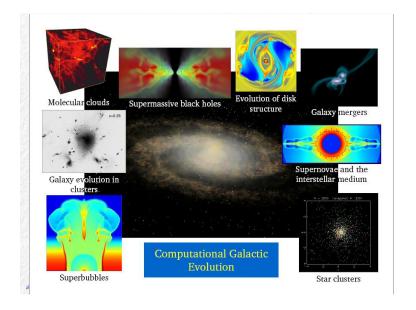
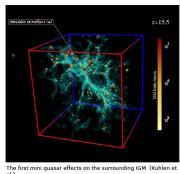
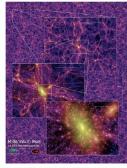

Astrophysical simulations Different physics:


- Different classes
- Different stages of the evolution
- Different scales

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

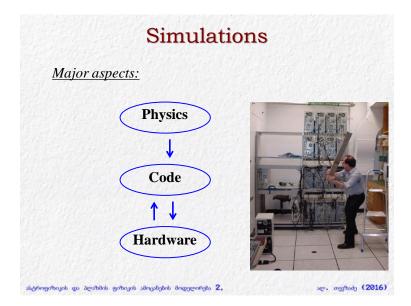
ალ. თევზაძე (2016)

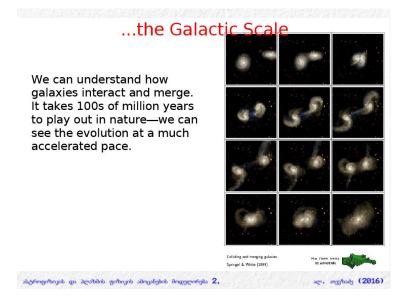




Computation on the Cosmological Scale...

- On the scale of the Universe, the cosmological scale factor is evolved.
- Self-gravity dominates the evolution





Simulating the growth of structure and the formation of galaxies. (Springel et al. 2005)

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაძე (2016)

Some publicly available simulation codes

Code	Туре	Physics	Parallel	Reference		
Cactus	Eulerian/Nested	Gas, gravity (GR)	MPI	Allen et al 99		
Enzo	AMR/PM	Gas, particles, gravity, cosmology	MPI	Norman & Bryan 98; O'Shea et al 04		
FLASH	AMR/PM	Gas, particles, gravity, cosmology, nuclear, MHD	MPI	Fryxell et al 00		
GADGET	P3M; TPM (v.2); SPH	Gas, particles, gravity, cosmology	MPI	Springel et al 01		
Hydra	AP3M/SPH	Gas, particles, gravity, cosmology	No	Couchman 91		
MLAPM	AMR/PM	Particles, gravity	No	Knebe et al 01		
PMcode	PM	Particles, gravity	No	Klypin & Holtzmann 97		
TITAN	1D AMR	Gas, radiation	No	Gehmeyr & Mihalas		
VH-1	Eulerian	Gas	No	Blondin et al 91		
Zeus-MP	Eulerian	Gas, gravity, MHD	MPI	Stone & Norman 92		

http://www.cactuscode.org

http://cosmos.ucsd.edu http://flash.uchicago.edu http://www.mpa-garching.mpg.de/gadget http://hydra.mcmaster.ca/hydra

http://www.aip.de/People/AKnebe/MLAPM

http://astro.nmsu.edu/~aklypin/pm.htm

http://wonka.physics.ncsu.edu/pub/VH-1

PLUTO

http://plutocode.ph.unito.it/ A Riemann solver for HD/MHD/RMHD with AMR. Parallel. C/C++

SNOOPY

http://ipag.osug.fr/~lesurg/snoopy.html Spectral, incompressible MHD, parallel

PENCIL

http://www.nordita.org/software/pencil-code/ MHD Cartesian. A higher order non-conservative advection method. Turbulence. Parallel. FORTRAN

FLASH

http://flash.uchicago.edu/website/home/ Cartesian HD, modules, AMR, parallel.

ZEUS

http://www.astro.princeton.edu/jstone/zeus.html (M)HD. Staggered grid, Cartesian, cylindrical, polar, gravity, self-gravity and radiation transfer.

ATHENA

http://www.astro.princeton.edu/jstone/athena.html Riemann solvers (including also Roe's algorithm). Cartesian. MHD, AMR, parallelization (MPI) etc.

GADGET

http://www.mpa-garching.mpg.de/gadget/ SPH and N-body code for astrophysics.

shiphingarthajati qui Jewishati garthajati ishnjishati dingipendigisi 2, igg/ship (2016)

June 2011 | TOP500 Supercomputing Sites - Windows Internet Explorer File Edit View Favorites Tools Help Favorites June 2011 | TOP500 Supercomputing Sites K computer, SPARC64 VIIIfx 2.0GHz, Tofu Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz Cray Inc. DOE/SC/Oak Ridge National TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, LinuxWindows NEC/HP Cielo - Cray XE6 8-core 2.4 GHz Cray Inc. DOE/NNSA/LANL/SNL United States NASA/Ames Research Center/NAS United States DOE/SC/LBNL/NERSC United States Hopper - Cray XE6 12-core 2.1 GHz Cray Inc. Tera-100 - Bull bullx super-node S6010/S6030 Bull SA Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2, ალ. თევზაძე (2016)

Parallel Computers

Symmetric Multi-Processor (SMP)

- Processors share bus to main memory and I/O
- Processors may share cache memory
- Operating system distributes load
- Example: sipapu (workstation)

Distributed Shared Memory

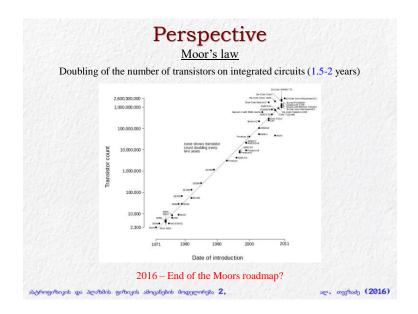
- Processors have separate local memories
- Special bus connects memories
- Nonlocal memory appears "local" but is somewhat slower
- Operating system distributes load
- Example: copper (IBM p690)

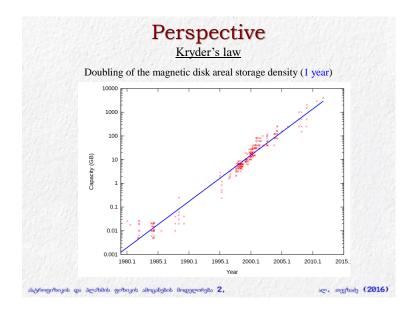
Distributed Multi-Processor (Cluster)

- Processors have separate local memories, separate I/O
- Interprocessor communication over proprietary or commodity network (much slower than memory)
- Applications distribute load
- Example: tungsten (Dell Linux cluster)

	For more information about the sites and systems in the list, click on the links or view the complete list.									
	Rank Site		System	Cores	Rmax (TFlop/s)	Rpeak [TFlop/s]	Power (kW)			
	1	National Supercomputing Center in Wusi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371			
	2	National Super Computer Center in Guangzhou China	Tianhe-2 [MilkyWay-2] - TH- IVB-FEP Cluster, Intel Xeon E5- 2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808			
	3	D0E/SC/Dak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209			
	4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890			
	5	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660			
	6	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	B,586.6	10,066.3	3,945			
	7	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5- 2699x3 16C 2:3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9				
	8	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5- 2670 9C 2-600GHz, Aries interconnect , NMIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325			
	9	HLRS - Höchstleistungsrechenzentrum Stuttgart Germany	Hazet Hen - Cray XC40, Xeon E5- 2680v3 12C 2.5GHz, Aries interconnect Cray Inc.	185,088	5,640.2	7,403.5				
იფიზიკის და პლაზ	10	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2699/3 16C 2.3GHz, Aries interconnect Cray Inc.	196,608	5,537.0	7,235.2	2,834	ალ. თევზ		

NASA Pleiades Supercomputer


11,472 nodes 4.09 Pflop/s LINPACK (#15 on June 2016 top500)


Total CPU cores: 246,048 Total memory: 938 TB

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაბე (2016)

BASIC CONCEPTS shiptingartanjah ga Jewahita garbajah Bangsentijah 2, .e., ongolody (2016)

Method

- Continuum -> Discrete
- Physical Model -> Numerical Model

(Vx, Vy, Vz, Rho, P)(Px, Py, Pz, E, M)

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

Where to introduce numerical errors:

<u>Discretization, Subgrid, interpolation, etc.</u>

Error propagation science

Enter propagation se

ალ. თევზაბე (2016)

Workflow

Configuration

- Initial conditions
- Boundary conditions

Calculus

- Compilation
- Run

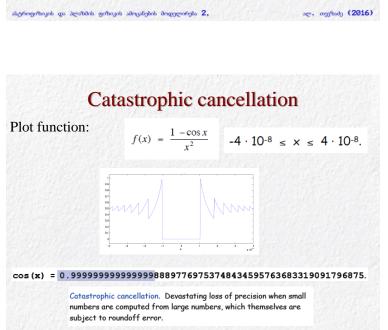
Data analysis

- Post processing
- Visualization

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაბე (2016

Are my results correct?


Indicators:

- Resolution Study
- Exact Analytic Solutions
- Different Numerical Methods
- Code Validation

ისტროფიზიკის და პლაზმის ფიზიკის ამოცანეშის მოდელირება 2,

ლ. თევზაძე (2016)

Code Validation (FLASH Center and LLNL) Abhéromentants an acrostidots metanats alternationals alternationals and acrostidots metanats alternationals are acrostidots metanats and acrostidots and acrostidots metanats alternationals and acrostidots are acrostidots and acrostidots are acrostidots and acrostidots and acrostidots are acrostidots and acrostidots are acrostidots and acrostidots acrostidots are acrostidots and acrostidots acrostidots acrostidots are acrostidots acrostidot acrostidots acrostidos acrostidos

ალ. თევზაძე (2016)

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

Catastrophic cancellation

Calculate the equation with a=77617 and b=33096

$$y = 333.75b^6 + a^2(11a^2b^2 - b^6 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b}$$

answer depends of the compiler (C, Fortran, Matlab) processor type!

$$\stackrel{?}{=} 5.76461... \times 10^{17}$$

 $\stackrel{?}{=} 6.33825... \times 10^{29}$
 $\stackrel{?}{=} 1.1726...$

$$= 1.1726...$$

 $\stackrel{?}{=} -0.827396...$

ასტროვიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაბე (2016)

Numerical catastrophes

Ariane 5 rocket. [June 4, 1996]

10 year, \$7 billion ESA project exploded after launch. 64-bit float converted to 16 bit signed int. Unanticipated overflow.

Index undervalued by 44%.

Recalculated index after each trade by adding change in price.

22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]

Failed to track scud; hit Army barracks, killed 28.

Inaccuracy in measuring time in 1/20 of a second since using 24 bit binary floating point.

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაძე (2016)

Courant-Friedrichs-Lewy condition

CFL number: numerical stability

$$\frac{u_x \Delta t}{\Delta x} + \frac{u_y \Delta t}{\Delta y} = C[2D]$$

$$\Delta t = Min[CFL * u_{ij} \Delta x_{ij}]$$

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაძე (2016)

Stability Theory

- Lyapunov stability
- Asymptotic stability
- Exponential stability

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაბე (2016)

Properties of Numerical Models

A robust simulation has the following properties:

- Consistency (regular, statistical)
- Stability
- Convergence (analytic solution, ?)
- Conservation
- Boundedness
- Accuracy

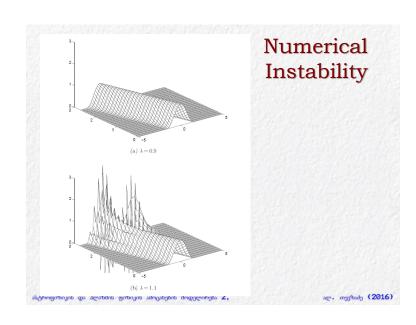
ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

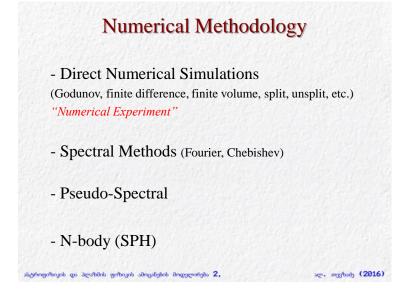
ალ. თევზაძე (2016)

Numerical Stability

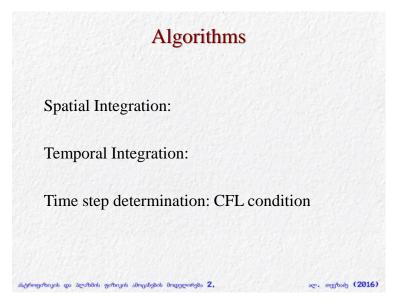
An algorithm is stable if the numerical solution at a fixed time remains bounded as the step size goes to zero

- Numerical diffusion
- CFL number (0.4 .. 0.6)


ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

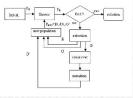

ალ. თევზაძე (2016)

^{1.} The origin of the above system is said to be **Lyapunov stable**, if, for every $\epsilon>0$, there exists a $\delta=\delta(\epsilon)>0$ such that, if $\|x(0)\|<\delta$, then $\|x(t)\|<\epsilon$, for every $t\geq0$.


^{2.} The origin of the above system is said to be **asymptotically stable** if it is Lyapunov stable and if there exists $\delta > 0$ such that if $\|x(0)\| < \delta$, then $\lim_{t \to \infty} x(t) = 0$.

^{3.} The origin of the above system is said to be **exponentially stable** if it is asymptotically stable and if there exist $a, \beta, \delta > 0$ such that if $\|x(0)\| < \delta$, then $\|x(t)\| < \alpha \|x(0)\| e^{-\beta t}$, for $t \geq 0$.

Mesh Static grids - Uniform grid - Linearly nonuniform grid - Complex nonuniformity (Chebishev, etc) - Non-Cartesian grids Dynamical grids - Adaptive Mesh Refinement (AMR)



Parallelization Hardware PC, Beowulf, HPC, Software - MPI - PVM - OpenMP

Pseudocode

Algorithm development

Pseudocode:

Code intended for human reading rather then the machine reading

- no variable definitions;
- no memory management;
- no subroutines;
- no system-specific code;

Pseudocode language choice: Matlab

- Avoid Matlab specific functions and simulink

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაძე (2016)

PDE classification

Linear second order Partial Differential Equation

$$a\frac{\partial^{2}}{\partial x^{2}}\Psi + b\frac{\partial^{2}}{\partial x \partial y}\Psi + c\frac{\partial^{2}}{\partial y^{2}}\Psi + d\frac{\partial}{\partial x}\Psi + e\frac{\partial}{\partial y}\Psi + f\Psi = g$$

Elliptic:

 $b^2 - 4 a c < 0$

Parabolic:

 $b^2 - 4 a c = 0$

Hyperbolic:

 $b^2 - 4 a c > 0$

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

10

PDE classification

Elliptic equation: Poisson equation

Parabolic equation: Diffusion equation

Hyperbolic equation: Wave equation

EXAMPLES

Numerical methods: individual treatment

ასტროვიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

Conservation laws

Modelling conservation laws:

Method - rewrite set of equations in the form of the general set of conservation laws (analytically)

Conserved quantities: volume integrals

Differential form of continuity eq.:

Mass conservation in total volume:

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თვეზაბე (2016)

Conservation laws

Generalized form of conservation laws:

$$\frac{\partial \Phi}{\partial t} + \nabla \cdot J = 0$$

 Φ – numerical variable

 \mathbf{J} – numerical flux of the variable $\mathbf{\Phi}$

 ρ , P, V (physical variables): primitive variables

Task: reducing existing system of hyperbolic PDE to the conserving form

EXAMPLES

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

ალ. თევზაბე (2016)

ალ. თევზაბე (2016)

End

http://www.tevza.org/home/course/modelling-II_2016/

ასტროფიზიკის და პლაზმის ფიზიკის ამოცანების მოდელირება 2,

11