1+s+p2+s+p3 ( )
The poles and the residues can be found with the statement [r,p,k]=residue(num, den). Before

we use this statement, we need to express the denominator as a polynomial. We will use the func-
tion conv(a,b) to multiply the two factors of the denominator of (12.56).

We recall that we can write two or more statements on one line if we separate them by commas
or semicolons. We also recall that commas will display the results, whereas semicolons will sup-
press the display. Then,

a=[1 1]; b=[1 4 8]; c=conv(a,b); ¢, num=[1,3]; den=c;
[r,p,K]=residue(num,den)

CcC =
1 5 12 8
r =
-0.2000- 0.15001
-0.2000+ 0.15001
0.4000
p:
-2.0000+ 2.00001
-2.0000- 2.00001
-1.0000
k =

[]

Therefore, F;y(s) in partial fraction expansion form is

Fio(s) = — L4 T2y T3 _202-015),-02+015) 04 (12.58)

s+p; S+p, s+p3_ s+2-2j S+2+2j s+ 1

By repeated use of the deconv(num,den) function, we can reduce a rational polynomial to sim-
ple terms of a polynomial, where the last term is a rational polynomial whose order of the numer-
ator is less than that of the denominator as illustrated by the following example.

Example 12.11

Use the deconv(num,den) function to express the following rational polynomial as a polynomial
with four terms.
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i) = B2+ (12.59)
! 0.5x—1

Solution:

num=[1 2 0 1];den=[0 0 0.5 -1]; [q,r]=deconv(num,den)

2 8 16

0 0 0 17
Therefore, f;(x) can now be written as

£(x) = 227+ 8x+ 16 + —LZ (12.60)

0.5x-1

It is important to remember that the function roots(p) is used with polynomials only. If we want
to find the zeros of any function, such as the function f,(x) defined as

3 2 5 2
3 +7x +9 4 05X +06.3x" +4.35 | 1 (12.61)

frx) =
(12x°+ 2x7 + 1357+ 25)  (23x°+ 16x7 + 7.5x) H11x+2.75

we must use the function fzero(‘function’,x,), where function is a pre-defined string, and xg is a
required initial value. We can approximate this value by first plotting f,(x) to find out where it

crosses the x-axis. This was discussed in Chapter 1.

12.3 Summary

® The function

- N(Gs) _ bys” + by 18" T4+by 8" 2+ . +bys+by

n n-1 n-2
D) as"+a, ;5" t+a, 8"t . +a;s+a,

where the coefficients a, and b, for k = 0, 1, 2, ..., n are real numbers, is a proper rational
function if the highest power of the numerator N(s) is less than the highest power of of the

denominator D(s), i.e., m<n.If m>n, F(s) is an improper rational function.

e Partial fraction expansion applies only to proper rational functions. If F(s) is an improper
rational function we divide the numeraror N(s) by the denominator D(s) to obtain an expres-
sion of the form

F(s) = k0+kls+k232+ +km_nsm_n+—g%))

sothat m<n.
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o [f the function

-1 _2
_ N(s) _ bys" + b, 48" 4b, s “+..+bs+b,
-1 _2
D(s) a'nsn + an_lsn + an_zsn +...+a;5+3q,

F(s)

is a proper rational function where a, is a non-zero integer other than unity, we rewrite this

function as

1 m m-1 m-2
a—(bms +by_ S THbL_,s T+...+Dbys+Dby)
F(s) = NG) _ Zn
D(s) a1 n_1 @,_5 n_ a a
4 =t oty gz, oy 1oy 20
n an an a‘n

to make a, unity.

e The roots of the numerator are called the zeros of F(s), and are found by letting N(s) = 0,
and the roots of the denominator are called the poles of F(s) and are found by letting
D(s) = 0.

e The zeros and poles can be real and distinct, or repeated, or complex conjugates, or combina-

tions of real and complex conjugates. In most engineering applications we are interested in the
nature of the poles.

e If all the poles p;, p,, P3, ..., P, Of F(s) are distinct we can factor the denominator of F(s)

in the form
_ N(s)
(5=Pp)-(5=P2)-(5=P3) ... - (S=Pp)

F(s)

where p, is distinct from all other poles. Then, the partial fraction expansion method allows us
to write the above expression as

M I I I
F(s) = + + + ...+
(s=p1) (5=py) (5—P3) (s—pp)

where ry, r,, I3, ..., 1, are the residues of F(s). To evaluate the residue r,, we multiply both

sides of (12.5) by (s-p,); then, we let s — p,, that is,
re = lim(s-pF(s) = (s—pk)F(s)‘ B
S — Py S =Py

e We can use the MATLAB residue(r,p,k) function to verify our answers. This function returns
the residues, their associated poles, and a direct term. For proper rational functions there is no
direct term.
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® The partial fraction expansion can also be used if the poles are complex. Since complex poles

occur in conjugate pairs, if p, is a complex pole, then its complex conjugate p,* is also a pole.

¢ If a rational function F(s) has simple poles but one of the poles, say p;, has a multiplicity m,

the function is expressed as

F(s) = - N(s)
(8=P1) (5=P2)...(S=Py_1)(S—Pp)
and denoting the m residues corresponding to multiple pole p; as ry;, ry,, ... Iy, the partial

fraction expansion can be expressed as

r r r r
F(s) = 11 —+ 12m_1+ 13m_2+...+(3_1m )
(s-py) (5-py) (s=pyp) P
Iy rs '

+ + +
(s=py) (s—p3) (s—-pp)

e If a rational function F(s) has simple poles but one of the poles, say p;, has a multiplicity m,
for the simple poles we use the same procedure as for distinct poles. The first residue of a
repeated pole is found from

ryy = lim (s—py)"F(s)
S—>pP;
The second repeated pole is found from

ry, = lim dis[(s_pl)mlz(s)]

the third from
2

r = lim L[(s—p)"F(s)]
S%plds

and this process is continued until all residues of the repeated poles have been found.

e With the alternate method of partial fraction expansion we use the equating the numerators
procedure thereby making the denominators of both sides the same, and then equating the
numerators. We assume that the denominator D(s) can be expressed as a product of real lin-
ear and quadratic factors.
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12.4 Exercises
Perform partial fraction expansion for the following. Use MATLAB to simplify and to verify your
results.

L~
1-s

2 —L
S"+4s-5
S

52—25 -3

55-3

2

§°-25-3
52

T

S +2s5+1
1

s(s +1)°

1
(s+1)(s*+1)

1
s(sz+s+ 1)
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12.5 Solutions to Exercises

1.
1 _ -1 _ -1 -
1-s° -1 (s+1)(s-1) s+1 s-1
n=—2| =_12 ==t =12
S+1| _ s—1{ _
s=1 s=-1
Then,
1 __1/2,1/2
32_1 s+1 s-1
Ns =[0, 0, -1]; Ds =[1, 0, —1]; [r, p, k] = residue(Ns, Ds)
r =
0.5000
-0.5000
p =
-1
1
k =
[]
2.
1 _ 1 LS UL
?i4s_5 (s=1)(s+5) s-1 s+5
1 1
= — = 1 6 = — = —1 6
17555 B / 2251 /
s=1 s=-5
Then,
1 _1/6 1/6
s“+4s-5 S—1 s+5
format rat; Ns = [0, O, 1]; Ds =[1, 4, -5]; [r, p, k] = residue(Ns, Ds)
r =
-1/6
1/6
p =
-5
1
k =
[]
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3.
s _ s - P
®9og_3 (s+1)(s-3) s+1 s-3
S S
= = =1/4 = —— = 3/4
"1 s-3| _, 2 s+1]__,
Then,
S _1/4 + 3/4
52_25_3 s+1 s-3
format rat; Ns = [0, 1, 0]; Ds =[1, -2, -3]; [r, p, k] = residue(Ns, Ds)
r =
3/4
1/4
p =
3
-1
k =
[]
4.
5s-3 _ 553 __Nn + I
®2og_3 (s+1)(s-3) s+1 s-3
I,1:55—3 -9 I,2:53—3 -3
s-3 S s+1 s=3
Then,
5s-3 _ 2 + 3
52_23_3 s+1 s-3
Ns =10, 5,-3]; Ds =[1, -2, -3]; [r, p, k] = residue(Ns, Ds)
r =
3
2
p =
3
-1
k =
[]
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This is an improper rational function, and before we apply the partial fraction expansion, we
must divide the numeraror N(s) by the denominator D(S) to obtain an expression of the form

2 -n . N(s
F(s) = kg +Kkis+Kkss F - ”+DJ(§%

We could perform long division but we will use the MATLAB deconv(num,den) function to

express the following rational polynomial as a polynomial with four terms.

num=[1 0 0];den=[1 2 1];[q,rl=deconv(num,den)

q:
1
r =
0 -2 -1
and thus
2 25— r r
25—:1+225—1:1_25_+12=1_ 12+ 2
s®+25+1 s®+25+1 (s+1) (s+1)° +1)
25— r r
as-l L, 2 -2s-1 =r;+r,(s+1)
c 1112 27 (s+1)
(s+1) (s+1)
r,=-2 ri+r, =-1 rp=1
Then,
2
25—=1+2_2S—_1=1+ 1 5+ =2
s +25+1 s +25+1 (s+1)° (s+1)

Ns =[1, 0, 0]; Ds =[1, 2, 1]; [r, p, k] = residue(Ns, Ds)

r =
-2
1
p =
-1
-1
k =
1
6.
1 _Nh, o T
ss+1)2 S (s+1)° (8+1)
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s=0 s=-1

n
Il
|
LN
w

1 _1, -1 1

= +
ss+1)2 S (s+1)? (5+1D)

syms s; expand(s*(s+1)72)

ans =
S*3+2*s™2+s
Ns =[0,0,0, 1]; Ds =[1, 2, 1, 0]; [r, p, k] = residue(Ns, Ds)
r =
-1
-1

1 r, +rzs+r3 3 rl(sz+1) +(r25+r3)(3+1)

s+1)s2+1) Sl P41 (s+1)sP+1)  (s+1)sP+1)

Equating numerators and like terms we get

1 2 2
S +ry+r,8 +r,5+138+1r,

symsrl r2 r3
eql=r1+r2-0
eq2=r2+r3-0
eq3=r1+r3-1
S=solve(eq1, eq2, eq3)
eqgl =

rl+r2

eqg2 =

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 12-25
Orchard Publications



Chapter 12 Partial Fraction Expansion

r2+r3

eqg3 =
rl+r3-1
g =
rl: [1x1l sym]

r2: [1x1l sym]
r3: [1x1l sym]

S.r
ans =
1/2

S.r2
ans =
-1/2

S.r3
ans =
1/2

The statement S=solve(eq1, eq2, eq3, ...eqN) returns the solutions in the structure S whose
named fields hold hold the solution for each variable. Thus, r; = 1/2, r, = -1/2, and

ry = 1/2. Then,

1 _ /2, (:1/2)5+1/2
(s+1)(s*+1) S+1 s?+1

syms s; expand((s+1)*(s"2+1))

ans =
s™"3+s+s™2+1

Ns =[0,0,0, 1]; Ds =[1, 1, 1, 1]; [r, p, k] = residue(Ns, Ds)

r =
1/2
-1/4 - 1/4i
-1/4 + 1/41
p =
-1
-1/6004799503160662 + 11
-1/6004799503160662 - 1i
k =
[]
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These values are inconsistent with those we’ve found. The MATLAB help residue command
displays the following:

Warning: Numerically, the partial fraction expansion of a ratio of
polynomials represents an ill-posed problem. If the denominator
polynomial, A(s), i1s near a polynomial with multiple roots, then
small changes in the data, including roundoff errors, can make arbi-
trarily large changes in the resulting poles and residues. Problem
formulations making use of state-space or zero-pole representations
are preferable.

1 B r_1+ rS+r; rl(sz+s+1)+ (r,s+rsy)s

s(s+s+1) S sf4s+l  s(sP4s+l) s(s+s+1)
Equating numerators and like terms we get

1 2 2
S+ S+r;+1,8 +r58

By inspection, r; = 1, r, = -1,and r; = 1. Then,

1 _ 1, -s+3
(s+1)(s*+1) S SP4s+1
syms s; expand(s*(s"2+s+1))

ans =
s"3+s"2+s

Ns =[0,0,0, 1]; Ds =[1, 1, 1, O]; [r, p, k] = residue(Ns, Ds)

r =
-1/2 + 390/13511i
-1/2 - 390/13511

1

p =
-1/2 + 1170/13511
-1/2 - 1170/13511
0

k =

[]

As in Exercise 7, these values are inconsistent with those we’ve found.
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Chapter 13

The Gamma and Beta Functions and Distributions

his chapter is an introduction to the gamma and beta functions and their distributions used
with many applications in science and engineering. They are also used in probability, and in
the computation of certain integrals.

13.1 The Gamma Function

The gamma function, denoted as T'(n), is also known as generalized factorial function. It is defined as

r'(n) = .[:x”_le_xdx (13.1)

and this improper* integral converges (approaches a limit) for all n>0.

We will derive the basic properties of the gamma function and its relation to the well known fac-
torial function

nl=nn-1)(n-2)...3-2-1 (13.2)

We will evaluate the integral of (13.1) by performing integration by parts using the relation

judv = uv-jvdu (13.3)
Letting
u=¢e* and dv=x""" (13.4)
we get
n
du = —e*dx and v =XF (13.5)

Then, with (13.3), we write (13.1) as

* Improper integrals are two types and these are:

b
a. J f(x)dx where the limits of integration a or b or both are infinite
a

b
b. I f(x)dx where f(x) becomes infinite at a value x between the lower and upper limits of integration inclusive.
a
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7)(00

n [e]
U + 1.[ x"e dx (13.6)
x=0 Mo

I'(n) =

With the condition that n> 0, the first term on the right side of (13.6) vanishes at the lower limit,
that is, for x = 0. It also vanishes at the upper limit as X — . This can be proved with L’ Hopi-

>k . . . . .
tal’s rule” by differentiating both numerator and denominator m times, where m > n.Then,

d n d n-1
x'e” X' dx—mx ax" ! o
lim =—— = lim — = lim = Iim——-———-—I—-—:...
x—>o0o N Xx—= o ne* X —> dm . X —> 0 dm_ X
d?ne o ne
(13.7)
lim nn-1)(n-2)....n-m+1)x"""
X—> nex
lim (n—l)(n—2)...£n—m +1) _ 0
X —> Xm—ne
Therefore, (13.6) reduces to
r'(n) = %J. x"e dx (13.8)
0
and with (13.1) we have
r(n) = I x""tedx = %.[ x"e *dx (13.9)
0 0
By comparing the two integrals of (13.9), we see that
r(n) = H”H+_12 (13.10)

or

. ) , f(x ) ) .
* Quite often, the ratio of two functions, such as ies} for some value of x, say a, results in the indeterminate form

9(x)’
fa)_0 . To work around this problem, we consider the limit lim lies) , and we wish to find this limit, if it exists. L’Hopi-
g(a) 0 x—a g(x)

tal’s rule states that if f(a) = g(a) = 0, and if the lLimut ag)-(f(x)/ ad;(g(x) as X approaches a exists, then,

lim g _ lim (%(f(x)/(f—xg(x))

x—>a g(X) x-oa
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nC(n) = '(n+1) (13.11)

It is convenient to use (13.10) for n<0, and (13.11) for n>0.

From (13.10), we see that I'(n) becomes infinite as n — 0.
Forn = 1, (13.1) yields

(1) = Iwe_xdx = —e_x‘: =1 (13.12)
0

Thus, we have derived the important relation,
ra =1 (13.13)
From the recurring relation of (13.11), we obtain

re)=111) =1

r(3)=2-r2)=2-1=2 (13.14)
r(4)=3-I3) =3-2 = 3!
and in general
'n+1) =n! forn=1,23, ... (13.15)

The formula of (13.15) is a very useful relation; it establishes the relationship between the I'(n)
function and the factorial n!.

We must remember that, whereas the factorial n! is defined only for zero (recall that 0! = 1)
and positive integer values, the gamma function exists (is continuous) everywhere except at 0
and negative integer numbers, that is, —1, -2, -3, and so on. For instance, when n = —0.5, we can
find I'(-0.5) in terms of I'(0.5) , but if we substitute the numbers 0, -1, -2, -3 and so on in
(13.11), we get values which are not consistent with the definition of the I'(n) function, as
defined in that relation.

Stated in other words, the T'(n) function is defined for all positive integers and positive fractional val-
ues, and for all negative fractional, but not negative integer values.

We can use MATLAB’s gamma(n) function to plot I'(n) versus n. This is done with the code
below which produces the plot shown in Figure 13.1.

n=—4: 0.05: 4; g=gamma(n); plot(n,g); axis((-4 4 -6 6]); grid;
title('The Gamma Function'); xlabel('n'); ylabel('Gamma(n)')

Figure 13.1 shows the plot of the function I'(n) versus n.

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 13-3
Orchard Publications



Chapter 13 The Gamma and Beta Functions and Distributions

Gamrnaln)

The Gamma Function
T

Figure 13.1. Plot of the gamma function

Numerical values of T'(n) for 1<n<2, can be found in math tables, but we can use (13.10) or
(13.11) to compute values outside this range. Of course, we can use MATLAB to find any valid

values of n.

Example 13.1

Compute:

Solution:

a. From (13.11)
Then,
and from math tables

Therefore,

b. From (13.10)

a. [(36) b.T(05) c. I'(-0.5)

'(n+1) = nl'(n)
I'(3.6) = 2.6I'(2.6) = (2.6)(1.6)['(1.6)
I'(1.6) = 0.8953

I'(3.6) = (2.6)(1.6)(0.8953) = 3.717

r(n) = I nn+ 1)

Then,
r(05) = [05+1) _ [(15)
0.5 0.5
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and from math tables

I(15) = 0.8862
Therefore,

r'(0.5) = (2)(0.8862) = 1.772
c. From (13.10)
T(ny = I“gnn+ 1)

Then,

r(-05) = DE05+1) _ r_((())l.g) _

-2I'(0.5
-0.5 (©:5)

and using the result of (b),

T(-05)= —2I'(0.5) = (~2)(1.772) = —3.544
We can verify these answers with MATLAB as follows:

a=gamma(3.6), b=gamma(0.5), c=gamma(-0.5)

a =
3.7170
b =
1.7725
CcC =
-3.5449

Excel does not have a function which evaluates I'(n) directly. It does, however, have the GAM-
MALN(x) function. Therefore, we can use the EXP(GAMMALN(n)) function to evaluate I'(n) at
some positive value of n. But because it first computes the natural log, it does not produce an
answer if n is negative as shown in Figure 13.2.

exp(gammaln(x))=

X gammaln(x) gamma(x)
3.6 1.3129 3.7170
0.5 0.5724 1.7725
-0.5 #NUM! #NUM!

Figure 13.2. Using Excel to find T"(n)
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Example 13.2

Prove that when n is a positive integer, the relation

rm) = (n-1)! (13.16)
is true.
Proof:
From (13.11),
I'(n+1) = nT’(n) (13.17)
Then,
r'(n) = (n-1)r(n-1) (13.18)
Next, replacing n with n—1 on the left side of (13.18), we get
I(n—1) = (n—2)['(n-2) (13.19)
Substitution of (13.19) into (13.18) yields
r'(n) = (n=1)(n-2)[(n-2) (13.20)
By n repeated substitutions, we get
r'(n) = (n-1)(n—-2)(n-3)...11(1) (13.21)
and since T'(1) = 1, we have
r'(mn) =(n-1)(n-2)(n-3)...1 (13.22)
or
rn) = (n-1)! (13.23)

Example 13.3

Use the definition of the I'(n) function to compute the exact value of ' (1/2)

Solution:
From (13.1),
r(n) = wan_le_xdx (13.24)
0
Then,
1 * 05-1_-x ¥ 05 -x
ri=z]=1 x e dx = | x e dx (13.25)
(3)=], )
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Letting
X = y?
we get
dx
ay = %
or
dx = 2ydy

By substitution of the last three relations into (13.25), we get

1 © 2(-05) -y o1y *
rz)=1y e’ 2ydy = 2| y'ye’dy =2| e’dy (13.26)
(3)=1 J, J,
Next, we define 7°(1/2 ) as a function of both x and y, that is, we let
1\ 7
r(z) - 2[0 e dx (13.27)
1Y _ o7
r(z) - 2[0 eV dy (13.28)
Multiplication of (13.27) by (13.28) yields
1172 RGN P70y
r\= =4| e dx| e’dy =14 e dxdy (13.29)
T(3)] = o, 0.
Now, we convert (13.29) to polar coordinates by making the substitution
0 = X2 +y? (13.30)
and by recalling that:
1. the total area of a region is found by either one of the double integrals
A = j j dxdy = j j rdrde (13.31)
2. from differential calculus
4o’ _ 2 et (13.32)
du du '
Then,
P2 2 1 - 2
j pePdp = —ze (13.33)
P1 2
We observe that as x >0 and y— o,
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p—>o and 0—>n/2 (13.34)
Substitution of (13.30), (13.33) and (13.34) into (13.29) yields

(3] = (e

and thus, we have obtained the exact value

0 n/2 n/2
n/2
pzo)de:—zjo (0—1)de:2j0 do = 20| ==

1
r(é) Sy (13.35)
Example 13.4
Compute:
a. T (-05) b .['(-15) c. I'(-25)
Solution:

Using the relations

r(n) = Hnn+_12 and T (05)=Jn

we get:
a. forn = -0.5,
(0.5 _ Jn
(-0-3) -0.5 -0.5 I
b. forn = -1.5,
_T(-15+1) T (-05) -2./n 4
[(-15) = = = = =
(-1.5) -15 -15 -15 3J’_T
c. forn =-25,
1
~NT
_I'(=25+1) T (-15) _3¥" 8
[(=25) = = - - _
(=2.3) -25 -25 -25 15ﬁt

Other interesting relations involving the T'(n) function are:

_ . n
FMI(L-n) = == (13.36)

for O<n<1

2n-1 1)
2 r(n)r(n 3 ) = J/al(2n) (13.37)
for any n = negative integer
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I'm+1) =n!

Znnnne_"{l +

1,1

139

571 (13.38)

+

12n 7ggn? s51840n° 2488320n*

Relation (13.38) is referred to as Stirling’s asymptotic series for the T'(n) function. If n is a positive

integer, the factorial n! can be approximated as

n!~ ./2xnn"e™" (13.39)

Example 13.5
Use (13.36) to prove that

(3)- &
Proof:

(el -r(Br(d) - =
or i
2

r(3)] ==
Therefore,

(3) -
Example 13.6
Compute the product

r(3)r(3)
Solution:
Using (13.36), we get

r(3)r(-3) - =
or
(Dr(E)- 5 -1 -2
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Example 13.7
Use (13.37) to find

r(3)

2r($)r(e4) - (e )

zzr(g)r(z) = Jar(3)

NIWw

Solution:

() S 24 -4
Example 13.8
Use (13.39) to compute 50!
Solution:

501 ~ /27 x50 x 50°° x &~

We use MATLAB as a calculator, that is, we type and execute the expression
sqrt(2*pi*50)*50750*exp(—50)

ans =
3.0363e+064

This is an approximation. To find the exact value, we use the relation I'(n+1) = n! and the
MATLAB gamma(n) function. Then,

gamma(50+1)

ans =
3.0414e+064

We can check this answer with the Excel FACT(n) function, that is,

=FACT(50) and Excel displays 3.04141E+64

The I'(n) function is very useful in integrating some improper integrals. Some examples follow.
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Example 13.9

Using the definition of the I'(n) function, evaluate the integrals

o0 o0
4 5 2
a.jxexdx b.jxexdx
0 0

Solution:
By definition,
I:xnlexdx = T'(n)
Then,
a.
ij“e‘xdx = T(5) = 4 = 24
) 0

Let 2x = y; then, dx = dy/2, and by substitution,

- 1(6)_5_120 _15
64 64 64 8

Example 13.10

A negatively charged particle is oo meters apart from the positively charged side of an electric
field. It is initially at rest, and then moves towards the positively charged side with a force
inversely proportional to its distance from it. Assuming that the particle moves towards the cen-
ter of the positively charged side, considered to be the center of attraction 0, derive an expres-
sion for the time required the negatively charged particle to reach 0 in terms of the distance o
and its mass m.

Solution:
Let the center of attraction 0 be the point zero on the x -axis, as indicated in Figure 13.3.
movement of particle

0 ! X
| o

Figure 13.3. Sketch for Example 13.10
By Newton’s law,
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mdX _ K (13.40)
X

where

m = mass of particle

x = distance (varies with time)

k = positive constant of proportionality and the minus (-) sign indicates that the distance x
decreases as time t increases.

At t = 0, the particle is assumed to be located on the x -axis at point X = a, and moves towards
the origin at x = 0. Let the velocity of the particle be v. Then,

dx _
i v (13.41)

and

dx® _ dv _ dvdx _  dv

a2 dt ~ dxdt - Vdx (13.42)
Substitution of (13.42) into (13.40) yields
dv _ Kk
vy = K (13.43)
or
mvdv = —E(dX) (13.44)
Integrating both sides of (13.44), we get
2
mzl’— = —kInx+C (13.45)

where C represents the constants of integration of both sides, and it is evaluated from the initial
condition that v = 0 when x = . Then,

C = klna (13.46)
and by substitution into (13.45),

2
% = kina —kInx = kln% (13.47)

Solving for v? and taking the square root of both sides we get
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dx 2k o
= — =+ |=—In= 13.48
Y dt mnx ( )

Since x decreases as t increases, we choose the negative sign, that is,

dx 2k

22 _ _ &R ng
. po InX (13.49)
Solving (13.49) for dt we get
Im___dx
S LN - 13.50
2k, /In(a./x) ( )

We are interested in the time required for the particle to reach the origin 0. We denote this
time as T; it is found from the relation below, noting that the integration on the right side is
with respect to the distance x whereatt = 0, x = a,andat t = t, x = 0. Then,

0

T - FI & (13.51)

2k o /In(a/x)
To simplify (13.51), we let
_ o y _ o
y = |n(xj, then ¢’ = ¢ (13.52)

or

x = ae”, and dx = —ae’dy (13.53)
Also, since

lim |n(9‘) ~ 0 and lim |n(9) — o
X = a X x—0 X

the lower and upper limits of integration in (13.51), are being replaced with 0 and « respec-
tively. Therefore, we express (13.51) as

[I —oe”) y /\/;mk_[:yl/ze_ydy

Finally, using the definition of the T'(n) function, we have

T=ar( [ [ @ (13.54)
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Example 13.11

Evaluate the integrals

n/2 n/2
cos"ode and _[ sin"odo (13.55)
0

J

0
Solution:

From the definition of the I'(n) function,

r(n) = j x" e dx (13.56)
0

Also,

r(m = j " xm= L (13.57)
0

For m>0 and n> 0, multiplication of (13.56) by (13.57) yields

r(m)r’(n) = j:um_le_”duj.:v”_le_vdv (13.58)

where u and v are dummy variables of integration. Next, letting u = x* and v = y?, we get
du = 2xdx and dv = 2ydy. Then, with these substitutions, relation (13.58) it written as
© m-1)

G «©
Io X 2xe”" de‘0 y

o-1 2

2
ye dy
(13.59)

2 0 2 o0
r(m)(n) 2ye” dy = 4_[ X" 2xe ™ dxj v
0 0

o 2 2
4j I X2m—1y2n—1e—(x +y)dXdy
0°0

Next, we convert (13.59) to polar coordinates by letting x = pcos® and y = psin® Then,

n/2 oo B n_1 .2
4] I (pcos8)’™ L(psing)" e pdpde
o "o

r(m)I"(n)
(13.60)

2 om-1 2n-1 © oms2n-2,-p
ZI cos”" 70 - sin“"” edej p TN "% T 2pdp
0 0

To simplify (13.60), we let p2 = w; then, dw= 2pdp and thus relation (13.60) is written as

n/2 0 _
r(m)I(n) = 2.[ cos®™ g sinzn’ledej‘ W " dw
0 p 0 (13.61)
= 2.[ cos®™ Yo . sin®" " odo - ['(m +n)
0
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Rearranging (13.61) we get

J

and this expression can be simplified by replacing 2m -1 with n, that is, m = m——;—l—), and

n/2
cos®™ Y9 - sin?" " Yodp = L(MI(N) (13.62)
0 2I'(m +n)

2n—1 with 0, thatis, n = % Then, we get the special case of (13.62) as

ve o or(5r(3) (%) 4
jo cos"0do = T l) :r(ﬂ+1)7 (13.63)
2 2 2

If, in (13.62), we replace 2m—1 with 0 and 2n-1 with m, we get the integral of the sin"0
function as
m+1) (m+1)
T
)r( 2 ) 2 )&
l+m+1) F(m+1)2
2 2 2

We observe that (13.63) and (13.64) are equal since m and n can be interchanged. Therefore,

(13.64)

n/2 n/2 I“(n_-zt_l)[
cos"0do = sin"0dp = ———2% s (13.65)
J.O '[O r(n N 1) 2
2

The relations of (13.65) are known as Wallis’s formulas.

13.2 The Gamma Distribution

One of the most common probability distributions  is the gamma distribution which is defined as

n-1_-x/f
f(x,n,B) = *—=— x>0, n,p>0 (13.66)
BI(n)

* Several probability distributions are presented in Mathematics for Business, Science, and Technology, ISBN 0-9709511-
0-8 and the eBook version ISBN 0-9744239-0-4, Orchard Publications
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A detailed discussion of this probability distribution is beyond the scope of this book; it will suffice
to say that it is used in reliability and queuing theory. When n is a positive integer, it is referred to
as Erlang distribution. Figure 13.4 shows the probability density function (pdf) of the gamma distri-
bution forn = 3 and B = 2.

X n B T(n) PB*n f(x) e ~
00 30 20 20 80 0.0000 Probability Density Function

0.2 0.0023 of the gamma distribution

0.4 0.0082 forn=3andp =2

0.6 0.0167

0.8 0.0268 0.20

1.0 0.0379 0.15 A

1.2 0.0494 X% 0.10

1.4 0.0608 | (o5 |

1.6 0.0719 0.00 ‘ ‘ ‘ ‘ ‘

18 0.0823 0 2 4 6 8 10 12
2.0 0.0920 «

2.2 0.1007 \_ )
2.4 0.1084

Figure 13.4. The pdf for the gamma distribution.

We can evaluate the gamma distribution with the Excel GAMMADIST function whose syntax is
GAMMADIST(x,alpha,beta,cumulative)

where:

x = value at which the distribution is to be evaluated

alpha = the parameter n in (13.66)

beta = the parameter B in (13.606)

cumulative = a TRUE / FALSE logical value; if TRUE, GAMMADIST returns the cumulative dis-

tribution function (cdf), and if FALSE, it returns the probability density function” (pdf).
Example 13.12

Use Excel’'s GAMMADIST function to evaluate f(x), that is, the pdf of the gamma distribution if:
a.X=4,n=3,and B = 2

b.x=7,n=3,and B = 2

* Several probability density functions are also presented on the text mentioned on the footnote of the previous page.
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Solution:

Since we are interested in the probability density function (pdf) values, we specify the FALSE
condition. Then,

a.
=GAMMADIST(4,3,2,FALSE) returns 0.1353

b.
=GAMMADIST(7,3,2,FALSE) returns 0.0925

We observe that these values are consistent with the plot of Figure 13.4.

13.3 The Beta Function

The beta function, denoted as B(m, n), is defined as

Lomot 1
B(m, n) = J' X" 11 —x)" ax (13.67)
0
where m>0 and n>0.
Example 13.13
Prove that
B(m,n) = B(n, m) (13.68)
Proof:

Let x = 1-vy; then, dx = —dy. We observe thatas x -0, y—1 andas x— 1,y — 0. There-
fore,

1

0
B(m.m) = [ X"HL-x0" o= o] -y L= @)y

1 1
= [ @-p" Y Ty =] y"a-y)" Tdy =B(n,m)
0 0
and thus (13.68) is proved.

Example 13.14

Prove that

2m 2n-1

n/2
B(m,n) = ZI cos?™ 19 - sin ode (13.69)
0
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Proof:

We let x = sin0; then, dx = 2sin6cos6do. We observe that as x—0, 6 —0 and as x — 1,
0 > n/2. Then,

1

B(m, n) = j X" 11— x)" " x
0
2o g mel 5 nq
= 2_[ (sin“®@)  (cos“®)  “sinpcos6do (13.70)
0
2 om-1 2m-1
= 2_[ (sin“™""0)(cos“™ " 0)do
0
Example 13.15
Prove that
B(m, n) = L(MI(n) (13.71)
(m+n)
Proof:

The proof is evident from (13.62) and (13.70).

The B(m, n) function is also useful in evaluating certain integrals as illustrated by the following
examples.

Example 13.16

Evaluate the integral

Jlx4(1 —x)%dx (13.72)
0

Solution:

By definition

1

B(m, n) :j X" H L —x)" " x

0

and thus for this example,
Ly 3

j x'(1=x)%dx = B(5, 4)
0

Using (13.71) we get

_T(5)(4) _ 413! _24x6 _ 144 _ 1
B, 4) = [(9) 8! 40320 40320 280 (13.73)
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We can also use MATLAB’s beta(m,n) function. For this example,

format rat; % display answer in rational format
z=beta(5,4)

Z =
1/280

Excel does not have a function that computes the B(m, n) function directly. However, we can
use (13.71) for its computation as shown in Figure 13.5.

I‘(m)ﬂ T'(n) T(m+n) Beta(m,n)=
exp(gammaln(m)) exp(gammaln(n)) exp(gammaln(m+n)) T(m)x I'(n)/T(m+n)
m=5
24.00 6.00 40320.00 1/280
n=4

Figure 13.5. Computation of the beta function with Excel.

Example 13.17

Evaluate the integral
2

2
X
=

(13.74)
Solution:

Let x = 2v; then X% = 4v2, and dx = 2dv. We observe thatas x>0, v— 0, and as x - 2,
v — 1. Then, (13.74) becomes

1ogy -1/2
———2dv = ——dv=4./2| vi(1-v) “dv
I” va-2v 2 I" vi-v I" (13.75)
ra)rars2)
= 442 B( ) W2 =T
where
r(@3) = 2!
[(1/2) = Jn (13.76)
T(7/2) = (1/2-1)T(7/2 -1) = (5/2)T(5/2) = (5/2)(5/2-1)T (5/2 —1) '
= 5/2.3/2-(3/2-1)'(3/2 —1) = (15/8)T (1/2) = 15./n/8
Then, from (13.74), (13.75) and (13.76) we get
2 2
X 4,022 Jn _ 64,2
dx = = 13.77
J‘o J2 = x 15./n/8 15 ( )
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13.4 The Beta Distribution

The beta distribution is defined as

m-1 n-1
f(x, m, n) = X B(%n‘:) x<0<1, mn>0 (13.78)

A plot of the beta probability density function (pdf) for m = 3 and n = 2, is shown in Figure
13.6.

X m n TI(m) I(n) TI(m+n) XM (1) f(x,m,n)
000 30 20 20 10 24.0 0.0000 1.0000  0.0000
0.02 0.0004 0.9800  0.0047
004 [ N ] ] \  0.0184
0.06 Probability Density Function 0.0406
0.08 of the Beta Distribution 0.0707
0.10 form=3andn=2 0.1080
0.12 0.1521
0.14 20 0.2023
0.16 16 | 0.2580
0.18 S 4, 0.3188
0.20 1] 0.3840
< 0.8 -
0.22 = 0.4530
0.24 047 0.5253
0.26 0.0 ‘ ‘ ‘ ‘ 0.6003
0.28 00 02 04 06 08 10 0.6774
0.30 X 0.7560
0.32 \_ _/ 0.8356
0.34 0.1156 0.6600  0.9156

Figure 13.6. The pdf of the beta distribution

As with the gamma probability distribution, a detailed discussion of the beta probability distribu-
tion is beyond the scope of this book; it will suffice to say that it is used in computing variations in
percentages of samples such as the percentage of the time in a day people spent at work, driving
habits, eating times and places, etc.

Using (13.71) we can express the beta distribution as

_I(m+n) m-1.  .n-1
f(x,m,n) = T(m)T(n) X' (1-x) x<0<1, mn>0 (13.79)
We can evaluate the beta cumulative distribution function (cdf) with Excels’s BETADIST function
whose syntax is

BETADIST(x,alpha,beta,A,B)
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where:

x = value between A and B at which the distribution is to be evaluated
alpha = the parameter m in (13.79)

beta = the parameter n in (13.79)

A = the lower bound to the interval of x

B = the upper bound to the interval of x

From the plot of Figure 13.6, we see that when x = 1, f(x, m, n) which represents the probabil-
ity density function, is zero. However, the cumulative distribution (the area under the curve) at
this point is 100% or unity since this is the upper limit of the x -range. This value can be verified

by
=BETADIST(1,3,2,0,1) which returns 1.0000

13.5 Summary

® The gamma function, denoted as I'(n), is also known as generalized factorial function. It is

defined as
r'(n) = J‘wxnflefxdx
0
e [t is convenient to use the relation
r(n) = ann+ 1)

for n <0 and the relation
nfC(n) =I'(n+1)
forn>0.

® The I'(n) function is defined for all positive integers and positive fractional values, and for all
negative fractional, but not negative integer values.

The I'(n) function and the factorial n! are related as

I'(n+1) =n! forn=123,...
We can use MATLAB’s gamma(n) function to obtain values of I'(n).

We can use the EXP(GAMMALN(n)) function to evaluate I'(n) at some positive value of n.

To evaluate I'(n) when n is a positive integer, we can use the relation

r'(n) = (n-1)!
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o Other useful relations are shown below.

r(1/2)=.Jn

F(mr-n= sir?nn

for O0<n<l1

2" 'r()J/n = Jar(2n)
for any n=negative integer
¢ The relation

I'(n+1) = n! = 2nnn”e_”{1+—l—+ 1 139 __ 571 +}

12n 9ggn? s51840n° 2488320n*

is referred to as Stirling’s asymptotic series for the I'(n) function. If n is a positive integer, the
factorial n! can be approximated as

n!~ J2nnn"e™"
e The I'(n) function is very useful in integrating some improper integrals.

® The relations

1
F( n+ )
n/2 n/2 2
_[ cos'0do = _[ sin"0do = é n>-1
0 0 L 1)
2
are known as Wallis’s formulas.
® The gamma distribution which is defined as
n-1_-x/B
fox,n,p)=2—— x>0, n,B>0
B"I'(n)
¢ The beta function, B(m, n) where m>0 and n> 0 is defined as
! m-1 n-1
B(m, n) = j x" 11 —x)" tax
0
® The beta function B(m, n) and gamma function I'(n) are related by
‘B(m’ n) = M
I'(m+n)
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® The beta B(m, n) function is also useful in evaluating certain integrals.
¢ We can use MATLAB'’s beta(m,n) function to evaluate the beta B(m, n) function.

® The beta distribution is defined as

mell anl
f(x,m,n):JB(ﬁ)L x<0<1l, mn>0
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13.6 Exercises

1. Given that m = 2.5 and n = -1.25, compute

I'(m+n)
r(m)'(n)

Verify your answer with MATLAB and Excel
2. Given that m = 10 and n = 8, compute B(m, n)
Verify your answer with MATLAB and Excel

3.Evaluate the following integrals

jov)

o0 )(3
.Ie dx
0

b.j

o0 )(3
xe © dx
0

J‘l dx

C.

0,/1-x*
n/2

d..f Jtanoedo
0

3

o J‘ dx
0 ,/3x - x*
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13.7 Solutions to Exercises
1.
By repeated use of the relations nI'(n) = T(n+1) for n>1 and I'(n) = llnn_+1) for n<1,

we get
(m+n) _[@25+(-1.25)) = TI(125)  _ r'(5/4)
C(mI(n) T(25)(-1.25) T (2.5)(-1.25) TI(5/2)-I(-5/4)
_ r(1/4+1) _ 1/4-T(1/4)
r(3/2+1)_rgig;14; 1) 3/2-T(3/2)-(-4/5)-T(-1/4) 1)
_ 1/4-T(1/4) _5 _TI@/4)
3/2-1/2-r(1/2)-(_4/5)-55-13%—2 48 [T (3/4)

There are no exact values for I'(1/4) and I'(3/4); therefore, we obtain their approximate

values from tables, where we find that I'(1/4) = 3.6256 and I'(3/4) = 1.2254. Then, by
substitution into (1) we get:

'(m+n) _ 5 _ 3.6256

T(mI(n) 48 Jn.12254 0.1739
Check with MATLAB:
m=2.5; n=—1.25; gamma(m-+n)/(gamma(m)*gammaf(n))
ans =
0.1739

We cannot check the answer with Excel because it cannot compute negative values.

C(m)I(n) _ [(10)-T(8) _ (9 x (7))

r(m+n) r(18) 17!

_ 9.8.7-6-5-4-3:-2-7-6-5-4-3-2
17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2

7-6-5-4-3-2 5040

_ - = 51419 x 10°°
17-16.15-14-13-12-11-10 _ 980179200

Check with MATLAB:
beta(10,8)

B(m, n)

ans =
5.1419e-006
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3.

Let x° = y, then x = yl/g, dx = %-y(_zmdy, SO
0 3 0
—X _ —y'l. 1/3-1 _l (l)
Ioe dx_Ioe 3y dy_?’l“3

3 0 3
J- xe " dx = I e dx=T(2) =1 =1
0 0

4 g
We let x* = y orx = y*/

J’dx

0 1—x4:4'[ m

. Then, dx = (1/4)y" 3/A)dy and thus

( 3/4)d 4J‘ (1 ( 1/2)‘y(_3/4)dy

(1)

1/2-1 1/4-1 _1 ras4s-rasz)
4j (1-y) dy =7

T'(3/4)
Also,

[(3/4)-T(1-3/4) = sin(f;t/4) ) fzn/z

or

[(3/4)-T(1/4) = J2n,T(3/4) = Ff/’Z)

and by substitution into (1)

jli _ 1 Tra/4)-rd/2) 1 ra/4)-Jn
i 4

T3/4) 4 pr/r(1/4)

Jn [(1/4)?
r(1/4y2 = LAA}
4,27 rasy- 4.2

J.n/z Jtanode = J-n/z(ﬂn—e-)l/zde = J.n/z(sine)l/z(cose)_l/2
0

(do)
o \cosO 0

From (13.62),

n/2
'[ cos?™1p . sin2"lodo = L(MI()
0 2°(m +n)
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Letting 2m-1 = 1/2 and 2n—-1 = -1/2 weget m = 3/4 and n = 1/4 Then,

w2 C(3/HI(1/4) _ J2n _ J2n
IO tan6do = 2I(3/4+1/4) — 2I(1) 2

3

el =R A
3x — X2 0 /X(3=X) 0

2.3y dx (1)

Let x = 3y, then dx = 3dy, x 2 = (3y) "% = (/3/3)y %. When x = 0, y = 0 and

when x = 3,y = 1, and the integral of (1) becomes

1 1 )71/2d
73 y y

:jly (1-y)
0

1 1
?SJ' y—1/2‘(3_3y)—1/2dy _ ﬁj y—1/2‘
0 0 (2)

Recalling that

0 (m+n)

1
B(m,n) = [ X" (1% tox = [(m)-T(n)

it follows that m—-1 = -1/2, m=1/2,n-1 = -1/2, m = 1/2 and thus

B(; 1) _T(1/2)-T(1/2) _ {T(1/2)}
222) 7 r(/2+1/2) ~  T(1)

3 dx _
'[0 J3x— X2
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NOTES
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Chapter 14

Orthogonal Functions and Matrix Factorizations

his chapter is an introduction to orthogonal functions. We begin with orthogonal lines and
functions, orthogonal trajectories, orthogonal vectors, and we conclude with the factoriza-
tion methods LU, Cholesky, QR, and singular value decomposition.

14.1 Orthogonal Functions

Onrthogonal functions are those which are perpendicular to each other. Mutually orthogonal sys-
tems of curves and vectors are of particular importance in physical problems. From analytic geom-
etry and elementary calculus we know that two lines are orthogonal if the product of their slopes is
equal to minus one. This is shown in Figure 14.1.

slope = m;

X

Figure 14.1. Orthogonal lines

X

Orthogonality applies also to curves. Figure 14.2 shows the angle between two curves C; and C,.

=

Figure 14.2. Orthogonal curves
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By definition, in Figure 14.2, the angle between the curves C, and C, is the angle B between
their tangent lines L; and L, . If m; and m, are the slopes of these two lines, then, L, and L, are

orthogonal if m, = -1/m;, .

Example 14.1

Prove that every curve of the family
Xy = a az0 (14.1)
is orthogonal to every curve of the family
xz—y =b b=0 (14.2)
Proof:
At a point P(X,y) on any curve of (14.1), the slope is

xdy +ydx = 0
or
dy _ _y 14.3
dx X (14.3)
On any curve of (14,2) the slope is
2xdx-2ydy = 0
or
dy _ X
== 14.4
ax "y (14.4)

From (14.3) and (14.4) we see that these two curves are orthogonal since their slopes are negative
reciprocals of each other. The cases where x = 0 or y = 0 cannot occur because we defined
az0and b=0.

Other orthogonal functions are the cosx and sinx functions as we've learned in Chapter 6.

14.2 Orthogonal Trajectories

Two families of curves with the property that each member of either family cuts every member of
the other family at right angles are said to be orthogonal trajectories of each other. Thus, the curves
of (14.2) are orthogonal trajectories of the curves of (14.1). The two families of these curves are
shown in Figure 14.3.
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Figure 14.3. The families of the curves in Example 14.1

Example 14.2

Find the orthogonal trajectories of the family of parabolas

y = ox’ c=0 (14.5)
Solution:
The slope of (14.5) is
dy _
vl 2CX (14.6)

From (14.5), ¢ = y/x2 and thus we rewrite (14.6) as

dy _ ,¥, -2y
o= 2= (14.7)

Therefore, the slope of the orthogonal family we are seeking must be

dy _ _x
ix = 2y (14.8)
or
2ydy + xdx = 0
2jydy+jxdx =0
2 2 +5 = k (constant)
xZ + 2y2 = C (constant) (14.9)
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Relation (14.9) represents a family of ellipses and the trajectories are shown in Figure14.4.

e= -3

Figure 14.4. Orthogonal trajectories for families of parabolas and ellipses.

14.3 Orthogonal Vectors

Let X = [X; X, Xg ... X,J and Y = [y; Y, Y3 ... ¥,] be two vectors of the same length. Their
mner (dot) product is defined as

X-Y = X Y + XY, + X3 Y5+ ... + X, Y, (ascalar) (14.10)

Example 14.3

Given that
X=[111]and¥ =[2 1 2]
find the dot product X - Y

Solution:
XY=10)-2)+@1)-(H+(1)-(2) =5

Definition: Two vectors X; and X, are said to be orthogonal if their dot product is zero.

Example 14.4

Test the vectors
X, =[111]and X, = [1 -2 1]
for orthogonality.

Solution:

Xp- X =(D)-M)+(D)-(=2)+(1)- (1) =0

Therefore the vectors X; and X, are orthogonal to each other.
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With any vector X # 0 we may associate a unique unit vector U which is obtained by dividing
each component of X by each magnitude [X| defined as

IX| = in+x§+...+xﬁ

where x; represents an element of the vector X. This process is called normalization.

Example 14.5

Given that
X = [2 4 4]
compute the unit vector Uy .

Solution:

First, we compute the magnitude |X]| . For this example,

X = N2°+4°+4% = 6

To compute the unit vector Uy we divide each element of X by the magnitude |X|. Thus,

U = [2 4 ﬂ} — [l 2 2}
X716 6 6/] [2 3 3
A basis that consists of mutually orthogonal vectors is referred to as an orthogonal basis. If these

vectors are also unit vectors, the basis is called orthonormal basis.

If the column (or row) vectors of a square matrix A are mutually orthogonal unit vectors, the
matrix A is orthogonal and

A-AT = | (14.11)
where A" is the transpose of A and | is the identity matrix.

Example 14.6

Given that

A |1/2 1/4
1/2 1/2

find an orthonormal set of eigenvectors* and verify that the result satisfies (14.11).

* It is strongly suggested that the reader reviews the definitions of eigenvalues and eigenvectors in Chapter 5 at this time.
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Solution:

First, we find the eigenvalues of the matrix A from the relation det(A—Al) = 0 where for this
example

det[ 172 1/4|_,[1 0 Jzo
1/2 1/2 01
detl 1/2-% 174 | _ 4
12 1/2-%

A2-n+3/16 = 0

from which A, = 1/4 and A, = 3/4 and as we've learned in Chapter 5, with these eigenvalues

we can obtain an infinite number of eigenvectors. To find a 2 x 2 square matrix Z such that

z-2" =1
we start with
Zl Z2 . Zl _Zl — 10 (1412)
-2, Z,| |Z, I, 01
or
2 2 2 2
L1ty —Litip | _ {1 0} (14.13)
2 2 2 2 0 1
Equating like terms we get
2 2 2 2

From the second equation we get zi = zg and by substitution into the first we get ZZi =1or
2, = 7, = 1/(242)

This result indicates that we can choose either 1/4/2 or 1/(-+2) for the values of z, and z,.We

choose the value 1/./2 and then the first (left most) matrix in (14.12) is

7 - [ 1/.42 1/[2]
1/(=2) 1/.2
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and as a check,

[ 1/4/2 1/[2] -

[1/[2 1/(—[2)] _ {1 o}
1/(=42) 1742

1/2  1/.2 01

The computations for finding orthonormal sets of eigenvectors for larger size (3 x 3 or higher)
matrices using the above procedure becomes quite involved. A simpler procedure is the Gram-
Schmidt orthogonalization procedure which we will discuss on the next section.

14.4 The Gram-Schmidt Orthogonalization Procedure

Let Xy, Xy, ... X, be some column vectors. We can find an orthogonal basis Y;, Y,, ...Y,, using
the following relations. We must remember that the products in (14.14) below are the inner
(dot) products and if X = [X; X, X3 ... X,] and Y = [y; Y, Y3 ... Yy,] are two vectors of the
same length their dot product is defined as X-Y = X;y; + X, Yo + X3 Y3+ ... + X, ¥, (a scalar).

Thus in the second equation in (14.14) the dot products on the numerator and denominator must
be found first and the result must be from the dot product of it and Y,

Y, =X,
Y- X,
o= Xy
Yo X3 Yy X3
= _ 2 "3 .y 1 °3, 14.14
Yo =% Yy- Y, Yo Y- Y, Y (14.14)
v oox o dma X o Y Xe
m " Y Yoo, ™1 Y-y, !
Also, the unit vectors
Y.
U=- i=12..m (14.15)
|Yi

are mutually orthogonal and form an orthonormal basis.

In our subsequent discussion the column vectors will be denoted as row vectors transposed.
Example 14.7

Given that X, = [1 1 1]", X, = [1 -2 1]",and X; = [1 2 3]", find an orthonormal basis.
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Solution:

From (14.14)

Y =X, =[111]
Y, - X
YZ:XZ—Y;Y; v, =[1-2 1]"- Yl_[l 2 11
Y, X, Y1 Xs 6 T

[123]-222]"=[-10 1]

and from (14.15)
U = L =[1/f3 /.3 1/.3]

|Y1|
U, |Y| - [1//6 -2/.06 1/.06]"
2
Y3
Ug = v [-1/42 0 1/42]'
3

and denoting the matrix whose elements are the unit vectors as A, we have:

1/J3 1/.J6 -1/.2
A=11,/3 —2//6 0
1/3 1/46 1/.42

We can verify that A - A" = 1 with the MATLAB code below.

A=[1/sqrt(3) 1/sqrt(6) —1/sqrt(2); 1/sqrt(3) —2/sqrt(6) 0; 1/sqrt(3) 1/sqrt(6) 1/sqrt(2)];
I=A*A'

T =
1.0000 0 0.0000
0 1.0000 0
0.0000 0 1.0000

We can also use the MATLAB function orth(A) to produce an orthonormal basis as shown
below.

B=[1 1 1;1 -2 1;1 2 3]; C=orth(B)
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C =
-0.4027 0.0000 0.9153
0.0000 1.0000 0.0000
-0.9153 0.0000 -0.4027

We observe that the vectors of the C matrix produced by MATLAB are different from those we
derived with the Gram-Schmidt orthogonalization procedure. The reason for this difference is
that the orthogonalization process is not unique, that is, we may find different values depending
on the process being used. As shown below, the vectors produced by MATLAB also satisfy the

condition C-C' = 1.
|=C*C'
T =
1.0000 -0.0000 0.0000

-0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

14.5 The LU Factorization

In matrix computations, computers use the so-called matrix factorization methods to decompose
a matrix A into a product of other smaller matrices. The LU factorization method decomposes a

matrix A into a lower triangular matrix L and an upper triangular matrix U so that A = L-U.
In Chapter 4 we saw how the method of Gaussian elimination proceeds by systematically remov-
ing the unknowns from a system of linear equations.

Consider the following 3 x 3 lower triangular case.

Loy Loy O |- |Xy| = |by

L3 Lap Lag| |X3 by
The unknowns are found from
Xy = by/Lyg
X = (D —Lg1X)/ Ly (14.16)

X3 = (bg—Lg X3 —Lg;Xp)/Lgg

For the upper triangular case, the unknowns are written in reverse order. Thus, to solve
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U Upp Uggl X by

we start from the bottom to the top as shown below.

Xy = (b =Upp Xy —Ug3x3)/ Uy

provided that U;; - Uy, - Uz #0.

Example 14.8

Let us review the example given in Chapter 4 which consists of the following equations.

2Vi—V,+3vy =5
—4v; —3v,-2v; = 8 (14.19)

To find the three unknowns, we start by multiplying the first equation by —2 and subtracting it
from the second equation. This removes v, from the second equation. Likewise, we multiply the

first equation by 3/2 and we subtract it from the third equation. With these two reductions we
obtain

2Vi—V,+3vy =5
2.5v,-5.5v; = 3.5

Next we multiply the second equation of (14.20) by —1/2 and we subtract it from the third equa-
tion of (14.20) and we get the system of equations below.

2Vi—V,+3vy =5
-3.5v; = 55

We see that the eliminations have transformed the given square system into an equivalent upper
triangular system that gives the same solution which is obtained as follows:

14-10 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



The LU Factorization

_11/7
(18 — 4v,)/(-5) = -34/7
vy = (5+V,—3vy)/2 = 17/7

V3

Vv

The elements of the upper triangular matrix U are the coefficients of the unknowns in (14.21).
Thus,

Uy Ugp Ugg 2 -1 3
0 Uy Uyl =10 -5 4
0 0 Ug 0 0 -35

Now, let us use the relations of (14.16) and (14.18) to find the lower and upper triangular matri-
ces of our example where

2-1 3
A=|_4-3-2
3 1-1
We want to find L;; and U;; such that
Ly, 00 Ui Upp Ugg 2-1 3
Loy Loy O]+ 0 UpUy =A=|4-3-2 (14.22)
Loy Lgp Lag| | O O Usg 3 1-1

where the first matrix on the left side is the lower triangular matrix L and the second is the
upper triangular matrix U. The elements of matrix U are the coefficients of v,, v,, and v; in

(14.20). To find the elements of matrix L we use MATLAB to multiply matrix A by the inverse
of matrix U. Thus,

U=[2 =1 3,0 -5 4:0 0 —3.5]; A=[2 —1 3; -4 -3 —2:3 1 —1]; L=A*inv(U)
L =

1 0 0
-2 1 0
3/2 -1/2 1

Therefore, the matrix A has been decomposed to a lower triangular matrix L and an upper
matrix U as shown below.
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2-1 3 1 0 0 2 -1 3

4-32l=]-2 1 o|'lo -5 4

3 1-1 3/2 -1/2 1 0 0 -35
Check with MATLAR:
L=[1 0 0; =2 1 0;3/2 —1/2 1] U=[2 -1 3;0 -5 4;0 0 —3.5]; A=L*U
A =

2 -1 3
-4 -3 -2
3 1 -1

We found the elements of the lower triangular matrix L by first computing the inverse of the
upper triangular matrix U and performing the matrix multiplication L = A-U™" but not

-1 , . : ,
L = U - A. Was this necessary? The answer is no. For a square matrix where none of the diago-
nal elements are zero, the lower triangular matrix has the form

1 00

Ly Ly 1
and in our example we found that the values of the subdiagonal elements are L, = -2,
Ly = 3/5,and Ly, = -1/2. These values are the multipliers that we’ve used in the elimination

process in succession.

Example 14.9
Use the MATLAB function [L,U]=lu(A) to decompose the matrix

2-3 1
A=1.15 -2
3-8 4
into a lower and an upper triangular.
Solution:
formatrat; A=[2 -3 1;-1 5 -2;3 -8 4];[L,U]=lu(A)
L =
2/3 1 1
-1/3 1 0
1 0 0
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U =
3 -8 4
0 7/3 -2/3
0 0 -1

We observe that while the upper triangular matrix U has the proper structure, the lower trian-
gular matrix L lacks structure. When a matrix lacks structure we say that it is permuted. To put
L in the proper structure, let us interchange the first and third rows. Then,

1 00
L'=1_1/3 1 0 (14.23)
2/3 1 1

The new matrix L' has now the proper structure. Let us now use MATLAB toseeif L'-U = A.
L1=[1 0 0;-1/3 1 0;2/3 1 1];U=[3 -8 4;0 7/3 -2/3;0 0 —1]; A1=L1*U
Al =

3 -8 4
-1 5 -2
2 -3 1

We see that matrix A is now permuted. To put it in the given form we need to make the same
interchanges in rows as with the lower triangular matrix, that is, we must interchange the first
and third rows.

To find out how MATLAB performs LU factorization, let us invoke the help lu command. Only
part of the display is shown below.

help 1u
LU LU factorization.
[L,U] = LU(X) stores an upper triangular matrix in U and a
"psychologically lower triangular matrix" (i.e. a product
of lower triangular and permutation matrices) in L, so
that X = L*U. X can be rectangular.

[L,U,P] = LU(X) returns unit lower triangular matrix L, upper
triangular matrix U, and permutation matrix P so that
P*X = L*U.

The permutation matrix P is an identity matrix that is permuted so that the rows of this matrix
indicate the interchanges. Consider, for example, the identity matrix
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1]
O O -
O R O
O O

If we interchange the first and third rows of the identity matrix | above, we get the permutation
matrix P below.

0 01
P=1o10 (14.24)
1 00

and matrix P indicates the same interchanges as with the lower triangular matrix in Example

14.9.

Example 14.10
Use the MATLAB function [L,U,P]=lu(A) to decompose the matrix

2-3 1
A=1-15-2
3-8 4

into a lower and an upper triangular and show that P-A = L - U.
Solution:

This is the same matrix as in Example 14.9. Thus,

A=[2 -8 1;-1 5 -2;3 -8 4];[L,U,P]=lu(A)

L =
1 0 0
-1/3 1 0
2/3 1 1
U =
3 -8 4
0 7/3 -2/3
0 0 -1
P =
0 0 1
0 1 0
1 0 0
14-14 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition

Orchard Publications



The Cholesky Factorization

We observe that the lower triangular matrix has now the proper structure and the P matrix dis-

played by MATLAB is the same as in (14.24). Also,
PA=P*A, LU=L*U

PA =
3 -8 4
-1 5 -2
2 -3 1
LU =
3 -8 4
-1 5 -2
2 -3 1

We observe that P- A = L-U with the first and second rows interchanged when compare with
the given matrix A.

The MATLAB matrix left division operator x = A\b uses the L - U factorization approach.

14.6 The Cholesky Factorization

A matrix is said to be positive definite if
X -A-X>0 (14.25)

for every x#0 and A is symmetric, that is, A' = A. Under those conditions, there exists an
upper triangular matrix G with positive diagonal elements such that

G'-G=A (14.26)

Relation (14.26) is referred to as Cholesky factorization. It is a special case of LU factorization
and requires fewer computations than the LU factorization method of the previous section. Let
us invoke the MATLAB help chol command to see how MATLAB performs this factorization.

CHOL Cholesky factorization.
CHOL (X) uses only the diagonal and upper triangle of X.
The lower triangular is assumed to be the (complex conjugate)
transpose of the upper. If X is positive definite, then
R = CHOL (X) produces an upper triangular R so that R'*R = X.
If X is not positive definite, an error message is printed.

[R,p] = CHOL(X), with two output arguments, never produces an
error message. If X is positive definite, then p is 0 and R
is the same as above. But if X is not positive definite,
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then p is a positive integer.

We will consider an example using the Cholesky factorization after we review the MATLAB
functions eye(n) and diag(v,k) as defined by MATLAB.

help eye

EYE Identity matrix.
EYE(N) is the N-by-N identity matrix.

EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1's on
the diagonal and zeros elsewhere.

EYE(SIZE(A)) is the same size as A.
See also ONES, ZEROS, RAND, RANDN.
help diag

DIAG Diagonal matrices and diagonals of a matrix.

DIAG(V,K) when V 1s a vector with N components is a square
matrix of order N+ABS(K) with the elements of V on the K-th
diagonal. K = 0 is the main diagonal, K > 0 is above the main
diagonal and K < 0 is below the main diagonal.

DIAG(V) 1s the same as DIAG(V,0) and puts V on the main diagonal.

DIAG(X,K) when X is a matrix is a column vector formed from
the elements of the K-th diagonal of X.

DIAG(X) is the main diagonal of X. DIAG(DIAG(X)) is a diagonal
matrix.

Example
m = 5;
diag(-m:m) + diag(ones(2*m,1),1) + diag(ones(2*m,1),-1)
produces a tridiagonal matrix of order 2*m+l.

See also SPDIAGS, TRIU, TRIL.

Example 14.11

Use MATLAB to compute the Cholesky factorization of matrix A as defined below.

format bank; B=[-0.25 -0.50 -0.75 -1.00];
A=5"eye(5)+diag(B, —1)+diag(B, 1), G=chol(A), A1=G"G

Solution:

Execution of the MATLAB code above displays the following:
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5.00
-0.25

o o1l
o
o

We observe that A1 = A, that is, the matrix product G'-G = A is satisfied.

14.7 The QR Factorization

.25
.00
.50

.11
.23

.25
.00
.50

0
0

.50
.00
.75

0

-0

5.
-1.

.75
.00
.00

.75

00
00

O U1 O O O O O O o o

O O O o o

The QR factorization decomposes a matrix A into the product of an orthonormal matrix and an

upper triangular matrix. The MATLAB function [Q,R]=qr(A) produces an n x n matrix whose

. * . . .
columns form an orthonormal or unitary matrix Q and an upper triangular matrix R of the same

size as matrix A. In other words, A can be factored as

A = QR (14.27)
Then, a system described by Ax = b becomes

QRx = b (14.28)
and multiplying both sides of (14.28) by Q - Q' =1 we get

Rx = Q'b (14.29)
The MATLAB [Q,R]=qr(A) is described as follows:
* An nxn matrix A is called unitary if (A*)" = A™ where A* is the complex conjugate matrix of A.
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help qr

OR Orthogonal-triangular decomposition.
[Q,R] = QR(A) produces an upper triangular matrix R of the same
dimension as A and a unitary matrix Q so that A = Q*R.

[O,R,E] = QR(A) produces a permutation matrix E, an upper
triangular R and a unitary Q so that A*E = Q*R. The column
permutation E is chosen so that abs(diag(R)) is decreasing.

[Q,R] = OR(A,0) produces the "economy size" decomposition.
If A is m-by-n with m > n, then only the first n columns of Q

are computed.

O,R,E] = QR(A,0) produces an "economy size" decomposition in
which E is a permutation vector, so that Q*R = A(:,E). The col-
umn permutation E is chosen so that abs(diag(R)) 1s decreasing.

By itself, QR(A) is the output of LAPACK'S DGEQRF or ZGEQRF rou-
tine. TRIU(QR(A)) 1s R.

R = QR(A) returns only R. Note that R = chol(A'*A).

[O,R] = QOR(A) returns both Q and R, but Q is often nearly full.
C,R] = QR(A,B), where B has as many rows as A, returns C = Q'*B.
R = QR(A,0) and [C,R] = QR(A,B,0) produce economy size results.

The full version of QR does not return C.

The least squares approximate solution to A*x = b can be found
with the Q-less QR decomposition and one step of iterative

refinement:
x = R\(R'\(A'*Db))
r = b - A*xX
e = R\(R'"\(A'*1))
X = X + €

Example 14.12

Given that

solve Ax = b using the MATLAB function [Q,R]=qr(A) and x = R\Q'b.
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Solution:
A=[2 -3 1;-1 5 -2;3 -8 4];b=[2 4 5];[Q,R]=qgr(A), x=R\Q"b
Q =
-0.53 -0.62 -0.58
0.27 ~0.77 0.58
-0.80 0.15 0.58
R =
-3.74 9.35 -4.28
0 -3.24 1.54
0 0 0.58
X =
4.14
4.43
7.00
Check=A\b
Check =
4.14
4.43
7.00

Let us verify that the matrix Q is unitary. Of course, since the elements are real numbers, the

complex conjugate of Q is also Q and thus we only need to show that Q'=Q'orQ-Q" =1.

Q*Q

ans =
1.00 0.00 -0.00
0.00 1.00 ~0.00
-0.00 ~0.00 1.00

QR factorization is normally used to solve overdetermined systems, that is, systems with more
equations than unknowns as in applications where we need to find the least square distance in

linear regression. In an overdetermined system, there is no vector X which can satisfy the entire
system of equations, so we select the vector X which produces the minimum error. MATLAB
does this with either the left division operator (\) or with the non-negative least-squares func-
tion Isqnonneg(A,b). This function returns the vector X that minimizes norm(A*X-b) subject
to X >0 provided that the elements of A and b are real numbers.

* We defined overdetermined and underdetermined systems in Chapter 8
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A=[2 -3 1;-1 5 -2;3 -8 4];b=[2 4 5]'; X=Isgnonneg(A,b)

X =
4.1429
4.4286
7.0000

Underdetermined systems have infinite solutions and MATLAB selects one but no warning mes-
sage is displayed.

As we've learned in Chapter 4, the MATLAB function inv(A) produces the inverse of the square
matrix A and an error message is displayed if A. The function pinv(A) displays the pseudo-inverse
of a mxn (non-square) matrix A. Of course, if A is square, then pinv(A)=inv(A).

14.8 Singular Value Decomposition

The Singular Value Decomposition (SVD) method decomposes a matrix A into a diagonal matrix
S, of the same dimension as A and with nonnegative diagonal elements in decreasing order, and
unitary matrices U and V so that

A=U-S-V' (14.30)

The matrices U, S, and V, decomposed from a given matrix A, can be found with the MATLAB
function [U, S, V]=svd(A).

Example 14.13

Decompose the matrix

2-3 1
A=1|_15_2
3-8 4

into two unitary matrices and a diagonal matrix with non-negative elements.
Solution:

We will use the MATLAB [U, S, V]=svd(A) function.

A=[2 -3 1:-1 5 —2;3 -8 4]; [U,S,V]=svd(A)

U =
-0.3150 -0.8050 -0.5028
0.4731 -0.5924 0.6521
-0.8228 -0.0325 0.5675
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11.4605

-0.3116
0.8632
-0.3972

1.1782

-0.9463
-0.2440
0.2122

0.
0.
0.

0
0

.5184

0863
4420
8929

As expected, the diagonal elements of the triangular S matrix are non-negative and in decreas-

ing values. We also verify that the matrices U and V are unitary as shown below.

u*u'

ans =

1.0000
-0.0000
-0.0000

V¥V

ans
.0000
.0000
.0000

|
o o

14.9 Summary

¢ Orthogonal functions are those which are perpendicular to each other.

-0.0000
.0000
0.0000

[

-0.0000
1.0000
-0.0000

o

.0000
.0000
.0000

.0000
.0000
.0000

¢ Two families of curves with the property that each member of either family cuts every member
of the other family at right angles are said to be orthogonal trajectories of each other.

® The inner (dot) product of two vectors X = [X; X, X3 ...

a scalar defined as X-Y = X, ¥, + X, Yo + X3 Y3+ ... + X, Yy,

x,J and Y = [y; Yy, Y,

o Ypl s

e If the dot product of two vectors X; and X, is zero, these vector are said to be orthogonal to

each other.

® The magnitude of a vector X, denoted as X, is defined as [X| = in +X5+ ... +X>. A unique

unit vector U is obtained by dividing each component of X by the magnitude [X| and this
process is referred to as normalization.
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A basis that consists of mutually orthogonal vectors is referred to as an orthogonal basis. If
these vectors are also unit vectors, the basis is called orthonormal basis.

e [f the column (or row) vectors of a square matrix A are mutually orthogonal unit vectors, the

matrix A is said to be orthogonal and A- AT = | where A is the transpose of A and | is the
identity matrix.

e We can find an orthonormal set of eigenvectors in a 2 x 2 matrix easily from the eigenvalues
but the computations for finding orthonormal sets of eigenvectors for larger size (3 x 3 or

higher) matrices using the above procedure becomes quite involved. A simpler procedure is
the Gram-Schmidt orthogonalization procedure which we will discuss on the next section.

e The LU factorization method decomposes a matrix A into a lower triangular matrix L and an
upper triangular matrix U so that A = L-U. The MATLAB function [L,U]=lu(A) decomposes
the matrix A into a lower triangular matrix L and an upper triangular matrix U.

® A matrix is said to be positive definite if X - A- x>0 for every x#0 and A is symmetric, that

is, A° = A. Under those conditions, there exists an upper triangular matrix G with positive

diagonal elements such that G' - G = A. This process is referred to as the Cholesky factoriza-
tion.

e The QR factorization decomposes a matrix A into the product of an orthonormal matrix and
an upper triangular matrix. The MATLAB function [Q,R]=qr(A) produces an n x n matrix
whose columns form an orthonormal or unitary matrix Q and an upper triangular matrix R of
the same size as matrix A.

® The Singular Value Decomposition (SVD) method decomposes a matrix A into a diagonal
matrix S, of the same dimension as A and with nonnegative diagonal elements in decreasing

order, and unitary matrices U and V so that A = U-S- V'. The matrices U, S, and V,

decomposed from a given matrix A, can be found with the MATLAB function [U, S,
V]=svd(A).
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14.10 Exercises

1. Show that the curve x*+ 3y = k; and the curve 3y = k,x* where k; and k, are constants,

are orthogonal to each other.
2. Find the orthogonal trajectories of the curves of the family 2x% + y* = kx

3. Given the vectors X; = [2 - 1]" and X, = [1 ~3]", use the Gram-Schmidt orthogonal-

ization procedure to find two vectors Y; and Y, to form an orthonormal basis.

4. Use MATLAB to find another set of an orthonormal basis with the vectors given in Exercise

3.

5. Use the Gaussian elimination method as in Example 14.8 to decompose the system of equa-

tions

into an upper triangular matrix U and a lower triangular matrix L. Verify your answers with

MATLAB.

6. Using the MATLAB functions eye(n) and diag(v,k) to define and display the matrix A
shown below.

4.00 -0.80 0 0

-0.80 4.00 -1.00 0
0 -100 400 -1.20
0 0 -1.20 4.00

A =

Then, use the MATLAB Cholesky factorization function to obtain the matrix G and verify
that G'- G = A.

7. Use the appropriate MATLAB function to decompose the system of equations

1 0-1 3
A=|0g 1 2/andb = |5
-2-3 4 9

into an upper triangular matrix R of the same dimension as A and a unitary matrix Q so that
Q- R = A. Use a suitable function to verify your results.
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8. Use the appropriate MATLAB function to decompose the matrix A given as

1 0-1
A=101 2
2-3 4

into a diagonal matrix S of the same dimension as A and with non-negative diagonal elements

in decreasing order and unitary matrices U and V so that U - S - vl = A.
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14.11 Solutions to Exercises
1.
x2+3y2 =k, (1)

3y = kx° (2)
Implicit differentiation of (1) yields

2X + Gy?—& =0
or

Differentiation of (2) yields

From (2),
3
X

and by substitution into (4) we get

dy _ 3y 2 _ 3V
g=3x=3l0

We see that (5) is the negative reciprocal of (3) and thus the given curves are orthogonal to

each other.

2x2+y2 = kx (1)
Implicit differentiation of (1) yields

d d

2
ax? = dx(kx)

d 2
dX(2x )+

4x+2yg—YX =k

and solving for dy/dx,

dy _ k—4x
dx 2y @)

From (1),
k = 2+ (3)
X
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and by substitution into (2)

2., .2

_2_X___y__4x 2 2
dy _ __ X _ —2X' +y 4)
dx 2y 2%y

Now, we need to find the curves whose slopes are given by the negative reciprocal of (4), that
is, we need to find the family of the curves of

Y- 25
dX 22 _y2

We rewrite (5) as
(2x2 — yz)dy = 2xydx (6)
and we let y = ux. Then, dy = udx + xdu and by substitution into (6)
(2x2 - u2x2)(udx +xdu) = 2x%udx

Division of both sides of the above by X’ yields

(2- uz)(udx +xdu) = 2udx
Collecting like terms and simplifying we get

X(2 - uz)du = u’dx

Separating the variables we get

dx _ (2-U)y, = 24,_du
X ul 0l u
or
d_x+d_u = gdu
X u B3

and by integrating these terms we find

In|x| + Infu| = _—% +C
u

By substitution of u = y/x we get

2
In|x| + In‘Y +1In|C| = In (X-Y-C)‘ = Injcy| = =%
X X y2
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and thus the family of curves orthogonal to the given family is

x* = —y’In[Cy|
3.
From (14.14)
Y, =X, =[2 -11"
Yi- X T [2 -1]"-[1 3] T
Y, = X, - Y, =1 -3]"- 12 -1
2= My y, s 2 -1 12 _1]T[ :

T_[2+3] T_ T S 17 =
[1 -3] —[4+1]~[2 -1 =01 3] -¢-[2 1] =

=1 -31"-[2 -11"=[-1 2]
and from (14.15)

%
U, = =t =[2//5 —1/.5]"
Y|
Y, T
U, = v, =[-1//5 -2/.5]
2

and denoting the matrix whose elements are the unit vectors as A, we have:

A = [2/J§ —1A/§]
-1/./5 -2/.5

We verify that A- A" = 1 as shown below.

[Z/Jl—-} —1/J§]‘[2/J§ —1/J§] _ {4/5+1/5 —2/5+2/5} _ {1 o}

15 2,8l |-1/08 2,08 |-2/5+2/5 1/5+4/5] [0 1
4.
A=[2 —1;1 —3]; B=orth(A)
B =
-0.5257 -0.8507
-0.8507 0.5257
I=B*B'
I =
1.0000 -0.0000
-0.0000 1.0000
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5.
Xy +2Xy+ 3%y = 14
5X1—-8X, +6X3 = 7
Multiplying the first equation of (1) by -2 and subtracting it from the second in (1) we get the
second equation in (2) and thus x, is eliminated. Likewise, we multiply the first equation by 5
and we subtract it from the third in (1). Then,
—-18x,-9x; = —63
Next, we multiply the second equation in (2) by —=18/7 and we subtract it from the third in
(2). Then, after simplification
X{+2Xy,+ 3%y = 14
(81/7)xs = 243/7
Thus,
Xy = 243/81 = 3
X, = (38-8x4)/7 = 2
The multipliers that we've used are -2, 5, and —-18/7. These are the elements L,,, Ly, and
Lg, respectively. Therefore, the lower triangular matrix is
1 0 0
L=]12 1 o0
5 -18/7 1
The elements of the upper triangular matrix are the coefficients of the unknowns in (3) and
thus
1 2 3
U=10 7 8
0 0 81/7
Now, we use MATLAB to verify that L-U = A
L=[1 0 0;—2 1 0;5 —18/7 1;U=[1 2 3,0 7 8,0 0 81/7]; A=L*U
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2
3
-8

format bank; B=[-0.8 -1.0 -1.2];

A=4*eye(4)+diag(B, —1)+diag(B, 1), G=chol(A), A1=G"*G

A =

Al

4.
-0.

00
80

-0.80
4.00
-1.00
0

-0.40
1.96
0

0

-0.80
4.00
-1.00
0

A=[1 0 -1;0 1 2;-2 -3 4];b=[3 5 9];

[Q,R]=ar(A), QQT=Q*Q', x=R\Q"b, Check=A\b

Q =

QQT

O O

L4472

0

.8944

.2361

0
0

.0000
.0000
.0000

L7171
.5976
.3586

.6833
.6733

0

.0000
.0000
.0000

0.5345
0.8018
0.2673

4.0249
-0.4781
2.1381

0.0000
0.0000
1.0000

N

.00
.00
.20

.20
.00

.62
.90

.20
.00
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6.7500
-2.5000
3.7500

Check =
6.7500
-2.5000
3.7500

A=[1 0 -1;0 1 2; -2 -3 4];
[U,S,V]=svd(A), UUT=U*U', VVT=V*V'

U =
-0.2093 -0.2076 -0.9556
0.1977 0.9480 -0.2493
0.9577 -0.2410 -0.1574
S =
5.5985 0 0
0 2.0413 0
0 0 0.7000
V =
-0.3795 0.1345 -0.9154
-0.4779 0.8187 0.3184
0.7922 0.5583 -0.2464
uuT =
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000
VT =
1.0000 0.0000 -0.0000
0.0000 1.0000 -0.0000
-0.0000 -0.0000 1.0000
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Bessel, Legendre, and Chebyshev Functions

his chapter is an introduction to some very interesting functions. These are special func-

tions that find wide applications in science and engineering. They are solutions of differen-

tial equations with variable coefficients and, under certain conditions, satisfy the orthogo-
nality principle.

15.1 The Bessel Function

The Bessel functions, denoted as J,(X), are used in engineering, acoustics, aeronautics, thermody-

namics, theory of elasticity and others. For instance, in the electrical engineering field, they are
used in frequency modulation, transmission lines, and telephone equations.

Bessel functions are solutions of the differential equation

2
2dy dy 2 20
X —dxz +de+(x n)y =0 (15.1)

where n can be any number, positive or negative integer, fractional, or even a complex number.
Then, the form of the general solution of (15.1) depends on the value of n.

Differential equations with variable coefficients, such as (15.1), cannot be solved in terms of
familiar functions as those which we encountered in ordinary differential equations with constant
coefficients. The usual procedure is to derive solutions in the form of infinite series, and the most
common are the Method of Frobenius and the Method of Picard. It is beyond the scope of this book
to derive the infinite series which are approximations to the solutions of these differential equa-
tions; these are discussed in advanced mathematics textbooks. Therefore, we will accept the solu-
tions without proof.

Applying the method of Frobenius to (15.1), we obtain the infinite power series

0 K X n+ 2k 1
J,(x) = kZO(—l) . (5) . m n>0 (15.2)

This series is referred to as Bessel function of order n where n is any positive real number or zero. If
in (15.2), we replace n with —n, we get the relation

_ 0 k (X))~ n+ 2k 1
Ja(x) = kz_:o(—l) (2) N TCnikiD (15.3)
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and the function J_,(x) is referred to as the Bessel function of negative order n.

For the special case where n is a positive integer or zero,

Iin+k+1) = (n+k)! (15.4)
and (15.2) reduces to
~ o K X n+ 2k 1 B
3,0x) = kzo(_n (2) oTo "ot (15.5)
or
(%) = X" X X"
W) = Z—11-— = (15.6)
2"t 22 1. (n+1) 2421 (n+)(n+2)

28,31 . (n+1)(n+2)(n+3)

Forn = 0,1 and 2, (15.6) reduces to the following series:

2 4 6 8
o) = - g B A o (15.7)
22. (1% 2% @2 2°.@3n? 2%
X X3 X5 X7 X9
Ji(x) = = - + - + -... (15.8)
2 2% 11,210 2°.21.31 27.31.41 2°.41.5
X2 X4 X6 X8 XlO
J,(x) = - + - + —_— (15.9)
22,21 2% 11.31 2%.21 41 28.31.50 2'%.41.6

We observe from (15.7) through (15.9), that when n is zero or even, J (x) is an even function of

X, and odd when n is odd.

If we differentiate the series of Jyo(x) in (15.7), and compare with the series of J;(x) in (15.8), we
see that

%Jo(x) = ~3,(x) (15.10)

Also, if we multiply the series for J;(x) by x and differentiate it, we will find that

%{le(x)} = xJy(X) (15.11)
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Example 15.1
Compute, correct to four decimal places, the values of

a. J3y(2) b. 3,(3) c Jy(1)
Solution:

a.

From (15.7),

Jp(2)=1-2,16_ 64 . 2% _1 1,1 _ 43 _ s

4 64 64x36 256x576 4 36 576 192

or from math tables, J5(2) = 0.2239

b.

From (15.8),

3,(3) = 220, 243 2187 | 19683 _ 4/
2716 ' 384 18432 " 1474560

or from math tables, J;(3) = 0.3391
C.

From (15.9),

YD I O S S S—— L -7

8 96 1536 184320 17694720
0.1149.

or from math tables, J,(1)

We can use the MATLAB besselj(n,x) function or the Excel BESSELJ(x,n) function for the
above computations. With MATLAB, we get

besselj(0,2), besselj(1,3), besselj(2,1)

ans
.2239
ans
.3391

o1 ol

ans

(@)

.1149

and with Excel,
besselj(2,0)= 0.2239 besselj(3,1)= 0.3391 besselj(1,2)= 0.1149

The MATLAB code below plots Jy(x), J;(X), and J,(X).
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x = 0.00: 0.05: 10.00; v = besselj(0,x); w = besselj(1,x); z = besselj(2,x);
plot(x,v,x,w,x,z); grid; title('Bessel Functions of the First Kind'); xlabel('x'); ylabel('dn(x)");
text(0.95, 0.85, 'JO(x)"); text(2.20, 0.60, 'J1(x)"); text(4.25, 0.35, 'J2(x)")

The plots for J5(x), J;(X) and J,(x) are shown in Figure 15.1."

Bessel Functions of the First Kind

Jnix)

Figure 15.1. Plots of Jy(x), J1(x) and J,(x) using MATLAB

We can also use Excel to plot these series as shown in Figure 15.2.
The definition of a Bessel function of the first kind will be explained shortly.

The x-axis crossings in the plot of Figures 15.1 and 15.2 show the first few roots of the Jy(x),
J1(x), and J,(x) series. However, all J (x) are infinite series and thus, it is a very difficult and
tedious task to compute all roots of these series. Fortunately, tables of some of the roots of J,(x)

and J;(x) are shown in math tables.

The equations Jy(x) = 0 and J;(x) = 0 exhibit some interesting characteristics. The most note-
worthy are:

1. They have no complex roots

2. Each has an infinite number of distinct real roots

*In Frequency Modulation (FM), x is denoted as p and it is called modulation index. The functions J,(B), J;(B),
J,(B) and so on, represent the carrier, first sideband, second sideband etc. respectively.
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Plot of Bessel Function Jn(x) forn =0, 1 and 2

X Jo(x) J1(x) Ja(x) / \
Bessel Functions of the First Kind
000  1.0000 0.0000  0.0000
005 09994 00250  0.0003
010 09975 00499  0.0012 L0 <G,
015 09944 00748  0.0028 1400
020 09900 0.0995  0.0050 1
025 09844 01240 00078 | _ 0O
030 09776 0.1483 00112 | & J2(X)
law]

0.35 0.9696  0.1723 0.0152

040 09604 0.1960  0.0197 0.0 ‘ ‘ / \
045 09500 0.2194  0.0249

0.50 0.9385  0.2423 0.0306

055 09258 0.2647  0.0369 05

0.60 09120 02867  0.0437 0 2 4 6 8 10
065 08971 03081  0.0510 X

070 08812 0.3290 0.0588 \_ Y

0.75 0.8642  0.3492 0.0671

Figure 15.2. Plots of J5(x), J;(X) and J,(X) using Excel

3. Between two consecutive roots of one of these equations lies one and only one root of the
other equation, that is, the roots of these equations separate each other. This is observed on

Table 15.1 which shows the first 5 positive roots of these equations, and the differences
between consecutive roots. For instance, we observe that the first root 3.8317 of J;(x) lies

between the roots 2.4048 and 5.5201 of Jy(x).

TABLE 15.1 The first few roots of Jy(x)and J;(x)

3000 = 0 3,00 = 0
Roots Differences Roots Differences
2.4048 3.8317
3.1153 3.1839
5.5201 7.0156
3.1336 3.1579
8.6537 10.1735
3.1378 3.1502
11.7915 13.3237
3.1394 3.1469
14.9309 16.4706
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4. As the roots become larger and larger, the difference between consecutive roots approaches
the value of =, that is, Jy(x) and J;(X), are almost periodic with period almost 27 . In other

words, these series behave like the cosx and sinx functions.

If n is half of an odd integer, such as 1/2, 3/2, 5/2, and so on, then J(x) can be expressed in a

finite form of sines and cosines. Consider, for example, the so-called half-order Bessel functions
J1,2(x) and Iy ,5(x) . It welet n = 1/2 in (15.2), we get

J1 (%) = J%(sinx (15.12)

Likewise, if we let n = 1/2 in (15.3), we get

I = an)(cosx (15.13)

Example 15.2

Compute, correct to four decimal places, the values of

T T
a. 31/2(1) b. ‘](71/2)(21)

Solution:

a. Using (15.12),

T) = 2 _lp 2_ 4 _2_
‘]1/2(4) = n(n/4)5m(ﬂ/4) = nﬁ > === 0.6366
b. Using (15.13).
T) o 2 _lpg 2 _2_
‘](—1/2)(4) = n(n/4)COS(TC/4) = nJé 5 = - = 06366

Check with MATLARB:
besselj(0.5,pi/4), besselj(-0.5,pi/4)

ans
.6366
ans

oIl ol

.6366

The Bessel functions which we have discussed thus far, are referred to as Bessel functions of the first
kind. Other Bessel functions, denoted as Y (x) and referred to as Bessel functions of the second kind,
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or Weber functions, or Neumann functions. These are additional solutions of the Bessel’s equation,
and will be explained in the next paragraph. Also, certain differential equations resemble the
Bessel equation, and thus their solutions are called Modified Bessel functions, or Hankel functions.

As mentioned earlier, a Bessel function J_,(x) for n> 0, can be obtained by replacing n with —n

in (15.2). If n is an integer, we will prove that

3,00 = (-1)"3,0 (15.14)
for n=1,2,3, ...

Proof:
From (15.3),

n+ 2k

_ & (D (2
0= ) o e ke D
k=0 (15.15)

n+ 2k —-n+2k

n-1 k -
_ =) - (x/2)
=2

k=0

= (DS (x/2)
K- T-n+k+1) +k§n

k!- I{(-n+k+1)

Now, we recall from Chapter 13, that the numbers n = 0, -1, -2, ... yield infinite values in T'(n);
then, the first summation in the above relation is zero for k = 0, 1,2, ..., n—1. Also, if we let
k = n+m in the second summation, after simplification and comparison with (15.5), we see that

n+2n+2m

0 (_1)n+m.(x/2 )7
mgo (n+m)!-Im+1)

n+2m (_1)m

N~ X n
=D Z(E) Fnrm+Drm - D)

and thus (15.14) has been proved.

[t is shown in advanced mathematics textbooks that, if n is not an integer, J,(x) and J_,(X) are
linearly independent; for this case, the general solution of the Bessel equation is

= AJ,(x)+BJ_,(x
y n(X) +BJ_;(X) (15.16)
n+0,1,2,3, ...
Forn = 1,2, 3, ... and so on, the functions J(x) and J_,(x) are not linearly independent as we

have seen in (15.14); therefore, (15.16) is not the general solution, that is, for this case, these two
series produce only one solution, and for this reason, the Bessel functions of the second kind are
introduced to obtain the general solution.
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The following example illustrates the fact that when n is not an integer or zero, relation (15.16) is
the general solution.

Example 15.3

Find the general solution of Bessel’s equation of order 1/2.
Solution:
By the substitution n = 1/2 in (15.1), we get
x2i+xﬂ+(x2—l)y =0 (15.17)
ax’  dx
We will show that the general solution of (15.17) is
y = AJy,(X) +BI_y (%) (15.18)
By substitution of (15.12) and (15.13) into (15.18), we get

y = AFsinx+BFcosx (15.19)
X X

and letting C; = AJ2/m and C, = BJ2/m, (15.19) can be written as

y = c,SX, ¢ CosX (15.20)

X X

Since the two terms on the right side of (15.20) are linearly independent, y represents the general
solution of (15.17).

The Bessel functions of the second kind, third kind, and others, can be evaluated at specified val-
ues either with MATLAB or Excel. The descriptions, syntax, and examples for each can be found
by invoking help bessel for MATLAB, and help for Excel.

One very important property of the Bessel’s functions is that within certain limits, they constitute
an orthogonal system.” For instance, if a and b are distinct roots of Jo(x) =0, Jy(a) = 0 and

Jo(b) = 0, then,

leJo(ax)Jo(bx)dx =0 (15.21)
0

*  Two functions constitute an orthogonal system, when the average of their cross product is zero within some specified limits.
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and we say that Jy(ax) and Jy(bx) are orthogonal in the interval 0 <x<1. They are also orthog-

onal with the variable x.

The function

e - i 3,00t" (15.22)

n = -0

is referred to as the generating function for Bessel functions of the first kind of integer order. Using this
function, we can obtain several interesting properties for integer values of n. Some of these are

given below without proof. More detailed discussion and proofs can be found in advanced mathe-
matics textbooks.

i 32(x) = (15.23)

cos(xsing) = Jy(X) +2 i Joi(X)cos2kd
o (15.24)
sin(xsing) = 2 Z Jok_1(¥)sin(2k - 1)¢
K=1

where the subscript 2k denotes that the first relation is valid for even values of k, whereas 2k — 1
in the second, indicates that the second relation is valid for odd values of k. Also,

nJ,(X) n = even

jncoan)-cos(xsinq))dq) = {
0 0

n = odd
(15.25)
T . ino)dd = 0 n = even
Io sinng - sin(xsing)d¢ = { x3,(0) N = odd
and
J,(x) = lJ‘n’cos(nq)—xsind))dd) (15.26)
o

Relations (15.23) through (15.26) appear in frequency modulation. For example, the average
power is shown to be

1 0
Pave = EAé Z ‘]nz(B)
n=-oo
and with (15.23), it reduces to
1
Pave = EAé
Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 15-9

Orchard Publications



Chapter 15 Bessel, Legendre, and Chebyshev Functions

15.2 Legendre Functions

Another second-order differential equation with variable coefficients is the equation

2
(1—x2)2—¥—2x%§+n(n+1)y =0 (15.27)
X

known as Legendre’s equation. Here, n is a constant, and if it is zero or a positive integer, then
(15.27) has polynomial solutions of special interest.

Applying the method of Frobenius, as in the Bessel equation, we obtain two independent solu-
tions y; and y, as follows.

y, = ao[l 3 n(an'r 1)X2 + (n- 2)n(n4J'r DH(n+ 3)X4 3 J (15.28)
y, = al[x _(n- 1%(!n + 2)X3 + (n—=3)(n— 1)5(!n +2)(n + 4)X5 3 } (15.29)

where a, and a,; are constants. We observe that y; is an even function of x, while y, is an odd

function. Then, the general solution of (15.27) isy = y; +y, or

y = ao[l 3 n(an!r 1)X2 + (n— 2)n(n4w!t L(n+ 3)X4 3 J (15.30)

-1 2 -3)(n-1 2 4
+a1[x—(n é(!n+ )X3+(n )(n )5(!n+ )(n + )x5—..}

. . . *
and this series is absolutely convergent for |x| > 1.

The parameter n is usually a positive integer. If n is zero, or an even positive integer, the first
term on the right side of (15.30) contains only a finite number of terms; if it is odd, the second
term contains only a finite number of terms. Therefore, whenever n is zero or a positive integer;
the general solution of Legendre’s equation contains a polynomial solution which is denoted as
P,(X), and an infinite series solution which is denoted as Q(x).

The Legendre polynomials are defined as

o0
* Assume that the infinite series z U,(Xg) = Ug(Xg) + Uy(Xg) + ... converges, i.e., reaches a limit. If, when we replace the
n=1

o0
terms of this series by their absolute value, we find that the resulting series Z |un(Xg)| = [ug(Xg)| + |us(Xg)| + ... also con-
n=1
verges, this series is said to be absolutely convergent.
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_ a2 1:3:5-...-(n=-H)r, nn+1)p2
Pox) = ()" S el B (15.31)
for n = 0 or n = even integer
_qy0-D2 _1-3-5-...-n (h-1)(n+2)3
Pr00) = (-1) 2.4.6. ...-(n_1)[X 3 +} (15.32)

for n = odd integer

and these are also referred to as surface zonal harmonics. The infinite series solution Q () is

referred to as Legendre functions of the second kind. These become infinite as x — +1 and their
applications to science and engineering problems are very limited. Accordingly, they will not be
discussed in this text.

The even and odd functions of (15.31) and (15.32) can be combined to a single relation as

N (). (2n—2K)! n-ak
P,(x) = X
®= 2 2"k!(n = k)!(n - 2k)!

k=0

where N = g for n = even and N = g%l) for n = odd

(15.33)

From (15.33), or (15.31) and (15.32), we obtain the following first 6 Legendre polynomials.

Po(x) =1 P,(x) = x

P,(X) = %(3x2—1) P3(x) = %(5X3—3X) (15.34)

P,(X) = %(35x4—30x2+3) Po(X) = %(63x5—70x3+15x)

The relation

n
nl -d—n(x2_1)n (15.35)
2 -n! dx

P (X) =

is known as Rodrigues’ formula, and offers another method of expressing the Legendre polynomi-
als. We prove (15.35) as follows.

From the binomial theorem,

2 0 & “1)*.n! 2n-2k
x"=1) = kZ‘Ok! - k)!X (15.36)
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and differentiation of (15.36) with respect to x n times yields

d" 2o N @n-2K) -
(-1 _g‘o Ki(n—k)! (n—2k)! |

(15.37)
dx

Now, by comparison with (15.33), we recognize (15.37) as 2"-n!- P (x) and thus (15.35) is

proved.

Another important identity involving Legendre polynomials, is the generating function for Legendre
polynomials which is defined as

1
J1—2xt+1°

We will illustrate the use of the Legendre polynomials with the following example.

= Po(X) + Py ()t + P00t + ... + P, ()" = i P.(0t" (15.38)
n=0

Example 15.4

Find the potential difference (voltage) v at a point P developed by a nearby dipole” in terms of
the distance between the point P and the dipole, and the angle which point P makes with the
center of the dipole.

Solution:

Let the charges q and —q of the dipole be a distance 2d apart with the origin 0 as the midpoint as
shown in Figure 15.3.

P

ry I

I
S 4 d g

Figure 15.3. Figure for Example 15.4

Let the potential at point P be Vp . From electromagnetic field textbooks we find that

* A dipole is a pair of electric charges or magnetic poles, of equal magnitude but of opposite sign or polarity, separated by a
small distance. Alternately, a dipole is an antenna, usually fed from the center, consisting of two equal rods extending out-
ward in a straight line.
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_ 9 (1.1
Vo = 4“80(r2 rl) (15.39)

where ¢, is the permittivity* of the vacuum. For simplicity, we will denote the quantity 1/(4ng,)
as k and thus we rewrite (15.39) as

Vo = kg (l_rl) - kq(r; =1 (15.40)

Next, we need to express r; and r, in terms or d and r. By the law of cosines,

r, = JJd?+r’—2drcos(180°—8) = Jd2+r° + 2drcoso (15.41)
and

r, = «/d 2+ r*_2drcos® (15.42)

Dividing both sides of (15.42) by r, we get

f2 _ |d, 2dcose (15.43)
r (2 r '
or
’ -1/2
(1 1 d_+1_2dcose (15.44)
2 =y 2 E— .

In all practical applications, the point P is sufficiently far from the origin; thus, we assume that
r>d. Now, we want to relate the terms inside the parentheses of (15.44), to a Legendre polyno-
mial. We do this by expressing these terms in the form of the generating function of (15.38).

We let x = cos6, and y = d/r; then, by substitution into (15.44) we get

) -1/2 "
( d”, 4 2dc_089j = (1-294y) = 3 Py (15.45)

2
r r n=0

We recall that (15.45) holds only if [x| <1 and |y| < 1. This requirement is satisfied since x and vy,
as defined, are both less than unity.

To find a similar expression for rIl, we simply replace x with —x in (15.45), and thus

* Permittivity is a measure of the ability of a material to resist the formation of an electric field within it.
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-1/2 0
(1+2xy+y5) ° = 3 Po(=y" (15.46)

n=0

By substitution of (15.45) and (15.46) into (15.40), we get
_ kg n n
VP - r nzo[Pn(x)y _Pn(_x)y ] (1547)
Since x = cos@, and y = d/r, we can express (15.47) as
_kag dy"
Vp = , nE(J[Pn(cose) - Pn(—cose)]( , ) (15.48)

However, if n is even in (15.48), P, (-cos6) = P (cos0), and therefore, all even powers vanish.
But when n is odd, P (-cos0) = —P,(cos0)and the odd powers in (15.48) are duplicated. Then,

_Kg 0 g 2n+1
Vp = p nZ:OZPzn,rl(cose)(r) (15.49)

and for r» d, (15.49) can be approximated as

zz—l:qu(cose)(g) ﬂqcose (15.50)
r’

The term 2dq is the magnitude of the so-called dipole moment. It is a vector directed from the neg-
ative charge towards the positive charge. It is denoted with the letter p, that is,
p = 2qd (15.51)

The relation of (15.50) can, of course, be derived without the use of Legendre polynomials as fol-
lows:

For r»d, the distances ry, r, and r, can be approximated by parallel lines as shown in Figure
15.4. Then, the negative and positive charges look like a single point charge, and using (15.40) we
get

Vp = kq(l——) ——q—(rz—rl) = ———CLcose (15.52)

ry-r,

We observe that (15.52) is the same as (15.50).

*Here, we have used the identity P,(cos0) = cos0. This will be seen shortly in (15.57) when we discuss the trigonometric

form of the Legendre polynomials.

15-14 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



Legendre Functions

Figure 15.4. Derivation of the voltage developed by a dipole

Another interesting relation that can be used to find the Legendre polynomial series of a function
f(x) for x| <1, is

B, = 2”+1j1 F(X)P, (x)dx (15.53)
2 ),

Then, a function f(x) can be expanded as

f(X) = BoPg(X) +B;1P1(X) + ByPy(X) + ... + B,P,(X) = i BPy(X) (15.54)
n=0

The example below illustrates how this relation is being used.

Example 15.5

Compute the Legendre polynomial series representing the waveform of Figure 15.5.

f(x)
1]

Figure 15.5. Waveform for Example 15.5
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Solution:

We will first compute the coefficients B,, from (15.53); then, we will substitute these into (15.54).
We will also use (15.34) for the polynomials of P (x).

For this example,

10 1pt 10 1.1 1.1
BO_Zj_l(—l)-l-dx+zjol-1-dx_—2x|_1+2x|0_—§+§_0
B —§IO(—1)-x-dx+§Ill-x-dx— 2| +3x21—§+§—§
t=2) 2J, - 47107 474 7 2

0 1
B, = gj' 1(—1) : %(3x2—1)dx+g.fo 1. %(3X2—1)dx =0

A RPN P L4 PR Y _ 7
B, = 2j_l(—l)-2(5x —3x)o|x+2j0 L5056 -3x)dx = —

B, —g (D —(35x —30x” +3)dx + j 1- —(35x ~30x°+3) = 0

0
B, = i %(63x5_70x3+15x)dx+ j L 63x°~70x* + 15%) =
-1

2 16

and so on. Therefore, using (15.54) and (15.34) we get

f(x) = 2P100 - £Pa(0) + 1Ps()

= SX——‘—(S 3X) + 1(15 é(GSx ~70%° + 15x)
3 (15.55)
= 5x——(5x -3X)+ 128 (63x —70%° + 15X)

525 ﬁxs + @)(5
128" 64 128

We observe that the waveform of f(x) is an odd function and, as we found above, its expansion
contains only odd Legendre polynomials.

In many applications, the algebraic form of the Legendre polynomials is usually the most useful.
However, there are times when we want to express the polynomials in terms trigonometric func-
tions, as we did in Example 15.4. Also, the trigonometric forms are most convenient with the
cylindrical and spherical coordinate systems. It is shown in advanced mathematics textbooks that

15-16 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



Legendre Functions

~1.3-...-(2n-1 11.3-..-(2n-3) B
P,cos6 = > 4. .on 2cosn€)+2 A .(Zn_Z)ZCos(n 2)6
1-3 1-3 (2n—5) (15.56)
+2‘4-2‘4‘”.‘(Zn_4)2005(n—4)9+...

From (15.56) we obtain the first 6 Legendre polynomials in trigonometric form listed below.

1

P,cos6 = cos6

P,cos6

P,COS0 = 3c0s26 +1
4
P,COSO = 5003368+ 3cos6 (15.57)
P,COS6 = 35¢0546 + 2005260 + 9
64
P.COSO = 63c0s56 + 35102%539 +30c0s0

The Legendre polynomials in algebraic form, satisfy the orthogonality principle when m#n as
indicated by the following integral.

1 0 m=n
| PaoPyode =4 2 (15.58)
- 2n+1

Similarly, the Legendre polynomials in trigonometric form satisfy the orthogonality principle
when m = n as indicated by the following integral.

n 0 m=n
.f P.,(cos0)P (cose)sindde = 2 _ (15.59)
0 2n+1 N

We must remember that all the Legendre polynomials we have discussed thus far are referred to
as surface zonal harmonics, and math tables include values of these as computed from Rodrigues’

formula of (15.35).

There is another class of Legendre functions which are solutions of the differential equation

2 2
(1—x2)d—¥—2xg¥+{n(n+1)— m }y =0 (15.60)
dx dx 12
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and this is referred to as the associated Legendre differential equation. We observe thatif m = 0,
(15.60) reduces to (15.27).

The general solution of (15.60) is
y = CiPy'(x) +C,Q7' () (15.61)

where C, and C, are arbitrary constants. The functions P (x) and Q,"(x) are referred to as asso-

ciated Legendre functions of the first and second kind respectively. These are evaluated from

PMx) = (1)1 -x)"%. d—rrnnpn(x) (15.62)
dx
and
OP () = (_1)m(1_xz)m/2‘j—:Qn(X) (15.63)
X

Relations (15.62) and (15.63) are also known as spherical harmonics.
We will restrict our subsequent discussion to the associated Legendre functions of the first kind,
that is, the polynomials P"(x).

At present, Excel does not have any functions related to Legendre polynomials. MATLAB pro-
vides the legendre(n,x) function that computes the associated Legendre functions of the first

kind of degree n, and order m = 0,1, 2, ..., n evaluated for each element of x.

Example 15.6

Find the following associated Legendre functions and evaluate as indicated.

1 2 3
a. Py(0| o BP0 _ e 0|

Solution:

For this example, we use the relation (15.62), that is,

PP = ("1™ Lop ()
dx

and the appropriate relations of (15.34). For this example,

a.
1 . 2n2d _ 21/2d (3x° 1
PE00[, g = (DI FER00| = et P E(ES)
x =05 x =05
_ 2.1/2 _
= ~(1-x%)"*(3x) = —1.2990
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Form = 0 in (15.62), we get

= -0.125

1
PZ(X)’X:O.S B ( 2 ‘=05

As stated above, the MATLAB legendre(n,x) function computes the associated Legendre
functions of the first kind of degree n and order m = 0,1, 2, ..., n evaluated for each element

3x2—1)‘

of x. Here, n = 2 and thus MATLAB will return a matrix whose rows correspond to the val-
uesof m = 0, m = 1, and m = 2, for the first, second, and third rows respectively.

Check with MATLAB:
disp('The values form =0, m =1 and m = 2 are:'); legendre(2,0.5)

The values for m = 0, m = 1 and m = 2 are:
ans =
-0.1250
-1.2990
2.2500

or more elegantly,

m=0:2; y=zeros(3,2); y(:,1)=m"; y(:,2)=legendre(2,0.5);
fprintf(\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y")

m Legendre
0 -0.1250
1 -1.2990
2 2.2500

2
P00, g = (D P00

2 0.3
_ 2 Q_(5X —3X
- = -5 )

dx 2

x=-05 x=-05

d (15x° -3
= (1_x2)d—X(T) = (L-x*)(15%)|, __, = ~5.6250

x=-05

Here, n = 3, and thus MATLAB will display a matrix whose rows correspond to the values of
m=0,m=1,m=2,and m = 3, for the first, second, third and fourth rows respectively.

Check with MATLAB:

m=0:3; y=zeros(4,2); y(:,1)=m’; y(:,2)=legendre(3,-0.5);
fprintf(\n'); fprintf('m\t Legendre \n'); fprintf(‘%2.0f\t %7.4f \n',y")
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Legendre
0.4375
-0.3248
-5.6250
-9.7428

w NN R o8B

3/2¢° 3/24°
= (-1’ @ -x) 5Py = ~(1-x)" =06 - 1)
25 dx dx

X =0.25

3
PZ(X) x=0.

and since the third derivative of 3x* — 1 is zero, it follows that PS (x) = 0.

In general, if m>n, then Py'(x) = 0.

15.3 Laguerre Polynomials

Another class of polynomials that satisfy the orthogonality principle, are the Laguerre polynomials
L,(x); these are solutions of the differential equation

2
QY a0 iny =
X 2 +(1-x) Hny = 0 (15.64)

These polynomials are computed with the Rodrigues’ formula

n
Lx) = &9 (x"e™) (15.65)
ax"

The orthogonality principle for these polynomials states that
j e L (X)L, (x)dx = 0 (15.66)
0

Example 15.7
Compute the Laguerre polynomials
a. Lox) bLy(x) c Lyx) d. Lyx)

Solution:

Using Rodrigues’s formula of (15.65), we get
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0
L) = €4 (x%e™) = ¢'e™ = ¢’ = 1

dx
L (x) = eX%(xe_X) = fe*—xe™) = 1-x

15.67
L _xd22—x_x—x 2, _ 2 ( )
2(x)_e_2(xe )=¢ee(2-4x+X) = 2-4X+X

dx

3
Ly(x) = ex%(xse_x) = 6-18x+9x° X
dx

The differentiation of the last two polynomials in (15.67) was performed with MATLAB as fol-
lows:

Syms xy z
y=x"2*exp(—x); z=diff(y,2);% Differentiate y twice with respect to x
L2x=exp(x)*z; simplify(L2x)

ans =
2-4*x+x"2

syms xy z w ; y=x"3"exp(—x); z=diff(y,2);% Differentiate y twice
% we cannot differentiate three times at once

w=diff(z);% Differentiate one more time

L3x=exp(x)*w; simplify(L3x)

ans =
6-18*x+9*x"2-x"3

15.4 Chebyshev Polynomials

The Chebyshev polynomials are solutions of the differential equations

2
(1—x2)d—¥—xgy+ nzy =0 (15.68)
dx dx
and
d d
(1—x2)—¥—3x—y+n(n+2)y =0 (15.69)
dx dx

The solutions of (15.68) are referred to as Chebyshev polynomials of the first kind and are denoted
asy = T,(x) " The solutions of (15.69) are the Chebyshev polynomials of the second kind; these are

denoted as y = U,(x). Both kinds comprise a set of orthogonal functions.
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We will restrict our discussion to the T,(x) polynomials. We will plot some of these later in this

section.

Two interesting properties of the T,(x) polynomials are:

1. They exhibit equiripple amplitute characteristics over the range -1 <x <1, that is, within this
range, they oscillate with the same ripple. This property is the basis for the Chebyshev approx-
imation in the design of Chebyshev type electric filters.

2. For |x| > 1 they increase or decrease more rapidly than any other polynomial of order n.

These polynomials are tabulated in reference books which contain mathematical functions. A
good reference is the Handbook of Mathematical Functions, Dover Publications. They can also be
derived from the following relations.

T,(x) = cos(ncosflx) for |x/ <1 (15.70)
T, (X) = cosh(ncosh_lx) for |x|>1 (15.71)

Using (15.70) or (15.71), we can express T,(X) as polynomials in powers of x. Some are shown in
Table 15.2.

TABLE 15.2 Chebyshev polynomials expressed in powers of x

n T,(x)

0 1

1 X

2 %%~ 1

3 4x3 - 3x

4 8x* —8x° + 1

5 16x° — 20> + 5x

6 32x° — 48x* + 18x° — 1

* Some books use the notation C,(x) for these polynomials. However, another class of orthogonal functions known as Genen-

bauer or Ultraspherical functions use the notation Cﬁa)(x) and for this reason, we will avoid notation C,(x) for the Che-
byshev polynomials.
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To show that the relation of (15.70) can be expressed as a polynomial, we let

X = cosy (15.72)
and

Ta(y) = cosny (15.73)
Next, in (15.73), we replace n with n+1 and we get
T,.1(y) = cos(n+1)y = cosnycosy — sinnysiny (15.74)
Similarly, replacing n with n—1, we get
T, 1 (y) = cos(n—1)y = cosnycosy + sinnysiny (15.75)
Now, we add (15.74) with (15.75), and making use of (15.73) and (15.72), we get
Too1 (V) +T,_1(y) = 2cosnycosy = 2T, (y)x = 2XT,(y) (15.76)

or
The1(Y) = 2xT(¥) - Ty _a(Y)

Then, we can replace y with x to get

Tn+1(X) = 2XTn (X) - Tn—l(x)

(15.77)
Recurrence Relation

The polynomials in Table 15.2, can now be verified by using a combination of the above relations.

Thus, for n = 0, (15.73) yields

To(y) = To(x) = 1 (15.78)
For n = 1, from (15.73) and (15.72), we get

Ti(y) = Ty(x) = X (15.79)

To derive the algebraic expressions corresponding to n = 2, 3,4 and so on, we use the recurrence
formula of (15.77). For instance, when n = 2,

To(x) = 2XTy () - To(x) = 2x° -1 (15.80)

and when n = 3,
T4(X) = 2XT,(X) = Ty(x) = 4x°—2x—x = 4x° - 3x (15.81)

Alternately, we can prove the first 3 entries of Table 15.2 with (15.70) by letting y = cos 'x.
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Thus, forn = 0,
To(X) = cos(0 - cos 'x) = cos(0-y) = 1
Forn =1,
T,(x) = cos(1- cos_lx) = c0S(1-y)=rcosy = X
and forn = 2,

T,(x) = cos(2- cos_lx) = C0S(2-y) = cos2y = 2C032y—1

-1 1
20052(00371)() ~1= 2[005(005 X) . cos(cos X)} 1
X X

or

Ty(x) = 2x°-1

Relation (15.71) can be derived from (15.70) as follows:

We recall that
jo —jou
cosa = 6——1;-2-— (15.82)
and
cosha = & +2e_ (15.83)
Then,
cosa = coshja (15.84)
and when |x| > 1,
cos 'x = —jcosh 'x (15.85)

By substitution into (15.70), making use of (15.85), and that cosh(-t) = cosht, we get

T,(X) cos[n(—jcoshflx)] = cos(—jncoshflx) = cosh(jnjcoshflx)

cosh [j(—jncosh_lx)] = cosh(ncosh_lx)

and this is the same as (15.71).
We can also use MATLAB to convert (15.70) and (15.71) to polynomials. For example, if n = 3,

syms X;
expand(cos(3*acos(x))), expand(cosh(3*acosh(x)))

* Let cosa = coshjo = v;then a = cos_lv, jo = cosh_lv, jcos_lv = cosh™'v and (15.85) follows.

15-24 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications



Chebyshev Polynomials

ans =
4*x"3-3*x

ans =
4*x"3-3*x

The MATLAB code below plots the T,(x) for n = 0 through n = 6.

% Chebyshev polynomials

%

x=—1.2:0.01:1.2; Tnx0=cos(0*acos(x));

Tnx1=cos(1*acos(x)); Tnx2=cos(2*acos(x)); Tnx3=cos(3*acos(x)); Tnx4=cos(4*acos(x));
Tnx5=cos(5*acos(x)); Tnx6=cos(6*acos(x));

plot(x, Tnx0, x, Tnx1, x, Tnx2, X, Tnx3, x, Tnx4, x, Tnx5, X, Tnx6);....

axis([-1.2 1.2 —1.5 1.5]); grid; title('Chebyshev Polynomials of the First Kind');

xlabel('x'); ylabel('Tn(x)")

% We could have used the gtext function to label the curves but it is easier with the Figure text
% tool

Figure 15.6 shows the plot of the Chebyshev polynomials of the first kind T,(x) for n = 0
through n = 6.

As mentioned earlier, Chebyshev polynomials, among other applications, are used in the design

of electric filters.” The filters are described in terms of rational polynomials that approximate the
behavior of ideal filters. The basic Chebyshev low-pass filter approximation is defined as

Al(w) = S (15.86)
1+6°T n(w/oc)

where o is the operating radian frequency, o is the cutoff frequency, and o and ¢ are other

parameters that are used to specify the order and type of the electric filter.

For example, if we want to design a second order Chebyshev low-pass filter, we use the Cheby-
shev polynomial

Ty(x) = 2x° —1
and (15.86) becomes

A(w) = e (15.87)
1+ [2(0/0c) —1]

* For a thorough discussion on the design of analog and digital filters refer to Signals and systems with MATLAB Applica-
tions, Orchard Publications, ISBN 0-9709511-6-7.
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Chebyshew Polynomizls of the First Kind
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Figure 15.6. Plot of Chebyshev polynomials with MATLAB

15.5 Summary

Differential equations with variable coefficients cannot be solved in terms of familiar functions
as those which we encountered in ordinary differential equations with constant coefficients.
The usual procedure is to derive solutions in the form of infinite series, and the most common

are the Method of Frobenius and the Method of Picard.

Bessel functions are solutions of the differential equation
i
x2%+xﬂ+(x2—n2)y =0
dx dx

where n can be any number, positive or negative integer, fractional, or even a complex num-
ber. The general solution depends on the value of n.
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e The series
0 K x \N+ 2k 1
= — . -  —— >
In(¥) k20< 2 (2) K Tniks1 "0
where n is any positive real number or zero is referred to as Bessel function of order n.

® The series

P K (X -n+2k 1
J_n(x) = Z(—l) (E) k- M(-n+k+1)

k=0
is referred to as the Bessel function of negative order n.

e Forn = 0,1 and 2 the series reduce to

x° x* x° x°
Jo(x) = 1- 5 5+t A >+t 5 5=
2°-(1H” 2°-(2H" 273" 27-(4hH
X X X X' x°
Ji(x) = =— + + - ...

2 3. 11.21 2%.21.31 27.31.41 2°.41.5

2 W NG W& XlO
J(x) = > - + 5 - + m -...
2°.20 27-11.30 27.21.4!" 2°.31.51 27.4!.6!

e Two more useful relations are

%Jo(x) = _3,(x)

F{x3,00} = x3o()

® Values of J,(X) can be calculated using the appropriate series given above. They also can be

found in math table books, and can also be found with the MATLAB besselj(n,x) function or
the Excel BESSELJ(x,n) function.
¢ The Bessel functions

2 2
Jy (X)) = J:—Xsmx and J 4 ,5,(x) = J;—Xcosx

are known as half-order Bessel functions.

e Besides the above functions known as Bessel functions of the first kind, other Bessel functions,
denoted as Y,(x) and referred to as Bessel functions of the second kind, or Weber functions,
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or Neumann functions exist. Also, certain differential equations resemble the Bessel equation,
and thus their solutions are called Modified Bessel functions, or Hankel functions.

If n is not an integer, J,(x) and J_,(x) are linearly independent; for this case, the general solu-

tion of the Bessel equation is
y = AJ,(X)+BJ_,(x)
n=0,1,2,3, ...
If a and b are distinct roots of Jy(x) = 0, Jg(a) = 0 and Jy(b) = 0, then,
1
j xJo(ax)Jo(bx)dx = 0
0

and thus we say that Jy(ax) and Jy(bx) are orthogonal in the interval 0 <x<1.

The differential equation

2
(1—x2)d—¥— 2x%¥ +n(n+1)y =0
dx

where n is a constant, is known as Legendre’s equation.
The infinite series solution of the Legendre functions, denoted as Q,(x), is referred to as Leg-
endre functions of the second kind.
The Legendre polynomials are defined as
N ) (2n=2k)! o
P00 = 3 (1) (2n 2K)! n-2
&4 2"k (n = k)N (n - 2k)!

where N = g for n = even and N = (nT—l) for n = odd

and the first 6 Legendre polynomials are
Po(x) = 1 Pi(X) = X
P,(X) = %(3x2—1) P(X) = %(5x3—3x)
P,(X) = %(35x4—30x2+3) Po(X) = %(63x5—70x3+15x)

The relation
n

Pa0) = —— 40l 1)
2 -n! dx
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is known as Rodrigues’ formula, and offers another method of expressing the Legendre polyno-
mials.

¢ The Legendre polynomial series of a function f(x) for |x| <1, is

_2n+1¢t

B, = > .

f(x)P,(x)dx
and with this relation we can find a polynomial f(x) defined as
f(x) = BoPo(X) +B;P1(X) + BoPy(X) + ... + B, P,(X) = Z B,P,(x)
n=0

¢ The trigonometric form of the Legendre polynomials is

~1-3-...-(2n-1) 11.3.-...-(2n-3) B
P,cos6 = > 4. .on 2cosne+2 2.4‘.”‘(2n_2)2005(n 2)6
1-3 1-3-...-(2n-5) B
+2.4 2'4"”‘(2n_4)2005(n 4)0 + ...

and the first 6 Legendre polynomials in trigonometric form listed below.

Pocoso =1
P,cos6 = cos6
P,cosp = 200520+ 1

4
P,C0s0 = 5cos398+ 3c0s0
P,C0S0 = 35c0s46 + 20c0s26 + 9

64

P.COSO = 63c0s56 + 35c0s36 + 30C0s6

128

¢ The Legendre polynomials in algebraic form, satisfy the orthogonality principle when m=n as
indicated by the integral

0 m#n

1
[ PaCOPL 00X = {2
- 2n+1

® The Legendre polynomials in trigonometric form satisfy the orthogonality principle when
m = n as indicated by the integral
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- 0 m#n
.[ Pn(cos6)P (cose)sinbde = 2
0 2n+1

¢ The differential equation

2 2
(1—x2)d—¥—2xg—¥+{n(n+l)— m Z}y =0
dx 1-x

is referred to as the associated Legendre differential equation. The general solution of this
equation is

y = C,P(x) + C,Qp(X)

where C, and C, are arbitrary constants. The functions P (x) and Q' (x) are referred to as

associated Legendre functions of the first and second kind respectively. These functions, also
known as spherical harmonics, are evaluated from the relations

P?u>=(—nmu—x%m”-§%P4x)

X

2 g™
QAN = (D" -x)"" - E=Qu0)
dx
e The MATLAB legendre(n,x) function computes the associated Legendre functions of the first
kind of degree n, and order m = 0,1, 2, ..., n evaluated for each element of x.
e The solutions of the differential equation

dy —+(1- x) +ny =0
dx

are known as Laguerre polynomials and are denoted as L,(x). These polynomials are satisfy

the orthogonality principle. They are computed with the Rodrigues’ formula

n
Lx) = 4 (x"e™)
afxn

® The Chebyshev polynomials are solutions of the differential equations

(1- x)d—Y d—Y+ny_0
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and

d’y ,.d
“_3x=L+n(n+2)y = 0

2
(1-x7)
dx dx

The solutions of the first differential equation are referred to as Chebyshev polynomials of the
first kind and are denoted as y = T,(x). The solutions of the second are the Chebyshev poly-

nomials of the second kind; these are denoted as y = U,(x). Both kinds comprise a set of

orthogonal functions.

® The T,(x) polynomials are derived from the relations
T,(x) = cos(n cos_lx) for |x| <1

T,(x) = cosh(ncoshflx) for |x/ >1

These polynomials exhibit equiripple amplitute characteristics over the range -1 <x <1, that
is, within this range, they oscillate with the same ripple as shown in Figure 15.6. This property
is the basis for the Chebyshev approximation in the design of Chebyshev type electric filters.
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15.6 Exercises

1.

Use the appropriate series of the Bessel functions J,(x) to compute the following values using
the first 4 terms of the series and check your answers with MATLAB or Excel.

a. Jp(3) b. 3(2) c Iy ,,(n/6) d. I ,,(n/3)

Use the appropriate Legendre polynomials P, (x) or P;'(x) and Rodrigues’s formulas to com-
pute the following, and check your answers with MATLAB.

a. Py(x)| b. P,(x)| c. P30

x=05 x =0.75 x =0.25

d. PIX|, _gs € Po(O| _ os F P§(x)|x=025

Compute the Legendre polynomial g(x) representing the waveform f(x) of the figure below.
The first 5 terms of P,(X), i.e., Po(x) through P,(x) will be sufficient. Then, use MATLAB or

Excel to plot g(x) and compare with f(x).
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15.7 Solutions to Exercises

1.
a.
2 4 6
B =1t XX _9,81 729 _ 53008
2°.(1H° 27 (2H° 2°-(@3 ‘s 4 64 2304
b.
3 5 7
=X X, x X _ 8,32 18 _ 57g
2 92,4 22.4%.6 22.4%.6°.8 16 384 18432
X=2
C.
3y, (%) = Fsinx = 2 _gin(nsey = 121 _ 28 B _ e
X %=1/ n(n/6) T 2 271 T
d.
31,0 = Fcosx = 2 _cos(nsay = £8.1 _ o8 _ (3508
X ‘= /3 n(n/3) T 2 2n
Check with MATLAB:
besselj(0,3), besselj(1,2), besselj(0.5,pi/6), besselj(—0.5,pi/3)
ans =
-0.2601
ans =
0.5767
ans =
0.5513
ans =
0.3898
We observe that the first value returned by MATLAB above is significantly different from
that we obtained from the series. This is because our computation was based on the first 4
terms of the series. Had we taken also the fifth term our answer would have been —0.2563 and
this is much closer to the value obtained with MATLAB.
2.
We will use the relations of (15.34) and (15.62). They are repeated below for convenience.
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Po(x) =1 Pi(X) = X

1.2 1_3
P,(x) = 5(3x -1) Py(x) = §(5x -3X%)
P,(X) = é(35x4—30x2+3) Pe(X) = %(63x5—70x3+15x)

PR(x) = ()" -x})"%. g——rrnnPn(x)
dx

a.
Pi(X)| o5 = X =05
b.
1.2 2
Pa(0, g7 = 5(3¢ 1) = 0.5(3x(0.75)°— 1) = 0.3438
X =0.75
C.
P, _ o6 = L5x3_3x) = 0.5(5 % (0.25)° ~3 x 0.25) = —0.3359
S 2 x =025
d.
2/2 ¢? d?
PI0],_os = D’ TSP = (1) -S| =0
dx X =05 dx* s
We recall that if m>n, then P (x) = 0.
c.
3
P2(X)|x=—0.5 =0
This is because m > n. In other words,
d® d* {1 2 }
Lp,0=126%-1)1 =0
dx® ? dx® (2
f.
2 2 2.2/2 ¢ 2. d* (1,3
P3(X)|y g5 = (1) (1-X")  —P3(x) = (1-x)7=95(5x" = 3x)
dx ‘= 0.05 dx
=v x=0.25
= (1-0252). 1. 523 — 0.4688(30x) = 3.5160
- ' 2 dx o k=025 =3
Check with MATLAB:
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m=0:1; y=zeros(2,2); y(:,1)=m"; y(:,2)=legendre(1,0.5);
fprintf(\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y")

m Legendre
0 0.5000
1 -0.8660

m=0:2; y=zeros(3,2); y(:,1)=m"; y(:,2)=legendre(2,0.75);
fprintf(\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y")

m Legendre

0 0.3438
1 -1.4882
2 1.3125

m=0:3; y=zeros(4,2); y(:,1)=m"; y(:,2)=legendre(3,0.25);
fprintf(\n'); fprintf('m\t Legendre \n'); fprintf(‘%2.0f\t %7.4f \n',y")

m Legendre
0 -0.3359
1 0.9985
2 3.5156
3 -13.6160

m=0:1; y=zeros(2,2); y(:,1)=m"; y(:,2)=legendre(1,0.5);
fprintf(\n'); fprintf('m\t Legendre \n'); fprintf('%2.0\t %7.4f \n',y")
m Legendre

0 0.5000

1 -0.8660

Here, the legendre(n,x) function computes the associated Legendre functions of degree n
and orderm = 0, 1, ..., n, evaluated for each element of x. For this example, m > n, that is,

m = 2 and n = 1 and the statement m=0:2 is not accepted. For this reason we’ve used
m=0:1.

m=0:2; y=zeros(3,2); y(:,1)=m"; y(;,2)=legendre(2,-0.5);
fprintf(\n'); fprintf('m\t Legendre \n'); fprintf(‘%2.0f\t %7.4f \n',y")

As in (d) above m>n and MATLAB returns
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m Legendre

0 -0.1250
1 1.2990
2 2.2500

m=0:3; y=zeros(4,2); y(:,1)=m"; y(;,2)=legendre(3,0.25);
fprintf(\n"); fprintf('m\t Legendre \n"); fprintf('%2.0f\t %7.4f \n',y")

m Legendre

0 -0.3359
1 0.9985
2 3.5156
3 -13.6160
3.
1
B, = MJ f(X)P, (x)dx
A
For this exercise f(x) = 0 for -1 <x<0 and thus
2n+1pt
B, = = '[Of(x)Pn(x)dx
Then,
1
1pt 1 X 1
B, = 2jox-Po(x)-olx =37, "
1
_ 3! _3.¢| 1
B, = ZIOX-Pl(x)-dx =33 77
B, = §J.lx'l(3x2—1)dx = §Il(Bxg—x)dx = E(i—x—z) 1 =2
272,72 ~ 4, 4l 2/) 0 16
70t 1,03 Tet o4 2 758 3|
B; = > OX-E(SX -3x)dx = ZJ'O (5x" = 3xM)dx = Z(?—?)O =0
B, = gj‘lx-l(35x4—30x2+3)dx = 917 35:8 - 30xC + 3%)dx
4= 21" 8 - 16),
1
_ &(3_5_>f_§92<f 3_x_2) _.3
16\ 6 4 2 32
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and by substitution into

f(x) = ByPo(X) +B;P1(X) + B,Po(X) + ... + B,P,(X) = i B,P,(x)
n=0

we get
F(X) = TPo(X) 4 2Py(X) + = Po(X) + 0 - Py(X) = —P,(X)
4 2 16 32
= }1-1+%-x+1—56-%(3x2—1)—%-%(35x4—30x2+3)
_1,x,15¢ 5 105" 90 9
4727732 32 256 256 256
or

1

+ X+ X — X
so5(15+128 210x° - 105x%)

f(x) =
we note that f(-1) = —-8/256 and f(0) = 15/256. These values are close to zero. Also,
f(1) = 248/256 and this value is close to unity.

We plot f(x) with the MATLAB code below.

x=0: 0.01: 1; fx=(15+128."x+210.*x.A2—-105."x.4)./256; plot(x,fx); xlabel("x’); ylabel(‘f(x)’);
grid
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NOTES
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Chapter 16

Optimization Methods

his chapter introduces three methods for maximizing or minimizing some function in order

to achieve the optimum solution. These methods are topics discussed in detail in a branch of

mathematics called operations research that is concerned with financial and engineering eco-
nomic problems. Our intent here is to introduce these methods with the basic ideas. We will dis-
cuss linear programming, dynamic programming, and network analysis and we will illustrate these
with some simple but practical examples.

16.1 Linear Programming

In linear” programming we seek to maximize or minimize a particular quantity, referred to as the
objective, which is dependent on a finite number of variables. These variables may or may not be
independent of each another, and in most cases are subject to certain conditions or limitations
referred to as constraints.

Example 16.1

The ABC Semiconductor Corporation produces microprocessors (pPs) and memory (RAM)

chips. The material types, A and B, required to manufacture the uPs and RAMs and the profits
for each are shown in Table 16.1.

TABLE 16.1 Data for Example 16.1

Parts of Material Types
uPs RAMSs (1000s)
Semiconductor Material A 3 2
Semiconductor Material B 5 10
Profit $25.00 per unit | $20.00 per 1000

Due to limited supplies of silicon, phosphorus and boron, its product mix at times of high con-
sumer demand, is subject to limited supplies. Thus, ABC Semiconductor can only buy 450 parts of
Material A, and 1000 parts of Material B. This corporation needs to know what combination of
uPs and RAMs will maximize the overall profit.

* A linear program is one in which the variables form a linear combination,i.e., are linearly related. All other programs are
considered non-linear.
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Solution:

Since with Material A we can produce 3 puPs and 2 RAMs, and with Material B 5 uPs and 10
RAMs, the corporation is confronted with the following constraints:

3Xx + 2y <450
5x + 10y <1000
We now can state the problem as

Maximize z = 25 x puP + 20 x RAMs (16.1)

subject to the constraints

3x + 2y <450
5x + 10y < 1000

(16.2)

Two additional constraints are x>0, y>0, and x and y must be integers.

For this example, there are only two variables, x and y ; therefore, a graphical solution is possible.
We will solve this example graphically.

The x and y intercept corresponding to the above equations is shown in the plot of Figure 16.1

. . . . *
where the cross-hatched area indicates the feasible region.

y
250 +
3x+ 2y = 450
200 £\ .
Isoprofit line
150 -
100
50 - b 5x + 10y = 1000
/
| ' X

T T I
50 100 150 200 250
Figure 16.1. Plot of constraint lines for Example 16.1

The equation of the straight line of the maximum profit is referred to as isoprofit line. This line will
pass through one of the three corners denoted as a, b, and c.

* The feasible region is the area which includes all points (x,y ) satisfying all constrains.
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The isoprofit line that we are interested is described by the equation

z = 25x uP + 20 x RAM = constant

(16.3)
= 25x+20y = C
We can express this equation in y = mx + b form, that is,
25 C
= -—=X+—==-1 4
y 20%* 25 1.25x + k (16.4)

where k is the y-intercept. Therefore, all possible isoprofit lines have the same slope, that is, are
parallel to each another, and the highest isoprofit line passes through point b.

The coordinates of point b in Figure 16.1 are found by simultaneous solution of

3x+2y = 450
5x + 10y = 1000

Using MATLAB for the solution of (16.5) we get

syms x y
[x yl=solve(3"x+2"y-450, 5*x+10"y-1000)

(16.5)

X =
125
y =
75/2

Of course, these values must be integers, so we accept the values x = 125, and y = 37. Then, by
substitution into (16.1),

Ziax = 25 x 125 +20 x 37 = $3865 (16.6)

and the isoprofit line can be drawn from the equation
25x + 20y = 3865 (16.7)
by first letting X = 0, then, y = 0. Then, we obtain the points

x = 3865 _ 1546

25
and

y = 3865 _ 19395
20

This is shown as a dotted line on the plot of Figure 16.1.

It was possible to solve this problem graphically because it is relatively simple. In most cases, how-
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ever, we cannot obtain the solution by graphical methods and therefore, we must resort to alge-
braic methods such as the simplex method. This and other methods are described in operations
research textbooks.

We can find the optimum solution to this type of problems with Excel’s Solver feature. The proce-
dure is included in the spreadsheet of Figure 16.2.

A [ B | <C D E F
Optimization - Maximum Profit for Example 16.1
1. Enter zeros in B12 and B13 \2. In B15 enter =25*B12+20*B13

3.In B17 enter =3*B12+2*B13 and in B18 =5*B12+10*B13
4. From the Tools drop menu select Solver. Use Add-Ins if necessary to add it.
5. On the Solver Parameters screen enter the following:
Set Target Cell: B15

Equal to: Max

By Changing Cells: B12:B13
Click on Add and enter Constraints:
10 |B12=Integer, Add B13=Integer, Add B12>=0, Add B13>=0,
11 |Add B17<=450, Add B18<=1000, OK, Solve

OO |N|O|OBR|WIN|F-

12 X(uPs)= 124
13 y(RAMs)= 38
14
15 Maximum Profit=|  $3,860
16
17 |Semiconductor Material A= 448
18 |Semiconductor Material B= 1000
19

20 [Note: Contents of A12:A18 are typed-in for information only

Figure 16.2. Spreadsheet for solution of Example 16.1 with Excel’s solver

16.2 Dynamic Programming
Dynamic Programming is based on R. Bellman’s Principle of Optimality which states that:

An optimum policy has the property that whatever the initial state and the initial decisions are,
the remaining decisions must constitute an optimum policy with regard to the state resulting from
the first decision.

Figure 16.3 represents a line graph, where the nodes a through h represent the states, and the
choice of alternative paths when leaving a given state, is called a decision. The alternative paths
are represented by the line segments ab, ac, bd, and so on.
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Figure 16.3. Line graph for a typical dynamic programming example

We assume that all segments are directed from left to right, and each has a value assigned to it
which we will refer to as the cost. Thus, there is a cost associated with each segment, and it is usu-

ally denoted with the letter J. For example, for the path a, ¢, f, and h, the cost is
Jah = JaC+JCf+th (16.8)
The costs for the other possible paths are defined similarly.

For the line graph of Figure 16.3, the objective is to go from state a to state h with minimum cost.
Accordingly, we say that the optimum path policy for this line graph is

‘]min = min{("]ac + ch + ‘]fh)’ (‘]ac + ‘]Ce + ‘Jeh)s (169)
(Jap +Ipg + Jan) Uap +Ipg + Ign) s

Now, let us suppose that the initial state is a, and the initial decision has been made to go to state
b. Then, the path from b to h must be selected optimally, if the entire path from a to h is to be
optimum (minimum in this case).

Let the minimum cost from state b to h be denoted as g, . Then,

Oy = Min{(Jpg+Ign) Jpg + Jgn)} (16.10)

Likewise, if the initial decision is to go from state a to ¢, the path from state ¢ to h must be opti-
mum, that is,

The optimum path policy of (16.9) can now be expressed in terms of (16.10) and (16.11) as
9a= Jmin = MIN{(Jgp +9p): Jac +9c)} (16.12)

This relation indicates that to obtain the minimum cost we must minimize:
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1. The part which is related to the present decision, in this case, costs J,, and J .

2. The part which represents the minimum value of all future costs starting with the state which
results from the first decision.

Example 16.2

Find the minimum cost route from state a to state m for the line graph of Figure 16.4. The line
segments are directed from left to right and the costs are indicated beside each line segment.

Figure 16.4. Line graph for Example 16.2

Solution:

We observe that at states h, k, d, and f have no alternative paths since the lines are directed
from left to right. Therefore, we make the first decision at state e. Then,

ge = Min{(3+9),(5+0,)} = min{(3+5),(5+4)} =8

(16.13)
(e>h—->m)
Next, we make decisions at states b and c.
g, = Min{(9+9,), (6+0,)} = min{(9+6),(6+8)} = 14 (16.14)
(b—>e)
Jc = Min{(4+9,),(6+9gy)} = min{(4+8),(6+8)} =12 (16.15)
(c>e)
The final decision is at state a and thus
g, = Min{(5+9,).(3+9,)} = min{(5+14),(3+12)} = 15 (16.16)
(a—>0¢)
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Therefore, the minimum cost is 15 and it is achieved through path a — ¢ — e — h — m, as shown
in Figure 16.5

Figure 16.5. Line graph showing the minimum cost for Example 16.2

Example 16.3

On the line graph of Figure 16.6, node A represents an airport in New York City and nodes B
through L several airports throughout Europe and Asia. All flights originate at A and fly east-
ward. A salesman must leave New York City and be in one of the airports H, J, K, or L at the
shortest possible time. The encircled numbers represent waiting times in hours at each airport.
The numbers in squares show the hours he must travel by an automobile to reach his destination,
and the numbers beside the line segments indicated the flight times, also in hours. Which airport
should he choose ( H, J, K, or L) to minimize his total travel time, and in how many hours after
departure from A will he reach his destination?

H (3]

7

Figure 16.6. Line graph for Example 16.3
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Solution:
The hours that the salesman must travel by automobile to reach his destination are

The first decisions are made at D, E, and F. Then,

Op = 2+min{(5+0y),(4+9y)} = 2+min{(5+3),(4+2)} =2+6 =38 (16.18)
D—-1J
g = 4+min{(3+0;), (4+g)} = 4+min{(3+2),(4+4)} = 4+5 =9 (16.19)
E—>J
O = 3+min{(6+9y),(7+9,)} = 3+min{(6+4),(7+3)} = 3+10 = 13 (16.20)
F>K or F>L
The next decisions are made at B and C where we find that
Og = 4+min{(4+0p),(2+9g)} = 4+min{(4+8),(2+9)} =4+11 =15 (16.21)
B->E
Oc = 3+min{(7+9gg), (5+9gp)} = 3+min{(7+9),(5+13)} = 3+16 = 19 (16.22)
C—>E
The final decision is made at A, where we find
ga = Min{(8+9g),(6+9c)} = min{(8+15),(6+19)} = 23 (16.23)

A—>B

Therefore, the minimum cost (minimum time from departure to arrival at destination) is 23
hours and it is achieved through path A — B — E — J, as shown in Figure 16.7.

Figure 16.7. Line graph showing the minimum cost for Example 16.3
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Example 16.4

A start-up, high-technology company, has $4,000,000 to invest in three different products A, B
and C. Investments in each product are assumed to be multiples of $1,000,000 and the company
may allocate all the money to just one product or split it between these three products. The
expected profits are shown in Table 16.2.

TABLE 16.2 Amounts invested and return on investment for each product

Investments Amount Invested
0 ]$1,000000 |[$2,000000 | $3,000000 | $4,000,000

Return on Investment

Product A 0 $2,000,000 | $5,000,000 $6,000,000 $7,000,000
Product B 0 $1,000,000 | $3,000,000 $6,000,000 $7,000,000
Product C 0 $1,000,000 | $4,000,000 $5,000,000 $8,000,000

How should the money be allocated so that company will realize the maximum profit?
Solution:

This problem can also be solved with linear programming methods but we will use the so called
tabular form of solution. Let

denote the profits in millions from product i, when x units of dollars are invested in it. For sim-
plicity, we express the profits in millions, and we enter these in Table 16.3.

TABLE 16.3 Modified Table 16.2

X 0 1 2 3 4
p(x)
pA(x) 0 2 5 6 7
pB(X) 0 1 3 6 7
pe(X) 0 1 4 5 8

Our objective is to maximize the total profit z that represents the sum of the profits from each

product, subject to the constraint that the amount invested does not exceed four million dollars.
In other words is, we want to

maximize z = pA(X) + pg(X) + pc(X) (16.25)
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subject to the constraint
Xp+Xg+Xc <4 (16.26)
where X,, Xg, and X, are the amounts to be invested in products A, B and C respectively.

The computations are done in three stages, one per product. We start by allocating units (mil-
lions) to Product C (Stage C), but since we do not know what units were allocated to the previous
products A and B, we must consider all possibilities.

We let vj(u) denote the value of the optimum profit that can be achieved, where the subscript j

indicates the number or stage assigned to the product, i.e., A for Product A, B for Product B, and
C for Product C, and u represents the number of money units. Also, we let dj(u) be the decision

that is being made to achieve the optimum value from vj(u).

At Stage C, j = C, and u = 4, i.e., 4 millions assumed to be allocated to Product C.

The possibilities that we allocate 0 or 1 or 2 or 3 or 4 units (millions) to Product C, and the
corresponding returns are, from Table 16.3,

Ve (4) = max{pc(0), pc(1), pc(2), Pc(3), pc(4)} = max{0,1,4,5,8} = 8 (16.27)
with decision
de(4) = 8 (16.28)
that is, the maximum appears in the fourth position since the left most is the zero position.

The next possibility is that one unit was invested in either Product A or Product B, by a previous
decision. In this case, do not have 4 units to invest in Product C; we have three or less.

If we invest the remaining three units in Product C, the optimum value v (3) is found from

VC(?’) = max{pC(O)a pC(l)a pC(Z)a pC(3)} = maX{O, 1: 47 5} = 5 (1629)
with decision
de(3) =5 (16.30)
If we have only two units left, and we invest them in Product C, we obtain the maximum from
Ve (2) = max{pc(0), pc(l), pc(2)} = max{0,1,4} = 4 (16.31)
with decision
de(2) = 4 (16.32)

With only one unit left to invest, we have
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V(1) = max{pc(0), pc(1)} = max{0,1} =1 (16.33)
with decision
de(1) = 1 (16.34)
Finally, with no units left to invest in Product C,
Ve (0) = max{pc(0)} = max{0} =0 (16.35)
with decision
de(0) =0 (16.36)

With these values, we construct Table 16.4.

TABLE 16.4 Optimum profit and decisions made for Stage C

u
0 1 2 4
Stage () 0 1 4 8
C
de(u) 0 1 2 3 4
Stage Vvg(U)
B
dg(u)
SAtage Va(u)
da(u)

Next, we consider Stage B, and since we do not know what units were allocated to Product A
(Stage A), again we must consider all possibilities.

With j = Band u = 4,3,2,1 and 0, we have
vg(4) = max{pg(0)+Vvc(4-0),pg(l) +Vvc(4-1),pg(2) (16.37)
+Ve(4-2), pg(3) +Ve(4-3), pg(4) +Vvc(4-4)}

This expression says that if zero units were invested in Product B, it is possible that all four units
were invested in Product C, or if one unit was invested in Product B, it is possible that 3 units were
invested in Product C, and so on. Inserting the appropriate values, we get

vg(4) = max{0+8,1+53+4,6+1,7+0} =8 (16.38)

with decision
dg(4) =0 (16.39)
Numerical Analysis Using MATLAB and Spreadsheets, Second Edition 16-11
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since the maximum value is the zero position term.

Using a similar reasoning, we have

Vg (3) = max{pg(0) +Vv:(3-0),pg(1) +Vv(3-1),pg(2)
+Ve(3-2),pg(3) +Vc(3-3)}
or
Vg(3) = max{0+51+4,3+1,6+0} = 6
with decision
dg(3) = 3
Also,
Vg(2) = max{pg(0) +Vvc(2-0), pg(1) +Vc(2-1),pg(2)+vc(2-2)}
or
Vg(2)= max{0+4,1+1,3+0} = 4
with decision
dg(2) = 0

Vg (1) = max{pg(0) +Ve(1-0), pg(1) +ve(l-1)}
or
Vg(1) = max{0+1,1+0} = 1

with decision

dg(1) = 0
if we consider the zero position term, or
dg(1) = 1
if we consider the first position term.
Also,
Vg (0) = max{pg(0) +v:(0-0)}
or

vg(0) = max{0+0} =0
with decision
dg(0) = 0

(16.40)

(16.41)
(16.42)
(16.43)
(16.44)

(16.45)
(16.46)

(16.47)

(16.48)

(16.49)

(16.50)

(16.51)

(16.52)

Next, we update the previous table to include the Stage B values. These are shown in Table 16.5.
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TABLE 16.5 Updated table to include Stage B values

u
0 1 2 4
Stage ve(u) 0 1 4 8
C
de(u) 0 1 2 3 4
Stage vg(u) 0 1 4 6 8
B
dg(u) 0 1 0 3 0
Stage Va(u)
A
da(u)

Finally, with j = A and u = 4 ~

Va(4) = max{pa(0) +Vvg(4-0), pa(1) +Vg(4—-1),pa(2) (16.53)
+Vg(4-2), pa(3) +Vg(4-3), pa(4) +Vvg(4-4)}

or
Vo(4) = max{0+8,2+6,5+4,6+1,7+0} = 9 (16.54)
with decision
du(4) = 2 (16.55)

We complete the table by entering the values of Stage A in the last two rows as shown in Table
16.6. The only entries are in the last column, and this is always the case since in deriving v,(4)

and d,(4), all possibilities have been considered.

Table 16.6 indicates that the maximum profit is realized with v, (4) = 9, that is, 9 units, and thus
the maximum profit is $9,000,000.

To determine the investment allocations to achieve this profit, we start with d, (4) = 2; this tells

us that we should allocate 2 units to Product A, and the given table shows that 2 units
($2,000,000) invested in this product will return $5,000,000.

* Since this is the first stage, all 4 units can be allocated to the Product A or some of these can be dllocated to Products B and
C. Therefore, vp(4) considers all possibilities.
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TABLE 16.6 Updated table to include values for all stages

u

0 1 2 3 4

Stage AQ)) 0 1 4 5 8
C

de(u) 0 1 2 3 4

Stage vg(U) 0 1 4 6 8
B

dg(u) 0 1 0 3 0

Stage Va(u) 9
A

da(u) 2

We now have two units left to invest in Products B and C. To find out where we should invest
these units, we consider the decision at Stage B. Since two out of the four units have already been
invested, we have dg(4 - 2) = dg(2), and by reference to the Table 16.6, we see that d,(2) = 0.

This tells us that we should not invest any units in Product B if only two units are left. The deci-
sion at Stage C yields do(4-0-2) = dc(2), and from Table 16.6, d-(2) = 2. This indicates that

we should invest the remaining two units to Product C where we can get a return of $4,000,000.
In summary, to obtain the maximum profit of $9,000,000, we should allocate:

1. two units to Product A to earn $5,000,000

2. zero units to Product B to earn $0

3. two units to Product C to earn $4,000,000

16.3 Network Analysis

A network, as defined here, is a set of points referred to as nodes and a set of lines referred to as
branches. Thus, Figure 16.8 is a network with 5 nodes A, B, C, D and E, and 6 branches AB,
AC, AD, BD, BE, and CD.

Figure 16.8. A typical network
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Branches can be either directed (or oriented), if they have a direction assigned to them, that is, one-
way, or two-way. If no direction is assigned, they are considered to be two-way. Thus, the branches
BD and BE in Figure 16.8, are directed but the others are not.

A network is said to be connected, if there is a path (branch) connecting each pair of nodes. Thus,
the network shown in Figure 16.8 is connected.

Figure 16.9. A network which is connected

The network of Figure 16.9 is also connected. However, the network of Figure 16.10 is not con-
nected since the branch CD is removed.

@ D
©

Figure 16.10. A network which is not connected

A tree is a connected network which has n branches and n + 1 nodes. For example, the network of
Figure 16.11 is a tree network.

® ®

@ D
Figure 16.11. A tree network

Network analysis is a method that is used to solve minimum span problems. In such problems, we
seek to find a tree which contains all nodes, and the sum of the costs (shortest total distance) is a
minimum.

Example 16.5

Figure 16.12 represents a network for a project that requires telephone cable be installed to link 7
towns. The towns are the nodes, the branches indicate possible paths, and the numbers beside the
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branches, show the distance (not to scale) between towns in kilometers. Find the minimal span-
ning tree, that is, the least amount of telephone cable required to link each town.

Figure 16.12. Network for Example 16.5

Solution:

For convenience, we redraw the given network with dotted lines as shown in Figure 16.13, and
we arbitrarily choose A as the starting node.

Figure 16.13. Network of Example 16.5 with no connections

We observe that there are 3 branches associated with node A, i.e., AB, AD, and AC. By inspec-
tion, or from the expression

min{AB =3,AD=5AC=4} = AB = 3 (16.56)

we find that branch AB is the shortest. We accept this branch as the first branch of the minimum
span tree and we draw a solid line from Node A to Node B as shown in Figure 16.14.

@ -~ @
3 ~5 6,7 .5
N Vs N\

5 S 7 A
@f----1--- @ ©
\\ -4 AN //2
4 ~ // h 4
~N N

©

Figure 16.14. Network of Example 16.5 with first connection
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Next, we consider all branches associated with Nodes A and B. We find that the minimum of
these is

min{AD =5,AC =4,BD=5BE =8} = AC = 4 (16.57)

and thus, AC is connected to the network as shown in Figure 16.15.

Figure 16.15. Network of Example 16.5 with the second connection

We continue by considering all branches associated with Nodes A, B and C, and we find that the
shortest is

min{AD =5 BE=8,BD=5CD=4,CF=10} = CD = 4 (16.58)

and we add branch CD to the network shown in Figure 16.16. The dotted lines AD and BD have

been removed since we no longer need to consider branch AD and BD, because Nodes B and D
are already connected; otherwise, we will not have a tree network.

Figure 16.16. Network of Example 16.5 with the third connection

Next, considering all branches associated with Nodes B, C, and D and we find that the shortest is
min{BE = 8, DE = 6, DG = 7,DF = 5,CF = 10} = DF = 5 (16.59)

and the network now is connected as shown in Figure 16.17.
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Figure 16.17. Network of Example 16.5 with the fourth connection

Continuing, we get
min{BE=8,DE=6,DG=7} = DE =6 (16.60)

and the network is connected as shown in Figure 16.18

Figure 16.18. Network of Example 16.5 with the fifth connection
The last step is to determine the shortest branch to Node G. We find that
Min{EG =5DG=7,FG=2} = FG = 2 (16.61)

and the complete minimum span tree is shown in Figure 16.19.

Figure 16.19. Network of Example 16.5 with all connections

Figure 16.19 shows that the minimum distance is 3+4 +4+6 +5+2 = 24 kilometers.
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16.4 Summary

Linear programming is a procedure we follow to maximize or minimize a particular quantity,
referred to as the objective, which is dependent on a finite number of variables. These variables
may or may not be independent of each another, and in most cases are subject to certain con-
ditions or limitations referred to as constraints.

Dynamic Programming is based on R. Bellman’s Principle of Optimality which states that an
optimum policy has the property that whatever the initial state and the initial decisions are,
the remaining decisions must constitute an optimum policy with regard to the state resulting
from the first decision.

A network, as defined in this chapter, is a set of points referred to as nodes and a set of lines
referred to as branches.

A tree is a connected network which has n branches and n + 1 nodes.

Network analysis is a method that is used to solve minimum span problems. In such problems, we
seek to find a tree which contains all nodes, and the sum of the costs (shortest total distance) is
a minimum.
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16.5 Exercises

1. A large oil distributor can buy Grade A oil which contains 7% lead for $25.00 per barrel from
one oil refinery company. He can also buy Grade B oil which contains 15% lead for $20.00
per barrel from another oil refinery company. The Environmental Protection Agency (EPA)
requires that all oil sold must not contain more than 10% lead. How many barrels of each
grade of oil should he buy so that after mixing the two grades can minimize his cost while at

the same time meeting EPA’s requirement? Solve this problem graphically and check your
answers with Excel’s Solver.

2. Use dynamic programming to find the minimum cost route from state a to state m for the line
graph shown below. The line segments are directed from left to right and the costs are indi-
cated beside each line segment.

3. Repeat Example 16.3 for the line graph shown below.

4. A salesman has 4 hours available to visit 4 of his customers. He will earn the commissions
shown on the table below for various visiting times. Compute the optimal allocation of time
that he should spent with his customers so that he will maximize the sum of his commissions.
Consider only integer number of visiting hours, and ignore travel time from customer to cus-
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tomer. The third row (zero hours) indicates the commission that he will receive if he just calls
instead of visiting them.

Visit Time Customer
(Hours) 1 2 3 4
0 $20 $40 $40 $80

1 $45 $45 $52 $91
2 $65 $57 $62 $95
3 $75 $61 $71 $97
4 $83 $69 $78 $98

5. Repeat Example 16.5 for the network shown below.
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16.6 Solutions to Exercises
1

Let x be the number of barrels of Grade A oil and y be the number of barrels of Grade B oil.
The objective is to minimize z = $25.00x + $20.00y or, for simplicity,

z = 25x+20y (1)
We want to minimize (1) because it represents a cost, not a profit.

Each barrel to be sold must not contain more than 10% lead and since Grade A contains 7%
and Grade B 15%, we must have

0.07x+0.15y <0.10 (2)

The oil of Grade A and Grade B used in each barrel to be sold must be equal to unity. Thus,
x+y =1 (3)

Moreover, x and y cannot be negative numbers, therefore

x>0 y>0 (4)
The problem then can be stated as:
Minimize (1) subject to the constraints of (2), (3), and (4). To determine the feasible region

we plot (2) and (3) where the x and y crossings are found by first setting x = 0 and then

y = 0. Thus from (2),if x = 0,y = 0.10/0.15 = 2/3 andify = 0, x = 0.10/0.07 = 10/7.
Likewise, from (3),if x = 0,y = 1,andify = 0, x = 1.

Isoprofit line
1- N /X+y = 1

1/3 1 0.07x + 0.15y = 0.10

N

1 | | 1 |
17 2/7 3/7 4,7 5,7 6/7 1 8/7 9,7 10/7

The isoprofit line passes through point b and its coordinates are found by simultaneous solu-
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tion of (2) and (3). For convenience, we use the following MATLAB code:
syms x y; [x,y]=solve(0.07*x+0.15*y-0.10, x+y—1)

3/8

Therefore, the distributor should buy Grade A oil at the ratio x = 5/8 and Grade B at the
ratio y = 3/8 and by substitution into (1)

e 5403 185 _
Z = 25><8+20><8 =% = $23.125

and this represents his cost per barrel. The isoprofit line is
z = 25x+ 20y = 23.125
and the y -intercept is found by setting x in the equation above to zero and we find that

y —intercept = 23.125/20 = 1.1563
Check with Excel’s Solver:

A | B [ cC D E F
1 [Optimization - Minimum Cost for Exercise 16.1
2 |1. Enter zeros in B12 and B13 \2. In B15 enter =25*B12+20*B13
3 [3.1n B17 enter =0.07*B12+0.15*B13 and in B18 =B12+B13
4 |4. From the Tools drop menu select Solver. Use Add-Ins if necessary to add it.
5 [5. On the Solver Parameters screen enter the following:
6 |Set Target Cell: B15
7 |Equal to: Min
8 |By Changing Cells: B12:B13
9 |Click on Add and enter Constraints:
10 |B12>=0, Add B13>=0,
11 |Add B17<=0.10, Add B18=1, OK, Solve
12 Grade A=| 0.625002
13 Grade B=| 0.374999
14
15 Minimum Cost=| $23.125
16
17 Lead Content= 0.10
18 Grade A + Grade B=| 1.000001
19
20 [Note: Contents of A12:A18 are typed-in for information only
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2.

Since the segments are directed from left to right, state e is the first node where a decision
must be made and thus

Je = Min{3+90,,4+9,} = min{3+4,4+5} =7

Therefore, the best route from state e to state m passes through state h. Next,

O, = Min{8+9y4,5+9,} = Min{8+5,5+7} =12

and

Oc = Min{4+9,6+0¢} =min{d+7,6+7} =11
Finally,

g, = Min{3+9,,5+0.} = min{3+12,5+11} = 15

Thus, the best (shortest) pathisa—>b—>e—>h-—>m

The numbers in circles represent the waiting time at these nodes.

Last stage: g,y = 2, g; = 2,0, = 3,and g, = 4
H J K L
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Next stage to the left:

9p

9

= 1+min{6+9,,4+0;}

3+min{4+9;5+0y}

1+6

3+6

g = 4+min{7+9y,6+9,} =4+10 = 14

Next to initial stage:

Og = 5+min{2+gp,4+9g} =5+9 =14

Oc = 2+min{7+9gg, 1+0g} = 2+15 = 17

Initial stage:

gy = 0+min{3+9g,5+9c} = 17

7

9

from D to J

from E to J

fromFtoKor FtoL

from B to D

fromCtoF

from Ato B

Therefore, minimum path is from A — B — D — J and the numerical minimum cost is 17.

A | B C D E F G
1 |Exercise 16.4 - Solution
2 |A salesman has 4 hours available to visit of his customers. He will earn the commissions shown on
3 |the table below for various visiting times. Compute the optimal allocation of time that he should spend
4 |with his customers so that he will maximize the sum of his commissions. Consider only integer number
5 |of visiting hours, and ignore travel time from customer to customer. The third row (zero hours)
6 |indicates the commission that he will receive if he just calls instead of visiting them.
7
8 | Visit Time Customer
9 (Hours) 1 2 3 4
10 0 $20 $40 $40 $80
11 1 $45 $45 $52 $91
12 2 $65 $57 $62 $95
13 3 $75 $61 $71 $97
14 4 $83 $69 $78 $98
15
16 [Solution
17 |we will follow the same method as in Example 16.4
18 |
19 |itis convenier|1t to rearrange‘ the table as s‘hown below.
20

continued on the next page
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A B C D E F G H I

21 u

22 |fx) \ x 0 1 2 3 4

23 |f1(x) 20 45 65 75 83

24 [f2(x) 40 45 57 61 69

25 |f3(x) 40 52 62 71 78

26 [f4(x) 80 91 95 97 98

27

28 m4(4)=|max(B26,C26,D26,E26,F26) 98 |with d4(4)= |4
29 m4(3)=|max(B26,C26,D26,E26) 97|with d4(3)= |3
30 m4(2)=|max(B26,C26,D26) 95 |with d4(2)= |2
31 m4(1)=|max(B26,C26) 91|with d4(1)= |1
32 m4(1)=|max(B26) 80|with d4(0)= |0
33

34 |The values of m4(u) and d4(u) are entered in the table below.

35

36 u

37 0 1 2 3 4

38 |m4(u) 80 91 95 97 98

39 [d4(u) 0 1 2 3 4

40 |m3(u) 120 132 143 153 162

41 |d3(u) 0 1 1 2 3

42 |m2(u) 160 172 183 193 202

43 |d2(u) 0 0 0 0 0

44 Im1(u) 248

45 [d1(u) 2

46

47 |Next, we compute the values of m3(u) and d3(u)

48 | |

49 |m3(4)=max[f3(0)+m4(4-0), f3(1)+m4(4-1), f3(2)+m4(4-2), f3(3)+m4(4-3), f3(4)+m4(4-4)]

50 MAX(B25+F38,C25+E38,D25+D38,E25+C38,F25+B38) 162| with d3(4)=|3
51 | | |

52 |m3(3)=max(f3(0)+m4(3-0), f3(1)+m4(3-1), f3(2)+m4(3-2), f3(3)+m4(3-3)]

53 MAX(B25+E38,C25+D38,D25+C38,E25+B38) 153| with d3(3)=|2
54 | | |

55 |m3(2)=max[f3(0)+m4(2-0), f3(1)+m4(2-1), f3(2)+m4(2-2)]

56 MAX(B25+D38,C25+C38,D25+B38) 143| with d3(2)=|1
57 |

58 [m3(1)=max[f3(0)+m4(1-0), f3(1)+m4(1-1)]

59 MAX(B25+C38,C25+B38) 132| with d3(1)=|1
60

61 |m3(0)=max[f3(0)+m4(0-0)]

62 | MAX(B25+B38) 120| with d3(0)=|0
continued on the next page.
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A B C D E F G H
63
64 |These values are now added to the table above, Rows 40 and 41
65 | | |
66 |Similarly, we compute the values of m2(u) and d2(u)
67 | | |
68 |m2(4)=max([f2(0)+m3(4-0), f2(1)+m3(4-1), f2(2)+m3(4-2), f2(3)+m3(4-3), f2(4)+m3(4-4)]
69 MAX(B24+F40,C24+E40,D24+D40,E24+C40,F25+B40) 202| with d2(4)=
70
71 |m2(3)=max[f2(0)+m3(3-0), f2(1)+m3(3-1), f2(2)+m3(3-2), f2(3)+m3(3-3)]
72 MAX(B24+E40,C24+D40,D24+C40,E24+B40) 193| with d2(3)=
73 | | |
74 |m2(2)=max[f2(0)+m3(2-0), f2(1)+m3(2-1), f2(2)+m3(2-2)]
75 MAX(B24+D40,C24+C40,D24+B40) 183| with d2(2)=
76 |
77 |m2(1)=max[f2(0)+m3(1-0), f2(1)+m3(1-1)]
78 MAX(B24+C40,C24+B40) 172| with d2(1)=
79
80 |m2(0)=max[f2(0)+m3(0-0)]
81 MAX(B24+B40) 160| with d2(0)=
82 \
83 | These values are added to the table above, Rows 42 and 43
84 | | | |
85 |Stage 1 is the last stage and there is only one state associated with it, u=4, and thus
86 | | | | |
87 |m1(4)=max[f1(0)+m2(4-0), f1(1)+m2(4-1), f1(2)+m2(4-2), f1(3)+m2(4-3), f1(4)+m2(4-4)]
88 MAX(B23+F42,C23+E42,D23+D42,E23+C42,F23+B42) 248| with d1(4)=
89 | | |
90 |These two values are the last entries into the table in Cells F44 and F45
91 | | | | |
92 |The table (Rows 36 through 45) indicates that, to achieve the maximum sum of commissions,

93 |the salesman should spend 2 hours with Customer #1 (d1(4)=2), 0 hours with Customer #2
94 |(d2(4)=0), and for the remaining 2 hours he should spend 1 hour with Customer #3 and 1
95 |hour with Customer #4.

96

97 |Check:

98 Customer #1, 2 hours = $65

99 Customer #2, 0 hours = $40

100 Customer #3, 1 hour = $52

101 Customer #4, 1 hour = $91

102 Total = $248
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5.
min[A—B, A—C] = min[30,20] = 20  A—C
min[A—B, C—D, C—>F] = min[30,50,40] = 30  A—B
min[B —D, B—>E, C—D, C—>F] = min[40,50,50,40] = 40  choose B — D
min[B—->E, D—>E, D—>F, C—F] = min[50, 90, 50, 40] = 40 C—o>F
min[B—>E, D—>E, F—E] = min[50,90,70] = 50 B —E
50
(B) B
30
40
D)
20
o 40 @
and thus the minimum distance is 20 + 30 + 40 + 40 + 50 = 180 kilometers
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Symbols

% (percent) symbol in MATLAB 1-2
%d in MATLAB 2-21

%e in MATLAB 2-21

%s in MATLAB 2-21

%u in MATLAB 2-21

=IF in Excel 2-24

A

abs(z) MATLAB function 1-22

absolute cell in Excel 2-19

absolutely convergent function 15-10

Add Trendline feature in Excel 8-5

adjoint of a matrix - see matrix

alternating currents 3-1

angle(z) MATLAB function 1-22

angular velocity 3-2

antidifference 7-11

approximations with Excel 2-7

AutoFill feature in Excel feature 2-9

axis([xmin xmax ymin ymax])
MATLAB command 1-21

B

Bairstow’s method 2-17
Bessel functions

defined 15-1

modified 15-7

of order n 15-1

of negative order n 15-2

of the first kind 15-6

of the second kind 15-6
besselj(n,x) MATLAB function 15-3
BESSELJ(x,n) Excel function 15-3
beta distribution 13-20
beta function 13-17
beta(m,n) MATLAB function 13-19
BETADIST Excel function 13-20
Bisection method

for root approximation 2-19
box MATLAB command 1-11

C

Casorati’s determinant 11-2
Cayley-Hamilton theorem 5-30
characteristic equation
of a differential equation 5-8
of a difference equation 11-3
Chart type in Excel 2-10

Chart Wizard in Excel 2-10, 8-6
Chebyshev polynomials

of the first kind 15-21

of the second kind 15-21
Cholesky factorization 14-15
cle MATLAB command 1-2
clear MATLAB coommand 1-2
cofactor - see matrix
collect(s) MATLAB function 12-11
column vector 1-18
command screen in MATLAB 1-1
command window in MATLAB 1-1
commas in MATLAB 1-6
comment line in MATLAB 1-2
complex

conjugate of a matrix - see matrix

conjugate of a number 1-4, 3-12

number 1-2, 3-11

roots of characteristic equation 5-9
conformable

for addition - see matrix

for multiplication - see matrix
conj(x) MATLAB function 4-8
conjugate of a complex number 3-12
constraints - see linear programming
contour MATLAB function 1-16
conv(a,b) MATLAB function 1-6
Cramer’s rule 4-16, 8-4
cubic interpolarion - see interpolation
cubic spline interpolarion - see interpolation
curve fitting 8-1
curved regression - see regression
cycle 3-2
cyclic frequency - see frequency

D

decibel 1-11
decimal format in MATLAB 2-21
deconv(p,q) MATLAB function 1-6, 7-8
default in MATLAB

color 1-14

line 1-14

marker 1-14
demo in MATLAB 1-2
determinant - see matrix
diag(v,k) MATLAB function 14-16
diagonal elements - see matrix
diagonal of a matrix - see matrix
diff(s) MATLAB function 2-6
difference equation 11-1
difference operator 7-4, 11-1
differences 7-3

differential equation
classification of 5-2
degree of 5-3
most general solution 5-6
order of 5-2
numerical solution by the
Runge-Kutta method 9-5
type of 5-2
dipole 15-12
direct term in MATLAB 12-1
disp(x) MATLAB command 2-5
display formats in MATLAB 1-29
divided difference 7-1
division in MATLAB
element-by-element 1-20
division of phasors 3-12
dot multiplication in MATLAB 1-20
dsolve(s) MATLAB function 9-5
dynamic programming 16-4
optimum path policy 16-5

E

editor window in MATLAB 1-1

editor/debugger in MATLAB 1-1

eigenvalues 5-30

eigenvector 5-38

elements of a matrix - see matrix

eps MATLAB function 1-21

Erlang distribution 13-16

error function 10-4

Euler’s identities 3-13

even functions 6-7

even symmetry - see Fourier series

exit MATLAB command 1-2

EXP(GAMMALN(n)) Excel function 13-5

expand(s) MATLAB function 7-12, 12-9

exponential form of phasors - see phasor

exponential form of the Fourier series
see Fourier series

exponentiation in MATLAB
element-by-element 1-20

eye(n) MATLAB command 4-6, 14-16

eye(size(A)) MATLAB command 4-7

F

factor(p) MATLAB function 12-4
factorial polynomials 7-6
Fibonacci numbers 11-7

figure window in MATLAB 1-13
finite differences 7-1

fixed point format in MATLAB 2-21



fmin(f,x1,x2) MATLAB function 1-26
forced response 5-7
format MATLAB command 1-29
format specifiers in MATLAB 2-21
Fourier series
defined 6-1
exponential form 6-28
numerical evaluation 6-36
symmetry
even 6-7
in exponential series 6-30
in trigonometric series 6-7
odd 6-7
trigonometric form 6-7
alternate 6-25
fplot(fcn,lims) MATLAB command 1-26
fprintf MATLAB command 7-27
frequency
cyclic 3-3
defined 3-3
fundamental 6-1
radian 3-2
response 1-10
see also harmonics
Frequency Modulation (FM) 15-4
Frobenius - see method of
full-wave rectifier with even symmetry 6-24
function files in MATLAB 1-25, 2-4
fundamental frequency - see frequency
fundamental theorem of sum calculus 7-12
fzero(‘function’,x0) in MATLAB 12-18
fzero(f,x) in MATLAB 1-25

G

gamma distribution 13-15
gamma function 13-1
gamma(n) MATLAB function 13-3
GAMMADIST Excel function 13-16
GAMMALN Excel function 13-5
GAMMALN(x) 13-5
Gaussian elimination method 4-18, 14-9
Genenbauer 15-22
generalized factorial function 13-1
generating function
for Bessel functions of the first kind
of integer order 15-9
for Legendre polynomials 15-12
Goal Seek Excel feature 2-16
Gram-Schmidt orthogonalization
procedure 14-7
Gregory-Newton
backward interpolation method 7-20
forward interpolation method 7-19
see also interpolation
grid MATLAB function 1-11
gtext(‘string’) MATLAB function 1-13, 32

H

half-wave rectification 6-19
half-wave symmetry 6-7
harmonics 6-1

help MATLAB command 1-2
Hermitian matrix - see matrix
Hertz 3-3

identity matrix - see matrix
imag(z) MATLAB function 1-22
imaginary axis 3-10
imaginary number 3-10
improper integral 13-1
improper rational function 12-1
in-phase - see sinusoids
input(‘string’) MATLAB command 2-2
int(f,a,b) MATLAB function 10-5
interp1(x,y,xi,’method’)
MATLAB function 7-24
interp2(x,y,z,xi,yi,’method’)
MATLAB function 7-24
interpolation
cubic 7-24
cubic spline 7-24
linear 7-24
nearest neighbor 7-24
Newton’s divided difference 7-15
with MATLAB 7-23
see also Gregory-Newton
interval halving 2-19
inverse of a matrix - see matrix
isoprofit line 16-2

J
j operator 3-11
L

L’ Hopital's rule 13-2
Lagrange’s interpolation method 7-18
lagging waveform 3-3
Laguerre polynomials 15-20
leading waveform 3-3
least squares

curve 8-2

line 8-2

method 8-2

parabola 8-2
Legendre equation 15-10

associated 15-18
Legendre functions

of the first kind 15-10

associated 15-18

of the second kind 15-11
associated 15-18

Legendre polynomials

algebraic form of 15-10, 15-16

trigonometric form of 15-17
legendre(n,x) MATLAB function 15-18
lims = MATLAB function 1-26
line graph 16-4
line spectrum 6-33
linear factors 1-8
linear interpolarion - see interpolation
linear programming 16-1

constraints 16-1

objective 16-1

simplex method 16-4
linear regression - see regression
linspace(f,I,n) MATLAB command 1-13
In (natural log) 1-11
log 1-11
log(x) MATLAB function 1-11
log10(x) MATLAB function 1-11
log2(x) MATLAB function 1-11
loglog(x,y) MATLAB function 1-11
lower triangular matrix - see matrix
Isqnonneg(A,b) MATLAB function 14-19
LU factorization method 14-9
lu(A) MATLAB frunction 14-12

Maclaurin series 6-41, 7-6
MATLAB Demos 1-2
matrix
adjoint of 4-19
cofactor 4-12
conformable for addition 4-2
conformable for multiplication 4-4
conjugate of 4-8
defined 4-1
determinant 4-9
diagonal elements of 4-1
diagonal of 4-1, 4-6
elements of 4-1
Hermitian 4-9
identity 4-6
inverse of 4-21
left division in MATLAB 4-24
lower triangular 4-6
main diagonal of 4-1
main diagonal elements of 4-1
minor of determinant 4-12
multiplication 1-18
non-singular 4-20
scalar 4-6
singular 4-20
size of 4-7
skew-Hermitian 4-9



skew-symmetric 4-8

square 4-1

state transition 5-28

symmetric 4-8

trace of 4-2

transpose of 4-7

unitary 14-17

upper triangular 4-5

zero 4-2
mesh(x,y,z) MATLAB function 1-16
mesh(Z) MATLAB function 7-30
meshgrid(x,y) MATLAB function 1-16
method of

Frobenius 15-1

least squares 8-2

Picard 15-1

undetermined coefficients 5-9, 11-3

variation of parameters 5-19
m-file in MATLAB 1-1, 1-25, 2-6
Milne’s method 9-16
minimum span problems 16-15
minor of determinant - see matrix
MINVERSE Excel function 4-26
MMULT Excel function 4-26
modified Bessel functions

see Bessel functions
modulation index 15-4
multiple poles - see poles
multiplication in MATLAB

element-by-element 1-20

matrix 1-19
multiplication of phasors 3-12

N

NaN in MATLAB 1-25
natural response 5-7
nearest neighbor interpolarion
see interpolation
network analysis 16-14
Neumann functions 15-7
Newton'’s divided difference interpolation
see interpolation
non-homogeneous
difference equation 11-2
ordinary differential equation 5-6
non-singular matrix -see matrix
numerical evaluation of Fourier coefficients
see Fourier series

(o)

objective - see linear programming
odd functions 6-8

odd symmetry - see Fourier series
ODE 5-3

ode23 MATLAB function 9-9

ode45 MATLAB function 9-9
optimum path policy

see dynamic programming
ordinary differential equation 5-3
orthogonal

basis 14-5

functions 6-2, 14-1

system 15-8

trajectories 14-2

unit vectors 14-5

vectors 5-38, 14-4
orthonormal basis 14-5
out-of-phase - see sinusoids
overdetermined system 8-3

P

parabolic curve 8-1
partial differential equation 5-3
partial fraction expansion 12-1
PDE 5-3
Pearson correlation coefficient 8-10
period - see periodic waveform
periodic waveform 3-2

period of 3-2
phasor

defined 3-2

exponential form of 3-14

polar form of 3-14

rectangular form 3-2, 3-14
Picard - see method of
plot(x,y) MATLAB function 1-9
plot3(x,y,z) MATLAB function 1-15
polar plot 1-23
polar(theta,r) MATLAB function 1-23
poles

complex 12-5

defined 12-2

distinct 12-2

repeated (multiple) 12-6
poly(r) MATLAB function 1-4
polyder(p) MATLAB function 1-6
polyfit(x,y,n) MATLAB function 8-10
polyval(p,x) MATLAB function 1-5, 8-11
power series 6-37
proper rational function 12-1

Q

QR factorization 14-17

qr(A) MATLAB function 14-17
quad(‘f’,a,b,tol) MATLAB function 10-10
quad8 MATLAB function 10-10
quadratic curve 8-1

quadratic factor 1-8

quit MATLAB command 1-2

R

radian frequency - see frequency
rational polynomials

improper 12-1

proper 12-1
rationalization of the quotient 3-12
real axis 3-10
real number 3-11
real(z) MATLAB function 1-22
rectangular form of phasor - see phasor
regression

linear 8-2

curved 8-7
relative cell in Excel 2-19
residue(r,p,k) MATLAB function 12-1
Rodrigues’ formula 15-11, 15-17
roots(p) MATLAB function 1-3
rotating vector - see phasor
round(n) MATLAB function 1-23
Runge-Kutta - see differential equation

S

sawtooth waveform 6-10
scalar matrix - see matrix
script files in MATLAB 1-25
semicolons in MATLAB 1-6
semilogx(x,y) MATLAB command 1-11
semilogy(x,y) MATLAB command 1-11
simplex method - see linear programming
Simpson’s rule 10-6
singular matrix - see matrix
singular value decomposition 14-20
sinusoids 3-2

in-phase 3-3

out-of-phase 3-3
size of a matrix - see matrix
skew-Hermitian matrix - see matrix
skew-symmetric matrix - see matrix
space equations - see state equations
spectrum analyzer 6-33
spherical harmonics 15-18
sprintf(format,A) MATLAB command 2-5
square matrix - see matrix
square waveform 6-12
state equations 5-24
state transition matrix - see matrix
state variables 5-24
Stirling’s asymptotic series 13-9
subplot(m,n,p) MATLAB command 1-18
surface zonal harmonics 15-11
svd(A) MATLAB function 14-20
sym MATLAB command 12-4
symbolic expressions in MATLAB 12-4
Symbolic Math Toolbox in MATLAB 12-4
symmetric matrix - see matrix



symmetry - see Fourier series
syms MATLAB function 12-4

T

Taylor series 5-24, 6-40, 9-1
text(x,y,’string’) MATLAB command 1-13
text(x,y,z,’string’) MATLAB command 1-16
title(‘string’) MATLAB command 1-11
trace of a matrix - see matrix

transpose of a matrix - see matrix
trapezoidal rule 10-1

Trendline feature in Excel 8-9

triangular waveform 6-19

trigonometric relations 3-5
two-dimensional plots 7-30

U

ultraspherical functions 15-22
undetermined coefficients - see method of
underdetermined system 8-3

unitary matrix - see matrix

upper triangular matrix - see matrix

Vv

variation of parameters - see method of
VLOOKUP Excel function 7-22

w

Wallis’s formulas 13-15

wave equation 5-3

Weber functions 15-7

while end in MATLAB 2-4

Wronskian determinant 5-10, 11-2

X

xlabel(‘string’) MATLAB command 1-11
Y

ylabel(‘string’) MATLAB command 1-11
V4

zero matrix - see matrix

zeros of a rational function 12-2
zlabel(‘string’) MATLAB command 1-16
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