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intensities lying along the equator. In all cases, the radiation shows an association with the
galactic equator, the general direction of the galactic center, or both. The maps are in
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Radio sky at 408 Hz exhibiting a diffuse glow of synchrotron radiation from the entire
sky. High-energy electrons spiraling in the magnetic fields of the Galaxy emit this radiation.
Note the North Polar Spur projecting above the equator to the left of center. From three
observatories: Jodrell Bank, MPIfR, and Parkes. [Glyn Haslam et al., MPIfR, SkyView]

Radio emission at 1420 MHz, the spin-flip (hyperfine) transition in the ground state of
hydrogen, which shows the locations of clouds of neutral hydrogen gas. The gas is heavily
concentrated in the galactic plane and manifests pronounced filamentary structure off the
plane. [J. Dickey (UMn), F. Lockman (NRAO), SkyView; ARAA 28, 235 (1990)]

Far infrared (60-240 um) sky from the COBE satellite showing primarily emission from
small grains of graphite and silicates (“‘dust”) in the interstellar medium of the Galaxy. The
faint, large S-shaped curve (on its side) is emission from dust and rocks in the solar system;
reflection of solar light from this material causes the zodaical light at optical wavelengths.
Color coding: 60 um (blue), 100 um (green), 240 pm (red). [E. L. Wright (UCLA), COBE,
DIRBE, NASA]

Optical sky from a mosaic of 51 wide-angle photographs showing mostly stars in our
Milky Way Galaxy with significant extinction by dust along the galactic plane. Galaxies are
visible at higher galactic latitudes, the most prominent being the two nearby Magellanic
Clouds (lower right). [©Axel Mellinger]

X-ray sky at 1-20 keV from the A1 experiment on the HEAO-1 satellite showing 842
discrete sources. The circle size represents intensity of the source, and the color denotes the
type of object. The most intense sources shown (green, larger circles) signify compact
binary systems containing white dwarfs, neutron stars, and black holes. Other objects are
supernova remnants (blue), clusters of galaxies (pink), active galactic nuclei (orange), and
stellar coronae (white). [Kent Wood, NRL; see ApJ Suppl. 56, 507 (1984)]

Gamma-ray sky above 100 MeV from the EGRET experiment on the Compton
Gamma-Ray Observatory. The diffuse glow from the galactic equator is due to the
collisions of cosmic-ray protons with the atoms of gas clouds; the nuclear reactions produce
the detected gamma rays. Discrete sources include pulsars and jets from distant active
galaxies (“blazars”). [The EGRET team, NASA, CGRO]



ASTROPHYSICS PROCESSES

HALE BRADT

Massachusetts Institute of Technology

CAMBRIDGE

"B UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
© H. Bradt 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2008
Printed in the United Kingdom at the University Press, Cambridge
A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Bradt, Hale, 1930—
Astrophysics processes / Hale Bradt.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-84656-1 (hardback)
1. Astrophysics. 1. Title.
QB461. B67 2008
523.01 — dc22 2007031649

ISBN 978-0-521-84656-1 hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLSs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



To my three sisters,
Val, Abby, and Dale Anne
They are my fans and I theirs






1.1
1.2

1.3

14

1.5

1.6

Contents

List of figures

List of tables
Preface

Also by the author
Acknowledgments

Kepler, Newton, and the mass function

Introduction

Binary star systems

Celestial laboratories * Visual binaries * Eclipsing binaries *
Spectroscopic binaries

Kepler and Newton

Kepler’s laws (M >> m) ¢ Ellipse * The Newtonian connection *
Earth-orbiting satellites — Orbit change — Launch inclination

Newtonian solutions M > m

Components of the equation of motion * Angular momentum (Kepler II) ¢
Elliptical motion (Kepler I) — Trial solution transformed — Radial equation
transformed — Solution * Angular momentum restated * Period and
semimajor axis (Kepler III) « Total energy

Arbitrary masses

Relative motions — Relative coordinates: reduced mass — Equation of motion —
Equivalence to the M > m problem ¢ Solutions — Angular momentum —
Elliptical motion — Period and semimajor axis (Kepler III) — Total energy

Mass determinations

Mass function * Stellar masses from circular orbits — Massive central object —
Circular orbits — Spectroscopic binary * Stellar masses from elliptical orbits —
Orbital elements — Visual binary: relative orbit — Visual binary: two orbits —
Spectroscopic binary — Mass of a black hole in Cygnus X-1 — Masses of
neutron-star pulsars

page xv
XX

XXi

XXV
XXVii

15

22

28

vii



viii

1.7

21
2.2

2.3

24

2.5

2.6

2.7

2.8

31
3.2

3.3

Contents

Exoplanets and the galactic center

Exoplanets * Galactic center — Stellar orbits — Distance to the galactic center —
Massive black hole

Equilibrium in stars

Introduction

Jeans length
Collapse criterion * Critical mass

Hydrostatic equilibrium
Balanced forces * Pressure gradient

Virial theorem

Potential and Kinetic energies * Derivation * Stars * Clusters of galaxies —
Spatial distribution — Virial Mass

Time scales

Thermal time scale * Dynamical time scale ¢ Diffusion time scale —
One-dimensional random walk — Three-dimensional walk — Mean free path —
Solar luminosity

Nuclear burning

Stable equilibrium — Coulomb barrier — Nuclear warmer * Proton-proton (pp)
chain — Nuclear interactions — Baryon, lepton, and charge conservation — Energy
conservation — pep, hep, and Be reactions * CNO cycle * Energy production —
Yield per cycle — Sun lifetime — Energy-generation function

Eddington luminosity

Forces on charged particles — Radiative force — Balanced forces * Maximum
star mass * Mass accretion rate — Neutron-star accretion — Accretion
luminosity — Massive black holes

Pulsations

Heat engine * Condition for pulsations * Ionization valve — Transition zone —
Variables as distance indicators

Equations of state

Introduction

Maxwell-Boltzmann distribution

One-dimensional gas * Three-dimensional gas — Maxwell-Boltzmann
distribution — Momentum space — Distribution of momentum magnitude

Phase-space distribution function

Maxwell-Boltzmann in 6-D phase space * Measurable quantities * Specific
intensity — Particle number — Energy and photons — Liouville’s theorem —
Conservation of specific intensity — Relativity connection

39

49

50
50

52

54

59

65

73

78

87

88
&9

92



34

3.5
3.6

4.1
4.2

4.3

44

4.5

Contents

Ideal gas
Particle pressure — Momentum transfer — Average kinetic energy * Equation
of state — Physical form — Macroscopic form (ideal gas law)

Photon gas

Degenerate electron gas

Fermions and bosons — Spin — Pauli exclusion principle — Degeneracy —
Statistics and distribution functions * One-dimensional degeneracy — Plots of
2-D phase space — Fermi momentum — Compression and cooling — Temperature
* Three-dimensional degeneracy — Fermi momentum — Fermi function — Fermi
energy — Pressures of electrons and protons * Nonrelativistic EOS — Average
kinetic energy — Pressure * Relativistic EOS * Summary of EOS

Stellar structure and evolution

Introduction

Equations of stellar structure

Fundamental equations — Hydrostatic equilibrium — Mass distribution —
Luminosity distribution — Radiation transport * Convective transport —
Condition for convection — Adiabatic temperature gradient * Secondary
equations

Modeling and evolution

Approach to solutions * Sun * Main-sequence stars — Spectral types —
Convective regions * Hertzsprung—Russell diagram — Color-magnitude
diagram — Effective temperature and radius * Giants and supergiants ®
Evolution of single stars — Solar evolution — Massive stars — Gamma-ray
bursts — Globular clusters — Open clusters — Variable stars * Scaling laws —
Matter density — Pressure — Temperature — Luminosity — Mass dependence —
H-R diagram comparison — Homology transformations

Compact stars

White dwarfs — Mass-radius relation — Stability — Sirius B — Chandrasekhar
mass limit * Neutron stars — Radius of a neutron star — Equations of state and
structure — Evidence for neutron stars — Maximum mass * Black holes — Event
horizon (Schwarzschild radius) — Angular momentum — Innermost stable orbit —
Broad, distorted iron line — Planck length — Particle acceleration — Evaporation —
Existence of black holes

Binary evolution

Time scales * Gravitational radiation — Energy loss rate — Final chirp * Tidal
interaction * Magnetic breaking * Effective equipotentials — Roche lobes —
Lagrangian-point positions * Accretion — Star separation — Period change —
Stellar winds — Pulsar wind and x-ray irradiation * Sudden mass loss —
Semimajor axis and period — Eccentricity — Unbinding of the orbit ®
Evolutionary scenarios — High-mass x-ray binary and binary radio pulsar —
Pulsar evolution — Low-mass x-ray binary * Neutron-star spinup

X

97

101
102

117

118
118

124

142

157



51
5.2
53

54

5.5

5.6

6.1
6.2

6.3

6.4

71
7.2

Contents

Thermal bremsstrahlung radiation

Introduction
Hot plasma

Single electron-ion collision

Radiation basics — Radiated electric vector — Poynting vector — Larmor’s
formula * Energy radiated per collision * Frequency of the emitted radiation

Thermal electrons and a single ion

Single-speed electron beam — Power from the annulus — Power per unit
frequency interval ¢ Electrons of many speeds

Spectrum of emitted photons

Volume emissivity — Multiple ion targets — Exponential spectrum — Gaunt
factor — H II regions, and clusters of galaxies * Integrated volume emissivity —
Total power radiated — White dwarf accretion

Measurable quantities

Luminosity ¢ Specific intensity (resolved sources) — Emission measure —
Determination of T and EM ¢ Spectral flux density S (point sources) —
Uniform volume emissivity — Specific intensity and flux density compared

Blackbody radiation

Introduction

Characteristics of the radiation

Specific intensity — Rayleigh—Jeans and Wien approximations — Peak

frequency — Wavelength units * Luminosity of a spherical “blackbody” —
Energy flux density through a fixed surface — Effective temperature * Radiation
densities — Energy density — Spectral number density — Cells in phase space —
Total number density — Average photon energy * Radiation pressure — Beam of
photons — Momentum transfer — Photon pressure * Summary of characteristics
* Limits of intensity — Particles added — Surface of last scatter — Temperature
limit — Black and gray bodies

Cosmological expansion

Adiabatic expansion — Photons — Comparison with particles * Room of
receding mirrors — Hubble expansion and fundamental observers — Reflections
from mirrors — Wavelength and room size * Spectral evolution — Number
spectral density — Temperature and intensity

Mathematical notes
Riemann zeta function * Roots of a transcendental equation
Special theory of relativity in astronomy

Introduction

Postulates of special relativity

181

182
183
185

190

193

199

205

205
208

222

230

233

234
234



7.3

7.4

7.5

7.6

7.7

7.8

8.1
8.2

8.3

Contents

Lorentz transformations

Two inertial frames of reference * Position and time — Spherical wave front —
Transformations — Time dilation — Length contraction — Space-time invariant —
Space-time intervals: proper time and distance — Four-vector * Momentum

and energy — Four-vector — Invariant — Photons — Invariance for system of
particles — Transformations * Wave propagation vector and frequency —
Transformations — Related four-vectors * Electric and magnetic fields —
Transformations — Magnetic field transformed — Field lines

Doppler shift

Derivation — Classical Doppler shift — Relativistic Doppler shift —
Earth-orbiting satellite — Second-order Doppler shift — Doppler from &,
transformations * Doppler shifts in astronomy — Astronomical sign
convention — Redshift parameter

Aberration
Transformation of k direction * Stellar aberration — Earth as stationary
frame — Stars as stationary frame

Astrophysical jets

Beaming (‘“headlight effect”) * Lorentz invariance of distribution function °
Doppler boosting — Doppler factor d — Boosting and deboosting angles * Solid
angle — Specific intensity — Photon conservation — Boosting factor meaning —
Spectral flux density — Flux density — K correction * Superluminal motion —
Apparent transverse velocity — Knot speed and direction — Measured quantities —
Cosmological correction * Other jet models

Magnetic force and collisions

Relativistic cyclotron frequency — Equation of motion — Angular velocity *
CMB opacity to high-energy photons and protons — Photon absorption
through pair production — Energy threshold — MeV to TeV astronomy — Cosmic
ray protons and the CMB

Addendum: Lorentz invariance of distribution function

Invariance of phase-space volume element — General formula for transforming
a photon world line — Transformation of a rectangular volume element —
Parallelogram in frame S — Area in two frames — Phase-space volume invariant ¢
Invariance of radiating area

Synchrotron radiation

Introduction

Discovery of celestial synchrotron radiation

Puzzling radiation from the Crab the nebula — Bluish diffuse light — Spectral
energy distribution (SED) ¢ Electron accelerators (synchrotrons) * Polarized
light from Crab the nebula

Frequency of the emitted radiation

Instantaneous radiation patterns — Classical radiation pattern (v < ¢) —
Relativistic radiation pattern (v &~ ¢) — Field lines for relativistic circular motion
* Electric field waveform, E(t) — Brief pulses of radiation — Charges chasing

X1

235

249

255

258

275

281

290

291
291

295



xii

84

8.5

8.6

9.1
9.2

9.3

94

9.5

10

10.1
10.2

Contents

photons * Observed frequency — Synchrotron frequency — Pitch angle —
Electron energies in Crab nebula * Power spectrum shape

Power radiated by the electron

Two frames of reference — Stationary frame of the reference — Moving frame of
reference * Power radiated in moving frame — Electric field — Acceleration —
Energy loss rate * Power radiated in the stationary frame — Transformation to
the stationary frame — Magnetic energy density as target — Electron energy
lifetime — * Crab nebula — Short lifetimes — Crab pulsar

Ensemble of radiating particles

Power-law spectra — Number-specific intensity — Energy-specific intensity —
Number-density — Energy-density * Volume emissivity — Function of particle
energy — Function of emitted frequency — Specific intensity and flux density *
Galactic radio synchrotron radiation

Coherent curvature radiation

Curved trajectory — Frequency emitted — Power emitted * Coherent radiation
from bunched electrons * Spinning neutron stars

Compton scattering

Introduction

Classic Compton scattering

Compton wavelength * Momentum and energy conservation * Scattered
frequency

Inverse Compton scattering

Photon energy increase — Rest frame of electron — Laboratory frame — Average
over directions * Rate of electron energy loss — Cross section — Single electron
and many photons — Volume emissivity (many electrons) * Comptonization —
Black-hole binaries — Clusters of galaxies

Synchrotron self-Compton (SSC) emission

Relative energy loss rates * Compton limit * Inverse Compton peaks
in SEDs — Crab nebula — Blazars

Sunyaev-Zeldovich effect

Cluster scattering of CMB — Average frequency increase — Shifted spectrum —
Intensity decrement * Hubble constant — X-ray intensity — CMB decrement —
Angular-diameter distance * Peculiar velocities of clusters * Nonthermal

S-Z effect

Hydrogen spin-flip radiation

Introduction

The Galaxy

Stellar content * Interstellar medium (ISM) — Gases — Neutral hydrogen —
Ionized hydrogen — Four components of the gaseous ISM — Molecules — Dust,
radiation, cosmic rays, and magnetic fields

309

311

318

329

329
330

332

338

342

355

355
356



10.3

104

10.5

11

11.1
11.2

11.3

114

11.5

12

12.1
12.2

Contents

Hyperfine transition at 1420 MHz

Sky at 1420 MHz * Quantization fundamentals — Angular momenta —
Magnetic moments * Line splitting — Magnetic dipole in a magnetic field —
Three interaction terms — Overlap of electron wave function with a proton —
Magnetic field inside the proton — Spin-spin coupling — Energy difference

Rotation of the Galaxy

Galactic models — Pointlike central mass — Galactic mass — Spherical and
spheroidal distributions — Spherical distribution with p o 12 * Tangent-point
method — Hydrogen profiles — Working model of galactic rotation — Geometry —
Rotation curve — Construction of a hydrogen-cloud map — Summary * Flat
rotation curves and dark matter ¢ Differential rotation in the solar the
neighborhood — Relative velocities — Oort constants — Shear and vorticity *

Centers of galaxies

Zeeman absorption at 1420 MHz

Zeeman effect — Energetics — Angular momentum and polarization — Frequency
difference * Detection of Zeeman splitting * Cloud magnetic fields

Dispersion and Faraday rotation

Introduction

Maxwell’s equations

The equations * Vacuum solution — Wave equations — Phase velocity * EM
waves in dilute plasma — Wave solution — Phase velocity — Index of refraction —
Dispersion relation — Polarization of medium

Dispersion

Polarization from equation of motion * Index of refraction and plasma
frequency — Ionospheric cutoff — Interstellar cutoff * Group velocity — Phase
and group velocities distinguished — General expression — Pulse speed in a
plasma * Celestial source — Time delay — Crab nebula * Dispersion measure *
Galactic model of electron density

Faraday rotation

Rotation of linear polarization — Rotation with position — Oscillating electrons
* Circular polarization — Rotating vector — Left-right naming convention —
Components of E field — Superposition of RCP and LCP — Rotated linear
polarization * Index of refraction — Circular motion postulated — Polarization
vector — Dielectric constant and the index — Cyclotron frequencies * Rotation
angle — Uniform conditions — Nonuniform conditions — Rotation measure —
Crab nebula — Depolarization — Ionosphere

Galactic magnetic field
Ratio of RM to DM * Galactic map

Gravitational lensing

Introduction

Discovery
Quasars * Twin quasar Q 09574561 — Optical discovery — Radio imaging

Xiii

362

374

389

400

401
401

409

419

432

437

438
438



Xiv

12.3

12.4

12.5

12.6

Contents

Point-mass lens

Bending angle — Newtonian angle — General relativistic angle — Comparison
with an ideal lens — Einstein ring predicted * Image positions — Bending angle
plot — Ray-trace equation — Angular-diameter distance — Graphical
representation — Lens equation — Analytic solution — Determining system
parameters * Magnification and flux — Conservation of specific intensity —
Magnification overview — Extended source mapped — Magnification factor —
Total magnification factor * Microlensing — Projected stellar encounters —
MACHO project

Extended-mass lens

Galaxy as a lens — Constant-density spheroidal lens — Bending angle — Singular
isothermal sphere (SIS) — Image locations * Thin-screen approximation — Lens
plane — Bending angle

Fermat approach

Fermat’s principle * Time delays — Effective index of refraction — Geometric
delay — Gravitational delay * Fermat potential — Four examples — Odd-number
theorem ¢ Curvature as magnification * Modeling * Hubble constant —
Distance-redshift relations — System scale — Time difference—two paths — Mass
of lens — Example: point-mass lens — Q 09574561

Strong and weak lensing

Credits, further reading, and references
Glossary

Appendix — Units, symbols, and values
Index

442

460

465

477

483
487
489
493



1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16

2.1
22
23
24
2.5
2.6
2.7
2.8
29

3.1
32
33
3.4
3.5
3.6
3.7

Figures

Three images of visual binary Kruger 60
Alpha Centauri orbit

Inclination of orbit

Binary eclipses, schematics

Algol (3 Persei) eclipses

Radial velocities of binary

Phi Cygni radial velocities

Ellipse geometry

Total energy of elliptical orbits
Elliptical orbits of binary

Orbital elements

Radial velocity of Cygnus X-1
Pulse timing of orbit

Neutron star masses

Star wobbles due to exoplanets
Stellar tracks about galactic center

Jeans length

Hydrostatic equilibrium

Diffusion

Nuclear potential barrier
Proton-proton fusion, dominant chain
Proton-proton fusion chains
Eddington luminosity

Carnot cycle

Pulsations of star

Maxwell-Boltzmann distribution

Spatial and momentum-space volume elements

Gas pressure on wall

Single phase-space element in 1-D gas

Occupancy of phase space in 1-D gas

Degeneracy in 3-D gas of fermions
Equation-of-state zones in temperature-density space

103
105
107
114

XV



Xvi

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3

Figures

Radiation transport

Convective loops

Solar granules and sunspots

Convective bubble displacement

Solar distributions of mass, energy generation, temperature, and density
Zones of convection and radiation in stars

CMD diagrams for stars in solar neighborhood and in M3

Evolution on H-R diagram and color magnitude diagram of open clusters
Pulsating stars on H-R diagram

Density profiles of homologous stars

Stability curve of white dwarfs and neutron stars

Structure of neutron star

Accreting x-ray pulsar

Event horizon and innermost stable radii

Iron line distorted by gravity and rapid motions near compact object
Effective equipotentials in binary with Roche lobes

Overflowing Roche lobe

Sudden mass loss in binary

Evolution scenario, HMXB

Evolution scenario, LMXB

Pulse arrival timing for SAX J1808-3658

Radiating plasma cloud

Poynting vector for accelerating charge

Track of accelerated electron and radiated pulse of electric vectors
Flux of electrons and annular target area

Continuum thermal bremsstrahlung spectrum

Thermal bremsstrahlung spectra for two temperatures

Continuum spectra of two H II regions in W3

Theoretical spectrum of hot plasma, including spectral lines
Isotropically emitting source and telescope

COBE spectrum of cosmic microwave background (CMB)
Blackbody spectra on linear-linear and log-log plots
Blackbody spectra for six temperatures

Emission from a surface element

Volume of radiative energy approaching a surface
Phase-space cells in energy space for a photon gas
Momentum transfer, photons and wall

Thermal bremsstrahlung spectrum with low-frequency cutoffs
Adiabatic expansion of photon gas with mirror analog
Photons reflecting from receding mirrors

Frames of reference for Lorentz transformations
Time dilation events
Electric field lines and vectors transformed

120
121
122
122
126
129
130
133
137
142
146
147
148
152
153
162
164
167
171
173
174

184
185
188
191
195
195
197
198
201

206
208
210
211
214
216
217
221
224
226

235
238
248



7.4
1.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Figures

Doppler shift and aberration of emitted pulses
Aberration from two perspectives

MBS8T7 jet in the radio, optical, and x-ray bands

AGN sketch with black hole, accretion disk, and jet
Separating radio lobes (jet ejections) in GRS 19154105
Beaming geometry in two frames of reference

Angles of Doppler boosting and deboosting
Doppler-boosted spectrum and the K correction
Observers for superluminal motion

Superluminal motion: plot of apparent transverse velocity versus view angle
Momentum change for circular motion

Electron pair production

Galactic plane map from HESS TeV telescopes
Transformation of photon volume in physical space

Electron spiraling around magnetic field line and antenna view
Spectral energy distribution (SED) of Crab nebula

Crab nebula in four directions of polarized light

Radiation lobes of relativistic orbiting electron

Electric field lines of relativistic orbiting charge

Radiation lobes for relativistic orbiting charge at two times
Power distribution of radiation from single orbiting charge
Frames of reference for calculating synchrotron power
Electric and magnetic fields in two frames

Power-law spectra

Radio sky at 150 MHz

Spinning neutron star and curvature radiation

Discovery pulses from radio pulsar CP 1919

Classic Compton effect

Inverse Compton scattering with head-on collision

Spectral energy distribution of Cygnus X-1 in two states
Synchrotron self-Compton scattering

Schematic spectral energy distributions for blazars

Spectral energy distribution for blazar 3C454.3
Sunyaev—Zeldovich (S-Z) effect

Rayleigh—Jeans decrement for S-Z effect

Interferometic maps of six galaxy clusters showing S-Z effect

Sketch of the Galaxy

Two spiral galaxies: M81 and M101
Energy levels of hydrogen atom
All-sky map at 1420 MHz
Parallel-plane galaxy model

Quantum states of angular momentum
Magnetic moment from loop of current

Xvii

250
257
259
260
261
262
265
270
271
273
277
278
280
282

292
293
295
296
298
300
303
304
305
316
318
319
323

330
333
338
339
342
343
344
347
349

356
357
363
364
365
367
368



Xviil

10.8

10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18

Figures

Magnetic dipole orientations and hydrogen probability function
Interaction energies in hydrogen ground state

Differential rotation and rotation curve of Galaxy

Mass models of a galaxy

Hypothetical hydrogen line profiles

Hydrogen profiles of Galaxy at several longitudes

Geometry of tangent-point method

Hydrogen distribution in galactic plane

Energy levels for Zeeman splitting

Zeeman absorption in cloud with angular momenta and energy levels

Absorption line profiles for Zeeman splitting
Magnetic fields in star-forming region W49A

Linearly polarized wave at fixed time

Electric dipole moment and polarization of a medium
Propagating wave packet

Group velocity from two waves of slightly different frequencies
Dispersion of pulses from Crab nebula

Dispersion distribution in the plane of the Galaxy

Faraday rotation in a cloud of plasma

Mechanism of Faraday rotation for one electron

Electric vectors of circularly polarized wave

Summed right and left circular polarizations

Circular motion of electron driven by circularly polarized wave
Polarization angle of radiation from Crab nebula

Distribution of rotation measure in plane of Galaxy

Optical image and spectra of twin quasar, Q 09574561
Radio images of twin quasar, Q 09574561
Gravitational lens and four observers

Ray trajectory for a point gravitational source
Ideal lens and gravitational lens

Ray geometry for point-mass lens

Graphical solution for point-mass lens

Image positions for four source locations
Magnification geometry

Image of disk for six disk positions

Einstein ring, MG 11314-0456

Theoretical microlensing light curves
Microlensing event light curve in two colors
MACHO project lines of sight

Bending of rays for extended lens

Bending geometry for a spherical lens

Lens plane with rays

Fermat time delay functions for four cases

369
370
375
377
379
380
382
385
389
392
393
395

403
407
412
413
417
418
419
421
422
424
426
431
433

440
442
443
443
445
447
448
450
454
455
456
458
459
460
461
462
465
469



12.19
12.20
12.21
12.22

Figures

Four images of quasar HE 0435-1223

Scaling of gravitational lensing system

Light curves of twin quasar

Strong and weak lensing by cluster of galaxies, Abell 2218

XixX

471
474
476
477



1.1
1.2

2.1
2.2

4.1
4.2
4.3
4.4

6.1
6.2

7.1
7.2
13
7.4

8.1

10.1
10.2
10.3
10.4

11.1
11.2

XX

Tables

Conversion for two-body solutions
Orbital elements

CNO cycle
Hydrogen-burning reactions

Solar quantities

Stellar spectral types and characteristics

Scaling laws for stars

Radii of event horizon Ry, and innermost stable orbit Rjg,

Riemann zeta function
Roots of transcendental equation (75)

Lorentz transformations: X,¢

Lorentz transformations: p,U
Lorentz transformations: K,w
Lorentz transformations: B,E

Synchrotron radiation (Crab nebula)

Characteristics of (Milky Way) Galaxy
Components of the diffuse ISM

Energy densities in the ISM

Hyperfine splitting (ground-state hydrogen)

Maxwell’s equations
Maxwell’s equations for dilute nonferromagnetic plasma

page 26
32

71
73

127
128
141
152

230
231

237
244
245
246

310

358
361
362
371

402
405



Preface

This volume is based on notes that evolved during my teaching of astrophysics classes for
junior and senior physics students at MIT beginning in 1973, and thereafter on and off,
until 1997. The course focused on a physical, analytical approach to underlying processes in
astronomy and astrophysics. In each class, I would escort the students through a mathematical
and physical derivation of some process relevant to astrophysics in the hope of giving them
a firm comprehension of the underlying principles.

The approach in the text is meant to be accessible to undergraduates who have completed the
fundamental calculus-based physics courses in mechanics and electromagnetic theory. Addi-
tional physics courses such as quantum mechanics, thermodynamics, and statistics would be
helpful but are not necessary for large parts of this text. Derivations are developed step by
step — frequently with brief reviews or reminders of the basic physics being used — because
students often feel they do not remember the material from an earlier course. The derivations
are sufficiently complete to demonstrate the key features but do not attempt to include all the
special cases and finer details that might be needed for professional research.

This text presents twelve “processes” with derivations and focused, limited examples.
It does not try to acquaint the student with all the associated astronomical lore. It is quite
impossible in a reasonable-sized text to give both the physical derivations of fundamental
processes and to include all the known applications and lore relating to them across the
field of astronomy. The assumption here is that many students will have had an elementary
astronomy course emphasizing the lore. Nevertheless, selected germane examples of the
twelve processes are presented together with background information about them. These
examples cover a wide and rich range of astrophysical phenomena.

The twelve processes, with the principal applications presented, are the Kepler—Newton
problem (mass functions, exoplanets, galactic center orbits); stellar equilibrium (nuclear
burning, Eddington luminosity); stellar equations of state (normal and compact stars); stel-
lar structure (normal and compact stars); thermal bremsstrahlung (clusters of galaxies);
blackbody radiation (cosmological cooling); synchrotron (Crab nebula) and curvature radia-
tion (pulsars); 21-cm radiation (galaxy rotation, dark matter, Zeeman absorption); Compton
scattering (Sunyaev—Zeldovich effect); relativity in astronomy (jets, photon absorption in
the cosmic microwave background or CMB); dispersion (interstellar medium) and Faraday
rotation (Galactic magnetic field); and gravitational lensing (Hubble constant, weak lensing).
Cosmology as such is not systematically covered to limit the size of the text. Several related
topics, however, are addressed: (i) the dark matter in galaxies and in clusters of galaxies,

XX1
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(i) the cooling of the background blackbody radiation of the CMB, and (iii) determinations
of the Hubble constant through both the S-Z effect and gravitational lensing.

Knowledge of the material in my previous textbook, Astronomy Methods — A Physical
Approach to Astronomical Observations (AM), is not required for this text. The topics are
largely complementary to those herein. I do, though, occasionally refer to it as an optional
background reference. (The chapter numbers refer to the original edition.) The AM text does
discuss the transport of radiation in stellar atmospheres, one of the most basic processes in
astronomy; hence, regretfully, this topic is not included in this book.

Again, SI units are used throughout to be consistent with most standard undergraduate
science texts. Professional astronomers use cgs units — probably because everyone else in the
field does. Unfortunately, this precludes progress in bringing the various science communities
together to one system of units. It is also a significant hindrance to the student exploring
astronomy or astrophysics. In this work I vote for ease of student access. One inconsistency
does remain. Rather than use the customary and highly specialized astronomical unit of
distance, the “parsec” but instead employ the better understood, but non-SI, unit, the “light
year” (LY), which is the distance light travels in one year. This is a well-defined quantity if
one specifies the Julian year of exactly 365.25 days each of exactly 86400 SI seconds for a
total for 31557600 s.

Other features of the book as follows: to note are

(/) Problems are provided for each chapter and approximate answers indicated by the ~
symbol are given when appropriate.
(if) The problems are generally constructed to help carry the student through them and hence
are mostly mulitpart.
(@ii)  Units are often given gratuitously (in parentheses) for algebraic variables to remind the
reader of the meaning of the symbol.
(iv)  Equation, table, figure, and section numbers in the text do not carry the chapter prefix if
they refer to the current chapter to improve readability.
(v) Tables of useful units, symbols, and constants are given in the appendix.
(vi)  Quantitative information is meant to be up to date and correct but should not be relied
upon for professional research. The goal here is to teach underlying principles.

In teaching this course from my notes, I adopted a seminar, or Socratic, style of teaching that
turned out to be extremely successful and personally rewarding. I recommend this approach
to teachers using this text. I sat with the students (up to about 20) around a table, or we
would rearrange classroom desks and chairs in a circular or rectangular pattern so that we
were all more or less facing each other. I would then have the students explain the material
to their fellow students (“Don’t look at me,” I often said). One student would do a bit, and I
would move on to another. I tried very hard to make my prompts easy and straightforward,
to avoid disparaging incorrect or confusing answers, and to encourage discussion among the
students. I would synthesize arguments and describe the broader implications of the material
interspersed by stories of real-life astronomy, personalities, discoveries, and so on.

These sessions would often become quite active. The course was also great fun for the
teacher. In good weather, we would move outdoors and have our class on the lawn of MIT’s
Killian Court.
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During such discussions, the text should be available to all and be freely referenced. To
ease such referencing, all equations are numbered, labels are provided for many of them, and
important equations are marked with a boldface arrow in the left margin. The students must
work hard to prepare for class, and thus they gain much from class discussion.

The author asks his readers’ forbearance with the inevitable errors in the current text and
requests to be notified of them. He also welcomes other comments and suggestions.

Hale Bradt

Salem MA 02478-2412
USA

bradt@mit.edu.
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quantitative astronomy. The presentation covers a diversity of topics from a physicist point
of view and is addressed to the upper-level undergraduate or beginning graduate student. The
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electromagnetic spectrum;

atmospheric absorption;

celestial coordinate systems;

the motions of celestial objects;

eclipses;

calendar and time systems;

telescopes in all wave bands;

speckle interferometry and adaptive optics to overcome atmospheric jitter;
astronomical detectors, including charge-coupled devices (CCDs);
two space gamma-ray experiments;

basic statistics;

XXV



XXVi

Also by Hale Bradt

interferometry to improve angular resolution;

radiation from point and extended sources;

the determination of masses, temperatures, and distances of celestial objects;

the processes that absorb and scatter photons in the interstellar medium together
with the concept of cross section;

broadband and line spectra;

the transport of radiation through matter to form spectral lines; and finally;
techniques used to carry out neutrino, cosmic-ray, and gravity-wave astronomy.
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1

Kepler, Newton, and the mass function

What we learn in this chapter

Binary star systems serve as laboratories for the measurement of star masses through the
gravitational effects of the two stars on each other. Three observational types of binaries —
namely, visual, eclipsing, and spectroscopic — yield different combinations of parameters
describing the binary orbit and the masses of the two stars. We consider an example of each
type — respectively, &« Centauri, 3 Persei (Algol), and ¢ Cygni.

Kepler described the orbits of solar planets with his three laws. They are grounded in
Newton’s laws. The equation of motion from Newton’s second and gravitational force laws
may be solved to obtain the elliptical motions described by Kepler for the case of a very
large central mass, M > m. The results can then be extended to the case of two arbitrary
masses orbiting their common barycenter (center of mass). The result is a generalized
Kepler’s third law, a relation between the masses, period, and relative semimajor axis. We
also obtain expressions for the system angular momentum and energy. Kepler’s laws are
useful in determining the orbital elements of a binary system.

The generalized third law can be restated so that the measurable quantities for a star in a
spectroscopic binary yield the mass function, a combination of the two masses and
inclination. This provides a lower limit to the partner mass. Independent measures of the
partner star’s mass function and also of orbital tidal light variations or an eclipse duration,
if available, can provide the information needed to obtain the masses of both stars and the
inclination of their orbits. The track of one of the two stars in a visual binary relative to the
other yields the sum of the two masses if the distance to the system is known. The tracks of
both stars in inertial space (relative to the background galaxies) together with the distance
yield the two individual masses.

Measurement of the optical mass function of the partner of the x-ray source Cyg X-1
revealed the first credible evidence for the existence of a black hole. Timing the arrival

of pulses from a radio or x-ray pulsar provides information equivalent to that from a
spectroscopic binary. Such studies have made possible the determination of the masses of
several dozens of neutron stars. They have also provided the first evidence of exoplanets,
which are planets outside the solar system.
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More than ~150 exoplanets have now been discovered — most of them through optical
radial velocity measures that detect the minuscule wobble of the parent star. At the center
of the Galaxy, orbits of stars near the central dark mass have yielded the mass of the central
object, ~3 x 10° M, and give strong evidence that it is indeed a massive black hole.
Spectral and imaging data from orbiting bodies, used together, have yielded the distance

to the center of the Galaxy and to the nearby star cluster, the Pleiades.

1.1 Introduction

Between one-third and two-thirds of all stars are in binary stellar systems. In such a system,
two stars are gravitationally bound to each another; they each orbit the common center of
mass with periods ranging from days to years for normal stars and down to hours or less for
systems containing a compact star. In this chapter, we examine the motions of the individual
stars and describe how these movements can be deduced from observations. We then learn
how to deduce the masses of the component stars. Finally, we examine some contemporary
applications of Kepler’s and Newton’s laws.

The motions of stars in a binary system can be understood in terms of the second law
(F = ma) of Isaac Newton (1643—1727). This is worked out initially for a massive star M
orbited by a much smaller mass m (i.e., M > m). The motion of a body in a gravitational
r~—2 force field is found to follow an elliptical path. The derived motions satisfy Kepler’s
laws, which were empirically discovered by Johannes Kepler (1571-1630). Thereafter, the
“two-body” problem is worked out for two bodies of arbitrary masses. The results for the
M > m case provide a useful shortcut to the solution of the more general case.

In many binary systems, the stars are so far apart that they evolve quite independently
of each other. In this case, their binary membership is only of incidental interest. In many
systems, however, the two stars are so close to each other that their mutual interactions
greatly affect their structure and evolution through tidal distortion and interchange of matter.
The creation of white dwarfs, neutron stars, and black holes can follow directly from the
modified evolutionary paths. Here, we address solely the gravitational interaction of two point
masses.

1.2 Binary star systems

The binary systems observable in optical light are of three general types: visual, eclips-
ing, and spectroscopic. These classifications refer to the manner in which the star exhibits
its membership in a binary system. The classes are not mutually exclusive; for example,
a system can be eclipsing and spectroscopic. The distinctions between the classes arise
from the sizes of the two stars, their closeness to each other, and their distance from the
observer.

An additional observational class is that of (visual) astrometric binaries, wherein only one
star is detectable but is observed to wobble on the sky owing to its orbital motion about a
stellar companion. An example is AB Doradus, which has been tracked to milliarcsec and
precision with very long baseline interferometry (VLBI). It is now known to be a quadratic
system of late-type stars.
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Celestial laboratories

Binary stellar systems may be considered laboratories in space. One star interacts with
another, and its response to the environment of the other can be measured by the signals
(photons) reaching us. One measurable quantity is the orbital period, and another is the line-
of-sight velocity. If the orbit is viewed edge-on, the mass of a (massive) star can be determined
by measurements of its much lighter companion. Similar information can be obtained from
systems in which the masses of the stars have arbitrary values. Such studies have long been
important in optical astronomy; since 1971, they have been important in x-ray astronomy.

There can, of course, be forces on the entire two-star binary system due to other (external)
gravitational systems. These external forces will accelerate the system’s center of mass. In
this chapter, we assume that there are no significant external forces on the two-star system.
In this event, the center of mass will be stationary or will drift through space with a constant
velocity. Our attention will be focused on the motion of the two stars relative to each other
and to their center of mass.

The large proportion of stars in binary systems (about one-half) is one indication that
stars are formed from the interstellar medium in groups. Triple systems are also common.
Another indication is the existence of groups of stars in the Galaxy (open clusters) such as
the Pleiades. The stars in such clusters were all formed at about the same time and probably
condensed out of a single interstellar cloud. If two or more stars are formed sufficiently close
to each other to be gravitationally bound, they will orbit each other and will thus be a binary
or triple system.

The nature of the component stars in binary systems is as varied as the types of stars
known to us. Almost any type of star can be in a binary system. Two main-sequence stars are
common, but there are also highly evolved systems such as (i) cataclysmic variables, in which
one component is a white dwarf; (ii) neutron-star binaries, in which one stellar component is
a neutron star; and (iii) RS CVn binaries, in which one component is a flaring K giant. (The
latter class is named after the star RS in the constellation Canes Venatici = Hunting Dogs.)
A binary system that includes a main-sequence star is likely to contain a giant star if enough
time elapses because, sooner or later, one of the stars will move off the main sequence to
become a red giant; see Section 4.3.

In many of these cases, the close proximity of the two stars to each other leads to direct
and complex interactions between them. For instance, as a star expands to become a giant,
its gas envelope can overflow its potential well and flow onto a close partner. This process is
called accretion. If the partner is a neutron star, the accretion leads to the emission of x rays.
If it is a white dwarf, a highly variable optical emission is seen as well as some x rays. The
energy from the emission comes from the release of gravitational potential energy by the
infalling material.

The close proximity of two stars can also disturb the atmosphere of a star, giving rise to
turbulence and flaring (RS CVn binaries) caused by tidal effects. Their proximity can also
distort the shape of a star in the same way that the moon distorts the shape of the earth’s
oceans.

Accretion of gas from one star to another in a binary system can dramatically modify
the evolution of the two stars. For example, accreted gas will increase the mass of a normal,
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Fig. 1.1: Kruger 60, a visual binary. The relative positions of the two stars (upper left) are seen
to vary as they orbit each other with a period of 44.6 yr. The two stars are M stars with visual
magnitudes 9.8 and 11.4. They are distant from the earth 12.9 LY with relative angular semimajor
axis 2.4” (a;, =9.5 AU). [Yerkes Observatory.]

gaseous star, leading to faster nuclear burning and a shorter life. The study of these objects can
therefore provide great insight into the underlying physics of stars. The interactive evolution of
two stars leads to many interesting phenomena such as millisecond pulsars, which are neutron
stars spinning with periods of a few milliseconds. Binary stellar systems are a diverse and
fascinating breed of objects worthy of study in their own right.

Visual binaries

Visual binaries are systems that can be seen as two adjacent stars on an image of the sky,
such as a photographic plate (e.g., Kruger 60 shown in Fig. 1.1 and Sirius). Over a period of
some years, the two stars can be seen to orbit about each other. In such systems, the motion
of one or both stars on the sky can be mapped to yield important parameters of the system.

An example of such mapping is « Centauri (Fig. 1.2). In this case, the asymmetry of the
path is a consequence of an elliptical (eccentric) orbit. The orientation of the orbit to the
line of sight gives it a strange appearance. The degree of eccentricity, the 80-yr period, and
the angular size of the orbit (projected angular semimajor axis) provide information about
the masses of the stars.

The inclination of the orbit relative to the line of sight is conventionally defined with the
inclination angle i (Fig. 1.3a). If the observer is viewing the orbit face-on (i.e., normal to
the orbital plane), the inclination is zero, i = 0°. If the observer is in the orbital plane, the
inclination is i = 90°.

Eclipsing binaries

Eclipsing binaries are systems in which one star goes behind the other. This will happen if
(i) the stars are very close to each other, (if) one of the stars is sufficiently large, and (iii) the
orbital plane is viewed more or less edge-on (inclination ~90°). Conditions (i) and (if) can
be summarized by requiring that the ratio of star size R to the distance s between the stars be
of order unity:

R/s = 1. (approximate condition for eclipsing binary) (1.1)

If this condition is met, the inclination need not be particularly close to 90°.
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Fig. 1.2: The  Centauri visual binary system. This is a plot of the positions projected onto the
plane of the sky of one of the two stars relative to the other as a function of time (years). The origin
is one of the components and the radial distances are in arcseconds (see scale). The track of the star
in the plot is the projection of an ellipse, which is also an ellipse, but with shifted focus. The stars
are at their smallest physical separation at the position marked periastron and at their largest at
apastron. The line of nodes is the intersection at the focus (origin) of the plane of the orbit and the
plane of the sky (see Fig. 1.11). The position angle (2 of the line of nodes and the (projected) longi-
tude of periastron w, are indicated; they are defined in Fig. 1.11. The stellar components are bright
main-sequence stars (G2 V and K IV) of visual magnitudes my = 0.0 and 1.36, respectively, with
a period of 79.9 yr. This system is very close to the sun, 4.4 LY. (A faint, outlying additional com-
panion, Proxima Cen, is the closest star to the sun.) [After Menzel, Whipple, and deVaucouleurs,
Survey of the Universe, Prentice Hall, 1970, p. 467]

The stars in eclipsing systems are sufficiently close to each other that they can not be
resolved on a traditional optical photograph; they appear to be a single star. The binary
character is detected by the reduction of light emanating from the system during eclipse.
Modern high-resolution imaging such as interferometry or adaptive optics, however, can
sometimes resolve the two stellar components in these systems.

When the smaller of the two stars of a hypothetical binary (Fig. 1.4a) moves behind its
companion, it is occulted, and only the light from the larger star reaches the observer. The
light curve (flux density versus time) thus shows a reduction of light when the small star
goes behind the big star. The light also dims when the small star covers part of the big star.
The edges of the dips in the light curve are not vertical; they show a gradual diminution of
the light. This is due to the finite size of the small star. The two eclipses per orbit are of
different depths; it is instructive to understand this [see discussion immediately following].
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Fig. 1.3: (a) Definition of the inclination angle of an orbital plane for a circular orbit. The position
of the star when the line-of-sight velocity equals v, sin i is indicated. An orbit lying exactly in
the plane of the sky has inclination i =0° and will exhibit no Doppler shifts. (b) Inclination of
low-altitude satellite orbit. If the satellite is launched eastward from Cape Canaveral (CC), its
greatest latitude will be that of the Cape. The earth rotates under the orbit, and the orbit precesses
with a period of ~50 d.
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Fig. 1.4: Schematic and hypothetical light curves of (a) a totally eclipsing binary and (b) a partially
eclipsing binary. A light curve is a plot of flux density versus time. One eclipse is deeper than the
other because the stars are assumed to have different surface brightnesses. Larger main-sequence
(hydrogen-core-burning) stars are brighter per fixed solid angle than smaller main-sequence stars.
The deeper eclipse occurs when the larger stars are partially covered.

Sometimes the star merely grazes its companion, giving rise to partial eclipses. This case is
shown schematically in Fig. 1.4b.

An actual (partial) eclipsing system, Algol, is shown schematically in Fig. 1.5. It contains
one main-sequence star (B8 V) and one subgiant (K2 IV). These orbit each other with a
period of 2.9 days. There is a third companion (not shown) at a greater distance, that orbits
the close pair in 1.9 yr. The system is ~100 LY distant, and the close pair are separated by
14 Rg. Their separation is thus only ~2 milliarcsec, and so they appear as a single star through
most telescopes. Those now equipped with optical interferometry do resolve the components
of this triple system.

Recall that the spectral type (the letter designation; see Table 4.3) is a measure of the
stellar color or temperature 7 and that this in turn determines the energy outflow per unit
area from the stellar surface, which is approximately % = oT* W/m?, the flux density from
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Fig. 1.5: (a) Schematic drawing of the partially eclipsing system Algol ({3 Persei) approximately
to scale. (b) Its light curve in four frequency bands. The designations a, b, ¢ are used to associate
portions of the light curve with particular phases of the orbit. The B8 V and K2 IV stars orbit one
another with a period of 2.87 d and inclination 82.5° and are separated by 14 R. The K star fills
and overflows its pseudopotential well (Roche lobe) and hence accretes matter onto the B star.
The changing flux between the two eclipses is due to the changing aspect of the distorted K star
and to backscattering of B-star light from the surface of the cooler K star. [(b) R. Wilson et al.,
ApJ 1717, 191 (1972)]

a blackbody. Thus, in the visual band, the effect of partially covering the hotter B§ star is
much more pronounced than is the effect of covering the same area of the cooler K2 star, as
seen in Fig. 1.5.

The details of such light curves can tell astronomers a great deal about the stars in the binary
system. The existence of the eclipse constrains the orbital plane to lie roughly in the line of
sight; the duration and shape of the eclipse are related to the inclination, the separation of the
stars, and their physical sizes. The changes of intensity are related to the surface brightnesses
and hence the classes of the stars. Can you speculate about the cause of the gradual changes
of light during the phases between the two eclipses of Fig. 1.5 (see caption)?

Spectroscopic binaries

Some close binaries do not eclipse each other because the orbit has low inclination, the
stars are sufficiently separated, or both. In these cases, the binary nature of the stars can be
identified only through the detection of periodic Doppler shifts in the spectral lines of one
or both stars. These binaries are called spectroscopic binaries. The Doppler shifts are due to
the motions about the system barycenter.

The radial velocity of the star must be great enough to be detected as a spectral Doppler
shift, and it must be bright enough to yield sufficient photons for high-resolution spec-
troscopy. The motions are greatest for binaries of close separation (see (3) below); most
known spectroscopic binaries have separations less than 1 AU. Not surprisingly, therefore, a
substantial fraction of spectroscopic binaries also exhibit eclipses; these are called eclipsing
spectroscopic binaries.

The orbits and Doppler velocities of a hypothetical binary system are shown in Fig. 1.6.
For simplicity, the orbits are circular and oriented such that the observer (astronomer) is in



8 Kepler, Newton, and the mass function

151 ty 13 2]

90 km/s

+100
Radial
velocity
vy (km/s)
0

100 | | | | | |

5 I 10 15 20 I 25 30 35
Time
P o t

1 t, —» 13 t4

Fig. 1.6: Hypothetical spectroscopic binary with circular orbits and a 30-d period shown at four
phases of the orbit. The observer is in the plane of the orbit. Star 1 is three times more massive than
star 2. At any given time the two stars are on opposite sides of the barycenter, which is moving
steadily away from the observer with a radial velocity component of + 50 km/s. The star speeds
relative to the barycenter are shown in the upper left. Star 2, with its smaller mass, is three times
farther out from the barycenter than star 1; hence, it must travel three times faster to get around
the orbit in the same time as star 1. The direction to the astronomer and the observed Doppler
velocities are shown. [Adapted from Abell, Exploration of the Universe, 3rd Ed., Holt Rinehart
Winston, 1975, p. 439, with permission of Brooks/Cole]

the plane of the orbit, i = 90°. Thus, once each orbit, star 1 approaches directly toward the
observer, and a half period later it recedes directly away. If the orbit were oriented such that
it would lie in the plane of the sky, i =0°, the stars would have no component of velocity
along the line of sight. In this case, there would be no detectable Doppler shift.

The line-of-sight (radial) velocities are shown in Fig. 1.6 as a function of time for each star.
They are not centered about zero radial velocity because the barycenter of the system is (in
our example) receding from the observer with a radial velocity of v, = + 50 km/s. Star 1 is
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more massive than star 2 (m; >m,). It is therefore closer to the barycenter (upper sketches)
and is moving at a lesser velocity (relative to the barycenter); see plots.

The velocity curves are obtained spectroscopically from observations of the Doppler shifts
of the frequency of stellar absorption (or emission) lines. The shift is toward higher frequency
(blue shift) if the object approaches the observer and to lower frequency (red shift) if the
object recedes. The usual sign convention for radial velocity in astronomy is “+ " for a
receding object and “—" for an approaching object.

The Doppler relation between the radial velocity v, and the frequency shift Ay for
nonrelativistic speeds (v < ¢) is thus

V—7 Ur

= , (v<Ko) (1.2)
Vo c

where v is the rest frequency of the absorption line (as would be seen by an observer moving
with the star), v is the observed frequency at the earth after correction for its own orbital
motion, and v, is the radial component of the star’s velocity.

Additional features of Fig. 1.6 are as follows:

(i) zero Doppler velocity (relative to the barycenter) at #, and ¢4 when the stars are moving
at right angles to the line of sight;
(i) sinusoidal light curves as expected for projected circular motion at any inclination;
(@ii)  relative light-curve amplitudes that reflect the 3-to-1 mass ratio;
(iv) light curves exactly 180° out of phase owing to momentum conservation.

Data from an actual spectroscopic binary, ¢ Cygni, are shown in Fig. 1.7. Spectral lines
from each of the two stars yield, from (2), the plotted radial velocity points. They show
asymmetries introduced by the orientation of the elliptical orbits relative to the observer’s
line of sight and by the varying speeds of the stars as they move in their elliptical orbits. Note
that the curves cross at a nonzero velocity. Again, this is due to the motion of the barycenter
relative to the observer.

In many actual spectroscopic binary systems, astronomers obtain only one curve because
one star is too faint — either in an absolute sense or because its light is swamped by its much
brighter companion. These are called single-line spectroscopic binaries. If the brighter star
is much more massive than its companion, as is likely (see Section 4.3), its motion may be
too small to be measured. In this case only an upper limit to v, is obtained.

On the other hand, if the Doppler shifts of both stars are measurable, and if eclipses
occur, a wealth of information is obtained. Such a system would be a double-line eclipsing
binary.

1.3 Kepler and Newton

The laws of Kepler are described here together with an analysis of the ellipse and a presentation
of Newton’s equations of motion in polar coordinates. The latter lead to Kepler’s laws, as
we demonstrate next. The discussion is limited to the case in which one mass in the binary
is much greater than the other, M > m. This sets the stage for the more general case.
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Fig. 1.7: Theradial velocities as a function of time for ¢ Cygni derived from the Doppler frequency
shifts of the spectral lines. This is a double-line spectroscopic binary system consisting of two giants
of about equal masses. The smooth curves are theoretical fits to the data points. The orientation of
the elliptical orbit with respect to the line of sight and the nonconstant speeds in the orbit yield the
strange shape. The barycenter recedes from the observer. [Adapted from R. Rach and G. Herbig,
ApJ 133, 143 (1961)]

Kepler’s laws (M >>m)

Kepler carried out a detailed analysis of the celestial tracks of the sun’s planets as recorded
with good precision by Tycho Brahe (1546—1601). The sun is so much more massive than
the planets that it can be considered to be stationary (i.e., the condition M >> m holds). He
discovered three simple laws that well describe the tracks of the planets, the speed variations
of a planet in its orbit, and the relative periods of the orbits of the several planets. They are
known as Kepler’s laws and are as follows:

Kp I. The orbital track of a given planet is an ellipse with the sun at one of the foci. (A
circular orbit is a special case of an ellipse.)

Kp II. The radius vector (sun to planet) sweeps out equal areas in equal time.

Kp III. The square of the orbital period P? is proportional to the cube of the semimajor
axis @’ of the orbit. That is, P?> = c;a®, where ¢, is a constant independent of the mass of the
planet. The physical constants that make up c¢; are now known (see (45) below), and so the
law becomes

GM P?=41d>, (Kepler 1II; M > m) (1.3)

where M is the mass of the central object, if M > m.

The first law tells us that the orbits are elliptical (Fig. 1.8a) and that the sun is at one of the
foci. It is remarkable, as we later demonstrate, that, according to a Newtonian analysis, an
ellipse is precisely the expected track for an inverse-squared gravitational force law. Kepler
was not just close; he was exactly right.

The second law (Fig. 1.8b) tells us that, as a planet traverses its orbit, it speeds up as
it approaches the sun. It is fastest at the closest approach (perihelion) and slowest at its
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Fig. 1.8: (a) Geometry of an elliptical orbit of a mass m showing the two foci, the semima-
jor axis a, the semiminor axis b, the radius vector r at the azimuthal angle 6, and the two
radii whose summed lengths yield a constant. A massive star M(M > m) is shown at the right
focus. The dashed lines show the special geometry when the orbiting body is on the semimi-
nor axis at Q' and r =a. (b) Kepler’s second law. The areas swept out in equal times are equal,
AA| = AA,. (c) Periastron (ry;,) and apastron (rp.) for an elliptical orbit.

farthest distance (aphelion). This law is equivalent to the conservation of angular momentum,
as we will find from Newton’s second and gravitational laws. Again, Kepler was exactly
right.

The third law moves on to compare the orbits of the several different planets in the solar
system. The larger orbits have longer periods; the outer planets take longer to orbit the Sun
than do the inner planets. Again a Newtonian analysis yields the exact relation postulated
by Kepler. The more remote the planet, the smaller are the forces and accelerations, which
results in smaller angular velocities and hence longer periods.

Ellipse

An ellipse is a conic section that looks like a flattened circle. It can be constructed (Fig. 1.8a)
by requiring that the sum of the two radii from the two foci to point Q on the ellipse be
independent of the position of Q. An ellipse can be constructed with a pencil and a piece of
string whose ends are anchored at the two foci; the fixed length of the string constitutes the
constant sum of the two radii.

An ellipse is equivalently described mathematically with a function r(6) that is the length
of the vector r as a function of the angle 6 defined in Fig. 1.8a,

1 —é2

- rO=a—.
1+ ecosé

(Equation of ellipse) (1.4)
where a and e are constants called the semimajor axis and eccentricity, respectively. The
eccentricity is restricted to values 0 < e < 1; a larger value (¢ > 1) yields a hyperbola. A
plot of (4) about the right-hand focus, with ¢ = 0.8, yields the ellipse of Fig. 1.8a. One finds,
in general, that the semimajor axis (1/2 the long dimension) is equal to the parameter a.
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The minimum and maximum radii, from (4), are, for cos # = %1, as follows:
Fmin = a(l —e), (6=0) (L5
and
Fmin = a(l + ). (6=180°) (1.6)

An object orbiting the earth is at the distance 7, from the center of the earth when it is at
perigee, and the object is at apogee when it is at ry,x . If the object is orbiting a star, such asina
binary stellar system, these two parameters give the closest and farthest points and are called
periastron, and apastron, respectively. For an object orbiting the sun, the corresponding terms
are perihelion and aphelion. Note that the sum of (5) and (6) is (Fig. 1.8¢c)

"min + Fmax =2a, (17)

which justifies our statement immediately above that a is the semimajor axis. The distance
2a is the length of the hypothetical string used to construct the ellipse graphically; to see this,
visualize point Q to be at 6 =0°.

The string length may also be obtained from (4) at point Q' midway along the ellipse
(dashed line). First, note that the distance from origin O (at the focus) to C is, from the figure
and (5), that is,

a — Imin = ae, (1.8)

and that, for this case,

cos 0 = —ae/r, (1.9)
where r = r(Q’) is the unknown distance OQ’. Substituting (9) into (4) yields
1—¢é?
=a m. (1.10)
Solving for r results in
r(Q) =a. (1.11)

The “string” has twice this length, or 2a, which is the same as at § =0° (7). This verifies that
(4) is consistent with a constant-length string for a second point on the ellipse. The general
proof of the constancy follows from (4), the ellipse equation (Prob. 31).

The half-width of the ellipse is specified as b, the semiminor axis. The triangle COQ’ and
the Pythagorean theorem yield

bja = (1 —e*)'/2. (1.12)

From this, we find that ¢ = 0 corresponds to circular motion (a = b) and that e — 1 approaches
straight-line motion (b — 0).

The Newtonian connection

Newton was born 12 years after Kepler died. He was able to show that the elliptical orbits of
the planets deduced by Kepler could be understood in terms of a radial » 2 force proportional
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to the product of both masses (sun and planet). Such a simple force giving rise to elliptical
orbits was an impressive theoretical result but did not, in itself, indicate the correctness of
the theory. It was the fact that the planets do indeed follow elliptical orbits that validated
Newton’s theory. It is also a credit to Kepler, and to Tycho Brahe, whose data Kepler used,
that Kepler’s empirical laws proved to be precisely correct according to Newton’s more
fundamental theory.

The expression known as Newton’s law of gravitation is

GMm

Fg =
r3

r, (Newton’s law of gravitation) (1.13)

where F is the force on the planet, M and m are the masses of the sun and planet, respectively,
and r is the radius vector directed from mass M (at focus O) toward mass m (at Q; Fig. 1.8a).
The magnitude of the ratio /7> is 1/r%; thus, (13) describes the familiar 2 gravitational
force. The negative sign indicates that the force on the planet is toward the sun. The vector
force (13) is purely radial; it has no azimuthal component. In short, (13) describes a central
force.

There is no torque N about the origin at mass M because Fg is radial and hence N=
r X Fg =0. The absence of torque implies that angular momentum J of the mass m (again
taken about mass M) is conserved during the motion, N =dJ/d¢t= 0. A constant J vector
during the orbit means that the motion is confined to a plane.

The expression known as Newton’s second law F = ma is, in differential form,

d*r
F = m@ (Newton’s second law) (1.14)
For the gravitational force Fg (13), this yields the equation of motion
GMm d*r . .
- — —r=m FIoh (Vector equation of motion) (1.15)
’

The solution of (15), (¢), should give the planetary motions described by Kepler.

The time-dependent radius vector r(¢) describes the motion of the mass m in the presence of
the r 2 gravitational field. It can be described at any instant in terms of its polar components
in the orbital plane, namely, radius r and azimuth 6. In our solution, the scalar function r(6)
will map out an ellipse (4), where 6, in turn, is a function of time, 8 = 6(¢). The latter function
describes the nonuniform speeds at which the planet moves around the ellipse.

The general method for finding a solution to an arbitrary differential equation is to guess
possible solutions and to substitute them into the equation until one is found that satisfies
it. (Certain classes of differential equations have well-known solutions, and others may be
solved analytically by integration.) In our case, the elliptical motion suggested by Kepler in
his laws will be used in Section 4 as the trial solution, and, of course, we will find that it
satisfies the equation of motion (15). Several useful relations and insight into Kepler’s laws
will be obtained from this analysis.

Earth-orbiting satellites

We pause here to point out that Kepler’s laws are a great help in the qualitative understanding
of earth-orbiting satellite motion. For example, the second law, equal areas swept out in equal
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times, describes the rapid transit through perigee and the slower transit through apogee. X-ray
astronomy satellites such as Chandra take advantage of this; it carries out observations far
from the earth-s radiation belts near apogee and spends relatively little time in the background-
producing radiation belts near perigee.

The third law, P? e a®, explains why earth-synchronous satellites that relay television
signals with an orbital period of 24 h must be inserted into much higher orbits than low—
earth-orbiting satellites that have periods of about 90 min.

Kepler’s first law tells us that all such orbits should follow perfectly elliptical orbits in the
presence of a perfect » 2 force (i.e., in the absence of any perturbing forces). In practice this
condition is quite well satisfied for most satellites. In this approximation, the satellite follows
the elliptical orbit perfectly and will always return to the point in inertial space where it had
been inserted into the orbit. In extremely strong gravitational fields, however, orbits deviate
from perfect ellipses according to Einstein’s general theory of relatively.

Orbit change

Consider, for example, that mission controllers wish to change the orbit of an earth-orbiting
satellite. The rocket on the satellite is commanded to give the satellite a momentum impulse
with a brief “burn.” The resultant new direction and velocity define the new orbit. If the
impulse is directed in (or opposed to) the direction of the initial momentum, it will speed up
(or slow down) the satellite, but the plane of the orbit will remain the same. If this impulse
is in some other direction, not in the orbital plane, it will change the plane of the orbit.

The satellite will proceed along its new elliptical orbit, eventually returning through the
same point where the impulse was applied. No matter how much energy you use (less than the
escape energy), the satellite will always return to the firing point like a boomerang. You can
not get rid of it! The new eccentricity and semimajor axis depend on the particular direction
and energy the satellite has after the burn.

For example, one can raise a satellite from a low circular orbit into a high circular orbit
with two rocket firings. The first burn imparts a momentum in the direction of the initial
momentum, thus increasing the energy and leading to a higher apogee at the desired new alti-
tude (say, synchronous altitude). The perigee, however, remains at the firing point, according
to the discussion under “Earth-orbiting satellites” above the intermediate orbit is thus highly
elliptical. A second firing when the satellite is at apogee, again in the direction of motion,
will raise the perigee up to the desired final altitude, thus yielding the desired circular orbit.

Another example is the burn that gives the impulse leading to reentry of a manned spacecraft
into the atmosphere. Assume an initial circular orbit. A burn is applied to slow down the
spacecraft. It thus enters a new elliptical orbit with a lowered perigee that is within the upper
atmosphere. Atmospheric friction removes the additional energy required for a safe landing.

Launch inclination

This visualization is also useful in understanding the inclination of a satellite orbit relative to
the earth’s equatorial plane after the satellite is first launched into orbit. Consider the launch
to be a single impulse given to the satellite directly above its launch site and high enough to
be free of atmospheric drag. From Cape Canaveral, Florida, the impulse is generally eastward
because the eastward rotation of the earth provides an additional thrust and larger weights
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can be launched. This impulse will generally be just sufficient to yield a circular orbit, — that
is, to lift the perigee (on the other side of the earth) out of the atmosphere.

The satellite will then follow an orbit that is in the plane containing the earth’s center
and passing east—west through the impulse point (Fig. 1.3b). Thus, it moves first eastward,
then southward, and then northward again, passing again through the impulse point going
eastward. Because this is the most northern point in the orbit, the orbit inclination is the same
as the latitude of Cape Canaveral, namely 28°.

This orbital track is almost stationary in inertial space; it is fixed relative to the distant
galaxies, and the earth rotates under it. The impulse point is thus fixed in inertial space, and
Cape Canaveral passes under it once a day, during which time the satellite makes ~15 orbital
passes. After a half-day, or 7-8 orbits, the satellite crosses the meridian of Cape Canaveral
far to the south at latitude —28°.

In fact, the orbit is not exactly stationary. It actually precesses slowly in inertial space
owing to gravitational torques applied by the bulge of the earth’s equator and the Sun. The
time for the precession to complete a cycle is ~50 d for a low—earth-orbiting satellite.

One could launch into a more highly inclined orbit than 28° from Cape Canaveral by giving
a northern component to the initial impulse with enough energy to yield a near circular orbit,
but this would require a big energy expenditure. A southern component to the initial impulse
would also increase the inclination; think about it! Furthermore, it is impossible to obtain an
inclination less than 28° with a single impulse from Cape Canaveral; think about this too.
Launch into an equatorial orbit (inclination 0°) from Cape Canaveral would require a second
burn (impulse) and much energy. Where must that burn take place?

Finally, consider launch into a polar orbit, one that passes repeatedly over both the North
Pole and South Pole. Can it be inserted with one burn from Cape Canaveral? Why are such
launches always made from the west coast and not from Canaveral?

1.4 Newtonian solutions M > m

We now proceed to find the solution to the equation of motion (15). As noted after (15), we
do this with a trial solution that describes the postulated elliptical motion.

Components of the equation of motion

The first step is to rewrite the vector equation (15) as two scalar equations, one for each
component, in polar (r, 8) coordinates as follows:

GM d?
- — m_cr_ ma’r (Radial equation of motion) (1.16)
r2 dr?
and
d? dr . . .
- 0= mrﬁ +2n a)E. (Azimuthal equation of motion) (1.17)

These equations follow from a description of arbitrary differential motion of the vector r
(Prob. 41). In each case, the angular velocity w is shorthand for d6/dt; w=d6/ds.
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The left sides of (16) and (17) are the radial and azimuthal components of the force,
(respectively; because the vector force is totally radial, there is no azimuthal component.
The right sides include the radial and azimuthal components of the vector acceleration of
a particle at varying position r. The radial component (16) consists of two terms: one to
acceleration in the radial direction (d?r/d#*) and the other to azimuthal motion (&*r=v3/r),
the well-known centripetal acceleration of circular motion.

Similarly, the azimuthal expression (17) has a term that depends on the instantaneous radial
velocity dr/dt. For circular motion, the radius r is fixed, and so this term is zero. In this case,
the equation tells us that d’6/ds*> = 0 or that the angular velocity @ = d@/dt is constant, as
expected in the absence of any azimuthal force component.

Angular momentum (Kepler II)

Let us now show that the azimuthal equation of motion directly yields Kepler’s second law
(equal areas swept out in equal times).
Rewrite the azimuthal equation of motion (17) as follows:

1d ’
;E(mr w) =0, (1.18)

which you can verify by taking the derivative indicated and recalling that w=d@/dt. This
tells us that the time derivative of mr?w is zero. Hence, this product must not depend on f; it
is a constant of the motion.

Recall that the magnitude of the angular momentum vector J =r X p may be written in
scalar form several ways: J = rmvy, where vy is the azimuthal component of the velocity, or
as J =mr’w because vy = wr (from w=d#/dr and the definition of the radian). Thus, from
(18), we find that angular momentum magnitude J is a constant of the motion:

2

J =mr”w = constant. (1.19)

The differential area dA (Fig. 1.8b) swept out as the mass m moves an angle d 6 is indicated
by the triangular shaded area. The magnitude of the area is simply 1/2 the base r times the
height r d6:

dA = (rdor)/2 = (1/2)r* de. (1.20)

The rate of area swept out is

dA 1,d0 1,
A_2p8_ 2, (1.21)
d 2 dt 2

Comparison with (19) gives
dA J
— = — = constant. (Kepler’s second law) (1.22)
dr 2m

This expression, dA /d¢ = constant, is a mathematical statement of Kp II, which, as promised,

we have now verified with Newton’s laws.

Recall that angular momentum of a body or a system can not be determined unless the

origin (or axis) about which the angular momentum is to be calculated is first specified. The
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convenient choice for the M >> m situation is to choose the (assumed stationary) mass M as
the origin, as is done here. The force about a different origin will not be central, and angular
momentum about the new origin will not be conserved.

Elliptical motion (Kepler I)

We demonstrate here that the solution of the equation of motion (15) is an elliptical track.
To do this, the elliptical trial solution r(6) (4) and the radial equation of motion (16) are
transformed to more convenient forms. The azimuthal equation of motion (17) is invoked
through the conservation of angular momentum.

Trial solution transformed
Rewrite the ellipse expression r(6) (4) making use of the ratio b/a (12) as follows:
b? 1

6= ———.
r(0) al+ecosé

(Trial solution; equation of ellipse) (1.23)

Now define the variable u=1/r because it will simplify the evaluation of the differential
equation:

1
- u(f) = ;

a
= ﬁ(l + ecos ). (Trial solution; an ellipse; u =1/r) (1.24)
This will be our trial solution. In using it, we will invoke the constancy of angular momentum

described by

2

J=mr-w= mcu/u2 = constant. (1.25)

Radial equation transformed

Now rewrite the equation of motion (16) in terms of # and with the dependent variable as the
angle 6= 6(¢) rather than time . The left side requires only the substitution r=1/u:

GMm/r* - GMmu®. (First term of radial equation of motion) (1.26)
The rightmost term becomes, from (25),

, Ju\*1 g2 ,
mor—->m|—1| —=—u’. (Third term) (1.27)
m u m

The d°r/df* term on the right side of (16) is modified by expanding the derivatives:
dr_drdH_d(l/u) _ 1 du Ju? J du

dr —dodr T de T wd0m | mde
where we again use w = Ju? /m from (25). The second time derivative then similarly becomes

2 2 2 12
dr _d (dr\d6 _ Jdwdd [T\ du o (1.29)
dr2 de\dr) dr m dé? dt m/) deé?

(1.28)
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The first term on the right side of (16) thus becomes

a" =

m— — —m u—.
m dé

a2 (Second term) (1.30)

d?r JN\? du ) _1_2 2dzu
m

Substitute (26), (27), and (30) into (16) to obtain the new version of the radial component of
the equation of motion for u(6) as follows:

J? d?
- — GMmu® = ——u? <u + d—;;) . (Radial equation of motion) (1.31)
m

Solution

Finally, the promised test of the trial solution (an ellipse) is at hand. Substitute the trial solution
(24) into the radial equation of motion (31). (The azimuthal equation has been taken into
account through our use of J = constant in the preceding transformations.) As the first step
of the substitution, evaluate the parenthetical term in (31); take the second derivative of (24)
to obtain d’u/d#* = —ae (cos 0)/b*. The parenthetical term in (31) becomes

+ $u) _ a (1 + € cosf) — —ecosf = — (1.32)
u —_— = — e CoS — —eCoSt = —. .
a2 ) = 2 b2 b2

The result of the substitution into (31), so far, is thus
J? a
. 2 J7a o
GMmu ST u-.
Because the variable terms u? cancel, there is no further need to invoke the trial solution (24).
Our substitution is complete.
Return to the variable r(6),

(1.33)

GMm _ J*a l

2o om b

(Test of trial solution)  (1.34)

where the “?” denotes that this is the test of a trial solution. The equality can indeed be satisfied
because both sides of the equation vary as » 2! The right side of (34) is proportional to the
radial acceleration of elliptical motion defined in (16) with constant angular momentum. It
varies as 1/r2, and this matches the 1/r? variation of the Newtonian gravitational force (left
side).

The trial solution satisfies the equation of motion (31) only if the equality (34) is satisfied.
This provides a useful connection between the dimensions of the ellipse and the several
constants of the motion:

b? J?
4 GMm?

Substitute this into our initial trial solution (23) to obtain the elliptical motion in terms of the
physical constants of motion as follows:

-

(1.35)

J? 1
GMm?1+ ecos @

- r(@) = (Solution of equation of motion; M > m) (1.36)
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Fig. 1.9: Total energy of elliptical orbits. (a) Three orbits of identical total energies E; (i.e., with
identical semimajor axes a;) but with differing semiminor axes or angular momentum J. A larger
semiminor axis indicates a greater angular momentum. The focus is common to all three orbits.
(b) Two orbits with the same total energy E, for E, > E; and a common focus. Again, they have
different angular momenta.

This expression (36) is the desired solution of the radial and azimuthal equations of motion
in terms of the given physical constants. Because it describes elliptical motion (by design
of the trial solution), we have demonstrated that Kepler’s first law (elliptical orbits) indeed
follows from Newton’s second and gravitational laws.

The solution is, as expected, the equation of an ellipse as quoted earlier in other forms;
see (4) or (23). This demonstrates that Kepler’s first law follows from Newton’s second and
gravitational laws.

Angular momentum restated
The equality (35) may be solved for the angular momentum J as
GM\'?
- J = (—) mb. (Angular momentum of m; M > m) (1.37)
a

This is the angular momentum of the mass m in an elliptical orbit of dimensions a and b
about the mass M for M > m.

Consider the two sets of orbits in Fig. 1.9. Each set has the same semimajor axis a and hence
the same total energy; see (52) below. Within each set, the orbits have differing semiminor
axes b and hence differing angular momenta J. The limiting values of J, from (37), are

J—>0 (For b — 0; straight-line motion) (1.38)
and

J =m(GMr)"/?. (For b = a = r; circular motion) (1.39)
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The latter expression is the angular momentum of a mass m in a circular orbit of radius r
about a mass M. It is also the maximum value of J for a given semimajor axis a because b
can not exceed a.

This expression (39) also follows directly from the equation of motion for circular motion:

GMm ) . . . .
———— =—muwr. (Equation of motion; circular motion) (1.40)

r

Solve for w and substitute into J = mr* w to find (39). Note that (40) is the radial equation of
motion (16) if the magnitude of the radius vector is held constant.

Period and semimajor axis (Kepler I11)

Kepler’s third law (P? o< a®) is readily derived from the preceding discussion. The period P
is defined as the time to complete one orbit. It can be related to the area swept out per unit
time, dA/dz. The area of an ellipse is 7tab (not proven here). This area will be swept out in
the time P. Thus,

AA B Ttab (1.41)
At P '

Because the rate at which area is swept out is constant (on the basis of angular momentum
conservation or Kp II), the differential rate equals the average rate:

dA  Tab
aa _ mav (1.42)
dt P
The latter may be expressed in terms of angular momentum J (22) to yield
J Tiab
— = (1.43)
2m P
Solve this for P and eliminate J with (37),
P = 2ma**(GM)~'/?, (1.44)
and rewrite as
- GMp® = 4’ K, I, M > m)  (1.45)

This is Kp III with the coefficients included, for the M > m case, as stated in (3). It is a natural
outcome of the application of Newton’s second law to the gravitational problem. This law
compares the orbit sizes of different planets. In contrast, Kp I and Kp II describe the orbit of
one planet.

Note that the orbit sizes do not depend on the planetary mass. Acceleration by gravity is
independent of mass; see (15) or remember the (probably false) legend of Galileo and the
leaning tower of Pisa.

For a circular orbit of radius r, the semimajor axis is a = r, and (45) reduces to

GM P? = 473, (K, III for circular orbit)  (1.46)
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This version may be derived in one step from the equation of motion (40) for a circular orbit.
This is a quick way to obtain Kp III if you remember to substitute a for r if the orbit is
elliptical.

Total energy

The total energy (kinetic plus potential) of a mass m in an elliptical orbit about a massive
object M can be expressed in terms of the parameters of the ellipse and the masses. For
the 1/r* gravitational force law, the total energy E; of a mass m at position r and speed
v is

1 GMm

E = -mv* — : (1.47)

2 r
where, as usual, the zero point of potential energy is set at r — co. Because the total energy is
a constant of the motion, it may be evaluated at any convenient place in the orbit such as the
point Q" on the semiminor axis (Fig 1.8a). At that position, the radius vector » has magnitude
exactly equal to the semimajor axis a; see (11). This immediately gives us the potential term
(—GMm/s). Thus, the expression to evaluate is

1 , GMm

Et:_mv, - 5
2 ? a

(1.48)

where the speed at Q'(at distance r = a) is designated v,.
At the position Q', the geometry of similar triangles (Fig. 1.8a) provides a relation between
the quantity v, and its azimuthal component v 4:

’Ug_b

= . (1.49)
v, a
Write v, in terms of the angular momentum J = mr? w as
J J
Vg =@r =——r—> — (1.50)
mr ma
and solve (49) to obtain v, in terms of the orbital constants,
a Ja J GM\'"?
Va Ueb mab mb ( a ) (151

where J was eliminated with (37). Finally, substitute v, into the expression (48) for E:

GM
- Ep=— Zam' (Total energy; M > m) (1.52)

The total energy (52) turns out to be amazingly simple. Given the mass of the sun and a
planet (M and m, respectively) the total energy (kinetic + potential) of the orbiting planet is
completely determined by the size of the semimajor axis a. A larger a makes E; less negative
and hence greater in value. Compare the orbits of differing energies in Figs. 1.9a,b.

The size and shape of the orbit depend only on the values of E; and J for given masses
M and m. It is therefore possible to rewrite 7(6) (4) in terms of these constants rather than
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in terms of a, b, and e (Prob. 47). This turns out to be the expression (36) with eccentricity
expressed as

2672 72 .
e= [l + m} . (Eccentricity) (1.53)

The expressions developed here make it possible to gain an immediate qualitative feeling
for planetary orbits. For example, an orbit with a long period will have a large semimajor
axis (Kepler III (45)) and a large (meaning less negative) total energy (52). Also, the system
has the maximum angular momentum (37) for a given semimajor axis a (or energy E;) if
the orbit is circular (b =a). Our expressions, so far, are valid only for the case of M > m.
Finally, if the orbit is circular with radius r, our general expressions for J (37), Kp III (45),
and E; (52) may be simplified with

a—>rib—r. (Circular orbits) (1.54)

We have now developed the connection between the Newtonian gravitational force and
the elliptical orbits of Kepler. This has been done for the case M > m. The next level of
generalization is to relax the latter restriction.

1.5 Arbitrary masses

For many stellar binary systems, the masses of the two stars are of comparable magnitude.
Thus, a general solution must be sought for the motions of two gravitationally interacting
pointlike objects of arbitrary masses. This is the two-body problem. It turns out that the motion
of each star about the barycenter (center of mass) will again be elliptical. The definition of
the barycenter then tells us that the motion of one star relative to the other is also elliptical.

The motion of two gravitationally bound bodies about their common barycenter can be
determined from a joint solution of the (gravitational) equations of motion for the two bodies.
Our task is simplified because the two equations of motion can be reduced to a single
equation of form identical to the vector equation of motion obtained above (15) for the
M > m case. Hence, the solutions already obtained are applicable after some straightforward
substitutions.

Relative motions

Here we cast the two-body problem in terms of relative coordinates and the reduced mass.

Relative coordinates; reduced mass

Consider two masses m; and m, with vector displacements r; and r, from their barycenter, as
shown in Fig. 1.10a,b. Their separation is s, and the relative vector s is defined as the position
of m, relative to m; by

S=ro—r. (1.55)

The same vector s is obtained for any choice of the origin from which r| and r, are measured or
for any (nonrelativistic) choice of the observer’s inertial frame of reference. It is convenient
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(a) (b)

my my

Barycenter

my= 2m,
a, =2a;

b/a=2/3
e = 0.74

— an—>

(c) "

| s

I L
—>|
Fig. 1.10: (a) Definitions of the radius vectors in the barycenter frame of reference (ry, r,) and
in the frame of reference of mass 1 (s). (b) Two masses with m; =2m, orbiting their barycenter.
Both ellipses have the same shape, and the ratio of their sizes is the inverse of the ratio of the

masses. (¢) Orbit of m;, in the frame of reference of m,. This relative orbit has the semimajor axis
as, =3 ay; the star m; has relative velocity vs.

-
»

y 3
Q
»

to choose the observer’s frame of reference to be that in which the barycenter is at rest
(barycenter system) and further to choose the origin of the coordinate system to be at the
barycenter, which lies between the masses (Fig. 1.10a). In this case, the magnitude of s is
simply the sum of the magnitudes of the two vectors, that is,

s =|s| =|ri| +raf. (1.56)

For our special case (origin at the barycenter), the definition of the position of the barycenter
of two masses reduces to mr; =—mpr,. This and the expression for s (55) lead to the vector
relations

=12 - _ Ky (1.57)
my + my mi
and
I ) S (1.58)
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where the reduced mass ., a useful combination of m; and m;, is defined as

my my
- m=—. (Reduced mass; kg). (1.59)
my + my

The reduced mass has units of mass and is always less than either m; or m,. Equations (57)
and (58) indicate that the ratio of the radii equals the inverse ratio of the masses,

r m

Iral _ (1.60)

Iril ma
which is in accord with the definition of the barycenter’s location. Finally, it is convenient to
define Mt as the sum of the two masses:

My =my + my; (Total mass; kg) (1.61)

thus, for example, the reduced mass becomes u =m;/my/Mr.

The only forces of concern to us here are those exerted mutually by the stars on each
other. External forces applied to the entire system are often small. Thus, the barycenter of the
two-star system will, for our discussion, not be accelerating; it will be stationary or moving
at constant speed. In the barycenter frame of reference we have chosen, it is stationary. This
eases the visualization of the orbits.

As the masses m; and m; follow their orbits, the stationary barycenter must always be on
the line between them, and their distances from the barycenter must always be in the fixed
ratio (60). Thus, as illustrated in Fig. 1.10b, the orbit mapped out by m; will be identical to
that mapped out by m; except for a scale factor. If the motion of one is elliptical, the motion
of the other is also elliptical. The shapes of the two ellipses (i.e., their eccentricities ¢) would
be identical, but their sizes would differ by the ratio m; /ms.

In addition, the fixed ratio of the distances r, and s (57) indicates that the relative motion
s would also map out an ellipse having a shape identical to that of r, but larger in scale. An
observer on m; (Fig. 1.10c) would thus find that m; moves along an elliptical orbit. Note that
this observer would be in a noninertial (i.e., accelerating) system and therefore that Newton’s
second law (F = ma) does not directly apply.

Equation of motion

The equations of motion for each of the two masses are statements of Newton’s second law
with the appropriate gravitational forces applied in the inertial system at rest with respect to
the barycenter. The force is Newton’s gravitational force, which is proportional to the product
my, my and inversely proportional to the square of the separation of the stars s> as follows:
GM 1My

|Fg| = 3 (Gravitational force) (1.62)
s

Newton’s second law for m;, is the vector equation

d’r
F,, = msz;, (Newton’s second law for m;) (1.63)
where F | is the force exerted on star 2 by star 1. The comparable equation for star 1 is
d2r 1 s
Fi,=m—. (Newton’s second law for m ) (1.64)

dr?
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Newton’s third law states that, for two interacting bodies, the forces F;; and F, are equal
in magnitude but opposite in direction:

Fip=—-F;;. (Newton’s third law)  (1.65)
Subtract (64) from (63) to obtain an equation in relative coordinates:

Fyi Fip  dra—r)

o - i (1.66)

Apply the definition of the relative vector s (55) and the relation between the two forces

(65),

my+m, d%s

F = —, 1.67
21 mimy dr? ( )
and then invoke the reduced mass u (59) as follows:
d%s
Fr | = pu—-r:. 1.68
21 =R (1.68)

The gravitational force on m, can now be substituted into (68). It has the magnitude (62) and
direction opposite to the vector s (Fig. 1.10a) as defined by

Gmim, d%s
T (1.69)
Use the definitions of w (59) and Mt (61) to rewrite the product mm;:
GMT/.L d2S . . .
- — T 5= FrEh (One-body equivalent equation of motion) (1.70)
P

The expression (70) is very general. It does not depend on the speed of the (inertial) frame
of reference (i.e., the speed of the observer relative to the barycenter) or on the location of the
coordinate system’s origin. The position vectors need not have originated at the barycenter.
Nevertheless we will continue to use the barycenter frame with origin at the barycenter.

Equivalence to the M >> m problem

The two equations of motion for the two particles (63) and (64) thus reduce to one-body
motion in (70). Furthermore, the relative coordinate s is governed by a differential equation
identical in form to the vector equation of motion (15) used for the M >> m analysis. In fact,
(70) has been arranged so that the masses Myt and u play the same conceptual roles as did M
and m in the former analysis.

Because s =r; —ry, the solution s(#) will map out the orbit of m, measured by an observer
riding on m; (Fig. 1.10c). Comparison of (70) and (15) shows that the solution s(#) must be
exactly the one given previously for the M > m case but with the substitutions specified in
Table 1.1.

In effect, this amounts to solving the different problem of two masses, Mt and u, with
separation s(z) between them and with Mt > u. However, keep in mind that this is an artificial
view of our problem. In actuality, the spacing s is between m; and m;, not between “Mr1” and
“u,” and (70) was constructed with no restrictions on m; and m;. The restriction Mt > u
entered in the construction of the equation of motion (15), but the solution of the differential
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Table 1.1: Conversion for two-body solutions

M - M Total mass

m - s Reduced mass

r - s Relative coordinate

r - s Relative coordinate; magnitude

equation, an ellipse, was exact. Hence, the analog solution of (70) will also be exact and quite
general.

Solutions

We now obtain the solutions of (70) from the expressions developed in Section 1.4 for the
M > m case. We know immediately that the result is that s(d) sweeps out an ellipse. We
found, in the M > m case, that the size and shape of the ellipse depend on angular momentum
and energy. We thus also examine the roles of total angular momentum and total energy of
the two-body problem.

Angular momentum

From our development in the earlier case (M > m), we recall that the azimuthal component of
the equation of motion (17) indicated that the quantity J = mr?w is a constant of the motion;
see (19). Similarly, our substitutions (Table 1.1) tell us that the quantity us”wis also a constant
of the motion. It turns out that this is the total angular momentum J of the two-body system
in the barycenter system:

- J = us’o = constant. (Total angular momentum in barycenter system) (1.71)

We now demonstrate this to be the case. In the barycenter system, the angular momentum
is measured relative to the barycenter to ensure zero torques and hence angular momentum
conservation. Thus, we propose that

J :mlrlzw—i-mzrzzw% ,uszw. (1.72)

Indeed, the rightmost term follows directly from the central terms with the aid of the trans-
formations from r; and r, to s, (57) and (58), and the definition of w (59). Thus (71) does
properly describe the (constant) angular momentum of the system in the barycenter system.
Note that s and w vary with time as the particles proceed around their orbits, whereas J
remains fixed.

The total angular momentum can also be written in terms of the parameters of the ellipse.
In the process of satisfying the differential equation for (#), we found J=(GM/a)'/>mb
(37), where a and b are, respectively, the semimajor and semiminor axes of the track defined
by r(6). Invoking our substitutions (Table 1.1), we find that the analog is

GMr\'?
- J = < T> mbs,  (Angular momentum in the barycenter system) (1.73)
as

where a; and by are the semimajor and semiminor axes, respectively, of the ellipse that is
swept out, in this case, by the relative vector s(6). Invoke again the fact, from (72), that J for



1.5 Arbitrary masses 27

the Mr, u problem is equal to the system angular momentum in the barycenter system. Thus,
(73) is another valid expression for the total angular momentum in the barycenter system.

Elliptical motion
The radial equation of motion (16) was used to solve for r(#) under the assumption of constant
J. The result is given in (36), and its analog, from involving the substitutions, is
J? 1

- s(6) = 3 .
GMru*1+ecos b

(Solution for relative motion) (1.74)

This is the desired solution of the equation of motion (70). It gives the relative motion of m1,
relative to the position of m;, where J = us®w. The eccentricity e is the same for the ellipses
swept out by ry, rp, and s because they all have the same shape according to (57), (58). See
Figs. 1.10b,c.

Period and semimajor axis (Kepler I1I)

Kepler’s third law was obtained by equating two versions of dA/dr as functions of angular
momentum (22) and of the period (42) to obtain a relation (43) between the period P and
angular momentum J. We then eliminated J with the relation J(M, m, a, b) (37) and found
GM P? = 47>, The more general analog from Table 1.1 is

GMrP? = 4ra’ (1.75)
or
- G(m; + my) P* = 4%a’, (K, 1) (1.76)

where again a, indicates the semimajor axis of the orbit swept out by the relative vector s.
The period P is the same for ry, r,, and s. This demonstrates that the sum of the masses and
the period uniquely determines the semimajor axis of the relative orbit. For a circular orbit,
one can make the substitution as = s in (76).

Total energy

The final step in our M > m analysis was the determination of the total energy. This was
obtained by first writing down the total energy (47) at the arbitrary point Q in Fig. 1.8a, which
becomes, for the M, problem,
1 GM
Ec= sl - g (Relative coordinates)  (1.77)
s
where vy is the speed of the tip of the s vector at the time its magnitude is s. This expression
is valid at any point Q because total energy is conserved in the hypothetical Mt,u problem.
This expression was rewritten (48) for point P/, where the separation s — ag to obtain
E, = —GMm/(2a), which, for the My, problem, becomes

GMru
2a,

The statement that the right-hand side of (77) or (78) is the total energy of our binary in the
barycenter system must still be demonstrated.

- E =

(Total energy in the barycenter system) (1.78)
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In the barycenter system, the total energy is the sum of the kinetic energies of m; and m,
and the potential energy of the two-mass system,
1 ,  Gmumy

1
E = Sm v+ S™M2 vy = , (Barycenter system) (1.79)
s

where v and v, are the speeds of m; and m; in the barycenter system at some time and s is
the separation of the masses at that time.

The question we ask is whether (79) is the same quantity as (77). Transformations between
(v1, v2) and vg may be deduced from the geometry of Fig. 1.10b or from an alternative
definition of the barycenter — namely, that the total momentum measured in that system must
equal zero,

myv; + Mrv, = 0. (Momentum in barycenter system) (1.80)

This states that the two velocity vectors are always in exactly opposing directions but with
different magnitudes:

v = =y, (1.81)
The connection to the speed v, is obtained by taking the derivative of s =r, —r| (55):
VsV — V1. (1.82)

Together, (81) and (82) provide the conversion formulas:

b= —— 2 =ty (1.83)
M+ m, my
and
% i =, (1.84)

27’[)8_—
M, 4+ m, my

which are reminiscent of the expressions for r; and r, (57) and (58). Substitute these latter
expressions into the expression for E; (79) and invoke the equality m;m,; = Mru from the
definitions of w (59) and Mt (61). The result is (77), which is equivalent to (78). This
demonstrates that (78) is indeed the total energy in the barycenter frame.

1.6 Mass determinations

The discussion in the previous section has established the elliptical motions of the two stars
about their barycenter. Here these motions are related to the parameters that can be measured
by astronomers. We then explore how the measurements can lead to physical properties such
as the masses of the two stars.

Mass function

One very useful tool for this purpose is the mass function f, which follows directly from
Kp III (76) restated just below:

G(m; + my)P* = 4m°a’, (KpIII)  (1.85)
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where a; is the semimajor axis of the ellipse swept out by the relative vector s. Relative
displacements (one star relative to the other) are appropriate for visual binaries in which one
might track an orbit on a series of photographic plates, always measuring the distance of one
star from its partner, as in Fig. 1.2.

In contrast, if one studies a spectroscopic binary, the frequency shifts represent line-of-
sight velocities relative to the barycenter of the system. (There may be a constant offset due
to barycenter motion; Fig. 1.6). In this case it is preferable to convert g, to a function of the
barycenter coordinate a; (or ay), where a; is the semimajor axis of the ellipse swept out by m,;
with the barycenter as the origin (Fig. 1.10a,b). The ratio of s/r; is a fixed value throughout
the orbit (58) and hence must equal as/a;. Thus, from (58),

as = wal. (1.86)

ms

Substitute into (85) and rearrange terms as follows:

P 4, (1.87)

Spectroscopic data (e.g., the data of Fig. 1.7) yield the product a; sin i as explained below
under “Spectroscopic binary” after (102), where i again is the inclination angle (Fig. 1.3a).
To give a; sin i explicit visibility in the equation, both sides are multiplied by sin? i. The two
quantities that can be measured directly, P and a; sin i, are then collected on the right side,
leaving the unknown quantities m;, m,, and angle i on the left:

m3 sin® i 4 . .
- ——— =Gp (apsini)’. (Mass function equation for star 1) (1.88)
my +mj

The left side of this expression is known as the mass function f; and is represented by

33
ms; sin” i

fis ————. (Mass function for star 1) (1.89)

(my +my)?

The subscript “1” in f] indicates that the Doppler velocity measurements yielding a; sin i
were obtained from the star of mass m, (star 1).

The successful measurement of both P and a; sin i from Doppler-shift studies of star 1
yields a numerical value for the right side of (88). This single equation then contains the three
unknowns my, m,, and i. Two additional equations are needed if all three unknowns are to be
determined.

A second and independent mass-function equation will result if one is successful in mea-
suring the Doppler shifts for star 2 to obtain a; sin i. This can be used in the mass function

equation for m; obtained by analogy to (88):

m3 sin’ i 47 . . .
—— =GPz (azsini)’. (Mass function equation for star 2) (1.90)
ni myp

A third equation can be obtained from the duration of an eclipse or from the orbital
brightness variations due to tidal distortion of the observed star by its binary companion.
The fractional duration (relative to the orbital period) of an eclipse is directly affected by



30 Kepler, Newton, and the mass function

the inclination, eccentricity, and the sizes of the stars as well as their separation. The latter
two quantities are related to the stellar masses. Tidal light variations are a function of star
spacing, masses, sizes, and the orbit inclination.

If these additional equations are not available, examination of (89) tells us directly that,
for all possible values of i and m, the value of fi(kg) is the minimum possible mass of m,
(Prob. 61).

In conclusion, remember that the mass function equation is simply a rewrite of Kp III that
makes it useful for determining masses from spectroscopic binaries. Visual binary data are
best addressed with the usual form of Kp III (85).

Stellar masses from circular orbits

Here we explore the practicalities of obtaining masses for circular orbits with arbitrary masses
my, ny, but first we recall the M > m case (AM Chapter 9).

Massive central object

The mass determination is particularly straightforward in a system in which one star is known
to be much more massive than the other, M >> m. Consider a circular orbit of radius r. If the
gravitational force, F = —GMm /r?, and the centripetal acceleration, a = —w’r, are applied

to Newton’s second law, F' = ma, one will find directly that

4723

- 1.91
PG (1.91)

where P = 27t/ w is the orbital period and w the angular velocity.

In this case, measurements of the radius and period of the low-mass object directly yield
the mass of the central massive object. A prominent example is the sun-earth system. One can
enter the radius of the earth’s orbit (1.0 AU) and its orbital period (1 yr) into (91) to obtain the
mass of the sun. Another example is the earth-moon system as well as most planet-satellite
systems.

For the general case of two unequal masses, measurement of the parameters of one of
them does not, in itself, give the mass of the other, but we will find that it does place a lower
limit on the mass of the other. The similarity of the two cases follows from the fact that (91)
is the limiting case of (90), where m| >> m,, m; — M, and a, — r.

Circular orbits

Circular orbits are important limiting examples of binary orbits. They are very common
in systems that have small separations called close binaries. An example is an accreting
neutron-star binary system in which gaseous matter from a normal star accretes onto the
surface of its nearby binary partner, a neutron star. Interactions between the objects dissipate
energy, which tends to circularize an elliptical orbit.

Another example is the earth-moon system. Tidal interactions between the earth and the
moon cause the moon’s orbit to be quite circular with eccentricity only e=0.055. This
corresponds, from (12), to a ratio of semiminor to semimajor axes of nearly unity, b/a =
0.998.



1.6 Mass determinations 31

One does not ordinarily assume a priori that the orbit is circular but must solve for all the
orbital parameters. We do so here, to however, illustrate more simply the use of the mass
function for the case of arbitrary mass values. In the circular case, the semimajor axis a;
equals the radius r; of the orbit of m; (r; =a;), and likewise for m,.

Spectroscopic binary

Consider a hypothetical spectroscopic binary with circular orbits and arbitrary masses and
focus on one of the two masses. If such an orbit has an inclination i, and if the orbiting mass
my has speed v (Fig. 1.3a), the line-of-sight velocity v, will vary sinusoidally with maximum
value v sin i:

v(t) = vy sini sin wt. (Circular orbit) (1.92)

The quantity sin i is a fixed value for a given system, whereas the sin wt term is due to the
motion of the star around the circular orbit, as discussed previously regarding Fig. 1.6. The
maximum value of v,(¢) for a given system occurs when sin wt = 1, that is,

Vr.max = U1 SIN . (1.93)

This quantity is directly measurable from the Doppler data.
Rewrite the mass function equation (88) to incorporate the measured quantity v; sin i.
First apply a; = r; for a circular orbit and then eliminate r; with the relation

27’[1"1 =u P (194)
to obtain
m3 sin® i P .3 L .
) =5 (v sini)”. (f1 equation in terms of v; sin i;
mp -+ mj

circular orbit) (1.95)

The right-hand side of this equation can be evaluated directly from Doppler-shift spec-
troscopy data such as those of Fig. 1.6. If the inclination of the binary orbit is not known,
the maximum amplitude (relative to the barycenter velocity) of the curve in Fig. 1.6 would
be noted (i.e., 30 km/s or 3 x10*m/s for m,). This is equal to v; sin i (93) and would
be substituted into the right side of (95). The same plot would yield the orbital period
P(30d x86400s/d).

This example (from Fig. 1.6) would thus yield the mass function
m% sin

B (my + my)?

3.
fi L 17x 10 kg — 0.084 M, (1.96)
This result has units of mass, but usually it is not the mass of either component. An exception
occurs when m; << my and i =90°; then m, = 0.084 M. This, as noted in our discussion of
fi1 (89) is a lower limit for the mass m,.

In Fig. 1.6, we place the observer such that i =90°. In this case, the individual masses
may be obtained if we make use of the Doppler curve for the other star m,. From the ratio of

amplitudes and the definition of the barycenter, the relative values of the masses are

my =my/3. (1.97)



32 Kepler, Newton, and the mass function

Table 1.2: Orbital elements

Symbol Unit Name

a m Semimajor axis

e — Eccentricity

P s Period of revolution

T date-time Time of periastron passage
i rad Inclination of orbital plane
wp rad Longitude of periastron

Q rad Position angle of node

In this case, we have i = 90° and f; = 0.084 M, and so the mass function equation (96) may
be solved to yield

my = 1.3Mg;m; = 4.0 M. (1.98)

If the inclination is known to be less than 90°, the masses will be substantially larger
(Prob. 1.62).

A more general way to view such determinations is to evaluate the mass functions of both
stars independently from the data of Fig. 1.6. This would give two equations. If the inclination
is unknown, a third equation would be required to determine both masses and the inclination.

Stellar masses from elliptical orbits

The projection effects for elliptical orbits lead to rather strange stellar tracks and Doppler
curves, as exhibited in Figs. 1.2 and 1.7. Visual and spectroscopic binaries provide quite
different information. The former yield a geometric track for each star, whereas the latter
yield line-of-sight velocities. The information one can extract from the data also differs.
Here we qualitatively present some of the issues in retrieving the physical parameters from
elliptical orbits.

Orbital elements

The seven quantities that describe the elliptical orbit of a star, including its orientation relative
to the observer, and the location of the star in the orbit are given in Table 1.2. They are called
the orbital elements. The orientation angles are further defined in Fig. 1.11 and its caption.
The origin of the ellipse is properly the barycenter of the two-star system, and the ellipse is
the track of one of the two stars. Another set of elements would describe the orbit of the other
star, but most of the parameters would be the same (Fig. 1.10b). The longitude of periastron
would differ by 7t radians, and the semimajor axis would be different unless the two masses
were identical. Often, data exist for only one of the stars. For visual binaries, the orbit is
frequently plotted relative to the brighter star, as in Fig. 1.2. The parameters given thus refer
to the relative orbit, but again, most of the elements are the same as that of one of the stars.

Visual binary: relative orbit

The relative orbit of a visual binary is often easier to obtain than independent absolute
measures of the two stellar orbits against the background stars. In the latter case, the more
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Fig. 1.11: Elliptical orbit (shaded) and parameters that describe it viewed from above the sky
plane or from outside the observer’s celestial sphere. The origin is one focus of the ellipse, which
would be at the barycenter of a binary system or at the location of one stellar component for a
relative orbit (e.g., Fig. 1.2). The z-axis is the line of sight, and the x—y plane at z=0 is the plane
of the sky. The shaded portion of the ellipse and the observer are below the sky plane. The line
of nodes is the intersection (at the focus) of the orbital plane and the sky plane; it is the axis of
the inclination rotation. The longitude of periastron w, is measured in the plane of the orbit from
the line of nodes to the periastron in the direction of motion of the orbiting star as it recedes from
the observer. The position angle of the line of nodes €2 is measured in the x—y plane eastward
from north (N). The projection of this physical ellipse into the x—y plane is another ellipse (lower,
unshaded ellipse) with (geometric) major axis A’'R’ (light line) and focus F'. The major axis of
the actual orbit projects to the (heavy) line ACFR. Because w, 2~ 90°, the projected major axis
is approximately coincident with the geometric axis, but compare with Fig. 1.2. [In Part from
T. Swihart, Astrophysics and Stellar Astronomy, Wiley, 1968, pp. 65-66.]

massive star may move very little, and the reference stars may be relatively distant from the
binary and subject to their own and differing proper motions. Here we outline the analysis of
a measured relative orbit.

The motion plotted by an observer is the projection of the orbit onto the x—y plane, the plane
of the sky; see the lower ellipse in Fig. 1.11. It turns out that, in general, an ellipse projected
onto a plane is also an ellipse but with a displaced focus. Think of a circular orbit with
non-zero inclination and a massive star at its focus, the center of the circle. When projected,
it becomes an ellipse with the central star at its center, but the mathematical “geometric”
focus of the ellipse is not at the center. The projected (apparent) path of o Cen (Fig. 1.2) is
an example of a projected elliptical orbit; it too is an ellipse.
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The orbital elements (Table 1.2) refer to the physical orbit, and our data refer to the
projected orbit. Thus we need the relationships between them. The projected ellipse for a
visual binary has the relationships to the physical elliptical orbit (Fig. 1.11) listed below.
They provide the expressions that permit the orbital elements to be deduced.

O]
(i)

(#it)
()

)
(vi)

(vii)

(viii)

(ix)

The orbital period P is the same for both physical and projected orbits. Thus the time
for the star to complete a circuit of the projected orbit provides the actual period.

The projection factor, cos i, is the same for each area segment of the ellipse. Thus the
constancy of the rate of area swept out (Kp II) remains valid for the projected orbit
when the origin is the projected focus F, not the geometric focus F' of the projected
ellipse. This may be used to find the position of F by trial and error. It also allows more
accurate apparent orbits to be plotted. In the case of the relative orbit we are analyzing,
the projected focus F is marked by the presence of the reference star.

The center of the physical ellipse is coaligned with the center (C) of the projected ellipse
for any possible orientation (try it).

The line joining C and F in the projected plane, when extended beyond F to the orbital
track, is the projected semimajor axis CR, and the intersection with the track locates the
projected periastron R. The projected apastron A is located by extension of the line in
the opposite direction. In general, the projected and geometric major axes AR and A'R’
are not coincident.

The time of periastron passage 7 is the time the star passes the projected periastron R.
The projected distances are all measured as angles by an observer. The subtended angle
[CR]ang of the semimajor axis CR is a geometric function of duyg, @, and i, where au,g
is the angular semimajor axis of the actual (relative) orbit if it were to lie in the plane of
the sky (i.e., with zero inclination). Thus,

[CR]ang = f(aang, @p, ©). (Projected semimajor axis; radians) (1.99)

The quantities w, and i control the extent to which the projected semimajor axis is
compressed by the inclination; at w, =0, it would not be compressed at all. This is the
first of several equations needed to solve for the several orbital elements.

The projected semiminor axis (CB) need not be perpendicular to the projected semimajor
axis, but it must bisect lines parallel to the projected semimajor axis and is therefore easily
constructed; see segment CB in Fig. 1.11. The measured angle [CB ],y is thus, similarly,
a function of orbital elements. Because the physical semiminor axis is a function of
the semimajor axis a and the eccentricity e (12), the angular projected semiminor axis
becomes

[CB]ang = g(aanga €, Wy, i), (1.100)

where g is another geometrical function and again CB is an angular distance on the sky.
The solid angle €2, (sr) of the projected ellipse can easily be measured. It is related to
the solid angle of the actual ellipse (if it were at i =0°) by the factor cos i. The area of
an ellipse of eccentricity e and semimajor axis a is A = 7ab = ma® (1 — ¢2)!/2. Apply
the cos i factor and divide both sides by the square of the distance to the binary to
obtain

2 (1—e»)?cosi. (1.101)

QP = ﬂaang

The projection factors for the angular distances [CF],yg and [CR ],y are the same because
they lie along the same line. Thus their projected ratio is equal to that of the unprojected
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ratio. Because CF =ae (Fig. 1.8a), we find that the unprojected ratio is equal to the
eccentricity:

CFlan n
[CFlag _ dange _ (1.102)
[CF]ang Aang

Measurement of the projected ratio therefore directly yields the eccentricity.

The four equations, (99) through (102), in principle allow one to solve for the unknown
parameters e, d,ng, @p, and i because the quantities on the left side are all measurable. Of
course, it would be necessary to have the actual functional forms of the functions f and g,
which are not given here.

Another geometrical expression makes use of the quantities w, and i and the position angle
of the projected major axis to produce the position angle of the node 2. The final two orbital
elements, period P and the time of periastron passage T, were determined as described in (i)
and (v).

This might seem to complete our determination of the seven orbital elements. There is a
missing element, however. Finding the star masses from Kp III requires a physical length a
for the relative semimajor axis, not the equivalent angular distance d,n, just determined. The
quantity as follows directly from the angular value if the distance D from the observer to the
binary is known, say, from parallax measurements. That is, a; = D a,,,. Kepler’s third law
for the relative orbit (85) then yields the total mass m; 4 m,.

Visual binary: two orbits

The two individual masses of a visual binary can be determined only by measuring the
projected orbits of both stars in inertial space relative to the distant background stars and
galaxies. The origins of the physical ellipses are at the barycenter of the binary. The barycenter
must be located to proceed with the logic above, which leads to four of the orbital elements.
As noted in item (if) above, it can be located by trial and error applications of Kepler’s
second law (equal areas in equal times). Alternatively, one can deproject both orbits with
trial values of i, w,, and €2 until the deprojected orbits have a common focus. This would be
the barycenter.

One can then proceed as above with each orbit to obtain the two semimajor axes. Their
sum is the relative semimajor axis as. (To see this, consider Fig. 1.10b when the radius vectors
have lengths a; and a,, as at Q" in Fig. 1.8a.) This can be entered into Kp III (85) to yield
the sum of the masses. The ratio of the semimajor axes is the ratio of the masses (60). These
two expressions for the sum and ratio of the masses yield the individual masses.

Spectroscopic binary

In the case of spectroscopic binaries, one measures, in effect, the dimensions of the orbit along
the line of sight. The Doppler shifts provide, at each instant, the line-of-sight component of the
emitting star’s speed. Integration yields the line-of-sight extent of the orbit. For an elliptical
orbit, this is not necessarily a sin i because of the many possible orientations of the orbit
relative to the line of sight.

The position angle of the node 2 is simply a rotation about the line of sight. Because
a Doppler shift is a measure only of the line-of-sight component of the velocity, the shape
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and amplitude of the Doppler curve are not affected by a change in . If the longitude of
periastron wj, is 90°, approximately as shown, the line-of-sight extent of the orbit would be
2asini, but if w, =0°, it would be 2bsini.

The Doppler curve for an elliptical binary in an arbitrary orientation (e.g., Fig. 1.7) may be
solved for a; sin i by means of a nonlinear least-squares fit. In this case, one would make use
of the entire curve, not just the maximum or integrated Doppler values. The particular shape
of the curve is also caused by the eccentricity and the (angular) location of the periastron
relative to the line of nodes (Fig. 1.11). The fit thus also yields e and wy,. It can not, however,
extract an inclination. The curve would look exactly the same for a large value of a; and a
small inclination as it would for a smaller a; and a larger inclination, as long as the product
a; sin i, the eccentricity e, and the longitude of periastron w, were the same.

The value of a; sin i thus measured could be substituted into the mass function equation
for star 1 (88). This expression is one of three needed to disentangle m,, m,, and i, as in the
circular-orbit case. A fit to the data of star 2, if available, would lead to a second equation.
Eclipse data, fits to the brightness changes owing to tidal forces, or both could provide the
third.

Mass of a black hole in Cygnus X-1

The first strong case for the existence of a stellar black hole arose from spectroscopic obser-
vations of the optical binary companion of the bright celestial x-ray source Cygnus X-1.
The optical partner is a quite massive supergiant star of type O 9.7 Iab that has evolved off
the main sequence. The copious emission of x rays arises from gas that originates in the
supergiant atmosphere and accretes onto, or into, a compact partner star — either a neutron
star or a black hole.

The x rays arise from the release of gravitational energy as the gas descends into the deep
potential well of the compact star. When the gas encounters and enters a stellar surface,
a shock, or an accretion disk, it becomes thermalized at x-ray temperatures ~10’ K. The
emission of copious hard ( > 2 keV) x rays from a binary system is thus a sure indicator that
the accretor is either a neutron star or a black hole.

Optical astronomers were able to obtain the mass function of the supergiant through
Doppler shifts of its spectral lines. The resultant orbital velocity variation is shown in
Fig. 1.12. The variation fits a sine curve very well; hence, the orbit is quite circular.
The period and amplitude of the velocity curve yield, from (95), a mass function of
Jopt ® 0.23 Mo,

Unfortunately, the x rays do not provide a second mass function; these sources do not
have sufficiently strong x-ray spectral lines. Some are pulsars that provide Doppler shifts
(see below), but Cygnus X-1 is not one of them. Nevertheless, one can infer the mass of the
optical star from its spectral type and distance — namely, that it is about 30 M. Consider the
optical star to be star 1. Substitute m; ~ 30 M and f| = fo, = 0.23 into the mass function
(89) for arbitrary inclination to yield a mass limit for the compact object m; > 6.8 My;
uncertainties reduce this limit to =6 M. This is substantially greater than the maximum
theoretically expected mass for a neutron star, ~3Mg,.

One could well conclude therefore that the compact object in the Cygnus X-1 binary
system is a black hole. The argument is not ironclad because the 3-M, limit is a theoretical
limit dependent in part on untested physics.
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Fig. 1.12: Doppler curve for spectral lines from the optical partner of the x-ray source Cygnus
X-1.Itis an 09.7 Iab supergiant of mass about 30 M known as HDE 226868. The data, obtained
from several observers over some months, are superimposed modulo the orbital period of 5.60 d.
The best-fit curve shown is centered about —1.8 km/s and has amplitude 73.8 km/s. These data
yield a mass function fo, = 0.23 Mg, which, when combined with the supergiant mass, gives a
mass 26 Mg for the x-ray emitting partner. This is a crucial element in the argument that the
partner is a black hole. [R. Brucato and J. Kristian, ApJL 179, 1129 (1973)]

Over the subsequent 30 years, Cygnus X-1 has failed to yield any hint that, instead, it is
a neutron star. It is thus now widely accepted that Cygnus X-1 provided the first plausible
evidence that a black hole could be an end point of stellar evolution. Now we have equivalent
results for a few dozen sources in the (Milky Way) Galaxy. In addition, the nuclei of active
galaxies independently give strong evidence that they are massive black holes with masses
of 10° to 108M,. See more on black holes in Section 4.4.

Masses of neutron-star pulsars

A spinning neutron star can emit a pulse of radiation toward an observer once each rotation.
There are two general classes of such pulsars. Radio pulsars emit a beam of radiation that
sweeps around the sky like a lighthouse beam. The large majority are isolated stars, but some
are in binary systems with a compact companion.

X-ray pulsars are the other class. They are accreting binary sources as described just above
for Cygnus X-1. In this case, though, the compact object is a neutron star; black holes are
not expected to pulse. Most of the pulsing systems consist of a massive normal star and a
neutron star of high magnetic field (~108 T). In these cases, the accretion stream is likely to
follow the magnetic field and impinge on the magnetic pole, creating an x-ray emitting hot
spot at the pole. A distant observer might perceive the hot spot coming into and out of view
as the neutron star spins; a pulse of x-rays would thus be detected once for each rotation of
the neutron star.

Spectroscopy in x rays is quite difficult to carry out and, as stated, the accreting sources are
not strong x-ray line emitters. The latter is also true of the radio pulsars. Thus, spectroscopic
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Fig. 1.13: (a) Orbit of a pulsing neutron star of radius 5 light seconds showing the pulsar at two
positions together with traveling pulses and observer. (b) Arrival time of pulses relative to the
expected arrival time for a constant intrinsic period as a function of pulse number. Pulses are
delayed when the pulsar is more distant than the barycenter and arrive early if closer than the
barycenter. If the orbit is circular with sin i = 1 as shown in (a), the plotted data will be sinusoidal
with a half-amplitude that directly indicates the radius (semimajor axis) of the orbit.

Doppler shifts are not attainable for such stars. Instead, one can use the frequency of the
pulsing itself. Pulse periods in such systems range from milliseconds to about 1000 s. As
the neutron star orbits the barycenter of the system, its line-of-sight velocity changes, giving
rise to Doppler shifts of the pulsing frequency. These data can be treated exactly as Doppler
variations of spectral lines obtained by optical astronomers.

In pulsar studies, observers actually measure the arrival time of each pulse and compare
the times of arrival with the time expected if the pulse period were constant. As shown in
Fig. 1.13, one expects the pulses to show varying delays that depend on the varying distance
from the neutron star to the observer.

The varying pulse delays directly map the line-of-sight dimensions of the orbit. Fits yield
the eccentricity and the product a sin i, which, with the orbital period, provide a value for the
mass function of the compact object (88). The optical Doppler data of the visible companion
star can provide the second mass function. An eclipse duration can provide the final equation
needed to solve for the two masses and inclination.

Binary radio pulsars consisting of two neutron stars in close orbits can have additional
pulse period changes caused by the emission of gravitational radiation. These can be fitted
to the predictions of the general theory of relativity. The data from a single pulsing neutron
star in such a system can yield all the orbital parameters, including both masses of the binary.
This has been the case for the binary (Hulse—Taylor) pulsar, a system of two neutron stars
(see AM, Chapter 12). A dozen or more such pulsar systems are now known.

Figure 1.14 shows a summary of mass measurements of neutron stars that are radio pulsars.
They are all consistent with the relatively narrow range of masses, 1.35 £ 0.04 M. Itis widely
believed that radio pulsars with millisecond spin periods obtain their rapid spins from the
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Fig. 1.14: Neutron star masses measured by pulse timing for 19 radio pulsars (neutron stars, NS)
with 1o error bars and one-sided 95% confidence limits. Those showing orbit decay due to gravi-
tational radiation yield extremely precise masses. The top 10 NS are in 5 double NS systems, each
of which yields masses of both NS. In two systems, the average of the two masses is obtained more
precisely than that of either NS (open squares — size indicates error). The next eight are NS—white-
dwarf systems, and the lowest is an NS—normal star system. The results match a relatively narrow
range of masses, namely, 1.35 +0.04 My (vertical solid and dashed lines). X-ray pulsars also
yield neutron-star masses. [Adapted from S. Thorsett and D. Chakrabarty, ApJ 512, 288 (1999)]

torque applied by accreting matter from a gaseous binary partner during a previous stage of
their evolution. The required mass of accreted matter is believed to be at least 0.1 M, and
this could well differ from star to star.

The pulsars shown in the figure have spin periods ranging from 4 to 1000 ms. In general,
the more rapidly spinning objects yield more precise mass estimates. Additional neutron-star
mass measurements are obtained from x-ray binaries.

1.7 Exoplanets and the galactic center

New lines of research are based directly on Newtonian binary orbits. Here we briefly describe
two of them — namely the searches for exoplanets and the study of the galactic center region
of the Galaxy.

Exoplanets

The search for planets outside the solar system, called exoplanets, is currently an active field of
research. The number of such detected planets is now ~150. They are detected through several
very different techniques and are found in diverse environments with differing masses and at
various distances from the host star. For the most part they have been detected by discovery
of the parent wobble star’s.
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Fig. 1.15: Wobble of stellar objects due to orbiting planets. (a) Variations in the 6-ms pulse period
of the radio pulsar, PSR B1257 12, a 1.4-M, neutron star. The seemingly irregular variations
are beautifully fit with a model (solid line) containing two planets, each of ~4 earth masses.
(b) Optical radial velocity measurements of the M4 star GJ 876 taken with the Lick and Keck
telescopes. The data points are superimposed modulo a 60.8-d assumed period. The data quite well
match the variation expected for a ~2.1 Jupiter mass companion orbiting the star at this period
with an eccentricity e = 0.26 (smooth curve). Better data and more refined analyses now indicate
that both systems have additional less massive planets. [(a) A. Wolszczan and D. Frail, Nature
355, 145 (1992); (b) G. Marcy et al., ApJ 505, L147 (1998)]

Exoplanets were first found in 1992 associated with a neutron star, the radio pulsar PSR
B1257 4+ 12. This object is typical of most radio pulsars in that it is an isolated neutron
star with no known binary companion — at least not one of stellar mass. One thus expects
its pulsing to be quite uniform because it should be moving through space with a uniform
velocity. This is not a normal gaseous star like our sun where one might expect to find a planet.
It is an extremely compact neutron star with large magnetic field that is spinning with a 6-ms
period.

Radio astronomers were able to measure the arrival times of the pulses (Fig. 1.13) from
this pulsar with precisions of ~ 15 us and so were able to look for minute discrepancies in
the arrival times. An orbiting planet will cause the parent neutron star to wobble somewhat,
and this will delay or advance pulses by small but detectable amounts. This motion of the
parent star can reveal the presence of a planet that would not otherwise be detectable.

The pulse arrival times for PSR B1257 4 12 were found to have pronounced deviations up
to ~2 ms from the expected arrival times for a steady period. These were found to fit quite
well with a model in which two planets of 4.3 and 3.9 earth masses orbit a 1.4-My neutron
star in nearly circular orbits at 0.36 and 0.47 AU with periods of 67 and 98 d, respectively.

The arrival-time data for short intervals, =2 d, were used to calculate successive values
for the 6-ms pulsar spin period. The variations in this period as first published are plotted in
Fig. 1.15a. The variations in period are quite minute — only 0.03 ns compared with the 6-ms
period — but are highly significant compared with the error bars of the data points.

Planets around normal stars (like the sun) are now being detected in abundance at optical
wavelengths through the changing Doppler radial-velocity variations of optical absorption
lines. High-dispersion spectrographs detect wavelength variations due to the wobble of the
parent star. Precisions of ~3 m/s in the Doppler velocity are obtained; for comparison, the
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wobble velocity of the sun due to Jupiter is 12.5 m/s. Hence, Jupiter-mass planets yield
detectable Doppler shifts.

An example is the M4 star GJ 876 that contains two planets of masses ~0.79 M, and
~2.5 My, and orbital periods of 30 and 61 d, respectively (1.0 My=0.955 x 1073 Mo).
Figure 1.15b shows the first results for GJ 876. The radial velocities well match the variations
expected for the 61-d orbit of a single planet of 2.1-Mj,,. The second planet and a third of
only 7.5 earth masses were discovered in subsequent data sets and analyses.

Radial velocity measurements have led to most of the ~150 exoplanets now known. In a
few cases, the planet has been observed transiting across the face of the star. This is noted
as a periodic decrease in the intensity of the star of ~1% for a few hours. Several systematic
searches for planetary transits are now being carried out. The detection or nondetection of a
transit places limits on the eccentricity of the planetary orbit; detection yields the inclination
and also the size of the planet.

Studies of a multiplicity of planetary systems of different characteristics (orbital radius,
mass, inclination) are rich in information about the creation and evolution of planetary sys-
tems.

Galactic center

The center of the Galaxy is quite benign compared with activity seen in active galactic
nuclei. Nevertheless, it has been the center of scientific attention over recent years. Recent
developments have intensified this interest.

Stellar orbits

High-resolution infrared detectors have made it possible to track the orbits of some dozen
stars that lie very close to the radio source Sgr A*, the presumed center of the Galaxy
(Fig. 1.16). Over the course of ~10 years, stars close to the center were found to follow
projected elliptical orbits consistent with a single massive central object. The tracks of seven
of them are shown in Fig. 1.16.

The innermost object in Fig. 1.16, S0-2, has the shortest period (15 yr) and thus has been
tracked for most of its orbit at this writing. It passes only 120 AU from Sgr A* at its closest
approach. The highly elliptical SO-16 with period 36 + 17 yr passes only 45 AU from the
central object.

Analysis of the projected orbits yields the mass of the putative black hole at the center,
~3.7 % 10° My, for an assumed distance of 26 000 LY (8.0 kpc). The determination of the
semimajor axis of a true orbit and Kepler’s third law (45) directly give the central mass.

Distance to the galactic center

The introduction of spectral data into the analysis can further provide a direct measure of the
distance to the galactic center. Consider a simple constant-speed circular orbit with inclination
90° (observer in the plane of the orbit) at distance D from the Earth. The linear velocity v; may
be measured via the Doppler shift of its absorption lines when the star directly approaches
the observer. When the star is moving normal to the line of sight, multiple images will give its



42 Kepler, Newton, and the mass function

0.4 T —
V4
e S0-2
4+ 80-16
= S0-19
S0-20
0.2 #* S0-1 -
. o S0-4
3 / S0-56
3]
)
5 |
= /7 4N
g |
)
[ 1
@) /' /‘
/
0.2 / / -
-0.4 : PR IR —
0.4 -0.2 -0.4

Right ascension (arcsec)

Fig. 1.16: The tracks on the sky of seven “S stars” within 0.4” of the Galaxy’s central dark mass
obtained with the Keck I 10-m telescope from 1995 to 2003. The origin of the coordinates is the
dynamical center, which is coincident with the radio/x-ray source Sgr A*. The elliptical orbital fits
to the data points are shown. At a distance of ~25 000 LY, the angular distance 0.1” corresponds
to 4.6 light days. The pericenter distance of the SO-16 orbit (labeled) is only 45 AU. The event
horizon of the 3.7 x 10° M, central black hole is 0.074 AU [A. Ghez et al. ApJ 620, 744 (2005);
see also F. Eisenhauer et al. ApJ 628, 246 (2005)]

angular velocity w =wvy/D. Because v, = vy for uniform circular motion, we have v, = wD.
If both v, and w are measured from spectroscopy and imaging, respectively, the distance D
follows.

In the present case, the motions of the stars are projected ellipses. Joint fits of both spectral
and imaging data to an elliptical orbit necessarily involve the distance D, which is similarly
forthcoming from the analysis. A recent result yields D =24.8 £ 1.0 kLY, which is consistent
with the 25-kLY value adopted in this text or the commonly used value of 8.0 kpc (26 kLY).
This same procedure has also been used to obtain a purely geometric distance to a binary
system in the Pleiades, 430 &= 13 LY.

Massive black hole

The elliptical orbit of SO-16 indicates that the central mass of 3.7 x10% M, lies within 45 AU
of the dynamical center. Although this is still 600 times the Schwarzschild radius (event
horizon) of a nonrotating black hole (4.36), it still implies a huge mass density of at least
2 x10' My /LY?. A cluster of dark objects (nonblack holes) of such average mass density
would survive only ~10° yr owing to gravitational interactions that would eject its members,
which is much too short a time to have survived the ~10 GLY age of the Galaxy. Another
possible model, the Fermion ball, wherein degeneracy pressure supports a massive object
against gravitational collapse, also becomes much less tenable.
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These data thus give one high confidence that the object at the center of the Galaxy is
indeed a massive black hole exceeding 10° M. It is a most persuasive case for the existence
of such objects.

Problems
1.2 Binary star systems

Problem 1.21. Evaluate the destructive effect on a binary system by an external (point) grav-
itational body. Let both stars in the binary have one solar mass and be widely separated
at 10 AU. (a) Consider two scenarios and for each find the ratio of the maximum possible
external force difference on the two stars of the binary to the force exerted by the binary stars
on each other. (i) The external force is due to a point source at the galactic center distant
25000 LY and of mass 10® M. (if) The external force is due to a nearby star in a globular
cluster consisting of 10° stars in a sphere of radius 15 LY. Use a typical or average separation
distance. Hint: consider the force gradient. (b) In such a globular cluster, about how long
would it take a given single star to experience an encounter with another single star within
10 AU? Hint: what does the virial theorem tell you about the average stellar speed, and what
is the cross section for collision? On average, what would be the interval between such colli-
sions in the cluster as a whole? Compare both times to the ~10'° yr age of globular clusters.
[Ans. ~10718, ~107%; ~10° yr ~10° yr]

Problem 1.22. (a) Look up the coordinates of the visual binary & Cen in a star catalog. When and
from where on the earth could you see it? If it is available to you, go outside at an appropriate
time and identify it to a friend. Use a small telescope to distinguish the two stars, which were
separated by about 8” in 2005. (They are probably too close to resolve with binoculars, but
the image might appear elongated.) Their types are G2 V (yellow/white) and K 1V (redder)
with V magnitudes V=0.0 and 1.36, respectively. (b) If you can not get to where « Cen is
visible (which is likely), look up and try to observe the northern-hemisphere visual binary, 1|
Cas, with V=13.4 and 7.2 and separation ~10". (c) Also, try the binary 61 Cyg with V=5.2
and 6.0 and separation ~25” [Ans: Coords. J2000: «c=14h 39m 36.5s, §=- 60° 50’ 02”;
a«=00h49m 06.3s, §=57° 48 55"; «=21h 06.9m, 6§ =38° 45']

Problem 1.23. Under what conditions can a spectroscopic binary also be a visual binary? Con-
sider two 1-Mg, stars in a circular binary orbit viewed edge-on (i =90°) from distance D.
Assume that both stars are bright enough to be detectable in both imaging and spectroscopy
and that reliable binary detection requires image separation three times greater than the 1”
resolution of a ground-based telescope. For spectroscopy, centroids of spectral lines can be
determined to about a precision of AA/A=— Av/v = 107>, Also a factor-of-three greater
wavelength shift is required for confidence in the detection of a binary. Specifically, find limits
on the required stellar separation s for each measurement as a function of the system mass,
M =2Mg or D as appropriate. Then find the range of distance (if any) where the system
could be detected as both a visual and spectroscopic binary. Hint: use the Doppler relation (2)
and Kepler’s law (76). Comment on the effect of imaging with optical interferometry with
1 milliarcsec resolution. [Ans. <20 LY]

Problem 1.24. Consider the binary shown in Fig. 1.6. Note that the observer is in the plane
of the orbit (i =90°). (a) What is the total fractional frequency excursion, Av/ vy = (Vmax —
Vmin)/ V0, of the signal from star 1 as it proceeds around its orbit where v is the rest frequency?
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Repeat for star 2. (b) In the special theory of relativity (Section 7.4), there is a “second order”
Doppler shift (7.40),

| 22\ /2
v=|1-— vo,
2 0

where v is the speed of the emitting object, v is the rest frequency, and v is the detected
frequency. This shift is most apparent when the object is moving normal to the line of sight
when the “first-order” Doppler shift is zero. At time #,, in Fig. 1.6, what is the fractional
frequency shift (v — vg)/ vy for star 2? Compare with your answers with (a). (c) At what
inclination angle i of the orbit of star 2 would 1/2 the total fractional first-order frequency
excursion from part (a) equal the magnitude of the second-order shift from part (b)? Comment
on the likelihood of finding a system in which the second-order effect dominates throughout
the orbit [Ans. ~10 %, ~1073; ~ —-10~7; ~30"]

1.3 Kepler and Newton

Problem 1.31. Prove for any arbitrary point Q on an ellipse, defined by (4), that the sum of the
two radii from the two foci is equal to 2a, twice the semimajor axis. Refer to Fig. 1.8a.

Problem 1.32. (a) Calculate the ratio b/a and roughly sketch the ellipses that correspond to the
following values of eccentricity e: 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99, 0.999, and 1.000. Make
your sketches on a single figure where the long axis, 2a, is common to all the ellipses. Tabulate
your results and leave places for an additional number for each value of e. (b) Calculate and
tabulate the focus distance ry, (5) for each value of e; set a=1. Plot on your sketch the
location of a focus for each of the eccentricity values. Comment on how the eccentricity
affects the shape and focus location of the ellipse for both high and low values of e. Does this
change your thinking about the meaning of e? [Ans. for e =0.6: 0.8 and 0.4]

Problem 1.33. Use the data ¢ Cygni in Fig. 1.7 to answer the following. (a) What is the ratio of
masses of the two stars in the ¢ Cygni system? (b) What is the period of the orbit? (c) What
is the radial velocity of the barycenter? Is it approaching or receding from the observer? (d)
What is the fractional frequency Doppler shift (Av/v) due to the barycenter motion? What is
the minimum spectroscopic “resolution” | A/AA| required to detect this motion? (e) Can you
extract the actual speed v (not the radial component only) of the barycenter from these data?
(f) What do these data tell you about whether or not this object exhibits eclipses? (g) Why
do the two curves look so much alike? Argue quantitatively from momentum conservation.
(h) About when are the stars closest together? (i) From approximately what direction is the
orbit of star 2 being viewed by the spectroscopist? Assume the observer—spectroscopist is in
the plane of the orbit (i.e., i = 90°) rather than the actual i =78°. Remember that receding
velocities are positive. Illustrate your arguments with a sketch. Hint: consider the “zero”
crossings and asymmetries in the peaks. (j) What is the approximate longitude of periastron
wy, (as defined in Fig. 1.11)? [Ans. ~1; ~400 d; ~5 km/s; ~10°; —; — momentum; 20-40 d; —;
~30°.] (Optional project: calculate and plot the Doppler curves for a star in an elliptical orbit
for various view angles and eccentricities; see geometry of Fig. 1.11.)

Problem 1.34. NASA wishes to place a satellite into a circular orbit for the purpose of pho-
tographing the earth’s entire surface over a period of ~12 h. (a) What inclination orbit would
potentially accomplish this? In which direction, approximately, and from roughly where in
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the lower 48 states of the USA could NASA launch the satellite into this orbit? Assume the
orbit is circular. Illustrate with a sketch. (b) If the field of view of the downward-looking
camera is circular with angular radius 6, = 30° and if the orbit is fixed in inertial space (i.e.,
it does not precess), at what altitude must the satellite be to just photograph completely the
regions between the successive tracks of the satellite over the Earth? Take into account the
spherical shape of the Earth, recall that the period of the satellite orbit increases with altitude,
and do not confuse altitude with distance to the earth’s center. The geometry and mathematics
are a bit involved. [Ans. 90° (polar); ~3400 km]

Newtonian solutions M > m

Problem 1.41 Show that the radial and azimuthal components of the acceleration vector in polar

coordinates are as given in (16) and (17).

Problem 1.42. (a) Derive Kp III for a circular orbit by solving the radial equation of motion for

circular motion (40) for M > m. (b) What is the total energy of the orbiting body in terms of
M, m, r (i.e., eliminating velocity v)? Demonstrate that your answer is consistent with that
for an elliptical orbit (52).

Problem 1.43. (a) Two different planets, m; and m,, orbit a massive central object of mass M.

The shapes of the two elliptical orbits are identical, but that of m; is a factor of 9 greater in
size than that of m;. Can the angular momentum of the two objects be different even though
the orbit shapes are identical? If so, what is the condition under which the angular momenta
are equal? (b) Two objects of different masses are in the same orbit (same size and shape).
How do their speeds at the same point in the orbit differ? Justify your answer in terms of the
Newtonian expressions such as (37). What does Kepler have to say about this? (c) By what
factor must the speed of the orbiting object change if the mass of the central object is doubled
and, at the same time, the object is given the necessary additional velocity to maintain the
same orbital track? [Ans. yes, —; ~1.5]

Problem 1.44. The dwarf planet Pluto has a notably large eccentricity, e = 0.250. The semimajor

axis of its orbit is 39.44 AU, and its mass is 0.17 Megrn. (Mearn = 6 X 10%* kg). (a) What is the
total (kinetic + potential) energy of Pluto? (b) What is its angular momentum with respect
to the sun? (c) How long does it take to orbit the sun? [Ans. ~103 J; ~10% kg m? s 1;
~250 yr]

Problem 1.45. A 200-kg satellite used for UV astronomy is in a highly elliptical orbit in the plane

of the earth’s equator with perigee (closest point to the earth) 400 km above the earth’s surface
and with apogee (farthest point) at the geosynchronous altitude. This altitude is defined as
the one at which a satellite in a circular equatorial orbit would have a period equal to that of
the earth’s rotation (sidereal) period so that it remains over a fixed point on the equator. (a)
What is the geosynchronous altitude 7y in earth radii measured from the center of the earth?
(b) What is the eccentricity e of the orbit? (c) If a circular geosynchronous orbit were desires,
when and in what direction would one give a rocket impulse to the satellite? How much
energy is required? (Neglect the weight of the attached rocket and fuel, etc.) (d) If the rocket
fails to ignite, frictional forces due to the tenuous atmosphere at perigee would gradually
change the orbit. Consider that the friction simply imparts a momentary, small impulse to the
satellite at each perigee passage. Describe how the orbit would change. To what semimajor
axis and to what shape might it evolve before arriving at its eventual fate? What is that fate?
[Ans ~10° m; ~0.7; ~10° J; -]
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Problem 1.46. A mass m is in an elliptical orbit (semimajor axis a and eccentricity ¢) about a
mass M, where M >> m. Just as m crosses periastron, the central mass M is suddenly changed
to mass fM, where f is the factor by which the mass increases or decreases. The orbiting
mass m maintains its speed at this instant and hence also its kinetic energy; however, the
change of mass causes its total energy to after abruptly as does the orbit semimajor axis and
eccentricity. (a) Find an expression for the new semimajor axis ¢’ in terms of a, f, and e.
Hint: consider the total energy before and after the mass change. (b) Find expressions for
the final eccentricity ¢’ in terms of e and f; there are two cases to consider, (i) the periastron
remains the periastron and (ii) it becomes the apastron. (c) Evaluate your expressions for
d'la and ¢’ (Case (i)) for the conditions f=0.5, 0.9, 1.0, 1.1, 2.0, and 100, each for e =0,
0.5, 0.7, and 0.9. Tabulate the results and comment on the trends. What do negative values
of d'/a and ¢’ signify? Make a drawing approximately to scale showing the original orbit
for e=0.7 as a solid line and the new orbits for f=0.9 and 1.1 as dashed or shaded lines.
(d) Find the condition on f for circularization of the orbit, (i.e., find f.(¢)). Evaluate f. for
e=0, 0.5, and 0.9 and find a'/a for each case. Tabulate your results and comment. (e) Find
the expression f; per(e) that is the value of frequired for the mass m to just become unbound
(for our periastron location case). Evaluate f, e for e=0, 0.5, 0.9. By inspection of your
derivation of a'/a, obtain the expression for f;, 4p(e), the unbinding condition if the mass loss
(by M) takes place when m is at apogee. Evaluate for e =0, 0.5, 0.9 and add results to your
table. (f) Reconsider the unbinding condition for a system of two comparable masses (m; ~
my) — that is, M >> m is not valid. With minimal or no further calculations, what can you say
about this situation? How might this be relevant to a supernova explosion undergone by a
star in a binary stellar system?
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Problem 1.47. Find the expression (53) for the orbit eccentricity in terms of G, m, E;, J, and
numerical constants. Hint: begin with the definition of eccentricity (12) and use the expres-
sions (35) and (52).

1.5 Arbitrary masses

Problem 1.51. (a) Demonstrate that (57) and (58) follow from the general definition of the
position ry, of the barycenter of two point masses relative to an arbitrary origin: ry, = (m;,
ry +my rp)/(my + my) if the origin is at the barycenter. (b) For a two-body gravitationally
bound system, where m; = 3 m,, what are the relative sizes (e.g., the semimajor axes) of (i)
the orbit of m, measured in the frame of reference of m,, (ii) the orbit of m, in the frame of
reference of my, (iii) the orbit of m; measured in the barycenter frame, and (iv) the orbit of
my in the barycenter frame? Make a simple sketch. [Ans. —; 4:4:1:3]

Problem 1.52. (a) Show that the total angular momentum magnitude J in the barycenter frame
of reference is indeed the same as that inferred by analogy to the M >> m case. Follow the
substitutions suggested in the text and fill in the missing steps to verify (72). (b) Repeat for
the total energy E, — that is, verify that (79) is equivalent to (77).

Problem 1.53. (a) Find the sum of the masses (in units of solar masses) in the binary system
Kruger 60. Use the information in the caption to Fig. 1.1 and apply Kp III. Is your result
consistent with the star’s both being M stars? (See Table 4.2.) (b) Repeat this exercise for the
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hypothetical system shown in Fig. 1.6. The information in the figure is sufficient. What are
the individual masses m; and m,? (c) Repeat again for the system o Cen in Fig. 1.2. Use the
angular scale in the figure and the distance to the system given in the caption. The line between
periastron and apastron is foreshortened by the factor ~2/3 owing to the inclination of the
orbit. Is your answer roughly consistent with the stellar types quoted in the caption? Refer
to Table 4.2, but, if possible, use a reference that gives masses for additional intermediate
classes. [Ans. total masses: ~0.4 Mq; ~5 Mg; ~2 Mg

Problem 1.54. The eccentricity of the Moon’s orbit is e =0.0549 and its sidereal period is
P =27.32 d. Its mass is my = 1/(81.301) of the earth mass, and its mean physical radius
is Ry = 1738 km. The earth mass is Mg = 5.974 x10** kg, and its mean physical radius is
Rg =6371 km. In this problem, maintain fairly high numerical precision to three or four
places. (a) By what percentage does the ratio of the major to minor axes of the orbit differ
from unity? By what percentage does the ratio of the distances at apogee and perigee differ
from unity? Comment. (b) Do these ratios refer to the orbit relative to the earth’s center or
to the orbit about the earth-moon barycenter? (c) What are the absolute values of the apogee
and perigee distances in units of earth radii? Specify whether your answers are relative to
the earth’s center, moon’s center, or to the barycenter. (d) What is the distance between the
barycenter and earth’s center in earth radii, at apogee rg,, and at perigee rg,? (e) What is
the angle of the moon subtended by an observer when the moon is at apogee and directly
overhead? Repeat when it is at perigee. Compare these with the sun’s angular mean radius of
960" at its mean distance. Comment on how this is pertinent to solar eclipses. [Ans. ~0.1%,
~10%; —; ~60 Rg; ~0.7 Rg; ~30']

1.6 Mass determinations

Problem 1.61. (a) Write the equation for star 2 that is comparable to that for Star 1 (88). (b)
Explain why it is appropriate to call your equation the mass function equation for “star 2”
rather than for “1” or “1 and 2”. After all, it does contain both masses in it. (c) Show that the
measured value of f, represents the lowest possible value for m;; refer to (89).

Problem 1.62. An observer has only the data in the lower part of Fig. 1.6 and has no prior
knowledge of the nature of the orbits (i.e., ignore the upper sketches). (a) By inspection only,
what can you infer about the eccentricity of the orbit? Explain your reasoning. (b) Evaluate
the mass functions for m; and for m,. Determine if the limits to the masses they imply
are consistent with the values given in the text in (98). (c) The absence of eclipses permits
the observer to conclude, hypothetically, that the inclination is less than 30°. Does this
change the constraints on the individual masses? If so, what are the new limits? (d) Assume
the inclination is known to be exactly 30°. Find the two masses by solving the mass functions.
[Ans. —; ~0.1 Mg, ~2My; 220Mg, 21 Mg; ~30Mg, ~10 M ]

Problem 1.63. The x-ray source A0620-00 is a compact star with an optical counterpart (V616
Mon) in a binary system. The x-ray source flared up for several months in 1975 and faded away
to a very faint level whereupon the optical counterpart could be studied spectroscopically
without contamination by florescence due to x rays’ impinging on the stellar atmosphere. The
Doppler curve has been found to be sinusoidal, AA/A = A sin (27t/P)t relative to the systemic
barycenter Doppler shift with P =0.323014 & 0,000004 d and A = 1.523 (£ 0.027) x 10 3.
The value in parentheses is the one-standard-deviation uncertainty. The mass mgp of the
optical star was determined from its spectral type to be no less than 0.7 M, and modeling of
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the changes in brightness due to tidal distortions indicated an inclination no more than 50°.
Find the highest lower limit on the mass my of the x-ray star that you can claim with high
confidence, taking into account the quoted errors at the two-standard-deviation level. The
only objects that could emit such copious x rays are a neutron star or a black hole. A neutron
star can not be more massive than ~3 M, according to theorists. Does your result allow you
to exclude a neutron star and thereby claim it is a black hole? [Ans. ~7 M]

Problem 1.64. Find the mass function for the optical counterpart of Cygnus X-1 from the data
of Fig. 1.12 together with the orbital period and mass of the optical star given in the caption.
Use this to confirm the statements in the text and caption regarding the mass limit for the
compact counterpart.

1.7 Exoplanets and the galactic center

Problem 1.71. (a) Consider a hypothetical star of 1 M, with a single earthlike planet in a circular
orbit at 1 AU. Assume inclination 90° (observer in plane of orbit). If the star were emitting
radio pulses, what would be the range of delays in the detected pulses as it orbits the barycenter
of the two-body system? (b) What is the maximum detected radial (line-of-sight) velocity
of the star? (c) Repeat (a) and (b) for a sunlike star with a single Jupiter-like planet at the
Jupiter distance. Compare your answers to detectable limits for pulsing and radial velocity
detections stated in the text: my =318 mg; ry =5.2 AU; Py =11.86 yr. [Ans. ~2 ms; ~0.1 ms;
~3s, ~10 m/s]
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Equilibrium in stars

What we learn in this chapter

A normal star is basically a ball of hot gas. Processes that underlie the stability of a star begin
when the stellar matter is still part of the diffuse interstellar medium (ISM). A portion of

the ISM can not begin condensation to higher densities unless its size exceeds the Jeans
length. Its gravitational potential must be sufficiently deep to prevent the escape of
individual atoms with thermal kinetic energies.

A star is in hydrostatic equilibrium when the inward pull of gravity on each mass element
of the star is balanced by the upward force due to the pressure gradient at the location of the
element. The potential and kinetic energies of the mass elements summed over an entire
star in hydrostatic equilibrium yield the virial theorem. The theorem states that the sum of
twice the kinetic energy and the (negative) potential energy equals zero. Its application to
clusters of galaxies indicates they are bound by a preponderance of dark matter.

Several time constants characterize a star. A star would radiate away its current thermal
content at its current luminosity in the Kelvin-Helmholtz or thermal time. In the
dynamical time, a mass element at radius » without pressure support would fall inward a
distance r under the influence of the (fixed) gravitational force at r. A photon will travel from
the center of the star to its surface through many random scatters in the diffusion time.

Under stable conditions, the energy radiated from the stellar surface of normal
(main-sequence) stars is replaced by exothermic nuclear reactions that convert hydrogen
to helium. This occurs through the proton-proton (pp) chain of reactions dominant at the
temperatures of the sun’s center. The carbon-nitrogen-oxygen (CNO) chain is important
at somewhat higher temperatures. In later stages of stellar evolution, at even higher
temperatures, elements up to iron can be created.

Stars of masses beyond ~130 M, have such high luminosities that radiation pressure
would expel the outer layers of stellar material. Such stars are not expected to exist. This
upper limit of luminosity is called the Eddington luminosity. It is proportional to stellar
mass and equal to 33000 L, at 1.0 M. A neutron star in a close binary system can accrete
gaseous matter from its companion, and the infall energy gives rise to an intense x-ray
luminosity. The maximum rate of matter accretion is thus that associated with the
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Eddington luminosity. The luminosities of active galactic nuclei indicate they have masses
reaching to 108 M.

At certain points in their evolution, stars can have atmospheres that are unstable to
pulsations. They oscillate in radius, temperature, and luminosity. The oscillations are
powered by the conversion of heat to work in gas elements of the star (as in the Carnot
cycle) brought about by changing levels of ionization and hence opacity. Examples are the
cepheid variables and the less luminous RR Lyrae stars.

2.1 Introduction

Stars such as our sun seem quite stable in their overall characteristics, and indeed they are.
Here we examine the following, seven issues of stability:

(i) the size requirement for a portion of the interstellar medium to begin condensation to
higher densities that would lead eventually to star formation,
(i) the condition for a mass element of a spherical star to be in gravitational or hydrostatic
equilibrium,
(iii)  the balance of kinetic and potential energies in such a system,
(iv) the time constants that must govern changes of structure or energy content of the star,
(v) the nuclear reactions that replace the radiant power emitted from the stellar surface,
(vi) the limiting luminosity that places an upper limit to stellar masses, and
(vii) the instability that yields stellar pulsations.

These processes provide insight into other phenomena in astronomy — for example, the
dark matter in clusters of galaxies and the mass accretion rates in neutron-star binary star
systems and in active galactic nuclei.

2.2 Jeans length

Stars are initially formed (condensed from) from the diffuse interstellar gas. The detailed
physics of this process is a difficult theoretical problem. As the gas cloud contracts toward
a density at which nuclear burning can begin, it must shed angular momentum and also
overcome the pressure of the magnetic fields intrinsic to the ionized gases of the interstellar
medium (ISM). Just how all this takes place is still not well understood. Nevertheless, it does
happen because stars do exist. The physics that must apply is interesting and well known; its
application, however, is quite complex.

Portions of the interstellar medium must fragment into individual clouds that will even-
tually become galaxies and stars. To collapse, the cloud must be of such a size that the
magnitude of the gravitational potential energy of an atom in the cloud exceeds its kinetic
energy. We calculate this size, which is known as the Jeans length. In clouds of smaller size,
the atoms would escape the incipient cloud, and it would simply dissipate (Fig. 2.1).

Collapse criterion

The condition of collapse for an individual atom is

Ex < |Ep| 2.1
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(a) Perturbation of small size (b) Perturbation of large size

Before

After

Fig. 2.1: Density fluctuations in interstellar cloud. (a) Perturbation to higher density of cloud
segment of size smaller than the Jeans length A;. The perturbation is not sustained. (b) Perturbation
of size larger than A;. It will continue to contract.

and

1 GM
(EmHU2> < %, (Condition for fragmentation into cloud) (2.2)

where M is the mass of the cloud and my is the mass of an individual hydrogen atom. The
left side is the average kinetic energy of the atom, which is equal to 3k7/2 for monatomic
particles with a Maxwell-Boltzmann thermal distribution.

Let the mass of the cloud be approximately M & pR?, where p is the mass density (kg/m?).
Substitute into (2) and neglect factors of order unity to yield

v> < GR?p. (2.3)
Solve for the radius of the cloud as follows:

v
R> ——. Critical size for collapse 2.4

G ( pse)  (2.4)
This is the critical size at which instabilities can develop so that the collapse can start. This

size scale is known as the Jeans length after Sir James Jeans (1877-1946) and is expressed
by

Us

RRE(ALE

(Jeans length; m) (2.5)
where we write it in the usual form with the speed of sound vs, which is, not surprisingly,
close in value to the kinetic speed v, as we now demonstrate.
The speed of sound may be expressed in terms of the pressure P, the density p, and the
ratio of specific heats y as (not derived in this text)
, yP kT 5 kT

= - , 2.6
U P Y May 3 myy (26)
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where we invoke the equation of state for an ideal gas, P = pkT/m,y (3.39), and the ratio of
specific heats for a monatomic gas, y = 5/3; see (4.10) and (4.11). The speed of sound is
seen to be comparable with the speed of the individual atoms that would be obtained directly
from setting mv?/2 = 3kT /2.

Critical mass

The required mass M, for the cloud to be unstable is the mass density p times the volume ~A;>
of the cloud. This is known as the critical mass, which is sometimes called the Jeans mass.
Thus, from (5) and (6),

3 v (kT 1 N
- M.~ pA; = G2 ~ <Gmav> W, (Critical mass) 2.7
where we have again dropped factors of order unity. This result could have been obtained
directly from the collapse criterion (2), together with the relations mv? ~ kT and p ~M/R>,
without defining the Jeans length and speed of sound.

As an example, we calculate the critical mass for the cold neutral component (hydrogen
clouds) of the ISM described in Table 10.2. The hydrogen number density is 4 x 10’7 m~2 at
a temperature of 7~ 100 K. The expression (7) yields a mass of M. ~ 3000 My and a Jeans
length of ~60 LY. This is somewhat larger than the cloud sizes listed in the table. We would
thus conclude that these clouds are unlikely to collapse further. Local regions of substantially
higher density, however, surely could.

If our cloud further collapses, say by a factor of 100 in size, and hypothetically manages
to cool itself by radiation so as to remain at the 100-K temperature, the critical mass would
be 1000 times less, or M. ~ 3 M. This suggests fragmentation to smaller clouds. Thus, the
initially large low-density clouds are expected to fragment one or more times as they contract.
The group of cloudlets from a single large cloud thus could become a cluster of newly formed
individual stars containing hundreds to thousands of stars.

On another scale, the rarified low densities and moderately high temperatures of some
regions of intergalactic space could well lead to critical masses comparable to the masses
of galaxies. From absorption lines in quasar spectra, one can infer the existence of clouds
in intergalactic space with number densities of ~10%> m ~3 and temperatures of ~3 x 10* K.
This leads to a critical mass of M, & 10° M, the mass of a small galaxy. Even more rarified
regions could result in even larger critical masses that could lead to larger galaxies and clusters
of galaxies.

Our calculations here assume a smooth, homogenous medium when in fact the interstellar
medium is highly irregular with density fluctuations and also magnetic fields and angular
momenta. We will find in Section 5 that the dynamical infall time is (Gp) ~> (37). Hence, in
our simplistic scenario, the regions of high density will collapse rapidly and, in turn, become
the centers of further fragmentation and increasingly rapid collapse.

23 Hydrostatic equilibrium

An element of the gas in a star is attracted by means of gravity to all other elements of the star.
For a spherically symmetric mass distribution, the total gravitational force on the element is
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(b) Force vectors
on dm due to
mass elements

at relement > 7

Mass
element dm

Fg

Fig. 2.2: Hydrostatic equilibrium for a mass element of area A and thickness dr at radius r in a
star. (a) Force balance. The upward force due to the differential pressure, (P, —P;)A, is balanced
by the downward gravitational force Fg on the element. (b) Gravitational forces on a mass element
in a spherical star for mass elements at greater radii than dm (thin arrows) and for the sum of all
mass elements interior to dm (thick arrow). The former sum to zero.

directed toward the center of the star. If each mass element of the star has no net force on it,
it is said to be in hydrostatic equilibrium. In this case, the inward pull of gravity is exactly
balanced by the upward force due to the gradient of the gas pressure. (Radiation pressure
can also play a role in the most massive stars.) Here we find the differential equation that
represents this balance of forces.

Balanced forces

Consider an element of gas of thickness dr and area A at a distance r from the center of the
star, where the mass density is p(r) (Fig. 2.2a). The element is a segment of a spherical shell
of radius r with its center at the center of the star. The pressure P; at the bottom of the element
will exert an upward force on the element, whereas the lesser pressure P; at the top will exert
a downward force that is smaller than the upward force.

The net upward force due to the pressure differential, dP = P,—Py, is

Fp=—AdP. (2.8)
We choose the “+” direction to be upward (increasing radius r), and so in this case the
pressure differential is negative, dP < 0, and the associated force is in the positive (outward)
direction. The condition for hydrostatic equilibrium is

Fg + Fp =0, (2.9)

where F( is the gravitational force. The condition thus becomes

- Fg = AdP. (Hydrostatic equilibrium) (2.10)
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The force due to gravity on our element of gas, dm = pA dr, is described by Newton’s
gravitational law (1.13)

_ —GINr) p(r) Adr

72

FG , (Newton’s gravitational law) (2.11)

where 9(r) is included mass, the portion of the stellar mass interior to radius r.

The mass outside radius r is not included in (11). A proper vector summation of forces due
to the mass elements beyond r shows that, for a 1/7* force law and for spherically symmetric
mass distribution, their net contribution is zero (Fig. 2.2b). Each bit of matter just above our
element exerts a larger force than does a bit of matter in a distant (lower) part of the star
(the 1/7? effect), but there are many more of the latter elements. The net effect is zero force,
which can be demonstrated with Gauss’s law.

A similar summation for elements of matter within the radius r yields a net force with a
magnitude and direction equal to that of a pointlike mass M = 91(r) located at the center of
the star. This, too, follows from Gauss’s law. Thus, the net gravitational force given in (11)
ignores the mass outside r and takes all the mass inside r to be at the center of the star.

Pressure gradient

Substitute the gravitational force (11) into (10) to obtain the equation of hydrostatic equilib-
rium in its usual form as

dP  —Gar)p(r)
- dr r2 : (Hydrostatic equilibrium)  (2.12)
—p(r) g(r)

This differential equation indicates how, at radius r, the gradient of pressure (dP/dr) depends
on the total stellar mass at lesser radii, 9(r), and on the density p at the radius r. It is simply
a statement that the inward and outward forces on an element of the star are balanced.

The acceleration due to gravity g is introduced in (12), where

Gnr)  GM

3 R (N/kg or m/s?; gravitational acceleration) (2.13)
r: r=

gE

At the surface of a star of radius R and mass M, the acceleration becomes equal to GM/R?,
and thus the force on a test mass m becomes the familiar F' = mg.

The reader is cautioned that, in our derivation, the area A is tacitly taken to have the same
value at the top and bottom of the mass element. This is not precisely correct for spherical
geometry. Our assumption of equal areas does, in fact, give the correct final result, and the
essential physics is illustrated. A proper derivation makes use of the gradient of pressure VP
in spherical coordinates (Prob. 31).

The equation of hydrostatic equilibrium is one of the essential elements required in the
modeling of a star’s structure (Section 4.3).

24 Virial theorem

A global way to understand the equilibrium state of a star is provided by the virial theorem.
It is an energy argument that makes no reference to the detailed internal structure of the star.
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The theorem is important in other contexts also — notably in revealing dark matter in clusters
of galaxies.

Potential and kinetic energies

The virial theorem is a useful statement about the relative magnitudes of the total kinetic and
potential energies of a system of particles in stable equilibrium bound by gravity.

The theorem states that twice the total kinetic energy of the particles, 2 2.Ey, added to the
total potential energy >E, must equal zero:

- 23Ex+2E, =0. (Virial theorem) (2.14)

The summation is over all particles in the system. Keep in mind that, in a bound system,
the potential energy will always be negative for the usual convention of E, =0 at infinite
separation.

The virial theorem tells us that the total (kinetic plus potential) energy of the system is
equal to half the total potential energy or to the negative of the kinetic energy, that is,

Eo = 3E+3E, = (1/23E, = —3E,. (2.15)

The virial theorem (14) is valid for potentials that vary inversely with distance as does the
gravitational potential.

A simple demonstration of the virial theorem is a satellite of mass m in a circular earth
orbit at radius r about the much more massive earth of mass M. Substitute into F, = ma, the
gravitational force GMm/r? and also the radial acceleration —v?/r. Solve for E =muv?/2
to find Ex = GMm/(2r), which is just one-half the magnitude of the potential energy of the
satellite, —GMm//r. This is in agreement with (14).

If the satellite loses total energy because of gradual atmospheric drag, it must move to
smaller radii (lower altitudes) to lose potential energy and hence total energy. Because the
potential energy becomes more negative, increasing in magnitude, the kinetic energy must
increase according to the virial theorem. This increase in Ey is only one-half the loss of
potential energy, and so total energy indeed decreases. The atmospheric drag tries to slow
the satellite, but instead it falls to a lower orbit and speeds up!

The virial theorem is not used explicitly in calculations of stellar structure. Nevertheless,
any solution of the basic equations of stellar structure must be checked for stable equilibrium.
This is acknowledgment of the central role of the virial theorem.

Derivation

The virial theorem (14) may be derived from first principles with the aid of the hydrostatic
equilibrium equation (12). The latter is appropriate because a collection of particles in equi-
librium will have zero net force on each and every gas element of its interior.

Define a volume function ¥(r), which is the volume enclosed within the radius r, and
multiply it by dr:

4
Y(r)ydr = gm3dr. (2.16)
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Multiply the left and right terms by, respectively, the left and right terms of the equation of
hydrostatic equilibrium (12) as follows:

1 G
V(r)dP = -3 ) 472 p dr). 2.17)
r
The quantity in square brackets is the mass of a shell of matter d9, giving
1 G
V(r)dP = =3 ) gon. (2.18)
r

The right side of (18) is the potential energy of the shell d91t at radius r divided by 3.
Integrate this equation over the entire volume of the star using

9
VrydP = — / G o (2.19)
star

star r

The integral on the right side is the sum of the potential-energy magnitudes of all the shells.
With the minus sign, the right side of the equation is thus the potential energy of the entire
star divided by 3, that is, 2E, /3.

For the integral of the left side, consider the differential of the product P¥:

d(PV)= PdV +VdP. (2.20)

Integrate over the volume of the entire star,

ww%=/

star

Pd‘V+/ vdr, (2.21)
star

where R is the radius of the star. The left side equals zero because the volume function ¥/(r)
vanishes at =0 and the pressure P vanishes at the surface of our idealized star. Substitute
this result into the left side of (19) to obtain

- -3 / PdV = EEP. (Virial theorem; general form) (2.22)
star
This is the general form of the virial theorem.

Evaluate the integral on the left side of (22) for a perfect nonrelativistic gas. From kinetic
theory (3.34), we have

2 1 2
P=-n <— mvz) = guk, (2.23)

where 1 is the kinetic energy density (J/m?®). Integrate this expression over the star to obtain
2 2
PdV = —udV = =X Ex. (2.24)
star star 3
Substitute this result into the left side of (22) to obtain
2
—3§2Ek = 2 FEp, (2.25)

which is the virial theorem (14).
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In this derivation, we required stability in (17) through the condition of hydrostatic equilib-
rium. In turn, this invoked Newton’s r ~2 gravitational law against which a support pressure
must exist. We also assumed nonrelativistic particles.

For a relativistic gas with a blackbody distribution (e.g., photons), the pressure from (6.26)
and (6.43) is P = uy /3. Substitution into (22) yields

SE+ EEp =0. (Virial theorem; relativistic gas particles)  (2.26)

Note that, in this case, Eio =%Ex + %E, =0 rather than E, = 2E, /2 for the nonrelativistic
case (15). This indicates that a gas consisting solely of relativistic particles would not be grav-
itationally bound; it would expand indefinitely. This invalidates the underlying assumption
of the virial theorem — namely, that the particles are in hydrostatic equilibrium.

Stars

If a star had no interior nuclear energy source, it would behave like the satellite in the preceding
example; see discussion after (15). With the loss of energy through radiation from the surface,
the star would gradually shrink. At any given stage, it would be in (quasi) stable equilibrium,
and the virial theorem would be valid. Because the potential energy would becomes more
negative, the total kinetic energy would increase as the star shrank.

Increased kinetic energies mean higher temperatures. As the star loses total energy and
shrinks, it becomes hotter. Viewed another way, the star gives up more potential energy than
necessary to compensate for the lost radiation, and the extra potential-energy decrease goes
into heating the gas. The star exhibits a negative specific heat; the removal of heat results in
a higher temperature 7'

The virial theorem is relevant to gas clouds that are in quasi-stable equilibrium while
collapsing to form stars before internal nuclear burning commences. The cloud heats up as it
shrinks; the decreasing potential energy is converted to heat, in part, and the resultant pressure
inhibits further shrinkage as do the increasing centrifugal forces due to bulk rotation of the
matter. Further collapse is possible only with the continuing loss of energy (e.g., by radiation)
and angular momentum.

Toward the end of a star’s normal life, when the hydrogen fuel in the core is completely
expended, the core shrinks and heats up according to the virial theorem. Eventually, the
kinetic energies of helium nuclei (the ashes of the hydrogen burning) overcome their mutual
Coulomb repulsion and helium burning commences. When the helium is expended, shrinkage
and heating again take place until, for a sufficiently high stellar mass, even higher elements
begin to burn.

Nuclear burning at the center of a star in equilibrium produces just enough energy in a
given year to replace that lost from the surface during that year. This amounts to only about
one part in 107 for the sun; see the discussion of the thermal time scale Section 5. A star
is thus, to good approximation, in hydrostatic equilibrium, and the virial theorem properly
describes it.

Clusters of galaxies

Galaxies are distributed in space in a highly nonuniform manner, exhibiting “walls” of galax-
ies, voids with few galaxies, and distinct clusters consisting of tens to hundreds, or even a
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few thousand, galaxies. An important application of the virial theorem pertains to clusters of
galaxies.

Spatial distribution

The galaxies in a cluster of galaxies, in many instances, are distributed in space in such a
way that they appear to be in stable equilibrium. The masses of the constituent galaxies may
be estimated from their luminosities. The measured velocity dispersions together with the
masses provide an estimate of the total kinetic energy % Ey of all the galaxies in a cluster. The
masses and the positions of the galaxies in the cluster provide the total potential energy 3E,.

One finds generally that these values do not satisfy the virial theorem; there is an excess
of kinetic energy. Given these values, the galaxies would not be bound together; they would
be in the process of flying apart.

Nevertheless, the appearance of many clusters of galaxies argues strongly that they are not
dispersing but are rather in a stable configuration. It is thus now widely believed that clusters
contain matter that is invisible (dark matter) in addition to the visible galaxies. The virial
theorem can be satisfied if the dark matter has 10 to 50 times the visible mass in clusters. In
other words, the gravitational matter holding the cluster together is 90-98% dark.

Virial Mass

The virial theorem may be used to find the total mass of a stable collection of particles if one
has measures of particle masses and speeds. We derive this virial mass here. In the process,
we explore the observational approach to the determination of dark matter in clusters of
galaxies.

For a collection of particles interacting solely with 2 gravitational forces, the virial
theorem (14) may be expressed as a summation over all the individual particles and pairs of
particles by

1 Gm;m
2 —mjv? — —J =, Virial theorem 2.27
,Z S pZ o ( ) @27
where v; is the speed of particle i and r;; is the separation distance between the ith and jth
particles.

Consider the elementary case of N identical galaxies in a cluster of galaxies, where each
galaxy has mass m and N is a large number. Multiply the first term of (27) by N/N and the
second by N?/N? to yield

1 (Nm)* 1 1
Nm— v?—G—mZZf:O, (2.28)

where the factor 1/2 avoids double counting of the pairs. The single summation (first term)
has N terms, whereas the double summation (second term) has N(N —1) terms because those
with i =j are excluded. For large N, one can make the approximation N(N —1) ~ N?. The
total mass may be written as M = Nm, and the summations may be expressed in terms of
average values by

M2

M {7}, = G=lrj'), =0, (2.29)
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where the averaged quantities are the speed squared and the inverse separation. The total
mass required to hold the cluster in stable equilibrium, the virial mass, is therefore

- M = M (2.30)

G(ri; : >av

The velocities v; are obtained from the Doppler shifts of the spectral lines of the individual
galaxies in the cluster. Such measurements yield, after correction for the overall recession of
the cluster, the individual line-of-sight components of the velocity, v; jos. If all directions of
motion are equally probable, the other two components will, on the average, have the same
magnitude; thus,

(07} = 3 (07105l - 2.31)
Similarly, galaxy separations obtained from telescopic measures must also be corrected for
projection effects.

The mass obtained from (30) is that required to provide stability of the cluster. In typical
clusters, it is much greater than the luminous mass, which is the mass inferred from the visible
galaxies in the cluster. The extra dark matter implied by this need not be, and probably is
not, contained solely in the individual galaxies, as might have been implied here. Dynamical
studies of galaxy rotation (Section 10.4) reveal dark matter associated with individual galaxies
that exceeds luminous matter by a factor of a few or at most ~10. The larger factors found in
clusters of galaxies (up to ~50) indicate that large amounts of dark matter must be distributed
throughout the intergalactic medium within and around the cluster.

2.5 Time scales

Three time scales are pertinent to a star: the thermal or Kelvin, the dynamical, and the diffusion
time scales. These provide understanding, respectively, of how rapidly a given star (i) might
evolve without a nuclear energy source, (i) might collapse inward given a sudden lack of
support as in a supernova collapse, or (iif) would transfer radiant energy from its center to its
surface.

Thermal time scale

The Kelvin—Helmholtz time scale Tk, or simply the Kelvin time scale, is the approximate
time it takes for a star to radiate away an energy nearly equal to its total current kinetic energy
content, 2Ey (J) at its current luminosity L (W):

Y (2.32)

The summation is over all particles in a star.

According to the virial theorem, the kinetic energy is half the magnitude of the total
potential energy. For a spherical mass distribution of radius R and total mass M, the total
potential energy 2E, can be found by summing the potential energies between all pairs as
in (27). The result is approximately XE, &~ —GM? /R, where R is some characteristic radius
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of the cluster and the missing coefficient, which depends on the radial density distribution,
is of order unity. For our purposes, set 2Ey ~|2E,| to obtain

G M?

- ®ERp

(Kelvin—Helmholtz time scale) (2.33)

which is taken to be the definition of the Kelvin contraction time scale.
Substitute the solar values into (33) to yield

T} ~ 3.0 x 107yr. (Solar Kelvin time)  (2.34)

If the nuclear energy source were to turn off today, it would take about 107 years for the
sun to lose a substantial fraction of its current energy content. This does not mean that all
its energy would be expended. Shrinkage of the sun to smaller radii converts gravitational
energy into kinetic energy. As we have seen, this raises the temperature. In turn, this raises the
luminosity and thus shortens the Kelvin time scale. Without replenishment from hydrogen
burning, the sun’s life at (roughly) its present luminosity would be 107 to 108 yr.

This age was one of the biggest puzzles of astrophysics for many years. It is much less
than the known age of the earth and solar system. Studies of radioactivity in rocks on the
earth indicate that its age and hence that of the solar system is >3.8 x 10° yr. Studies of
radioactive elements in meteorites indicate that the material in the solar system condensed
into solid bodies about 4.5 x 10° years ago; this latter age is taken as the age of the earth and
roughly the age of the sun in its current state (luminosity and temperature).

The solar Kelvin time of ~3 x 107 yr (34) is the future lifetime of the sun in its current
state in the absence of any nuclear energy source. This is also the maximum time that it
could have been in its current state; the thermal energy would not support a longer life. The
thermal energy content of the sun is thus insufficient by a factor of ~100 to have provided
the observed luminosity for the apparent age of the solar system (4.5 x 10° yr). Planetary
evidence precludes substantial changes in the sun’s energy output during this period.

One might have argued that the sun was larger (and cooler) in earlier times in accord with
the virial theorem and is just now passing through its current state. The times at which it
would have been within acceptable sizes and temperatures would still be far short of the
required 4.5 x 10° yr. One therefore concludes that another source of energy must be present.
We now know that to be nuclear fusion.

Dynamical time scale

The dynamical time scale T4y, is the time for a star to collapse inward under the influence of
gravity with no opposing forces such as pressure. A brief dimensional argument provides an
approximate magnitude for this quantity.

Consider a star of mass M and radius R and find the (approximate) time for a test mass m
at or near the surface to fall a distance R if the gravitational force on it remains constant at
the surface value (which of course is not the case):
E GM

a = —

=—. 2.35
=R (2.35)



2.5 Time scales 61

The time to fall a distance R follows from the familiar constant-force expression s = ar*/2,
where s = R. We drop the factor of 2, solve for #=74y,, and invoke (35) to obtain

R\ 2 R3 1/2
Tdyn = <z> = (G—M> . (S) (236)

The factor M/R? is the approximate density p of the matter giving rise to the gravitational
force. The dynamical time constant thus becomes

nd Tagn = (Gp)~'/2. (Dynamical time scale)  (2.37)
The mean mass density of the sun is 1400 kg/m?, and so (37) yields
- Tayn,o = (Gp)~/* = 3300's = 55 min. (Sun dynamical time)  (2.38)

If we take into account the higher densities in the interior of the sun, a somewhat smaller
value of 20 min is sometimes quoted.

The present sun, under free-fall conditions, would take less than an hour to collapse to a
small fraction (say ~1/3) of its current radius. At this more dense condition, it would have
a new shorter collapse time according to (37). The characteristic time would become shorter
and shorter as the matter collapsed in on itself.

A white dwarf of 1 M® and 0.01 R® would have an average density ~10° times
greater than that of the sun and hence a dynamical time constant 10~3 that of the
sun, or

Taynwd = (Gp)™1/* = 3.3 s. (White dwarf)  (2.39)

The density for this case is 1.4 x 10° kg/m>. As the collapsing matter approaches nuclear
densities of 10'7 kg/m?, the dynamical time constant is on the order of a millisecond:

Tdyn, nuclear matter = (Gp)_l/ 2 =0.4 ms. (Nuclear matter) (2.40)

These latter two times play roles in the inward collapse of the degenerate core of a star toward
neutron-star densities or further into a black hole.

Diffusion time scale

The third time scale of interest is the time it takes for photons to work their way out of the
sun via many, many scatters or absorption—reemission processes in a “random walk.” This is
the diffusion time.

One-dimensional random walk

Consider a one-dimensional photon random walk that proceeds as follows. Start the photon
at x=0; flip a coin to decide whether to step it a length [ ahead (heads for Ax= + () or a
step backward (tails for Ax = —(); step the photon as indicated; flip the coin again to obtain
the direction of the second step; take the second step; flip the coin again, and so forth, until
the photon has made N = 100 steps.

When finished with the 100 steps, one might naively expect the photon to be at the origin
because the expected numbers of heads and tails would be equal. However, for a single 100-
step trial, they are not equal because of statistical fluctuations in the numbers of heads Ny
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and tails Nt. After the 100 steps, the net number of steps is Nyt = Ny —Nr and the distance
from zero will be

X = Nyt [ = (Nyg — Np)L. (2.41)

This will generally have a positive or negative value and is rarely exactly zero.

If one averages over many 100-step trials, an average final displacement (x) that approaches
zero will indeed be found because, in the limit of an infinite number of trials, half the time the
final displacement is in the positive direction and half the time it is in the negative direction:

(x) = (Ng — Nq)l =~ 0. (Expected value; many trials) — (2.42)

The brackets indicate the average value of many N-step trials.

Consider again a single trial of N=100 steps. The distance traveled is given above (41).
The number of heads Ny obeys Poisson statistics. For the moderately large number, ~50, in
our example, the one standard deviation uncertainty ANy is the square root of the number.
Thus we have ANy = N2 &~ 7 and ANt = N2 2 7. The net number Ny = Ny —Nr is the
difference of two numbers, and so the uncertainty in Ny is the individual uncertainties added
in quadrature:

ANyt = v(ANy)2 + (AN7)2 = /Ny + Ny = /N (2.43)

The uncertainty in the net number turns out to be the square root of the total number of steps.
(See AM, Chapter 6 for a discussion of statistics.)

This uncertainty indicates that the actual values of N, will be distributed about the
“expected” value of Ny =0 with standard deviation based on N2, The end points of many
100-step trials will thus be distributed as a Gaussian function centered on zero (Fig. 2.3).
(The Gaussian has the form exp( —ax?).) Its standard (root-mean-square or rms) deviation
from zero, after N steps each of length [, is, from (43),

- Xrms = N1/2(. (Root-mean-square displacement) (2.44)

For many 100-step trials, one finds the photons (on average) a distance 10 ( from the origin,
and for 1000 steps, a distance of 32 {. Some of the final positions will be in the positive
direction, and some in the negative direction.

If many photons are started at the origin at the same time, their distribution in x at a
later time (after N steps each) will be the aforementioned Gaussian. As time proceeds and
N increases, the distribution becomes progressively spread out. The photons “diffuse” out to
larger and larger distances according to (44). This gradual spreading (diffusion) of photons
along the x-axis is shown in Fig. 2.3 as a widening of the Gaussian function.

Let us now turn the question around. How many steps does it take per photon for substantial
numbers of photons in a sample to reach a distance X from their point of origin? It follows
from (44) that the number of steps required, in our one-dimensional problem, is about

X\ 2
N~ (?> . (Average number of steps for photon to reach X) (2.45)
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Fig. 2.3: Diffusion (random walk) of photons along one axis. The Gaussian distribution is shown
for four different times. The number of photons in distance interval dx is n, dx. A large number
of photons start from the origin (center of star). As time progresses, the distribution of photon
positions gradually widens until substantial numbers reach and escape from the stellar surface.

Three-dimensional walk

The diffusion in a star is three-dimensional. The transport of photons in three dimensions
within the sun is well approximated with a random walk process. A photon is Thomson
scattered (absorbed and reemitted) by electrons many times during its passage. Although
Thomson scattering is not isotropic, it is appropriate to assume so when averaging over a
nearly isotropic distribution of incident directions. One can therefore argue that, with each
collision, photons will scatter along any one of three axes (x, y, z) with equal probability.
(See AM, Chapter 10, regarding Thomson scattering.)

The progress of a given photon along any one arbitrarily chosen axis will therefore be
slowed. After N steps, only N/3 steps will be along the x-axis. The rms distance along the
x-axis (44) thus becomes x;ms = (N/3)"? (; distances along the other axes will be the same.
We are interested in the number of steps it takes for the photon to reach any point on the
surface of the star — a distance R from the center. Steps in any of the three directions can
contribute motion toward the surface. The mean square distance from the center after N steps
is thus

2 _ 2 2 2
ers - 'xrms + yrms + Zrms

(2.46)
N N N
={=+—+=|EC=NE
( 3 + 3 + 3 )
The required number of steps to reach the surface of the star at radius R is then
R\2
- N = (f) , (Steps to reach star surface) (2.47)

where [ is the step size.
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The time required for a photon to take this many steps is the desired diffusion time. Because
the speed of a photon is c, the time for N steps of size [ is, from (47),

Nl R?
- Tdif = —

= —. (Diffusion time scale) (2.48)
c cl

Evaluation of this time requires knowledge of the step size (.

Mean free path

The average step size is the mean free path for a photon in the hot stellar interior. It is a rea-
sonable approximation to adopt the cross section of the aforementioned Thomson scattering
of photons by free electrons,

o1 = 2 = 6.6525 x 102 m; h i
T= 3 re =6. X m-; (Thomson cross section) (2.49)

1 e2

= - > =2.8179 x 1075 m,
& MeC

Te

where 7, is the classical radius of the electron. This cross section applies to interactions with
photon energies substantially less than the rest energy of the electron, hv < mec>.
The relation between cross section and mean free path ( is (AM, Chapter 10)

(= (one)” ", (2.50)

where n. is the number density of scatterers (usually electrons). For a completely ionized
hydrogen gas, 7. is equal to the number density of protons that carry most of the mass. Hence,
ne = (M/my)/V~M/(m, R®), and

3
myR

{ ~ =4x107m=4 mm, (Photon mean free path in sun) (2.51)

oT

where we substituted solar values for M and R. This is the value for the average solar mass
density. At the sun’s center, the density is ~100 times greater and the mean free path corre-
spondingly less.

Substitute (51) into 74 (48) to obtain the approximate diffusion time,

M
- Tdif ~° 7T = (Diffusion time) (2.52)
cmy R

which for solar values becomes
Tait ~ 3 x 10M's = 10000 yr. (2.53)

The solar diffusion time is actually somewhat larger because absorption and emission pro-
cesses further delay the photons on their way to the surface. The value usually quoted is

- Tait ~ 20000 yr. (Diffusion time; sun) (2.54)
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Solar luminosity

The solar luminosity may be estimated from the diffusion time if the sun is taken to be
a ball of hot gas with uniform internal temperature T~ 5 x 10°K (Prob. 4.31). The solar
diffusion time just obtained tells us that the entire energy content of the photons in the sun,
at some given time, will be carried to the surface in 20 000 yr. The energy density of photons
in blackbody radiation of temperature T is aT* J/m?, where a=7566x 10710 Jm 3 K~
(6.27). This times the solar volume is the total photon energy content. Divide this by the
diffusion time to obtain the luminosity estimate
44 3
Lo~ T 5™Re 0w, (2.55)
Tdif

which is within a factor of a few of the actual value, 4 x 10%° W.

The diffusion time of 20 000 yr is much shorter than the thermal time scale of 2 x 107 yr.
It turns out that the photons in the sun contain only ~10~3 the thermal energy present in
the particles. It would thus take ~1000 sun loads of photons to remove most of the energy
from the sun, and this would take ~1000 x 20 000 yr =2 x 107 yr, which is the thermal time
scale.

2.6 Nuclear burning

The power source for most stars is the burning of hydrogen in the core of the star. The pressures
and temperatures there are sufficient to allow the hydrogen nuclei to undergo fusion reactions
that lead to helium. Such reactions are exothermic; they give up mass and release energy in
the form of kinetic energy of the reaction products. This provides the power to replace the
energy being radiated from the surface of the star. The result is that the star remains in a fairly
stable state for much of its active life — some 10'? yr in the case of the sun. The basics of the
important nuclear reactions are described here.

Stable equilibrium

The stable equilibrium of nuclear-burning stars is maintained by a negative feedback mecha-
nism. If the star is perturbed to smaller size, the densities and temperature at the core increase
owing to the greater gravitational force. This leads to more nuclear reactions because the
particle fluxes and velocities are greater. The increased energy output into the core causes
the star to expand, thus returning it to its original state. Similarly, if the star is perturbed to
a larger size, the reduced densities and temperatures at the core diminish the energy output,
and the star will shrink back to its original stable state.

Coulomb barrier

One might be inclined to think that nuclear burning would not take place at all. The dominant
element in the sun is hydrogen, and it is completely ionized throughout most of the solar
volume. It is thus proton—proton interactions that yield the energy release. For this interaction
to take place, the protons must come within the short range of the nuclear forces, and this
requires that the kinetic energies be great enough to overcome the huge Coulomb repulsion
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Fig. 2.4: Potential (dark curve) of a proton showing the combined square-well nuclear and
Coulomb r~! potential. The negative gradient (slope) of the potential gives direction and magni-
tude of the force. The steep sides of the nuclear well represent a strong attractive force, and the
sloping sides further out represent the repulsive Coulomb force for an approaching proton. (a)
Three (total) energy levels for approaching protons. Protons with kinetic energies E; and E, at
infinity are repulsed, classically. The third, with E3, has sufficient energy to override the potential
barrier to come within range of the nuclear force. Kinetic energies, E3x = E3 —E,, are shown at
two locations. (b) Incoming proton treated as a wave. It can, with low probability, tunnel through
the Coulomb potential barrier. Nuclear reactions can thus occur at much lower particle energies
(i.e., temperatures) than would otherwise be possible.

force at these short distances. It fact, the average kinetic energy of protons at the center of the
sun is about a factor of 1000 less than required. Stated otherwise, the average proton energy
is insufficient to overcome the Coulomb barrier.

This problem is surmounted by the wave nature of particles that allows them to penetrate
some distance into potential barriers (Fig. 2.4). If the barrier is sufficiently narrow, a particle
can leak through it into the nuclear potential well even if, classically, it has insufficient
energy to overcome the barrier. The leakage probability through a Coulomb barrier increases
rapidly with particle energy because the barrier narrows with increasing energy. There are
sufficient numbers of particles in the high-energy tail of the Maxwell-Boltzmann distribution
at 107 K to provide the required leakage into the nuclear well and hence the required nuclear
reactions.

A slight change in temperature will substantially increase proton numbers in the tail and
will also raise the average proton energy. The reaction rates are thus highly temperature
sensitive. A modest temperature rise will markedly increase the rate of nuclear interactions.
This is a crucial aspect of the stability feedback just described.

Nuclear warmer

Only a tiny fraction of the stellar thermal energy content of a star is radiated away from the
stellar surface each year — only about 1 part in 20 million for the sun. (See discussion of the
thermal time scale above.) The nuclear energy that must be supplied each year to offset this
loss is thus only a very small part of the total thermal energy content of the sun.

One should therefore not think of the sun as a raging nuclear furnace like a basement oil
burner that is expected to bring a house up to temperature in an hour or two. Rather, think of it
as a (huge) ball of hot gas with a low-powered nuclear “warmer.” Nonetheless, in the case of
the sun, the warmer puts out 4 X 1026 W; the sun is a very big house with high thermal content.
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Fig.2.5: Schematics of the pp series of nuclear reactions that dominate the conversion of hydrogen
into helium in the sun. The net effect is that a helium nucleus, “He, is created from four hydrogen
nuclei, four 'H. The shaded ovals are intermediate states before the decay (or annihilation) to the
final products. The dashed arrow indicates that the annihilated e ~ can be considered to have been
associated with one of the input protons in its neutral atomic state.

An elementary model of a normal star can thus treat the star simply as a gravitationally
bound, stable ball of hot gas. At the next level of sophistication, though, the model would
include the effects of a distributed source of energy in the central regions and the propagation
of this energy toward the surface, where it is radiated into space.

Proton—proton (pp) chain

The dominant chain of nuclear interactions in the sun is known as the proton—proton chain
(pp). The reaction of the pp chain can take place at temperatures above about 5 x 10° K, which
are found in the central regions of the sun. (The core temperature of the sun is 1.6 x 10° K;
Table 4.1.) In these regions, the gases are totally ionized. At the beginning of hydrogen
burning, the hydrogen content was 71% by mass, the helium content 27%, and heavier
elements 2% (see AM, Chapter 10). These are the so-called solar-system abundances. At
present the hydrogen content at the sun’s center has been reduced to ~36% by the hydrogen
burning described here.

The series of reactions in this chain converts four protons to a helium nucleus. The latter
is known to particle physicists as an alpha particle. There are several alternate pathways in
the pp chain; we first describe the most probable.

Nuclear interactions

The most probable sequence of nuclear reactions in the pp process is illustrated in Fig. 2.5.
It begins when two hydrogen nuclei (protons) of unit mass (‘"H + 'H, upper left corner)
interact and momentarily form an intermediate state. This immediately decays to a hydrogen
isotope of mass number 2 (*H, a deuteron), an electron neutrino v., and a positron (e*; a
positively charged electron). The first reaction is thus

'"H+'H—> H+ v. +et. (2.56)

A deuteron consists of a proton and a neutron; a proton is converted to a neutron in this
interaction. The neutrino is a neutral particle that easily traverses matter; it will most likely
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escape the star without interaction. The subscript “e” defines it to be an electron neutrino,
one of three types of neutrino, each of which also has an antineutrino counterpart.

The ejected positron e™ is an example of antimatter. It soon finds and interacts with a
nearby electron (ordinary matter) in the plasma. This electron, for particle counting purposes,
can be considered to have been associated with one of the two input protons (dashed arrow).
In the interaction, the et and e ~ annihilate each other; they disappear, and their kinetic and
rest-mass energies (2mc?) are converted to two gamma rays. Caution: never shake hands with
an antimatter space alien!

If the et emerges from the interaction with minimal energy, each gamma ray would have
an energy of about m.c? (511 keV), the rest energy of one electron, where 1, is the mass of
the electron. In this case the energy of the two gammas would be

EQ2y) ~ 2mec? = 1.0 MeV. (2.57)

Because the gamma rays will quickly interact and share their energy with electrons in the
surrounding plasma, this 1.0 MeV, or more if the e 7 had significant kinetic energy, contributes
to the star’s internal thermal energy. Also contributing is the kinetic energy of the deuteron
in reaction (56). The neutrino most probably escapes from the sun, and so its energy is lost.

Subsequently, another proton ('H) collides with the deuteron (*H) to give an isotope of
helium (*He) and a gamma ray 7:

’H+'H — *He + v. (2.58)

The *He nucleus consists of two protons and one neutron. Its kinetic energy and that of the
v ray contribute to the thermal energy of the sun as do the products of subsequent reactions.
Keep in mind that, although we write our elements with atomic notation, the primary reactions
are between nuclei of atoms.

The next step requires that another set of reactions (56) and (58) take place in such a way
that another three protons produce a second *He nucleus, as shown in the right-hand box of
Fig. 2.5. The two 3He nuclei then interact to give the stable isotope of helium (*He) and two
free protons as follows:

’He + *He —» “He +2'H. (2.59)

The “He nucleus (alpha particle) consists of two protons and two neutrons. All in all, six
protons are consumed to create a helium nucleus and two free protons. The net effect is that
one helium nucleus is created from four protons.

Baryon, lepton, and charge conservation

Several conservation laws must be obeyed in nuclear interactions. The number of baryons
(protons and neutrons) must be preserved, as must the number of leptons (electrons and
neutrinos). Electric charge and energy must also be conserved. Antiparticles such as e
count negatively for lepton number conservation. To keep track of these, one must keep in
mind the electrons associated with the interacting nuclei of (56), (58), and (59).

Referring to Fig. 2.5, we therefore find that six hydrogen “atoms” are introduced into the
interactions. These consist of six protons ('H) and six electrons, all of which were initially
free of one another in the ionized plasma. The input constituents thus have zero total charge.
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After the sequence, we have one helium nucleus (*He) consisting of two protons and two
uncharged neutrons, two free electrons associated with the helium nucleus, and also the two
free protons ('H) and their two associated electrons. In addition, two v, were created in the
interactions and also six gamma rays.

The six baryons are conserved in the interactions as already noted. The proton charge
dropped from + 6e to + 4e because two protons became neutrons in the formation of the
deuterons, and the electron charge increased from —6e to —4e owing to the two e e~
annihilations. Thus, total electric charge is maintained at zero. The reduction in electron
number is a reduction in lepton number from 6 to 4, but that is made up by the two v, created
in the interactions.

The three conservations laws (baryon, lepton, and charge) are each thus satisfied in reac-
tions (56), (58), and (59).

Energy conservation

Energy conservation underlies the exothermic nature of the reactions. In special relativity,
mass has an energy equivalent equal to mc> known as the rest energy (Section 7.3), and
this must be accounted for as well as the kinetic energies in the interactions. A decrease of
the total rest mass of the constituent particles appears as increased kinetic energies of the
interaction products relative to the input kinetic energies. One must take care to include the
electrons in this accounting.

In our accounting of electrons and nucleons (protons and neutrons), the conversion is, in
essence, from four neutral hydrogen atoms to one neutral helium atom:

4 Hatom — 1 Hegom. (atoms) (2.60)

The energy released is thus that associated with the difference in mass of four hydrogen
atoms and one helium atom. We calculate this mass decrease and also the associated energy
release below; see (62).

pep, hep, and Be reactions

There are several alternative paths in the pp chain that will take place with somewhat lower
probabilities than the primary chain just described. Each produces a helium nucleus from
four protons. Because the emitted neutrino energies vary with the path, more or less energy
may be lost to the star due to neutrino escape. The principal reactions are shown in Fig. 2.6
with their relative likelihood of contributing to a given “He termination. Other pathways are
possible but highly improbable.

There are two branches that produce the deuteron, >H: the pp process and a less probable
pep process that entails an input electron in the interaction. The pep process is involved in
only 0.4% of the *He terminations. It does emit a relatively high-energy neutrino (1.44 MeV)
that has been more easily detectable by neutron astronomers than the <0.42 MeV neutrino
of the pp reaction.

The nucleus *He created in the second step (58) can be transformed in three ways. It can
interact with *He as given above (59) to yield “He, directly or it can interact with a “He or
with a 'H. The latter “hep” reaction is very rare; it produces *He directly together with a
high-energy neutrino. The former reaction “He takes place 15% of the time and produces Be’,
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Hydrogen in star
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Fig. 2.6: Hydrogen pp burning showing the nuclear reactions for all significant branches. The
percentages of “*He terminations that pass through the several paths are shown. The neutrino
energies are also given: a fixed energy for the two-body final states and a distribution of energies
with a maximum energy for the three-body final states. [J. N. Bahcall, Neutrino Astrophysics,
Cambridge Univ. Press, 1989, Table 3.1]

which in turn has two branches. The less probable of these leads to Be and a high-energy
neutrino.

The several neutrino-emitting reactions in the chain provide neutrino astronomers with a
view of the interior of the sun. Neutrinos from the sun have been detected by large neutrino
detectors on the earth. The fluxes and energies are generally in accord with our understanding
of the sun. A long-standing ~50% deficit of detected electron neutrinos is now understood as
being due to transformation of electron neutrinos to other types during their passage through
the sun (AM, Chapter 12).

CNO cycle

Another set of nuclear interactions becomes important at somewhat higher temperatures. It
is called the CNO cycle because carbon, nitrogen, and oxygen nuclei are involved in the
reactions. Nevertheless, this cycle creates a helium nucleus from four protons just like the pp
chain.

The CNO process makes use of the occasional carbon nucleus in the core of a star that
was formed from the debris of previous generations of stars. It consists of six