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Preface

Almost all of the baryonic Universe is fluid, and the study of how these fluids
move is central to astrophysics. This book originated in a 24-lecture course entitled
‘Astrophysical Fluids’ given by one of us (JEP) in Part III of the Mathematical
Tripos at the University of Cambridge, comparable in level to a graduate course
in the USA. The course was intended as a preparation for research, and the book
reflects this. Preparing the lecture course and especially its booklist made it plain
that there was a need to bring these ideas together in one place.

The book provides a brief coverage of basic concepts, but does assume some
familiarity with undergraduate-level fluid dynamics, electromagnetic theory and
thermodynamics. Our aim is to give a flavour of the fundamental fluid dynamical
processes and concepts which an astrophysical theorist ought to know. To keep the
book to a manageable size, we have had to be selective. In particular, we omit all
discussion of dissipative fluid processes such as viscosity and magnetic diffusivity.

As well as covering a range of fluid dynamical concepts, we introduce
some mathematical ideas and techniques. None of these is particularly deep or
abstract, but some of the implementations do require some moderately heavy
but straightforward algebra. Thus the reader will benefit from some familiarity
with undergraduate-level mathematical methods, as well as some facility in
mathematical manipulation. This takes practice and care, but more than anything
it requires the ability to spot a mistake before proceeding too far.

Ideally, of course, one does not make mistakes, and some lecturers like to give
their students the misleading impression that this is how research is done. In practice,
errors occur all too frequently, and unfortunately some of these make their way
into the research literature. The best method for finding errors is to understand the
physical processes involved and how these processes are expressed in mathematical
formulae. For this reason, this book emphasizes physical understanding and the
extraction of relevant physical ideas from a mass of equations. To achieve this we
often drastically simplify problems and keep only the physical processes of interest.
For example, in the chapters on stellar oscillations we eliminate much of the heavy
algebra which appears because real stars are spherical, and instead assume that stars
are square (plane-parallel) or at worst (for rotating stars) cylindrical. This lets us
get at the underlying physical processes without obscuring them with mathematics.

ix



x Preface

The problems at the ends of the chapters come both from the problem sheets
associated with the course and from the examination questions set for it. They are
intended to illustrate the course material further and also to introduce additional
ideas. Thus they are an integral part of the book, and the determined reader will
benefit from working through them.



1

The basic fluid equations

The subject of this book is how the matter of the visible Universe moves. Almost
all of this matter is in gaseous form, and each gram contains of order 1024

particles (atoms, ions, protons, electrons, etc.), all moving independently except
for interactions such as collisions. At first sight it might seem an impossible task
to describe the evolution of such a complicated system. However, in many cases
we can avoid most of this inherent complexity by approximating the matter as a
fluid.Afluid is an idealized continuous medium with certain macroscopic properties
such as density, pressure and velocity . This concept applies equally to gases and
liquids, and we shall take the term fluid to refer to both in this book. The structure of
matter at the atomic or molecular level is important only in fixing relations between
macroscopic fluid properties such as density and pressure, and in specifying others
such as viscosity and conductivity.

Describing a medium as a fluid is possible if we can define physical quantities
such as density ρ(r, t) or velocity u(r, t) at a particular place with position vector
r at time t. For a meaningful definition of a ‘fluid velocity’ we must average
over a large number of such particles. In other words, fluid dynamical quantities
are well defined only on a scale l such that l is not only much greater than a
typical interparticle distance, but also, more restrictively, much greater than a typical
particle mean free path, λmfp.† Further, the concept of local fluid quantities is only
useful if the scale l on which they are defined is much smaller than the typical
macroscopic lengthscales L on which fluid properties vary. Thus to use the equations
of fluid dynamics we require L � l � λmfp.

If this condition fails one should, strictly, not apply the fluid dynamical equations,
but instead use concepts from plasma physics such as particle distribution func-
tions. However, the huge additional complications and large physical uncertainties

† Roughly speaking, the mean free path is the average distance travelled by a typical particle before its
trajectory is significantly deflected by another particle.

1



2 The basic fluid equations

involved here mean that astrophysicists often apply fluid dynamical equations in
situations where they are not strictly valid. The mean free path in astrophysical fluids
is typically λmfp�106(T 2/n) cm, where T is the temperature (in K) and n is the num-
ber density (in cm−3). In the centre of the Sun we have T � 107 K, n � 1026 cm−3,
so λmfp ∼ 10−6 cm. This is far smaller than the solar radius R� = 7×1010 cm, so the
fluid approximation is very good. In the solar wind, however, we have T ∼ 105 K,
n ∼ 10 cm−3 near the Earth’s orbit, so that λmfp ∼ 1015 cm. This is far greater than
the Sun–Earth distance, which is 1.5 × 1013 cm. Thus the fluid approximation does
not apply well here, and the treatment of the interaction of the solar wind with the
Earth’s magnetosphere requires plasma physics. As a final example, the diffuse gas
in a cluster of galaxies typically has T � 3 × 107 K, n � 10−3 cm−3, and hence
λmfp ∼ 1024 cm. This is of the same order as the physical size ∼ 1 Mpc of a rich
cluster. The fluid approximation is at best marginal for the diffuse regions of the
cluster gas, but is nevertheless often used to gain a crude insight into its dynamics,
heating and cooling. The dimensionless ratio λmfp/L of mean free path to typical
flow lengthscale is called the Knudsen number Kn; Kn � 1 is a necessary condition
for the validity of the fluid approximation. The results above show that Kn � 1 in
the interior of the Sun, Kn � 1 in the solar wind, and Kn ∼ 1 in cluster gas.

In this book we assume that the reader already has some familiarity with fluid
dynamics, though not necessarily in an astrophysical context. For this reason the
following derivation and discussion of the equations of fluid dynamics is brief.
It is aimed mainly at establishing notation, as well as stressing those properties of
fluids relevant to astrophysics which may be less familiar to fluid dynamicists from
other fields.

1.1 Conservation of mass and momentum

The equations of fluid dynamics express conservation laws, and indeed one can use
this basic property advantageously in devising numerical methods to solve them.

1.1.1 Mass conservation

Consider a fixed finite volume V within the fluid, bounded by the surface S. Then
the mass of fluid contained within the volume is given by∫

V
ρ dV . (1.1)

The mass contained in V can change only through a flux of fluid through the
surface S. Thus conservation of mass implies the following:

d

dt

∫
V

ρ dV = −
∫

S
ρu · dS, (1.2)



1.1 Conservation of mass and momentum 3

where dS is the (vector) element of area on the surface S. The volume is fixed, so
we can take the derivative inside the term on the left-hand side (l.h.s.) and apply
the divergence theorem to the term on the right-hand side (r.h.s.) to obtain∫

V

{
∂ρ

∂t
+ div(ρu)

}
dV = 0. (1.3)

Since the volume V is arbitrary, we conclude that the integrand must itself vanish,
that is

∂ρ

∂t
+ div(ρu) = 0, (1.4)

and, equivalently, in suffix notation

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0. (1.5)

1.1.2 Momentum conservation

The momentum equation is obtained in exactly the same way by considering the
rate of change of the total momentum in the volume V , given by

d

dt

∫
V

ρ u dV . (1.6)

The additional complication here is that as well as considering the flux of
momentum across the surface S, we must take account of both the body force
per unit volume fi acting on the fluid and the surface stress given by an appropriate
stress tensor Tij. The momentum equation is then given by

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj) = fi + ∂

∂xj
[Tij]. (1.7)

In this book we consider two main contributors to the body force. First we write
the gravitational force as follows:

fi = −ρ
∂�

∂xi
, (1.8)

where the gravitational potential � is related to the density through Poisson’s
equation:

∇2� = 4πGρ, (1.9)

where G is the gravitational constant. Second we take the magnetic force in the
following form:

fi = (j ∧ B)i, (1.10)

where j is the current and B is the magnetic field.
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We shall also briefly consider the electric force,

fi = ρQ Ei, (1.11)

where ρQ is the electric charge density and E is the electric field.
We define the stress tensor as follows. Consider an infinitesimal vector surface

element dS within the fluid, where by convention the magnitude of the vector is the
area of the surface element and the direction of the vector is normal to the surface
element. Then the surface element is subject to a surface force F given by

Fi = Tij dSj. (1.12)

We note that since both dS and F are vectors, then by the quotient rule Tij is a
second-order tensor.

In this book the main contributor to the stress tensor that we consider is the
pressure p in the form

Tij = −pδij, (1.13)

where we make use of the Kronecker delta. In Section 1.5 we shall also write the
magnetic force as a stress tensor as follows:

mij = BiBj − 1

2
δijBkBk . (1.14)

Although we do not consider viscous effects in this book, we note here that
the viscous stress terms come from relating the viscous contribution to the stress
tensor to the second-order tensor ∂ui/∂xj. This contains information about the
relative flow of neighbouring fluid elements and is called the (rate of) strain tensor.
Physically this expresses the fact that microscopic (especially thermal) motions
within the ensemble of gas particles can transport momentum over distances of
order the mean free path.

Finally, using the mass conservation equation, eq. (1.4), to replace the term ∂ρ/∂t,
we obtain the momentum equation (or the equation of motion of the fluid) in the
following form:

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p

∂xi
− ∂�

∂xi
+ ∂mij

∂xj
. (1.15)

1.2 The Lagrangian derivative

We can consider the evolution of a fluid quantity like the density ρ(r, t) in two
ways. The partial derivative ∂ρ/∂t used above measures the way ρ changes with
time t at a fixed position r. But it is often more useful to consider the rate of change
of the density of a particular fluid element as it moves with the fluid. This rate is
called the Lagrangian derivative and is denoted by Dρ/Dt. We need to establish
the relationship between these two concepts.
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Suppose that a particular fluid element is at position r0 at time t = 0, and at a
later time t is at a new position r(r0, t). Then the velocity of the fluid element is
given by

u = ∂

∂t
r(r0, t), (1.16)

where the partial derivative is taken at fixed r0. The Lagrangian derivative of (for
example) the density of that particular fluid element is then simply given by

Dρ

Dt
= ∂

∂t
ρ(r(r0, t), t), (1.17)

with the partial derivative taken at fixed r0. Since t appears in two places on the r.h.s.
we may expect two terms in the derivative. Using the chain rule and the definition
of u above we obtain

Dρ

Dt
= ∂ρ

∂t
+ u · ∇ρ. (1.18)

Thus, more generally the operator denoting the rate of change of a quantity
following the fluid motion (the Lagrangian derivative) is given by

D

Dt
= ∂

∂t
+ u · ∇. (1.19)

1.3 Conservation of energy

We consider the heat content of a unit mass of fluid. In terms of thermodynamic
quantities, a small change in the internal heat content of this unit mass is given by

T dS = de + p dV , (1.20)

where T is the temperature, S is the entropy per unit mass, e is the internal energy
per unit mass and V is the volume per unit mass. In terms of the density it is evident
that V = 1/ρ, and thus

TdS = de − p
dρ

ρ2
. (1.21)

Hence in a fluid flow, the rate of change of the heat content of a particular fluid
element of unit mass is given by

T
DS

Dt
= De

Dt
− p

ρ2

Dρ

Dt
. (1.22)

The heat content of a fluid element can change through effects of two types.
First, there may be heat flow into or out of the element. We shall refer to this

generically as ‘conduction’. However, in the astrophysical context heat can be
conducted both by gas particles (typically electrons, since they move faster than
the ions) as in standard thermal conduction and also by photons (known as radiative
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transfer). In both cases, the heat flux h in units of energy per unit area per unit
time can often be written in the following form:

h = −λ∇T, (1.23)

which implies physically that the heat flux occurs down the temperature gradient
at a rate proportional to some ‘thermal conductivity’ λ. We expect λ to be a
function of thermodynamic variables such as T and ρ. This form of the heat flux
is appropriate provided that the particles carrying the heat have mean free paths
much smaller than the typical lengthscale L over which macroscopic fluid quantities
change. For electrons or molecules this is equivalent to the requirements of the fluid
approximation, whereas for photons it requires in addition that the fluid should
be opaque (‘optically thick’) so that there are very large numbers of interactions
between photons and the fluid over lengthscales L.

Second, there may be internal generation of heat. This can result from dissipation
of kinetic energy by viscosity or dissipation of magnetic energy through resistivity
(or electrical conductivity). We do not consider these processes in this book. In the
astrophysical context internal energy can be generated by nuclear processes (such
as nuclear energy generation in stars) and by a change in ionization of the fluid. It
can also be caused by heat exchange with particles which have a low collision cross
section, for example heating by cosmic rays in the interstellar medium and radiative
heating and/or cooling in an optically thin gas. We shall denote the generation of
internal energy by ε in units of energy per unit volume per unit time.

To convert from the rate of change of a unit mass of fluid (given by eq. (1.22))
to the rate of change per unit volume, we multiply by the mass per unit volume, i.e.
the density. Thus the heat equation becomes

ρT
DS

Dt
= −div h + ε. (1.24)

1.4 The equation of state and useful approximations

To complete the set of equations obtained so far we need a relationship of the form
p = p(ρ, T ), which is the equation of state for the fluid. In this book we shall
assume the simplest form of the relationship, namely the equation of state of a
perfect gas,

p = R
µ

ρT , (1.25)

where R is the gas constant and µ is the mean particle mass, assumed to be constant.
We also note that

R
µ

= cp − cV , (1.26)
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where cp = T (∂S/∂T )p is the specific heat at constant pressure and cV =
T (∂S/∂T )V is the specific heat at constant volume. Alternatively this may be
written as follows:

p = (γ − 1)ρe, (1.27)

where γ = cp/cV is the ratio of specific heats, and we note for a perfect gas that

e = cV T . (1.28)

To understand the physics of a particular fluid dynamical situation it is often not
necessary to include the full thermodynamic complexity of the fluid. In these cases
we can simplify and/or circumvent the heat equation.

1.4.1 Incompressible approximation

The major difference between astrophysical fluids and those encountered in
many terrestrial situations (including those encountered in many courses on fluid
dynamics) is that astrophysical ones are highly compressible. However, in situations
where fluid motions are slow compared with the sound speed, density gradients
are quickly smoothed out and it is a useful approximation to treat the fluid as if it
were incompressible. In physical terms this means that any particular element of
the fluid does not change its density, which implies that

Dρ

Dt
= 0. (1.29)

It is important to realise that this does not imply that the fluid itself has constant
density, so we may not write ρ = constant, unless the original fluid state has
uniform density.

1.4.2 Adiabatic flow

If the flow occurs fast enough that no fluid element has time to exchange heat with
its surroundings, and if energy generation within the fluid is negligible, the heat
equation simplifies to

DS

Dt
= 0. (1.30)

In other words, each fluid element evolves at constant entropy – it remains on the
same adiabat.

At constant entropy we note that

Dp

Dt
=
(

∂p

∂ρ

)
S

Dρ

Dt
, (1.31)
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and that (
∂p

∂ρ

)
S

= cp

cV

(
∂p

∂ρ

)
T

. (1.32)

Since for a perfect gas (
∂p

∂ρ

)
T

= p

ρ
, (1.33)

on using γ = cp/cV we obtain

D

Dt
ln p = γ

D

Dt
ln ρ. (1.34)

Thus for adiabatic flow we may assume that

D

Dt
( p/ργ ) = 0. (1.35)

We note again that this does not imply that the entropy of the fluid is constant
everywhere. But in this case if the fluid is initially isentropic (has uniform entropy)
then it remains so.

1.4.3 Barotropic flow

We can avoid using the heat equation, and therefore simplify the analysis, by
assuming that pressure is solely a function of density, i.e. p = p(ρ). This is
a useful approximation when the detailed thermal properties of the fluid are not
directly relevant to the dynamics under consideration. Barotropic flow is more
general than isentropic flow, and includes isothermal flow (for which p ∝ ρ) as
well as the polytropic approximation to the equation of state (relevant to fully
degenerate matter),

p = Aρ1+1/n, (1.36)

where A and n are constants and n is called the polytropic index.

1.5 The MHD approximation

Astrophysical fluids are usually highly ionized (and so highly conducting) and
permeated by magnetic fields. Understanding the interaction between the fluid and
the magnetic fields it contains is therefore often important. The usual treatment of
this interaction uses the magnetohydrodynamics (MHD) approximation. We stress
that this is an approximation and that, in common with the fluid approximation, it
is often tempting to use it in contexts where its validity is stretched.

We start by considering a fluid flow with a typical flow lengthscale L and typical
flow timescale T . The usual MHD approximation depends on the assumption that
the resulting typical flow velocity U is much less than the speed of light, i.e.
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U ∼ L/T � c. The approximation stems from the use of Ohm’s law applied
locally in the frame of the fluid. Thus we need to be able to transform between
the fields (E, B) in the inertial frame and the fields (E′, B′) in the frame of the
fluid, which is moving with velocity u. These are related by the usual Lorentz
transformation:

E′ = (1 − γ )

(
u · E
u2

)
u + γ (E + u ∧ B), (1.37)

and

B′ = (1 − γ )

(
u · B
u2

)
u + γ

(
B − 1

c2
u ∧ E

)
, (1.38)

where

γ =
(

1 − u2

c2

)−1/2

. (1.39)

Taking the low-velocity approximation u2 � c2 and neglecting terms of order
(u2/c2), these relations become

E′ = E + u ∧ B (1.40)

and
B′ = B. (1.41)

The time evolution of the magnetic field is determined from the Maxwell
equation,

∂B
∂t

= −curl E. (1.42)

By comparing dimensional quantities on each side of the equation we see that to
order of magnitude B/T ∼ E/L, or equivalently E ∼ (L/T )B ∼ UB.

The second relevant Maxwell equation is as follows:

µ−1
0 curl B = j + ε0

∂E
∂t

. (1.43)

The second term on the r.h.s. is the displacement current, which permits the
propagation of electromagnetic waves in vacuum with speed c, where c2 = 1/ε0µ0.
However, in the MHD approximation we neglect the displacement current. This
is because the ratio between the displacement current and the term on the l.h.s. is
given to order of magnitude as (ε0E/T )/(B/µ0L) ∼ (E/B)(U/c2) ∼ U 2/c2 � 1.
Thus in the MHD approximation, electromagnetic waves are excluded and the
current is given by

j = µ−1
0 curl B. (1.44)

Since B′ = B, it follows that the current in the frame of the fluid is given by

j′ = j. (1.45)
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In the frame of the fluid Ohm’s law becomes j′ = σE′, where σ is the conductivity.
In this book we make the additional assumption that the conductivity is infinite,
which then implies that E′ = 0, i.e. that

E = −u ∧ B. (1.46)

Substituting this into eq. (1.42) we obtain the induction equation,

∂B
∂t

= curl(u ∧ B), (1.47)

which describes the time evolution of the magnetic field in the ideal MHD
approximation.

We also need to consider the electromagnetic force acting on the fluid. The
Lorentz force is given by

f = ρQ E + j ∧ B. (1.48)

The charge density ρQ is related to the electric field E through the following
Maxwell equation:

div E = ρQ/ε0. (1.49)

Thus the ratio between the electric and magnetic contributions to the Lorentz force
on the fluid is (using eq. (1.44)) to order of magnitude (ε0E2/L)/(B2/Lµ0) ∼
U 2/c2. Further, the current ρQu supplied by the moving charge density is also
∼U 2/c2 times the current j. Thus in the MHD approximation we can neglect both
the electric charge and the electric field, and the electromagnetic force on the fluid
is (using eq. (1.44)) simply given by

f = µ−1
0 (curl B ∧ B). (1.50)

We can write this as

fi = ∂mik

∂xk
, (1.51)

where

mik = µ−1
0

(
BiBk − 1

2
B2δik

)
, (1.52)

and we have used the final Maxwell equation,

div B = 0. (1.53)

1.5.1 Notation and units

We can now see that in the MHD approximation the electric field does not appear in
any of the equations. The magnetic field appears only in the induction equation and
in the Lorentz force. The induction equation is already dimensionally consistent
and so does not change if different units are used for B. In the Lorentz force the
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magnetic field only enters in the dimensional combination [B2/µ0] and the field
is measured in tesla. In cgs units the magnetic field is measured in gauss and this
combination should be replaced by [B2/4π ]. Throughout the rest of this book we
shall simplify the analysis and omit the factor of µ−1

0 (or of 1/4π ).

1.6 Some basic implications

Here we note some basic results which will prove useful in later chapters and which
help to provide a simple mental picture of some of the results we shall derive.

1.6.1 Bernoulli equation for a non-magnetic barotropic fluid

For a barotropic fluid we have p = p(ρ) and we can define the quantity h = ∫
dp/ρ.

Then, in a gravitational potential �, the momentum equation becomes

∂u
∂t

+ (u · ∇)u = −∇h − ∇�. (1.54)

Using the vector identity

(u · ∇)u = ∇
(

1

2
u2
)

− curl u, (1.55)

we can rewrite this as

∂u
∂t

− u ∧ curl u = −∇
(

1

2
u2 + h + �

)
. (1.56)

If the flow is steady, then taking the scalar product with u implies

u · ∇
(

1

2
u2 + h + �

)
= 0, (1.57)

and thus that the quantity (1
2u2 + h + �) is constant on streamlines.

1.6.2 Advection of vortex lines

Consider a small line element dl(r, t) in the fluid connecting two neighbouring fluid
elements at positions r and r + dl. Then as the fluid elements move, so does the
line element dl. It is straightforward to show (see Problem 1.9.1) that the evolution
of the line element is governed by the following equation:

D

Dt
dl = (dl · ∇)u. (1.58)

We define the vorticity at a point in the fluid as

ω = curl u. (1.59)
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We can think of the vorticity as describing the local rotation rate of the fluid. We
can obtain some insight into how the vorticity behaves by comparing the motion
of vortex lines with the way that the line element connecting two fluid elements
moves.

Taking the curl of eq. (1.56) yields

∂ω

∂t
= curl(u ∧ ω). (1.60)

We now use the vector identity for any two vectors a and b:

curl(a ∧ b) = (b · ∇)a − (a · ∇)b + a div b − b div a, (1.61)

to obtain
∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u + ω div u = 0. (1.62)

Here we have used the identity for any vector a that div(curl a) = 0, so that
div ω = 0. The mass conservation equation (eq. (1.4)) in the form

Dρ

Dt
+ ρdiv u = 0 (1.63)

lets us eliminate div u and hence obtain the time-evolution equation for the vorticity
in the following form:

D

Dt

(
ω

ρ

)
=
[(

ω

ρ

)
· ∇
]

u. (1.64)

By comparing this equation with eq. (1.58) we see that the quantity ω/ρ, variously
known as the vortensity or the potential vorticity, is advected with the fluid.

1.6.3 Advection of magnetic field lines

Equation (1.47) describing the time evolution of magnetic field B is exactly similar
to eq. (1.60) describing the evolution of the vorticity ω. Thus the same analysis can
be applied to B, and we obtain

D

Dt

(
B
ρ

)
=
[(

B
ρ

)
· ∇
]

u. (1.65)

Thus we can also conclude that the quantity B/ρ is advected with the fluid. In other
words, in the MHD approximation, and in the absence of dissipation, the magnetic
field lines are carried along with the fluid flow.

1.7 Conservation of energy

Finally in this chapter we consider the equations describing the conservation of
energy. The equations are derived directly from those given above, and so in
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physical terms they contain no new information. However, it is instructive to see
the combined energy equation in conservative form. To do this we take the equation
describing the evolution of the thermal energy density ρe of the fluid, and add to it
terms describing the evolution of the kinetic energy density 1

2ρu2 and the magnetic
energy density 1

2B2.

1.7.1 Kinetic energy

The rate of change of kinetic energy density is given by

∂

∂t

(
1

2
ρuiui

)
= 1

2
uiui

∂ρ

∂t
+ ρui

∂ui

∂t
. (1.66)

On the r.h.s. we use the mass conservation equation, eq. (1.4), to replace ∂ρ/∂t
and use the momentum equation, eq. (1.15), to replace ∂ui/∂t. Combining various
terms we then obtain

∂

∂t

(
1

2
ρu2

)
= − ∂

∂xi

[(
p + 1

2
ρu2

)
ui

]
− p

ρ

Dρ

Dt
+ ui

∂mij

∂xj
− ρui

∂�

∂xi
. (1.67)

1.7.2 Magnetic energy

The rate of change of magnetic energy density is given by

∂

∂t

(
1

2
B2
)

= B · ∂B
∂t

. (1.68)

Using the Maxwell equation

∂B
∂t

= −curl E (1.69)

and the vector identity

div(E ∧ B) = B · curl E − E · curl B, (1.70)

this becomes
∂

∂t

(
1

2
B2
)

= −div(E ∧ B) − E · curl B. (1.71)

We use the ideal MHD approximation E + u ∧ B = 0, the Maxwell equation
relating j and curl B, and the definition of the stess tensor mij to obtain the equation
in the following form:

∂

∂t

(
1

2
B2
)

= −div(E ∧ B) − ui
∂mij

∂xj
. (1.72)
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1.7.3 The combined energy equation

We can now combine the equations governing the time evolution of kinetic and
magnetic energy densities with the equation governing the time evolution of
thermal energy as follows:

∂

∂t
(ρe) = −div(ρeu − λ∇T ) + p

ρ

Dρ

Dt
+ ε (1.73)

to obtain a total energy equation in the form

∂g

∂t
= −div q + r, (1.74)

where

g = ρ

(
e + 1

2
u2
)

+ 1

2
B2, (1.75)

qi =
[
ρ

(
e + 1

2
u2
)

+ p

]
ui − λ

∂T

∂xi
+ (E ∧ B)i (1.76)

and
r = ε − ρu · ∇�. (1.77)

Here g represents the various energy densities – thermal, kinetic and magnetic.
(Recall that in the MHD approximation the electric energy density is negligible.)
The vector quantity q in eq. (1.74) represents energy fluxes. In square brackets
in the first term of eq. (1.76), in addition to the thermal and kinetic energies, there
is a term pu, which represents the p dV work being done in compressing the fluid.
There is also the conducted heat flux and the flux of electromagnetic energy (the
Poynting flux). Finally, the quantity r in eqs. (1.74) and (1.77) represents heat
loss/gain by the fluid. The first term ε represents local energy generation, for
example by nuclear burning, and the second term represents gravitational energy
released by flow in the gravitational potential �, here assumed to be fixed in time.

In the rest of this book we will use these equations to study a large variety of
astrophysical fluid phenomena. We shall try throughout to discuss the simplest
possible examples, embodying the essential physics in each case.

1.8 Further reading

Further discussion of the derivation and validity of the equations of fluid dynamics
are to be found in Batchelor (1967, Chap. 1) and Landau & Lifshitz (1959, Chap. I).
Aderivation of the equations of magnetohydrodynamics (MHD) is given in Roberts
(1967, Chap. 1), who also provides a clear description of the thermodynamic
relations made use of here. More details of these are to be found in Lifshitz &
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Pitaevskii (1980, Chap. 2). A description of the relationship between MHD and
plasma physics is given by Sturrock (1994, Chaps. 11, 12).

1.9 Problems

1.9.1 (a) At time t, neighbouring fluid particlesAand B are at position vectors r and r + dl,
respectively. At time t + δt, particle A is at r + δtu(r), where u(r) is the velocity
field of the fluid. Similarly, particle B is at r + dl + δtu(r + dl). Use this to show
that the time evolution of the line element dl which joins A and B is given by

D

Dt
dl = (dl · ∇)u. (1.78)

Show that in a barotropic fluid the specific vorticity, i.e. ω/ρ, obeys the same
equation.

This shows that vortex lines are carried bodily along in an inviscid, barotropic
fluid.

(b) The circulation C around a closed curve � is defined as follows:

C =
∮

�

u · dr. (1.79)

If the curve � moves with the fluid (assumed to be inviscid and barotropic), show
that C is a constant.

This is known as ‘Kelvin’s circulation theorem’.
(c) For a conducting barotropic fluid with zero magnetic diffusivity, show that

D

Dt

(
B
ρ

)
=
(

B
ρ

)
· ∇u. (1.80)

This shows that magnetic field lines are carried bodily along in a perfectly
conducting fluid.

1.9.2 A smooth circular cylinder of radius a and height h contains fluid of uniform density
ρ, rotating uniformly with angular velocity � about the axis of symmetry. Compute
the vorticity ω.

(a) Show that in cylindrical polar coordinates, (R, φ, z), the velocity field given by

u = (0, R�(t), z/h), (1.81)

applied for an appropriate time, describes a stretching of the cylinder to a height
of 2h while keeping the density and the rotation uniform.

For incompressible flow it is found that stretching vortex lines leads to an
increase in their strength. Use the vorticity equation to show that this is not the
case here.

(b) Show that the flow field given by

u = (−R/a, R�(t), 0), (1.82)
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applied for an appropriate time, describes decreasing the radius of the cylinder to
a/2 while keeping the density and the rotation uniform. Use the vorticity equation
to show that in this case the vorticity does change.

(c) Show that both these results can be deduced simply from consideration of
conservation of angular momentum. Use an appropriate combination of the
two flow fields to show that the increase in strength of vortex lines as they are
stretched in an incompressible fluid is also just a consequence of the conservation
of angular momentum.

1.9.3 A simple model for a filament in the solar atmosphere considers gas supported
by a magnetic structure. The configuration is steady and two-dimensional in the
(x, z)-plane, with constant gravity g = (0, 0, −g). The magnetic field is given by
B = (Bx(x), 0, Bz(x)), and is such that Bz → ±B0 as x → ±∞. Show that Bx(x) is
a constant.

Assuming that the gas is isothermal, with sound speed cs, and that the density
ρ(x) is a function of x alone, show that

Bz(x) = B0 tanh

{
gB0x

2c2
s Bx

}
(1.83)

and find ρ(x).
Sketch the magnetic field lines in the (x, z)-plane, and indicate where the density

is highest.
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Compressible media

In Chapter 1 we emphasized that one of the major differences between astrophysical
flows and the typical flows encountered in the terrestrial or laboratory context is that
astrophysical fluids are compressible. This means that pressure information takes a
finite time to propagate through the fluid. Because this time is often comparable to
flow timescales, this gives compressible flows a fundamentally different character.
In such flows the sound speed plays a role similar in some respects to that of the
speed of light in the theory of relativity. In particular, sound travel times express
physical causality. Pressure changes cannot propagate upstream in a supersonic
flow. Subtle differences from the causal structure of relativity arise because, unlike
the speed of light, the sound speed is variable and depends on the local properties
of the fluid.

It is important to remember that all flows are compressible at some level.
While the incompressible approximation is extremely useful in studying most
terrestrial flows, intuition based on it is often a misleading guide in the astrophysical
context. Moreover the elaborate mathematical apparatus assembled to study
incompressible flows has limited applicability to astrophysical flows. For example,
in incompressible fluids the pressure is formally disconnected from the other
fluid variables, and appears only in the equation of motion, and only through its
gradient (this is a mathematical expression of the assumption that it can adjust
instantaneously at each point). Thus, taking the curl of the equation of motion
eliminates the pressure from much of the analysis. This explains the prominent
role played by the vorticity in the study of incompressible flows. By contrast, the
vorticity and associated concepts such as velocity potentials and stream functions
are of relatively little use in studying astrophysical flows.

In this chapter we consider various properties that are basic to an understanding
of flows in compressible media.

17
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2.1 Wave propagation in uniform media

We start by considering the simplest mechanisms transmitting information in
compressible media. If the media are uniform, and not subject to external forces,
then the simplest waves are pressure waves (acoustic or sound waves) and magnetic
waves. We consider each in turn.

2.1.1 Small-amplitude sound waves

We consider a fluid at rest (velocity u0 = 0), with uniform density ρ0 and uniform
pressure p0. Each fluid element is now perturbed by moving it a small distance
ξ(r, t). The density then becomes ρ(r, t). We are interested in the small change in
density, known as the density perturbation. In general, we need to take care at this
point and distinguish between Eulerian and Lagrangian perturbations. We mention
this distinction briefly here, and return to it in more detail later on.

The Eulerian density perturbation is the change in density at a particular
coordinate point r. It is given by

ρ′(r, t) = ρ(r, t) − ρ0(r, t). (2.1)

The Lagrangian density perturbation is the change in density for the particular
fluid element which was at point r prior to the perturbation. It is given by

δρ(r, t) = ρ(r + ξ , t) − ρ0(r, t). (2.2)

By using a Taylor expansion for ρ(r + ξ , t), we note that to first order in ξ ,

δρ = ρ′ + ξ · ∇ρ0. (2.3)

Thus for the stationary uniform medium we are currently considering the two ways
of viewing the perturbation are the same since ∇ρ0 = 0, and thus for the time being
we may take δρ = ρ′.

For the moment, we consider Eulerian perturbations, and assume p = p0 + p′
with p′ � p0, ρ = ρ0 + ρ′ with ρ′ � ρ0 and u = 0 + u′ with u′ assumed small
in some appropriate sense. We then substitute these into the equation of mass
conservation:

∂ρ

∂t
+ u · ∇ρ + ρ div u = 0, (2.4)

and retain only small quantities to first-order. This yields

∂ρ′

∂t
+ ρ0 div u′ = 0. (2.5)

Similarly, we substitute into the momentum equation as follows:

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p (2.6)
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and retain only terms linear in small quantities to obtain

∂u′

∂t
= − 1

ρ0
∇p′. (2.7)

To solve these equations we need to know the relationship between p′ and ρ′.
Small perturbations in pressure and density usually give rise to corresponding
small perturbations in the temperature T . For acoustic waves it is often reasonable
to assume that the perturbations occur sufficiently fast such that there is no time for
temperature perturbations to be affected by thermal conduction of heat. If so, then
the perturbations are ‘adiabatic’ in the sense that individual fluid elements remain
on the same adiabat throughout the variations in pressure and density. This implies
that the Lagrangian entropy perturbation for each fluid element is zero. For fluid
on a particular adiabat we have seen that p ∝ ργ . Thus we conclude that

δp

p0
= γ

δρ

ρ0
. (2.8)

* However, since for a uniform fluid Lagrangian and Eulerian perturbations are
the same, we conclude that, in this case,

p′ =
(

γ p0

ρ0

)
ρ′. (2.9)

We can now obtain an equation for the relative density perturbation (ρ′/ρ0).
Recalling that ρ0 is constant, we take the time derivative of eq. (2.5), and use
eqs. (2.7) and (2.9) to obtain

∂2

∂t2

(
ρ′

ρ0

)
= c2

s ∇2
(

ρ′

ρ0

)
, (2.10)

where the quantity cs is a constant and is defined as

c2
s = γ

p0

ρ0
. (2.11)

Equation (2.10) is instantly recognizable as the linear wave equation for the
quantity ρ′/ρ0 with wave propagation speed equal to cs.

The sound speed cs is a fundamental quantity characterizing a compressible fluid.
It fixes the maximum rate at which information about pressure, density, velocity
and temperature changes can pass through the fluid and modify its behaviour. We
note that it is a local quantity defined at each point of the fluid and can vary with
position and time. In general we can write it as follows:

cs =
(

∂p

∂ρ

)1/2

, (2.12)
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where the derivative is evaluated using the energy equation and equation of state
relating p and ρ. For example, if we consider isothermal rather than adiabatic
perturbations (a good approximation in some cases), then p0 ∝ ρ0 and we obtain

c2
s = p0

ρ0
(2.13)

rather than eq. (2.11). The perfect gas law, eq. (1.25), shows that in both cases
cs ∝ T 1/2. Thus, in general, hotter gases have higher sound speeds.

2.1.2 Fourier transforms and the dispersion relation

An alternative, and often simpler, way of coming to the same conclusion is to
use Fourier transforms. We note that the three eqs. (2.5), (2.7) and (2.9) for the
linearized quantities ρ′, u′ and p′ are linear differential equations with coefficients
which are constant in both space and time. Thus, if we Fourier transform in both
space and time, the equations for the transformed quantities will be algebraic.
Thus, for example, we may consider

p̃′(k, ω) =
∫ ∞

−∞
p′(r, t) exp[−i(ωt + k · r)]dt d3k, (2.14)

and similarly for ρ̃′ and ũ′. Equivalently, and more simply, we may note that since
the Fourier transform of ∂p′/∂t is iωp̃′, and the Fourier transform of ∇p′ is ikp̃′,
we can achieve the same result by substituting

p′(r, t) −→ p̃′(k, ω) exp[i(ωt + k · r)], (2.15)

together with the corresponding quantities for u′ and p′. For clarity we now drop the
tildes and also take as read the factor exp[i(ωt + k · r)] throughout. The equations
become

iωρ′ + ρ0ik · u′ = 0, (2.16)

iωu′ + ik
ρ0

p′ = 0 (2.17)

and

p′ = c2
s ρ

′. (2.18)

Taking the scalar product of eq. (2.17) with k, and using eqs. (2.16) and (2.18) to
eliminate p′ and ρ′, we obtain the following equation:

(k · u′)[ω2 − k2c2
s ] = 0, (2.19)

where k = |k|. Then, provided that k · u′ �= 0, that is provided that ∇ · u′ �= 0,
i.e. the perturbations are compressible, we obtain the following relationship:

ω2 = k2c2
s . (2.20)
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This relationship between the (angular ) wave frequency ω and the wavenumber
k is known as a dispersion relation. Note that the period of the wave is P = 2π/ω,
the wavelength of the wave is λ = 2π/k and the wavefronts are perpendicular to
the vector k. The phase velocity of the waves is (ω/k)k̂, and this is the velocity
of the wavefronts. The group velocity vg = ∂ω/∂k. This is the velocity at which
the waves propagate information, i.e. the ‘news’ of pressure, density, velocity
changes, etc.

For these simple acoustic waves we see that the phase velocity and the group
velocity are the same and that both have magnitude equal to the sound speed cs.
Finally, from eq. (2.17) we see that k ∧ u = 0, i.e. curl u = 0, so the acoustic waves
represent irrotational perturbations. We conclude that these waves are longitudinal
waves, with no transverse component.

The dispersion relation gives us essentially all the information about the
properties of the waves. We have found this relation by replacing differential
equations with algebraic ones. This is a much simpler procedure for obtaining
a description of the nature of wave-like motions.

Large parts of this book will make extensive use of Fourier analysis and
dispersion relations in this way. This is particularly true where we deal with small
perturbations, as occurs in discussions of stellar oscillations and the stability of
various flows.

2.1.3 Waves in a magnetic medium

We have seen that information travels through a compressible medium at the local
sound speed. If the medium also has a magnetic field there are other ways of
communicating physical information through it.

We consider the same unperturbed fluid as before, with uniform density ρ0,
uniform pressure p0 and zero velocity u0, and add a uniform magnetic field B0.
We consider small perturbations as before (i.e. ρ = ρ0 + ρ′, p = p0 + p′ and small
velocity u) and now have to add the perturbation to the magnetic field in the form
B = B0 + b(r, t), where |b| � |B0|. We then substitute these into the relevant
equations, using the equilibrium conditions that ∇ρ0 = 0, ∇p0 = 0, u0 = 0 and
curl B0 = 0. We also assume that the perturbations are adiabatic so that, as before,
we may write p′ = c2

s ρ
′, where c2

s = γ p0/ρ0 is uniform and constant. Then the
mass conservation equation,

∂ρ

∂t
+ div(ρu) = 0, (2.21)

becomes

∂ρ′

∂t
+ ρ0 div u = 0, (2.22)
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and the momentum equation,

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p − B ∧ (∇ ∧ B), (2.23)

becomes

ρ0
∂u
∂t

= −c2
s ∇ρ′ + B0 ∧ (∇ ∧ b), (2.24)

while the induction equation,

∂B
∂t

= ∇ ∧ (u ∧ B), (2.25)

becomes

∂b
∂t

= ∇ ∧ (u ∧ B0). (2.26)

We note that eq. (2.26) implies that

∂

∂t
(div b) = 0. (2.27)

We differentiate eq. (2.24) with respect to time, and use eqs. (2.22) and (2.26)
to eliminate ∂ρ′/∂t and ∂b/∂t to obtain a linear equation for the velocity
perturbation u:

ρ0
∂2u
∂t2

= c2
s ∇{ρ0 div u} − B0 ∧ {∇ ∧ [∇ ∧ (u ∧ B0)]}. (2.28)

We can simplify this a little by defining a vector quantity VA with dimensions of
velocity as follows:

VA = B0√
ρ0

, (2.29)

which we shall call the vectorial Alfvén velocity . Then the equation becomes

∂2u
∂t2

− c2
s ∇(div u) + VA ∧ {∇ ∧ [∇ ∧ (u ∧ VA)]} = 0. (2.30)

Since each term contains either two time derivatives or two space derivatives, this is
clearly a wave equation of some sort. If the magnetic field is zero (i.e. B0 = VA = 0)
then the equation reduces to the equation for simple acoustic waves that we had
before. But the term involving the magnetic field, with its four cross products,
considerably complicates things.

In this case it is simpler to investigate the properties of these waves by using
Fourier transforms, or equivalently by substituting u(r, t) = u(k, ω) exp[i(ωt +
k · r)]. We noted before that this is equivalent to making the transformations
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∂/∂t → iω and ∇ → ik. With these substitutions, eq. (2.30) becomes

−ω2u + c2
s k(k · u) − VA ∧ {k ∧ [k ∧ (u ∧ VA)]} = 0. (2.31)

To simplify this we first expand the vector triple product in the square brackets,
namely

[k ∧ (u ∧ VA)] = [(k · VA)u − (k · u)VA], (2.32)

and then similarly expand the two resulting vector triple products VA ∧ {k ∧ u} and
VA ∧ {k ∧ VA}. This gives the equation in the following form:

[ω2−(k · VA)2]u−(c2
s + V 2

A )(k · u)k + (k · VA)(u · VA)k + (k · VA)(k · u)VA = 0.
(2.33)

This equation allows us to find the dispersion relation for these waves. As it is
linear in u, we can in principle write it in the following form:

Aijuj = 0, (2.34)

where the coefficients of the matrix A are functions of ω and k. The dispersion
relation is then given by

det A = 0, (2.35)

which provides a functional relationship between ω and k. However, while this
dispersion relation contains all the information we require, it clearly does not do so
in a particularly transparent form. The complicated nature of the equation means
that we should not necessarily expect the wavevector k and the group velocity
vg = ∂ω/∂k to be in the same direction. We now consider two special cases,
for which in fact the wavevector and the group velocities are parallel, and which
serve to illustrate the general properties of the waves. We leave a more complicated
example to the Problems at the end of the chapter.

2.1.3.1 Wavefronts parallel to the magnetic field

Here we consider the case in which the wavevector k is perpendicular to the
unperturbed magnetic field, i.e. k · B0 = 0, which implies k · VA = 0. In this case,
eq. (2.33) simplifies to

ω2u − (c2
s + V 2

A )(k · u)k = 0. (2.36)

Note that this equation implies that u is parallel to k, i.e. that the waves are
longitudinal. We take the scalar (dot) product of this equation with k, and remove
the factor u · k �= 0, to obtain the dispersion relation:

ω2 = (c2
s + V 2

A )k2. (2.37)
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(a)

(b)

(c)

Fig. 2.1. Representative wave modes in fluids with magnetic fields. In each
case the lines represent magnetic field lines, the shaded areas represent density
enhancements, and the two-headed arrow represents the oscillatory motion of a
fluid article. The waves are propagating horizontally across the page. (a) Fast
magnetosonic waves propagating perpendicular to the field. Regions of high
density and high field coincide. The field provides an extra contribution to the
pressure. (b) Slow magnetosonic waves propagating along the field. Here the
field is unperturbed and the waves are essentially just sound waves. (c) Alfvén
waves propagating along the field. Here the density perturbations are zero and the
perturbed field lines provide the restoring force.

These waves are exactly like the simple acoustic waves, except that the wave
velocity is increased by the presence of the magnetic field (Fig. 2.1(a)). They are

called fast magnetosonic waves and have a wave velocity of vfast =
√

c2
s + B2

0/ρ.
Since k · u �= 0, the wave is compressive, and since k ‖ u the wave velocity is
perpendicular to the magnetic field. In the ideal MHD approximation the magnetic
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field is carried along with the fluid flow, so the effect of the wave motions is to try to
change the distance between neighbouring magnetic field lines. The magnetic field
resists this change, and the result is an additional restoring force, which acts exactly
as an added magnetic pressure, and so provides an enhanced wave speed. We note
that this wave exists even in the limit of small gas pressure (or temperature).

2.1.3.2 Wavefronts perpendicular to the magnetic field

If the wavefronts are orthogonal to the magnetic field we have k ‖ B0, and we may
set k = (k/VA)VA. Substituting this into eq. (2.33), we obtain

(k2V 2
A − ω2)u +

(
c2

s

V 2
A

− 1

)
k2(u · VA)VA = 0. (2.38)

We now have two possibilities. In the first case neither of the two coefficients
vanishes, in which case we must have u ‖ VA. Then we find after a little algebra that

ω2 = k2c2
s . (2.39)

These are the standard longitudinal acoustic waves (Fig. 2.1(b)). The wave motion
is along the field lines, and is therefore unaffected by the presence of the field. In
the presence of a magnetic field these correspond to slow magnetosonic waves.

In the second case both coefficients vanish. Then first we must have u · VA = 0,
which since k ‖ V0 implies that k · u = 0. This means that div u = 0, and therefore
that the wave motion is incompressible. Second we have that

ω2 = k2V 2
A . (2.40)

In this case the fluid motions displace the magnetic field sideways, producing a
wave-like ripple in the field, in the same way as a violinist produces a sideways
ripple in the string of the instrument being played (Fig. 2.1(c)). Just as a violin string
tries to straighten itself, and produces a restoring force opposing the sideways shift,
so the magnetic field tries to straighten itself, and so produces an analogous restoring
force. These waves are transverse waves and are known as Alfvén waves. In this
simple case the wave speed is simply the Alfvén speed VA = B0/

√
ρ0. In an

incompressible fluid these are the only waves present.
Thus, in general, in a magnetic medium there are three types of propagating

disturbance: fast magnetosonic waves, slow magnetosonic waves andAlfén waves.
This comes about because, in three dimensions, any initial perturbation of the
medium can be described in terms of a set of three independent base vectors. In
contrast to the case of a non-magnetic medium, in the presence of a field any initial
disturbance perturbs either the field or the gas density (or both), and this leads to a
propagating wave.
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We have seen that magnetic wave phenomena introduce the fundamental
propagation velocity – the Alfvén speed, VA. The Alfvén speed plays a role
in spreading magnetic perturbations similar to that of the sound speed for pressure
waves. One might wonder what happens in the limit of very small density ρ0, where
VA formally becomes infinite. In fact, once ρ0 is small enough that VA formally
exceeds the speed of light c, it is clear that the treatment has become physically
inconsistent. Then one has to revisit the approximations made in deriving the MHD
equations.

2.2 Non-linear flow in one dimension

We have so far considered the properties of small-amplitude perturbations in
compressible media. We have seen that such perturbations give rise to waves which
propagate through the medium at some finite speed. This implies that information
takes time to travel through the fluid. As we shall see, this finite timescale for
the propagation of information can give rise to problems, for example if the fluid
is moving at a velocity greater than the information propagation speed. To clarify
such questions we consider the simplest case of one-dimensional compressible
flow under pressure forces alone, with no restriction to small perturbations about
equilibrium.

In one-dimensional flow the fluid quantities are functions of x and t only, and the
flow velocity is in the x-direction with magnitude u(x, t). We also assume that the
flow is isentropic (the details of the flow are qualitatively similar for other choices
of the relation between p and ρ). The isentropic assumption implies that throughout
the flow p = Kργ for some constant K and DS/Dt = 0. We take the magnetic field
to be zero.

With these assumptions, the mass conservation equation becomes

Dρ

Dt
+ ρ

∂u

∂x
= 0, (2.41)

and the thermal equation (here conservation of entropy) becomes

Dρ

Dt
= 1

c2
s

Dp

Dt
, (2.42)

where the sound speed is given by c2
s = γ p/ρ. Eliminating Dρ/Dt from these two

equations, we obtain

1

ρcs

∂p

∂t
+ u

ρcs

∂p

∂x
+ cs

∂u

∂x
= 0. (2.43)

The momentum equation is given by

∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂p

∂x
= 0. (2.44)
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We now put these two equations together in an illuminating manner. First we
add the two equations and gather terms to yield[

∂u

∂t
+ (u + cs)

∂u

∂x

]
+ 1

ρcs

[
∂p

∂t
+ (u + cs)

∂p

∂x

]
= 0. (2.45)

Then we subtract the two equations and gather terms to yield[
∂u

∂t
+ (u − cs)

∂u

∂x

]
− 1

ρcs

[
∂p

∂t
+ (u − cs)

∂p

∂x

]
= 0. (2.46)

We note that these two equations are the same except for the change cs ↔ −cs.
We can simplify these two equations still further by defining the quantities
J+ and J−, known as Riemann invariants:

J+ = u +
∫

dp

ρcs
(2.47)

and

J− = u −
∫

dp

ρcs
. (2.48)

Then the two equations become[
∂J+
∂t

+ (u + cs)
∂J+
∂x

]
= 0 (2.49)

and [
∂J−
∂t

+ (u − cs)
∂J−
∂x

]
= 0. (2.50)

To interpret these equations we first need to consider the meanings of the
quantities [· · · ] in square brackets. To do this we consider the (x, t)-plane. A
complete description of the flow is given by the functions u(x, t) and ρ(x, t) (or
equivalently, since it is isentropic, p(x, t)) in this plane. Consider any function
f (x, t) (for example the density ρ(x, t)) in this plane, and consider a curve given
by a monotonic function x = φ(t) in this plane. This curve describes the motion of
something which moves at speed dφ/dt along the x-axis (see Fig. 2.2). Then the
time derivative of f (x, t) as seen by this something is given by(

df

dt

)
φ

= ∂f

∂t
+ dφ

dt

∂f

∂x
. (2.51)

We conclude therefore that on the curve C+ in the (x, t)-plane defined by x+(t),
where

dx+
dt

= u + cs, (2.52)
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t

x

x = �(t)

Fig. 2.2. Path of a point moving with speed dφ/dt along the x-axis.

eq. (2.49) implies that

dJ+
dt

= 0 (2.53)

and thus that J+ = constant. Similarly on the curve C− in the (x, t)-plane defined
by x−(t), where

dx−
dt

= u − cs, (2.54)

eq. (2.50) implies that

dJ−
dt

= 0 (2.55)

and thus that J− = constant. The curves C+ and C− are known as characteristic
curves, or simply characteristics.

We note further that using the fact that the flow is assumed to be isentropic, and
thus that p, ρ and cs are all mutually determined, we may write

J+ = u + 2cs

γ − 1
(2.56)

and

J− = u − 2cs

γ − 1
. (2.57)

Thus if we know u and cs at any point, we can determine J+ and J−. Similarly, if
we know J+ and J− at any point we can determine

u = 1

2
(J+ + J−) (2.58)
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and

cs = γ − 1

4
(J+ − J−). (2.59)

The analysis above reveals how information propagates through a compressible
fluid in a remarkably simple way. Sound signals carry the information along the
characteristics at the local sound speed cs. In subsonic flow, information reaches
any given point x = x0 from smaller x < x0 along the C+ characteristic and from
larger x > x0 along the C− characteristic.

We now discuss two particular sets of implications of this analysis.

2.2.1 Regions of influence

We consider a particular initial-value problem, where we suppose that at time t = 0
we have a complete knowledge of the fluid properties, i.e. we know ρ(x, t = 0)

(or, equivalently p(x, t = 0) or cs(x, t = 0)) and u(x, t = 0). We then consider the
solution ρ(x, t) and u(x, t) at later times t > 0. To be specific, consider the function
u(x, t) in the (x, t)-plane (we could also equally well consider the function cs(x, t)).
The initial condition at t = 0 is represented by the value of u along the x-axis t = 0.
And, of course, the velocity structure at any particular later time t = t0 is given by
the value of u along the line t = t0 parallel to the x-axis in the (x, t)-plane.

To form a physical idea of what the solution involves, we plot the characteristic
curves C+ and C−, which can be thought of as starting on the x-axis t = 0 and
propagating from there into the half-plane t > 0. We sketch these in Fig. 2.3.
In the sketch we have assumed that the flow is subsonic, so that the C+ curves
propagate towards larger values of x, i.e. dx+/dt = u + cs > 0, and the C− curves
propagate towards smaller values of x, i.e. dx−/dt = u − cs < 0. Note that at

t

C–

C+

A1 A2

A

x

(x0, t0)

x1 x2

Fig. 2.3. Characteristic curves describing the one-dimensional motion of a
compressible gas. The state of the gas at point A is determined by that at points
x1 ≤ x ≤ x2 at time t = 0.
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this stage this can only be a sketch, because in order to draw the curves accurately,
we need to know the values of u(x, t) and cs(x, t) at all points in the (x, t)-plane, or
in other words we need to have already solved the problem! Now consider the value
of u(x0, t0) at the point A, shown in Fig. 2.3 at position x = x0, t = t0. As shown in
Fig. 2.3, the characteristic curve C+ which passes through the point (x0, t0) starts
at the point A1 with position x1 < x0 at time t = 0. Thus the Riemann invariant J+
at A is determined by the initial t = 0 values of u and cs at point A1. That is,

J+(x0, t0) = J+(x1, 0). (2.60)

Similarly, the characteristic curve C− which passes through the point (x0, t0) starts
at the point A2 with position x2 > x0 at time t = 0. Thus the Riemann invariant
J− at A is determined by the initial t = 0 values of u and cs at A2. That is,

J−(x0, t0) = J−(x2, 0). (2.61)

Then the values of u and cs at point A are completely determined from these
values of J+ and J− by using eqs. (2.58) and (2.59). Thus, for example,

u(x0, t0) = 1

2
[J+(x1, 0) + J−(x2, 0)], (2.62)

with a similar equation to determine cs(x0, t0). We note further that, by a similar
argument, the values of u and cs at all points on the C+ curve, and therefore the
shape of the curve itself in the segment between A1 and A, are determined by the
initial values of u and cs at points on the line segment t = 0, x1 ≤ x ≤ x2. Likewise,
the values of u and cs at all points on the C− curve, and therefore the shape of the
curve itself in the segment between A2 and A, are determined by the initial values of
u and cs at points on the same line segment t = 0, x1 ≤ x ≤ x2. Thus the state of the
gas at point A depends only on the state of the gas at points A1 and A2, together with
the shapes of the characteristic curves through these points. But the shapes of the
curves depend only on the initial t = 0 state of the gas at points x1 ≤ x ≤ x2. Thus
the state of the gas at point A depends only on the initial state of the gas in a finite
region. We can see that this comes about because information in a compressible
gas travels only at a finite speed. Thus the state of the gas at point (x0, t0) can only
depend on the state of those elements of the previous flow which have had time to
communicate with it. From a physical point of view this is, in retrospect, obvious.
This is a basic fact of compressible hydrodynamics, and indeed it is one which
plays a large role in the development of numerical schemes for solving problems
in compressible media.

We see that the system of characteristic curves makes explicit the physical
causality implicit in the idea of information propagating at a finite speed, here
that of sound. Very similar concepts appear in the theory of relativity, where the
finite speed is of course that of light. Again there is a finite spatial region which is
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able to influence any given event (point in space-time), and this is called the past
light cone of that point.

2.2.2 Development of shocks

We have seen above how to solve the evolution of a compressible fluid in one
dimension, at least in principle. Clearly similar considerations apply in more
dimensions. But it is also clear that the simple concept of characteristics which
move locally at speeds ±cs with respect to the fluid runs into trouble if information
is forced to propagate through the fluid at a speed exceeding the local signal velocity.
This happens, for example, when an aircraft moves through air at supersonic speed.
The aircraft arrives at any point on its path before the sound waves it produces can
get there and tell the air to move out of its way. We know from experience that the
result is a shock wave, a region where the fluid quantities change on lengthscales
comparable with the mean free path. Here we examine first how such shock waves
arise, and then how to treat them in compressible fluid dynamics.

For a simple example of how shocks arise we consider a long tube of compressible
fluid (for example a gas) lying along the positive x-axis, with one end at x = 0.
We assume that the gas flow is one-dimensional, and that initially the fluid is at
rest, with u = 0 and cs = c0 = constant. At time t = 0 we start to move a piston
into the fluid from the end at x = 0. We assume that the piston moves at constant
acceleration a, so that, as shown in Fig. 2.4 at time t > 0, the piston is at position
xp(t) = 1

2at2 and has velocity ẋp(t) = at. We already see that, since we have set the

t

t0

0 x

shock

xP(t) = at21

2

Fig. 2.4. Characteristic diagram for the one-dimensional motion of an accelerating
piston moving into a gas. A shock forms where the characteristics starting on the
piston intersect those starting in the stationary gas.
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piston velocity to increase linearly with time and therefore eventually to exceed the
speed of sound, we expect the method of solution outlined in the previous section
to run into trouble.

Again we consider the evolution of the properties of the gas as given by the
functions u(x, t) and cs(x, t) in the (x, t)-plane. From Fig. 2.4 it is evident that the C−
characteristics, which start on the x-axis and move such that dx−/dt = u − cs < 0,
fill the whole of the available space. Indeed, until they meet the effects of the
advancing piston, they are straight lines with slope dx/dt = −c0. On all these
curves, the value of the Riemann invariant J− is the same, and is equal to the value at
time t = 0. We conclude that J− is a constant throughout the fluid and is given by

J− = − 2c0

γ − 1
. (2.63)

Thus, using the original expression (eq. (2.48)) for J− we see that throughout the
fluid cs and u are related by the following expression:

cs = c0 + 1

2
(γ − 1)u. (2.64)

Along the C+ curves the quantity J+ = u + 2cs/(γ − 1) is a constant. But since we
have just shown that cs depends only on u throughout the fluid, this implies that along
each C+ curve both u = constant and cs = constant. Then since dx+/dt = u + cs

we see that the characteristic curves x+(t) are straight lines. A similar argument
applies to the C− curves.

Now consider the C+ curve x+(t; t0) which originates from the piston at time t =
t0, and therefore at position x = 1

2at2
0 and with velocity u = at0. Using eq. (2.64),

this implies that cs = c0 + 1
2(γ − 1)at0, and therefore that the characteristic curve

is given by

d

dt
x+(t, t0) = c0 + 1

2
(γ + 1)at0. (2.65)

Using the initial conditions we can then integrate this to obtain

x+(t, t0) = 1

2
at2

0 +
{

c0 + 1

2
(γ + 1)at0

}
(t − t0). (2.66)

We now note that each of the characteristic curves which originate on the piston
is a straight line, and the quantities dx+/dt increase with time t0. Thus as shown in
Fig. 2.4 in the (x, t)-plane the slopes of the lines decrease with time. This implies
that they must intersect. This conclusion leads to a contradiction. We have already
shown that at any point the fluid properties depend solely on the values J+ and J−
of the Riemann invariants, which are constant along the characteristic curves C+
and C− passing through that point. But if there are two C+ curves passing through
a point, which is what must happen if two such curves intersect, then the fluid
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properties cannot be determined uniquely. But this does not make physical sense. It
is clear that we can set up a physical experiment along the lines described here, and
that the fluid evolution can be determined uniquely. What this implies is not that the
fluid cannot make up its mind what to do, but rather that the mathematical method
we are using to determine its evolution has broken down. As we mentioned at the
start of this section, we know from experience what actually happens. The fluid
properties change over a small region (the size of a few mean free paths) known as
a shock. This invalidates the fluid approximation and the mathematical treatment
given above in this small region.

2.2.3 Shock conditions

Just because the fluid approximation has broken down, this does not mean that
we cannot determine what is going to happen. The shock itself is, by definition,
confined to a region small compared with the lengthscale L on which fluid quantities
would otherwise change. We can therefore idealize it as a mathematical surface,
across which the fluid quantities change discontinuously. The basic fluid equations
are conservation equations, so the changes in physical properties across such
discontinuities must obey certain relationships.

2.2.3.1 Non-magnetic fluid

In general, the discontinuity is a curved surface, but if we consider a small enough
portion of this surface we can treat it locally as if it is flat. It is simplest to work in the
(instantaneous) frame in which the discontinuity is stationary. Thus we may assume
that the discontinuity is in the plane x = 0 and that in this frame the flow is steady.

As shown in Fig. 2.5 we assume that the flow is in the positive x-direction. Thus
in the upstream region, x < 0, the fluid has density ρ1, pressure p1 and velocity
u1, with x-component u1x > 0, and in the downstream region, x > 0, the fluid has
density ρ2, pressure p2 and velocity u2, with x-component u2x > 0. We write the
unit normal to the plane of the shock, in the direction of the flow, as n, where the
components are given by n = (1, 0, 0).

Since the flow is steady, the mass conservation law becomes

div(ρu) = 0. (2.67)

By considering the divergence theorem applied to a short cylindrical volume (see
Fig. 2.5(b)), in the limit that the length of the cylinder tends to zero, we find that
the jump across the discontinuity is given by

[ρu · n]2
1 = 0, (2.68)

or, equivalently,

[ρux]2
1 = 0. (2.69)
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p1, �1 p2, �2
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Fig. 2.5. (a) A stationary shock lies in the plane x = 0. Fluid with density ρ1,
pressure p1 and velocity u1 flows into the shock from the half-space x < 0. The
fluid flows away from the shock into the half-space x > 0 with density ρ2, pressure
p2 and velocity u2. The unit vector n is normal to the shock in the direction of
the flow. (b) The short cylindrical volume, as described in the text, to which we
apply the divergence theorem in order to obtain the shock jump conditions.

In physical terms, this simply states that the mass flux going into the discontinuity
must equal the mass flux coming out of it.

Similarly, for steady flow the momentum equation can be written as follows:

∂

∂xi
(ρuiuj + pδij) = · · · , (2.70)

where (· · · ) stands for the external force terms which are continuous across the
jump. As before, we apply the divergence theorem (now in vector form) to
the vanishingly small cylinder, to obtain the jump conditions:

[ni(ρuiuj + pδij)]2
1 = 0. (2.71)

Of course, since momentum is a vector quantity, this is a vector equation. The three
components of this equation can be written simply as follows:

[p + ρu2
x ]2

1 = 0, (2.72)

[ρuxuy]2
1 = 0 (2.73)

and

[ρuxuz]2
1 = 0. (2.74)

We note immediately that eqs. (2.73) and (2.74) (ignoring the boring possibility
ux = 0), in combination with eq. (2.69), imply that

[uy]2
1 = 0 (2.75)
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and

[uz]2
1 = 0. (2.76)

Thus the velocity components parallel to the shock are continuous. We may
therefore, without loss of generality, assume that we can transform to a frame
in which uy = uz = 0, and replace ux by u.

In a similar manner we may apply the same procedure to the combined energy
equation, eq. (1.74). We find that

[q · n]2
1 = 0, (2.77)

where

q =
[
ρ

(
e + 1

2
u2
)

+ p

]
u. (2.78)

This implies [{
ρ

(
e + 1

2
u2
)

+ p

}
ux

]2

1
= 0. (2.79)

Again, making use of eq. (2.69), this implies[
1

2
u2 + e + p

ρ

]2

1
= 0. (2.80)

The three eqs. (2.69), (2.72) and (2.80) are known as the Rankine–Hugoniot
equations. The results of Problem 2.4.3 show that we can turn these into expressions
for the velocity and density jumps (u2/u1), (ρ2/ρ2) in terms of the (upstream) Mach
number M = u1/cs of the shock.

Physically what happens in a shock is that kinetic energy is turned into heat
energy by dissipation. The result of Problem 2.4.4 shows this explicitly, and we find
that the entropy of the fluid is higher on the downstream side of the shock. Also the
sound speed is higher in this post-shock fluid, and comparable with the pre-shock
fluid velocity . This is high enough to ensure that the decelerated post-shock fluid
now moves subsonically. By raising the sound speed in this way, the fluid is able to
communicate the ‘news’ of an obstacle upstream into what would otherwise have
been a supersonic flow. The high post-shock sound speed occurs because this part
of the fluid is hotter. We see that the internal energy e increases across the shock.

Formally it is worth noting that the breakdown of the fluid approximation within
the shock means that, for example, Bernoulli’s theorem does not hold across it,
precisely because the entropy and internal energy increase discontinuously at
the expense of the fluid bulk motion (see eq. (2.80)). As we have seen, dissipation
inevitably occurs in shocks, even though it may be negligible (as we have largely
assumed) outside the shock, where the fluid approximation holds.
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2.2.3.2 Magnetic fluid

We consider here the simple case in which the magnetic field in the upstream fluid
is uniform. We use the arguments given above to justify considering the flow in
the x-direction only. Then, if the magnetic field is perpendicular to the surface
of discontinuity, i.e. B = (B, 0, 0), so that the flow is entirely along the magnetic
field lines, then we have seen already that the flow is unaffected by the field.
So, in this case, the jump conditions at the discontinuity are the same as in the
non-magnetic case.

If the magnetic field is parallel to the surface of discontinuity, for example B =
(0, B, 0), then we proceed as before, except that we need to include the magnetic
terms in the momentum equation and the energy equation. The mass conservation
equation is unchanged, and thus, as before, the jump condition is given by

[ρu]2
1 = 0. (2.81)

Now the momentum equation becomes

∂

∂xi
(ρuiuj + pδij + mij) = 0, (2.82)

where

mij = BiBj − 1

2
B2δij. (2.83)

Applying the vector divergence theorem as before, we find that the only non-zero
component is the x-component, yielding[

ρu2 + p + 1

2
B2
]2

1
= 0. (2.84)

The energy equation as before yields

[q · n]2
1 = 0, (2.85)

where now, using the ideal MHD approximation E = −u ∧ B,

q =
{
ρ

(
e + 1

2
u2
)

+ p

}
u + B ∧ (u ∧ B). (2.86)

Since in this case u · B = 0 and u · n = u,[{
ρ

(
e + 1

2
u2
)

+ p + B2
}

u

]2

1
= 0. (2.87)

Finally we need to determine the jump in the size of B across the discontinuity.
Since the field lines are carried along with the fluid, and since the field is
perpendicular to the surface of discontinuity, it is straightforward to see what
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happens in this case. If, for example, the fluid is denser on the downstream side,
then the fluid has been compressed there, and therefore the field lines have been
pushed closer together. Imagine upstream in x < 0 two planes moving with the
fluid which are parallel to the discontinuity and which are marked by particular field
lines. Then when the planes have flowed through the discontinuity downstream in
x > 0 the amount of fluid between the two planes is the same. Also the amount of
magnetic flux between the two plane remains the same. This therefore implies that
the quantity (B/ρ) remains unchanged. Thus the jump condition for the magnetic
field is given by [

B
ρ

]2

1
= 0. (2.88)

2.2.4 Shock waves in general

We have seen that supersonic motion has a strong tendency to cause shock waves.
It is not even necessary for some solid object (e.g. the piston moving into the
cylinder that we discussed above) to move itself with supersonic speed for shocks
to appear. Let us consider the same initially stationary isentropic gas-filled cylinder
and simply move the piston a short distance into it, and then stop the piston entirely,
before its own motion becomes supersonic with respect to the cylinder. Physically
it is clear what happens. Sound waves travel ahead of the piston and tell the gas to
move into the cylinder, raising its pressure and density. But these changes can only
happen in the part of the gas close enough to the piston for sound to travel there in
a given time. Further away from the piston the gas is unaware of its presence, and
remains undisturbed.

One might imagine that once the piston stops moving the result would be a
sound wave travelling smoothly into this gas. But from eq. (2.11) we can see that
the sound speed in the gas varies with its density as cs ∝ ρ(γ−1)/2. Since γ > 1,
denser gas has a higher sound speed. Hence the compressed gas ahead of the piston
has a higher sound speed than the undisturbed gas it is trying to push into. The
result is that the compressed gas becomes still more compressed, further raising the
sound speed within it, and further increasing the compression. The density contrast
between the compressed and undisturbed gas increases until ρ and all other fluid
quantities are changing significantly over a mean free path λmfp. This is exactly
what we mean by a shock. Thus any motion of the piston into the gas ultimately
leads to the formation of a shock at some distance ahead of it.

This process of density gradients steepening into shocks is already apparent
in the characteristic diagram Fig. 2.4. Characteristics starting from the moving
cylinder are ‘refracted’ to shallower slopes even before the cylinder itself begins to
move supersonically. These refracted characteristics inevitably intersect the steeper
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ones in the undisturbed gas at larger x, showing, as expected, that a shock must
eventually form.

Of course this does not mean that any isolated disturbance in a compressible
medium eventually forms a shock wave. Human (and other) life would be very
different if this were true! The special feature of the cylinder problem is that the
gas is confined and can only move in one direction. In a three-dimensional case,
the sound waves from an isolated disturbance spread roughly spherically, and this
geometrical dilution reverses the tendency for the density to increase ahead of the
sound waves. The sound wave spreads to large distances with decreasing amplitude
before its energy is dissipated in microscopic motions in the gas, i.e. as heat.

Shock waves are extremely common in astrophysics. Gravitational and other
forces can accelerate gas to supersonic speeds, or accelerate objects to move through
gas supersonically. For example, hot stars produce winds which move highly
supersonically into the interstellar medium, producing a system of shock waves,
and supernova explosions cause even stronger effects. Similarly, the galaxies in
a cluster move supersonically through the cluster gas, heating it via shocks. Any
deceleration or deflection of supersonic gas inevitably leads to shocks, as when gas
falls near radially down magnetic field lines on to a neutron star. The net effect of
shocks is to turn bulk motion into heat, which in turn generally leads to radiation.
Hence shocks are very often involved in producing much of the radiation we see
from high-energy phenomena in the Universe.

2.3 Further reading

The relationship between Lagrangian and Eulerian perturbations is discussed
further in Chapter 4. The concept of group velocity is described in more detail
in Witham (1974, Chap. 11). The derivation of waves in magnetic media given
here follows that given in Jackson (1998, Chap. 7); an alternative description is
given by Sturrock (1994, Chap. 14). Non-linear flow of a compressible fluid in
one dimension, the concept of characteristics and the development and treatment
of shocks are discussed further in Zel’dovich & Raizer (1967, Chap. I) and in
Landau & Lifshitz (1959, Chaps. IX, X). An analogy with traffic flow is described
in Witham (1974, Chap. 3) and in Billingham & King (2000, Chap. 7).

2.4 Problems

2.4.1 Consider waves in a uniform compressible medium with uniform magnetic field B
and sound speed cs. In a Cartesian coordinate system, let the wavevector k be
given by

k = (0, 0, k), (2.89)
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the vectorial Alfvén velocity be given by

VA = VA(0, sin θ , cos θ) (2.90)

and the fluid velocity be given by

u = (ux, uy, uz) exp{i(ωt − kz)}, (2.91)

where (ux, uy, uz) is a constant vector.
Show that

ux(ω
2 − k2V 2

A cos2 θ) = 0 (2.92)

and find two similar equations for uy and uz .
If ux �= 0, show that the form of the motion is an incompressible (Alfvén) wave

with phase velocity VA cos θ .
If ux = 0, show that

(�2 − cos2 θ)(�2 − β2 − sin2 θ) − sin2 θ cos2 θ = 0, (2.93)

where � = ω/(kVA) is the dimensionless phase velocity and β = cs/VA is a
dimensionless measure of the strength of the field.

Deduce that

�2(β, θ) = 1

2
{β2 + 1 ± [(β + 1)2 − 4β2 cos2 θ ]1/2}. (2.94)

These represent the fast and slow magnetosonic waves.
For the case β = 1, plot the dimensionless phase velocities, �(θ) as a function

of θ . (See Parker (1979, Chap. 7).)
2.4.2 Along an infinite, straight, one-track road the local density of cars is ρ(x, t) and the

local velocity of cars (all assumed to be moving in the same direction) is v(x, t).
Discuss why it might be reasonable to assume that v is solely a function of ρ.

Making this assumption, show that

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (2.95)

where the kinematic wave speed is defined by c(ρ) = dQ/dρ and Q = ρv is the
local flux of cars.

Traffic flow along a particular highway can be fitted approximately forρ < ρmax by

Q(ρ) = V0ρ log(ρmax/ρ), (2.96)

where V0 = 25 kph and ρmax = 150 vehicles km−1.
Show that information propagates upstream at a speed V0 relative to the local

vehicle velocity .
Show that there is a maximum traffic flow which occurs at some density ρcrit ,

corresponding to a critical speed vcrit of around 70 kph.
Describe the nature of the flow of traffic along this road. Show that if at some

time the traffic density has ρ = ρcrit and dρ/dx > 0 at some point, then there
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will in the future be stationary traffic at that point. Explain why the introduction of
variable speed limits helps to ease traffic flow. (See Whitham (1974, Chap. 3) and
Billingham & King (2000, Chap. 7).)

2.4.3 Use the Rankine–Hugoniot relations to show that

ρ2

ρ1
= v1

v2
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

(2.97)

and

p2

p1
= 2γM2

1

γ + 1
− γ − 1

γ + 1
, (2.98)

where subscript 1 refers to upstream and subscript 2 to downstream of the shock, and
M1 = v1/c1 is the Mach number of the shock.

Show also that v1v2 = c2∗, where the critical velocity c∗ is defined by the following
equation:

γ p1

(γ − 1)ρ1
+ 1

2
v2

1 = γ + 1

2(γ − 1)
c2∗. (2.99)

2.4.4 Use the Rankine–Hugoniot relations to show that the downstream Mach number M2

at a shock obeys the following:

M2
2 = (γ − 1)M2

1 + 2

2γM2
1 − (γ − 1)

(2.100)

and show that this relation can be written as

X1X2 = 1, (2.101)

where

X = 2γ

γ + 1
(M2 − 1) + 1. (2.102)

Express ρ2/ρ1 and p2/p1 in terms of X1. What is the allowable range of X1?
Show that the entropy change through the shock is given by

1

cV
(S2 − S1) = ln X1 − γ ln

[
(γ + 1)X1 + (γ − 1)

(γ − 1)X1 + (γ + 1)

]
(2.103)

and deduce that only compressive shocks (ρ2 > ρ1) occur in nature.
2.4.5 Show that the magnetohydrodynamics equations for a non-viscous, infinitely

conducting fluid obeying the perfect gas law may be written as follows:

∂ρ

∂t
+ div(ρu) = 0, (2.104)

∂

∂t
(ρu) + div(ρuu + pI − T ) = −ρ∇� (2.105)
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and

∂

∂t

(
1

2
ρu2 + ρe + ρ� + 1

2
B2
)

+ div

[
ρu
(

E + p

ρ
+ 1

2
u2 + �

)
+ (B ∧ u) ∧ B)

]
= ρ

∂�

∂t
, (2.106)

where I is the unit tensor, and the tensor T is given by

T =
(

BB − 1

2
B2I

)
. (2.107)

Show that in a steady hydromagnetic shock, in which the magnetic field and the
flow velocity are normal to the shock front, the jump conditions across the shock
front are the usual Rankine–Hugoniot conditions. Give a brief physical explanation
of why the magnetic field plays no role in this case.

Now consider the jump conditions for a steady hydromagnetic shock in which
the magnetic field is parallel to the shock front and the flow velocity is normal to it.
Show that B1/ρ1 = B2/ρ2, where the subscripts 1 and 2 refer to pre- and post-shock
velocities, respectively.

Show that the jump conditions concerning conservation of mass and momentum
imply that

p2 = p1 + ρ1u2
1

(
1 − ρ1

ρ2

)
+ B2

1

2

(
1 − ρ2

2

ρ2
1

)
. (2.108)

Use the jump condition concerning energy conservation to obtain another
expression for p2 in terms of the pre-shock variables and the ratio ρ1/ρ2.

Assuming that ρ1 �= ρ2, deduce that x = ρ2/ρ1 is given by the following quadratic
equation:

(2 − γ )V 2
A1x2 + [(γ − 1)u2

1 + 2c2
1 + γ V 2

A1]x − (γ + 1)u2
1 = 0, (2.109)

where c2
1 = γ p1/ρ1 and V 2

A1 = B2
1/ρ.

For a shock to exist we require that one of the roots is greater than unity. Show
that this implies the following:

u2
1 > c2

1 + V 2
A1. (2.110)

Give a physical interpretation of this condition. (See Field et al. (1968).)
2.4.6 A plane shock wave lies (in the frame of the shock) in the plane x = 0. The flow

velocity is in the x-direction and is of magnitude UL (UR) to the left (right) of the
shock, where left (right) corresponds to the half-space x < 0 (x > 0). In the same
notation the densities are ρL (ρR), the pressures are pL (pR) and the energy densities
are eL (eR). Assuming that the perfect gas law p = (γ − 1)ρe applies on each side
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of the shock, use the Rankine–Hugoniot relations to show that

ρR

ρL
= (γ + 1)M2

L

(γ − 1)M2
L + 2

, (2.111)

where ML is the Mach number in x < 0.
Deduce that ρR > ρL ⇔ M2

L > 1, and hence that the flow must be supersonic on
one side of the shock and subsonic on the other.

Show further that(
2

γ + 1

)
u2

L + uL(uR − uL) −
(

2γ

γ + 1

)
pL

ρL
= 0, (2.112)

and that (
2

γ + 1

)
ρLu2

L

pL
− pR

pL
− γ − 1

γ + 1
= 0. (2.113)

Now consider a plane shock lying in the plane x = X (t) < 0 and impinging on a
stationary solid wall at x = 0. Prior to the passage of the shock the gas is at rest with
pressure p0 and density ρ0. As the shock moves towards the wall with steady velocity
dX /dt = U+ > 0, the gas behind the shock has velocity us, where 0 < us < U+,
pressure ps and density ρs.After the shock has rebounded from the wall it moves with
velocity dX /dt = −U− < 0 into the already once-shocked gas. The gas between
the shock and the wall is now stationary and has pressure p1 and density ρ1. Use
eq. (2.112) on both the pre- and post-rebound configurations to show that (us + U−)

and (us − U+) both satisfy the same quadratic equation. Deduce that

(us − U+)(us + U−) = −γ ps/ρs. (2.114)

Similarly apply eq. (2.113) to both the pre- and post-rebound configurations and
hence, using eq. (2.114), obtain the following relationship:(

2γ

γ + 1

)2

=
(

p0

ps
+ γ − 1

γ + 1

)(
p1

ps
+ γ − 1

γ + 1

)
. (2.115)

In the case of a strong shock (p0 � ps), show that

p1

ps
= 3γ − 1

γ − 1
. (2.116)

(See Billingham & King (2000).)
2.4.7 At time t = 0, an infinite tube contains gas with uniform density and sound speed c0

in the range x > 0 and has a stationary piston at x = 0. For t > 0 the piston moves
subsonically with constant velocity −U , where U > 0.

Assume that all the C− characteristics which originate on the line t = 0, x > 0
terminate on the piston. Deduce that two C+ characteristics emanate from the position
x = 0, t = 0, one of which (x = c0t) represents the front of a rarefaction wave and
the other of which (x = [c0 − 1

2 (γ + 1)U ]t) represents the back. Show that all other
C+ characteristics are parallel to one or other of these two. Hence sketch all the
characteristics of the flow in the (x, t)-plane.
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Show that within the rarefaction wave the solution takes the following form:

x = [u + c(u)]t, (2.117)

and deduce that at that point

| u |= 2

γ + 1
(c0 − x/t). (2.118)

Use this information to sketch the velocity u(x, t) and the density ρ(x, t) at some
later time t > 0. What happens if U > 2c0/(γ − 1)? (See Landau & Lifschitz (1959,
Chap. X) and Zel’dovich & Raizer (1967, Chap. 1.).
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Spherically symmetric flows

Many astrophysical phenomena are approximately spherically symmetric. Stars
are an obvious example, provided that we can neglect the effects of rotation and
magnetic fields. Then the stellar wind is essentially a steady spherical outflow. But
spherical symmetry is often a good description of cases where a fluid with a large
lengthscale and little angular momentum is affected by the presence of a smaller
object. An important example of this is gas falling on to a small mass embedded
in it. This may describe a star accreting gas from the interstellar medium, or the
capture of gas by the nucleus of an active galaxy. If conditions far from the central
object change only slowly we can assume steady inflow or outflow.

3.1 Steady inflow/outflow

We consider a steady, spherically symmetric flow, centred on the origin at which
there is a point mass, M , with gravitational potential given by

�(r) = −GM

r
, (3.1)

where r is the spherical radius. To keep things simple, we neglect thermal processes
and assume that the fluid is isentropic. The density ρ(r) and pressure p(r) are just
functions of radius, r, and the velocity is radial with magnitude u(r), which also
depends only on the radius r. The mass conservation equation, eq. (1.4), becomes

∂ρ

∂t
+ 1

r2

∂

∂r
(ρr2u) = 0. (3.2)

Since the situation is steady, we can set ∂ρ/∂t = 0 and then integrate once with
respect to r. The equation then tells us the obvious result that the mass flux, Ṁ ,
through each spherical shell, radius r, is the same. Thus we can write

4πr2ρu = 4πA, (3.3)

44
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where A is a constant. For an outflow, or wind, the mass loss rate is Ṁ = 4πA,
with A > 0 and u > 0. For an inflow, the mass accretion rate is Ṁ = −4πA, with
A < 0 and u < 0.

For an isentropic flow we have seen that p = Kργ , where K is a constant and
γ is the ratio of specific heats. For a monatomic gas, γ = 5/3 and in general
1 ≤ γ ≤ 5/3. Then ∫

dp

ρ
=
(

γ

γ − 1

)
p

ρ
, (3.4)

and Bernoulli’s equation, eq. (??), becomes

−GM

r
+ 1

2
u2 +

(
γ

γ − 1

)
p

ρ
= B, (3.5)

where B is a constant.
Note that what we have done here is to replace the differential equations

describing mass and momentum conservation by integral relations. This is possible
because of the extreme simplicity of the case we are considering. In practice, in a
more complex case it is often a sensible approach (often the only practicable one)
to cast the problem as a set of differential equations and to then integrate these
equations numerically. In the present simple case we can describe the properties of
the flow by geometrical methods, starting from the integral relations.

3.1.1 Bondi accretion

To be specific, we consider the problem of determining the mass accretion rate,
Ṁ , on to a gravitating point mass, M , from an external (non-gravitating) medium,
which at large distance is at rest and has uniform density ρ∞ and uniform pressure
p∞. This problem and its solution were first described by Bondi (1952). To clarify
the algebra, we replace u by v = −u > 0, which is the inward radial flow speed.

We start by asking what we might expect from the physics of this problem. First,
we expect accretion to occur on to the central point mass. Second, as we move
inwards from infinite radius, we expect the velocity to increase, and we expect
the density (and hence also the sound speed in an isentropic flow) to increase.
We denote the sound speed at infinity by c∞, where c2∞ = γ p∞/ρ∞. Then, the
physical quantities defined by the problem are the central mass M and the sound
speed at infinity c∞. These, together with the gravitational constant G can be used to
define a radius rG = GM /c2∞. What might be the physical relevance of this radius?
The radius corresponds roughly to the radius at which the escape velocity from the
point mass is equal to the sound speed at infinity. Thus, loosely speaking, we would
expect matter well outside this radius to not ‘know’ about the point mass, i.e. not
to be strongly influenced by its presence. Outside this radius we expect pressure
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forces within the fluid to play a significant role. That is, we expect the flow to be
subsonic. In contrast, we expect matter well within this radius to be captured by
the point mass. We expect the central gravitational pull to overwhelm the pressure
forces, and therefore we expect matter to be falling freely (and supersonically,
since pressure is unimportant) on to the centre. Close to the centre we might expect
the velocity to approach the free fall velocity v ∼ (2GM /r)1/2.

Let us now look at the problem in more detail. We work in the (cs, v)-plane,
where the sound speed cs is given as usual by c2

s = γ p/ρ. By considering eq. (3.5)
in the limit r → ∞, we see that in this case

B = c2∞
γ − 1

, (3.6)

and thus that the equation becomes a relationship between v and cs in the
following form:

1

2
v2 + c2

s

γ − 1
= c2∞

γ − 1
+ GM

r
. (3.7)

From a geometrical point of view, this relationship describes a set of similar ellipses
in the (cs, v)-plane, centred on the origin, whose size increases as r decreases.

Using the relationship between density and sound speed for this isentropic fluid
in the form c2

s = γ Kρ(γ−1), we can write eq. (3.3) as follows:

v =
( −A

ρ∞r2

)(
c∞
cs

)(2/γ−1)

. (3.8)

From a geometrical point of view, assuming γ > 1, this relationship describes a
set of similar hyperbolae in the (cs, v)-plane, with asymptotes being the two axes
v = 0 and cs = 0, and whose size also increases with decreasing r.

At each radius r the solution of the flow equations, i.e. the values of cs(r) and
v(r), are given by the point(s) at which the two curves eqs. (3.8) and (3.7) intersect
in the (cs, v)-plane.

In Fig. 3.1(a) we consider the picture at very large radius r = ∞. Here the ellipse
given by eq. (3.7) intersects the cs-axis at point P where cs = c∞, and intersects
the v-axis at point Q where 1

2v2 = c2∞/(γ − 1). The hyperbola given by the limits
of eq. (3.8) as r → ∞ is given by the two axes v = 0 and cs = 0. These curves
intersect at the two points P and Q. The point we are interested in for the Bondi
accretion problem is the point (c∞, 0), marked P in Fig. 3.1, corresponding to zero
velocity and finite sound speed at infinity. (We discuss the other point, marked Q
in Fig. 3.1, in Section 3.1.2.)

Now, as r decreases a little, as shown in Fig. 3.1 (b), both curves shift to larger
values of cs and v. Therefore the intersection points move P and Q to larger values
of cs and of v. Thus for the solution we are interested in as r decreases and the fluid
flows inwards, both sound speed and velocity increase, as expected.
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Fig. 3.1. The Bondi problem viewed in the (cs, v)-plane. The ellipses are curves
of constant accretion rate, and the hyperbolae are the Bernoulli constant, each
specified by boundary conditions at infinity. The pictures at (a) large radius r = ∞
from the central accretor; (b) rB < r < ∞; (c) r = rB; (d) r < rB.

The question now is: What happens next? We see from eqs. (3.8) and (3.7) that
as r → 0 both sets of curves continue to increase in size indefinitely. What happens
to the intersection points? There are clearly three possibilities.

(i) At some radius, the curves may cease to intersect. This would mean that just
inside this radius there is no mathematical solution to the equations. This is clearly
untenable from a physical point of view. But what could we do if this happened?
The answer is to note that in order to draw the curves we have had to assume a
value for the accretion rate Ṁ . To be specific, we see that from eq. (3.8) the size
of the hyperbola in the v-direction depends on the magnitude of the constant A,
i.e. on the accretion rate Ṁ . Thus if at some radius the curves cease to continue
to intersect, we could make them continue to intersect by adjusting the assumed
accretion rate downwards. This tells us that adjusting the accretion rate is the key
to finding a solution to the flow problem.

The point at which the curves almost stop intersecting is the same as the point
at which the two points of intersection coincide. This would occur at a point in the
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(cs, v)-plane when the two curves described by eqs. (3.8) and (3.7) have the same
slope.

The slope of eq. (3.7) at fixed radius r is given by

v
dv

dcs
= −

(
2

γ − 1

)
cs, (3.9)

and the slope of eq. (3.8) at fixed radius r is given by

1

v

dv

dcs
= −

(
2

γ − 1

)
1

cs
. (3.10)

Thus the slopes are equal when v = ±cs, i.e. when the flow velocity is transonic.
This leads us to the second possibility.

(ii) The curves intersect at two points at all radii. Then the solution with the correct
boundary conditions at large radius would be given by the curve in the (cs, v)-plane
obtained by tracing the set of intersection points as r decreases, starting at the point
(c∞, 0) corresponding to r = ∞. This would then imply that the flow is subsonic
at all radii. We can see this because at small radii, as r → 0, if v � cs eq. (3.7)
implies that cs ∝ r1/2. From this we find that eq. (3.8) implies v/cs ∝ r(5−3γ ) and
thus v/cs → 0 as r → 0, given that γ < 5/3. Thus, while this is an acceptable
solution from both mathematical and physical points of view, it corresponds to a
pressure-supported atmosphere slowly settling on to the central point mass. This is
not the solution we are looking for. Thus we need to consider the third possibility.

(iii) The curves intersect at two points at all radii, except for one radius at which
they just touch. We shall call this radius the Bondi radius, rB. At this radius we
see that by equating the slopes in eqs. (3.9) and (3.10) the two solutions intersect
at a point where v = cs. This gives us the possibility of a global solution to the
problem which is subsonic at large radii and is supersonic at small radii. From the
discussion above we expect to have to choose the accretion rate exactly to give this
solution. In other words, insistence on this solution being the physically sensible
one determines the accretion rate. Let us see how this comes about.

We know that if the two curves given by eqs. (3.8) and (3.7) touch they do so at a
point on the line v = cs (see Fig. 3.1 (c)). So we define as v1(r) the value of v as a
function of r at which the curves in eq. (3.8) and v = cs intersect (see Fig. 3.1(b)).
Similarly, we define as v2(r) the value of v as a function of r at which the curves
in eq. (3.7) and v = cs intersect (see Fig. 3.1). Thus v1 and v2 are given by the
following equations:

v1(r)
γ+1/γ−1 =

(
A

ρ∞

)
c2/(γ−1)∞

1

r2
, (3.11)

and

v2
2(r) = 2(γ − 1)

γ + 1

[
c2∞

γ − 1
+ GM

r

]
. (3.12)
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Fig. 3.2. Logarithmic dependence on radius of the two sonic point velocities v1, v2
in the Bondi problem.

At large radius, r → ∞, we can see from the definitions (or from Fig. 3.2) that
v1 → 0 whereas v2 is finite. Thus, at large radii, v1 < v2. Indeed, from Fig. 3.1, we
can see that for there to be two (or one) solutions at each radius, we require v1 ≤ v2

at all radii, with equality only at one radius, rB. At the Bondi radius, r = rB,
these two curves must just touch. In other words, the equation v1(r) = v2(r)
must have only one solution for r. Consider first the curve v2(r). We have noted
that at small radii v2(r) ∝ r−1/2, and we see that at large radii v2(r) ∝ constant.
We sketch this on logarithmic axes in Fig. 3.2. However, at all radii we see that
v1(r) ∝ r−α , where α = 2(γ − 1)/(γ + 1). We note that α > 0 for γ > 1. This
too is drawn on logarithmic axes in Fig. 3.2. It is immediately evident that for
these two curves to touch we require 0 < α < 1/2. A little algebra shows that this
implies 1 < γ < 5/3. In order to make them just touch, we see from eq. (3.11) that
we must choose a particular value of A, i.e a particular value of the accretion rate
Ṁ . This is what we expected.

We can find the radius rB at which these two curves touch by setting the slopes
of the two curves equal. Thus,

d ln v2

d ln r
= −α. (3.13)

From this we find that

rB = 5 − 3γ

4

GM

c2∞
. (3.14)

Substituting this into eq. (3.12) we find that at this point

v2
2 = GM

2rB
. (3.15)
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For the curves to touch, we require them to have not only the same slope, but
also the same values of v. Thus at rB we must set v1(rB) = v2(rB). By doing this
we determine the accretion rate. This is known as the Bondi accretion rate, ṀB,
given by

ṀB =
(

2

5 − 3γ

) γ+1
2(γ−1) · 4πr2

Bρ∞c∞. (3.16)

We note that this result makes physical sense. We argued earlier that some radius
rG ∼ GM /c2∞ would play an important physical role, and find that this is given by
the Bondi radius rB. To order of magnitude the accretion rate we get is simply the
value we obtain from a flow through the sphere at r = rB, at speed c∞ and with
density ρ∞. This is what we would guess from the start. The main result of our
analysis has been to obtain the constant of proportionality.

From Fig. 3.1 we see that at radii rB the two solutions represented by the points
P and Q interchange. The accretion solution is represented by point P and becomes
supersonic inside rB.

We also note that steady, spherically symmetric accretion of an isentropic fluid
onto a point mass (Bondi accretion) can only occur if 1 < γ < 5/3. As γ → 5/3,
we see that rB → 0 and Ṁ → 0. For values of γ larger than 5/3 it is possible
formally to set up a static atmosphere filling the whole of space, extending all the
way from the point mass at r = 0 to infinite radius.

3.1.2 Steady outflow

Essentially all of the above analysis applies also to the situation in which the flow
is outwards, with velocity u(r) > 0, and with outwardly directed mass loss rate
Ṁ . This corresponds to an isentropic stellar wind. The relations given by eqs. (3.8)
and (3.7) are the same, except that v(r) is replaced by u(r). All we have to do is to
follow the progress of the other point of intersection of the two curves, i.e. point Q
in Fig. 3.1. This point starts at zero velocity at r = 0, and stays subsonic as far as
the radius rB. At that point the flow becomes supersonic, and remains so to large
radius. We can see from Fig. 3.1 (d) that as r → ∞, u2 → 2c2∞ and cs → 0.

3.2 Explosion in a uniform medium

Here we consider the effects of an explosion at a point in a uniform medium. The
first studies of this problem concerned explosions of nuclear bombs in the Earth’s
atmosphere. In astronomy this analysis is used to model the effects of the early
stages of the explosion of a supernova in the interstellar medium.
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We model the explosion as the instantaneous input of a fixed amount of energy
E at time t = 0 at point r = 0 (in a spherical coordinate system) into a uniform
background medium of density ρ1. The flow is of course now a time-dependent one,
and we therefore expect the velocity to be radially outwards and with magnitude
u(r, t). We expect the input of energy at such a large (formally infinite) rate to
push the fluid outwards at such a large velocity (formally infinite initially) that it
moves supersonically. In other words, we expect a shock wave to be generated at
the origin at time t = 0 and to move radially outwards at some velocity Us(t).
Initially, the shock will be ‘strong’ in the sense that the pressure p2 behind the
shock is much greater than the pressure in the pre-shocked gas, i.e. p2 � p1. This
is equivalent to assuming that the sound speed in the unshocked gas is much less
than the shock velocity.

With these assumptions, the only physical quantities relevant to the problem are
the initial density ρ1 and the explosion energy E. This comes from assuming that
the explosion is essentially at a point, whereas in reality there must be an associated
lengthscale. However, we expect the shock wave to spread so rapidly that its size
is almost immediately much larger than the original explosion scale. All quantities
appearing in the solution must therefore be combinations of ρ1, E and the time
t, and we can use dimensional analysis to find their dependences, at least up to
dimensionless multiplicative functions.

In terms of mass M , length L and time T , our two defining quantities have
dimensions as follows:

ρ1 ∝ [ML−3] (3.17)

and
E ∝ [ML2T−2]. (3.18)

Dividing these two equations, we eliminate M to obtain

ρ1

E
∝ T2

L5 . (3.19)

Since the l.h.s. is a constant, we conclude that any radius relevant to the problem
must vary as r ∝ t2/5. From this we can deduce two things. First, the shock radius
rs(t) must move outwards as rs ∝ t2/5. Second, all relevant physical quantities
such as velocity u(r, t), pressure p(r, t) and density ρ(r, t) depend on radius and
time only through the combination ξ ∝ r/t2/5.

3.2.1 Shock conditions

To proceed we must discuss how the various physical quantities u, p and ρ vary
across a strong shock. The jump conditions across a stationary shock are the
Rankine–Hugoniot conditions (eqs. (2.69), (2.72) and (2.80)) derived in Chapter 2.
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In Problem 2.4.3, we deduced expressions for the jump in velocity (u2/u1) and
the jump in density (ρ2/ρ1) in terms of the Mach number of the shock M. For
a strong shock we take the limit M → ∞ and obtain, in the frame in which the
shock is stationary,

u2

u1
= γ − 1

γ + 1
(3.20)

and
ρ2

ρ1
= γ + 1

γ − 1
. (3.21)

However, here we shall be working in the inertial frame, in which the shock has a
velocity Us(t). In the inertial frame, the fluid is at rest until the shock arrives. Thus
in the frame of the shock, the fluid enters the shock with speed u1 = Us. Similarly,
in the frame of the shock, the fluid leaves the shock with speed u2, and therefore in
the inertial frame, after the shock has passed, the fluid has velocity u′

2 = Us − u2.
We deduce that

u′
2 =

(
2

γ + 1

)
Us. (3.22)

The post-shock density is unchanged by a Galilean transformation, and therefore
the post-shock density is simply ρ′

2 = ρ2. In the limit p2 � p1, the Rankine–
Hugoniot relation (eq. (2.72)) which describes momentum conservation yields in
the frame of the shock the following:

p2 = ρ1u2
1 − ρ2u2

2. (3.23)

After a little algebra, we can use the above relations to show that

p2 = 2

γ + 1
ρ1U 2

s . (3.24)

3.2.2 Similarity variables

We have already deduced that the flow inside the shock (r < rs) depends on radius
r and time t only in the combination r/t2/5, so we define a dimensionless variable,

ξ = r
( ρ1

Et2

)1/5
, (3.25)

called a similarity variable. At fixed time t, the value of ξ is just proportional to
the radius r. Thus, in terms of ξ the shock is at some fixed value, say ξ = ξs. Then
the shock radius is given by

rs(t) = ξs(E/ρ1)
1/5t2/5 (3.26)

and the shock velocity, Us = drs/dt, is given by
Us

rs
= 2

5t
. (3.27)
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Obviously we would like to write all the physical quantities u, ρ and p in
dimensional form multiplied by functions of the dimensionless similarity variable
ξ . Outside the shock the gas is unaffected by the explosion, and the solution
is simply the initial configuration. So for r > rs we have u = 0, ρ = ρ1 and
p = p1 ≈ 0. Thus we need only concern ourselves with the solution inside the
shock, at radii 0 < r < rs(t), or equivalently 0 < ξ < ξs. Since physical quantities
inside the shock depend only on ξ , we may write

ρ(r, t) = ρ2A(ξ), (3.28)

or equivalently

ρ(r, t) =
(

γ + 1

γ − 1

)
ρ1A(ξ), (3.29)

where A(ξ) is a dimensionless function of ξ . The definition of ρ2 requires A(ξs) = 1.
Similarly, since the only combination of our fundamental quantities with the

dimensions of velocity is r/t, we may expect that

u(r, t) = λ0(r/t)V (ξ), (3.30)

where λ0 is some constant and V (ξ) is a dimensionless function of ξ . Using
eq. (3.27) we can rewrite this as follows:

u(r, t) = λ′
0(Us/rs)rV (ξ), (3.31)

where λ′
0 is some other constant. Motivated by the value for the velocity just inside

the shock, given by eq. (3.22), we choose λ′
0 such that

u(r, t) =
(

2

γ + 1

)
Us

(
r

rs

)
.V (ξ), (3.32)

which implies that at r = rs, where ξ = ξs, we have u = u2 and V (ξs) = 1. Tidying
this up, we obtain

u(r, t) = 4

5(γ + 1)

(r

t

)
V (ξ). (3.33)

In a similar fashion, since pressure has dimensions of density times velocity
squared we can write

p(r, t) = C0(r/t)2ρ1B(ξ), (3.34)

where C0 is some constant and B(ξ) is a dimensionless function of ξ . As before,
we try to make things simple by choosing the constant C0 such that B(ξs) = 1. We
can do this by writing

p(r, t) = p2(r/rs)
2B(ξ), (3.35)

as then p = p2 when r = rs. Then, using the expressions derived above for p2 and
for rs, we obtain

p(r, t) = 8

25(γ + 1)
ρ1

(r

t

)2
B(ξ). (3.36)
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We have now achieved our aim of writing u, ρ and p in dimensional terms multiplied
by the dimensionless functions A(ξ), V (ξ) and B(ξ), respectively. We can now
determine these three functions, and thus the detailed form of the solution, by
inserting these expressions into the conservation equations.

3.2.3 The similarity (Taylor–Sedov) equations

In spherical symmetry the mass conservation equation is given by

∂ρ

∂t
= 1

r2

∂

∂r
(ρr2u). (3.37)

Similarly the momentum conservation equation is given by

∂u

∂t
+ u

∂u

∂r
= − 1

ρ

∂p

∂r
. (3.38)

For the energy conservation equation we assume that the shocked fluid does not
cool, so that each fluid element conserves its entropy, i.e. DS/Dt = 0. Then we
have

∂

∂t

[
ρ

(
e + 1

2
u2
)]

+ 1

r2

∂

∂r

[
r2ρu

(
e + p

ρ
+ 1

2
u2
)]

= 0, (3.39)

and we assume a perfect gas so that e = p/(γ − 1)ρ.
When making the substitution we use the definition of ξ (eq. (3.25)), and hence

the derivative of ξ with respect to t at fixed r is given by

∂ξ

∂t

∣∣∣∣
r
= −2ξ

5t
, (3.40)

and the derivative of ξ with respect to r at fixed t is given by

∂ξ

∂r

∣∣∣∣
t
= ξ

r
. (3.41)

Thus, in the conservation equations,we use the following relationships:

∂

∂r

∣∣∣∣
t
= ξ

r

∂

∂ξ

∣∣∣∣
t
, (3.42)

and, using the similarity assumption that (∂/∂t)ξ = 0,

∂

∂t

∣∣∣∣
r
= −2ξ

5t

∂

∂ξ

∣∣∣∣
t
. (3.43)

We need to take a little care when making these substitutions. For this reason, we
derive one equation in some detail and leave the other two to the reader. We rewrite
the conservation equationin the following form:

∂ρ

∂t
+ ∂

∂r
(ρu) + 2ρu

r
= 0. (3.44)
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Substituting for ρ using eq. (3.29) and using eq. (3.40), the first term on the l.h.s.
is simply given by

∂ρ

∂t
=
(

γ + 1

γ − 1

)
ρ1

(
−2ξ

5t

dA

dξ

)
. (3.45)

Similarly, using eq. (3.33) also, the third term on the l.h.s. of eq. (3.44) is given by

2ρu

r
= 8

5(γ − 1)
ρ1

AV

t
. (3.46)

A little more care is required when considering the second term on the l.h.s.
Substituting for ρ using eq. (3.29) and for u using eq. (3.33), and also using eq. (3.42)
we obtain

∂

∂r
(ρu) = ξ

r

∂

∂ξ

∣∣∣∣
t

{
γ + 1

γ − 1
ρ1A

4

5(γ + 1)

(r

t

)
V

}
. (3.47)

The catch here is that we have to take the derivative of the contents of the curly
bracket with respect to ξ at fixed t, but the bracket contains both t and r. Before
taking the derivative, we must therefore replace r by ξ and t using eq. (3.25). When
we do this, the second term on the l.h.s. of eq. (3.44) becomes

∂

∂r
(ρu) = 4ρ1

5(γ − 1)
.
1

t

d

dξ
(ξAV ). (3.48)

We can now gather the three terms together. We note that they each have a factor
of 1/t, which we can cancel (if this did not happen it would either be a sign that we
have made an algebraic mistake, or be a sign that the assumed similarity variable
did not work in this case). We obtain finally the mass conservation equation in
similarity form:

−ξ
dA

dξ
+ 2

γ + 1

(
3AV + ξ

d

dξ
(AV )

)
= 0. (3.49)

Similarly, though at greater length, we can obtain the momentum conservation
equation in similarity form:

−V − 2

5
ξ

dV

dξ
+ 4

5(γ + 1)

(
V 2 + V ξ

dV

dξ

)
= −2

5

γ − 1

γ + 1

1

A

(
2B + ξ

dB

dξ

)
, (3.50)

and, at even greater length, we can obtain the energy equation in similarity form:

− 2(B + AV 2) − 2

5
ξ

d

dξ
(B + AV 2)

+ 4

5(γ + 1)

(
5V (γ B + AV 2) + ξ

d

dξ
[V (γ B + AV 2)]

)
= 0. (3.51)

These three equations, eqs. (3.49), (3.50) and (3.51), are called the Taylor–Sedov
equations.
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3.2.4 Solving the Taylor–Sedov equations

The Taylor–Sedov equations are three, non-linear, first-order, ordinary differential
equations for A, B and V as functions of ξ . We therefore require three boundary
conditions to define a solution. In one sense we have the boundary conditions
already, since our initial definitions were set up so that at the shock, i.e. at ξ = ξs,
we have A(ξs) = B(ξs) = V (ξs) = 1. Thus, if, for example, we turned to a
computer to integrate these equations numerically, starting from ξ = ξs and working
our way inwards, the problem looks as good as solved. But there is a snag. We
still do not know the value of ξs – that is, we do not know where to start our
numerical integration! In some sense, ξs is an eigenvalue of the problem, and we
shall have to find some means of determining its value at the same time as we
solve the differential equations. This problem was solved numerically by Taylor
(1959a,1959b) and analytically by Sedov (1959). We start by considering the energy
equation:

∂

∂t

[
ρ

(
e + 1

2
u2
)]

+ 1

r2

∂

∂r

[
r2ρu

(
e + p

ρ
+ 1

2
u2
)]

= 0, (3.52)

and we integrate both sides of this equation over all space, namely
∫∞

0 4πr2 dr,
using the perfect gas equation of state e = p/(γ − 1)ρ. The second term makes
zero contribution because ru = 0 at both r = 0 and r = ∞. The perfect gas law
e = p/(γ − 1)ρ then requires

d

dt

∫ ∞

0

(
p

γ − 1
+ 1

2
ρu2

)
4πr2 dr = 0. (3.53)

The velocity is zero outside the shock, so we can split this integral into two parts
as follows:

d

dt

∫ rs(t)

0

(
p

γ − 1
+ 1

2
ρu2

)
4πr2 dr + d

dt

∫ ∞

rs(t)

p1

γ − 1
4πr2 dr = 0. (3.54)

We can neglect the second integral on the l.h.s. since we have assumed throughout
that p1 � p2. The equation then states physically that the total energy within the
shocked fluid is a constant, and this constant is of course just the input energy E.
Thus, ∫ rs(t)

0

(
p

γ − 1
+ 1

2
ρu2

)
4πr2 dr = E. (3.55)

We can now translate this expression into our similarity variables, which yields

32π

25(γ 2 − 1)

∫ ξs

0
[B(ξ) + A(ξ)V 2(ξ)]ξ4 dξ = 1. (3.56)

In passing, we note that the total thermal energy Eth,

Eth = 32πE

25(γ 2 − 1)

∫ ξs

0
[B(ξ)]ξ4 dξ , (3.57)
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and the total kinetic energy Ekin,

Ekin = 32πE

25(γ 2 − 1)

∫ ξs

0
[A(ξ)V 2(ξ)]ξ4 dξ , (3.58)

are separately conserved.
We can now solve the problem. If we start with a guess for the value ξs, we can

(in principle) find solutions for A(ξ), B(ξ) and V (ξ). We can then compute the
integral on the l.h.s. of eq. (3.56) and see if, as it should, it equals unity. If it does
not (and of course usually for some guessed value of ξs it does not), we then have
to change our initial guess and repeat the procedure. Thus we can imagine setting
up an iterative procedure which will determine the value of ξs.

In Fig. 3.3 we show the solution for ρ/ρ2, p/p2 and u/u2 as functions of r/rs =
ξ/ξs, for the particular value γ = 7/5, which is appropriate for air. For this value
of γ , we find ξs = 1.033. Note that for small r we have ρ/ρ2 → 0, but p/p2 →
constant. This means that the ratio of temperatures tends to infinity, i.e. the shock
wave has a very strong heating effect.

As we mentioned earlier, the original use of this solution was in studying the effect
of nuclear explosions on the atmosphere. The dimensional result rs ∼ (Et/ρ1)

2/5

allowed early estimates of the yield E of these devices. In astrophysics, supernova
explosions conform to the Taylor–Sedov solution until the shock front becomes
large enough that the mass of swept-up interstellar medium begins to slow it down

1.0
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Fig. 3.3. The Taylor–Sedov similarity solution for a spherical blast wave in a
uniform medium with γ = 7/5, appropriate for air. The quantities ρ/ρ2, p/p2 and
u/u2 (i.e. the density, pressure and velocity inside the shock in units of the pre-
shock values) are plotted as functions of the similarity variable, or equivalently
as functions of the radius in units of the shock radius.
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(the ‘snowplough’phase). More generally, the idea of a similarity solution is useful
in situations where there is a globally conserved quantity (see Sedov (1959) and
Zel’dovich & Raizer (1967)).

3.3 Further reading

The solution to the problem of steady accretion from a uniform medium was
presented by Bondi (1952). The geometric solution given here is similar to that
given in Zel’dovich & Novikov (1971, Chap. 13). Discussion of the similarity
solution for a point explosion in a uniform medium is given in Landau & Lifshitz
(1959, Chap. X) and in Shu (1992, Chap. 17). Further information about the use of
similarity solutions in solving fluid dynamical problems is to be found in Zel’dovich
& Raizer (1967, Chap. XII).

3.4 Problems

3.4.1 In a model of a rocket, a polytropic gas with adiabatic index γ = 2 flows steadily
and adiabatically with velocity v(x) along a smooth nozzle which has slowly varying
cross-sectional area S(x), where x measures the distance along the nozzle. At x = 0,
S is very large so that the flow is very subsonic with sound speed c0. Show that the
velocity v(x) and the sound speed c(x) of the gas are related as follows:

1

2
v2 + c2 = c2

0, (3.59)

and sketch this relationship in the (v, c)-plane.
As x increases, S(x) decreases monotonically to a minimum value Smin at x = xmin

and then increases to a very large value thereafter. The fluid velocity increases
monotonically. Use mass conservation to plot another relationship in the (v, c)-plane
for various values of S(x), taking care to mark the curve corresponding to the value
Smin.

Show that at xmin v = c0
√

2/3, and show that the fluid is eventually accelerated
to a velocity of v = c0

√
2.

Sketch the pressure profile p(x) and explain how this process might be relevant
to astrophysical jets.

(See Blandford & Rees (1974) and Königl (1982).)
3.4.2 A fluid flow with radial velocity u(r) and density ρ(r) represents the steady,

spherically symmetric (Bondi) accretion of an isentropic fluid from a surrounding
medium of uniform density ρ∞ onto a gravitating point mass M centred at the origin
(r = 0). Show that u(r) and the adiabatic sound speed cs(r) obey the following
equation:

1

u

du

dr
= 1

r
· GM /r − 2c2

s

c2
s − u2

, (3.60)

and find the corresponding equation for dcs/dr.
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Show that at the radius r at which the flow is trans-sonic, the velocity is given by
u2 = GM /2r.

Verify that at large radii the equations permit a solution of the form u → 0,
ρ → ρ∞ as r → ∞.

Verify that at small radii the equations permit a solution of the form u2 ∼ 2GM /r
and u2 � c2

s as r → 0, provided that the ratio of specific heats, γ , is such that
γ < γcrit , where the value of γcrit is to be determined.

A strongly magnetized star, radius R∗, has a dipole field of the form B = ∇ψ ,
where, using cylindrical polar coordinates (R, φ, z), we have ψ ∝ z/(R2 + z2)3/2.
Bondi-like accretion is taking place in an axisymmetric fashion along the magnetic
field lines onto a small circle of radius a (� R∗) at the magnetic pole. Show that
the cross-sectional area of the flow varies with radius approximately according to
A = πa2(r/R∗)3 for A � R2∗.

If the magnetic field is so strong that it remains exactly dipolar, show that it exerts
no force on the fluid.

In this case show that the corresponding value of γcrit that allows supersonic flow
onto the star is γcrit = 7/5. (See Pringle & Rees (1972).)
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Stellar models and stellar oscillations

In the next few chapters we consider what happens if we perturb a stationary fluid
configuration. The unperturbed configuration we have in mind is a body of fluid
at rest in a stationary gravitational potential well. This potential might result from
the self-gravity of the fluid itself, as for a star, or it might be produced by some
external agency. An example of the latter case is the potential well produced by the
dark matter component of a cluster of galaxies. The intracluster medium sits in this
potential, without significantly contributing to it.

Studying perturbations in this way is important for a number of reasons. We
can often use a linear analysis, and thus make things mathematically tractable.
Working out when perturbations grow or not often provides us with a good idea
of how a system will react, even to finite (non-infinitesimal) perturbations. In
particular, we may be able to decide if the system is likely to react with drastic
changes (instability), or settle down again to a state rather like its original one
(stability). A system’s reaction to perturbations also tells us a lot about its structure.
Just as geophysicists learn about the Earth’s interior by studying how it reacts
to perturbations such as earthquakes, astronomers can use a similar technique
(asteroseismology) to study the interior of stars.

4.1 Models of stars

To be specific we shall mainly consider perturbations to models of stars, although
the results we find are generally applicable. We first consider briefly what is involved
in making a stellar model. We assume that the star is spherically symmetric and is
in hydrostatic equilibrium. This gives us our first two equations.

The star requires a pressure gradient to balance the force of gravity. Thus we
must have

− 1

ρ

dp

dr
= d�

dr
, (4.1)

60
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where, because the star is self-gravitating, the gravitational potential is related to
the stellar density by Poisson’s equation:

1

r2

d

dr

(
r2 d�

dr

)
= 4πGρ. (4.2)

These two equations can be written as two first-order differential equations by
defining m(r) as the mass within a sphere of radius r, i.e.

m(r) =
∫ r

0
4πr2ρ dr, (4.3)

or, in differential form,

dm

dr
= 4πr2ρ. (4.4)

Then the equation of hydrostatic equilibrium becomes

dp

dr
= −Gmρ

r2
. (4.5)

If the pressure, p, is known as a function of density, ρ, then these two equations
are sufficient to determine the structure of the star. Examples of this case are white
dwarfs and neutron stars, whose matter is completely degenerate. Otherwise we
have to consider the thermal structure of the star, and we need two more equations.
First we need energy conservation. If Lr is the outward energy flux through
the shell at radius r, then in a steady state this energy flux must equal the total
energy production rate within the sphere of radius r. For most stars the main energy
production is through nuclear processes, and we may write

Lr =
∫ r

0
4πr2ρεnuc dr, (4.6)

where, in standard notation, εnuc is the energy generation rate per unit mass through
nuclear reactions. In differential form this equation becomes

dLr

dr
= 4πr2ρεnuc. (4.7)

Next, we need to describe how the energy produced in the stellar interior makes
its way to the surface. Typically we might expect the energy flux per unit area,
i.e. Lr/4πr2, to be proportional to the temperature gradient, dT/dr. Often the
physical mechanism for transporting heat is conduction of heat by photons
(radiative transfer), which requires

dT

dr
= − 3κρ

4acT 3

Lr

4πr2
. (4.8)

Here κ is the opacity, which describes the interaction of stellar matter and photons
at the microscopic level, a is the radiation constant and c is the speed of light. This
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equation shows that the net result of the interaction between the stellar radiation
field and matter, consisting of huge numbers of absorptions and re-emissions within
extremely short distances, is a drift of radiant energy down the local temperature
gradient, i.e. radially outwards.

To close the system of equations we require some understanding of the physical
processes determining pressure p, opacity κ and energy generation rate εnuc

as functions of local density ρ and temperature T . Under most non-degenerate
conditions p is given as a function of ρ and T by the perfect gas law, and the
opacity and nuclear energy generation rates are also known as functions of
ρ and T . Then the set of four structure equations, which consist of four first-order
differential equations for m, p, T and Lr , is well defined, and all we need are some
boundary conditions. For a radiative star (i.e. one transporting energy by radiative
transfer as assumed above, rather than by other processes such as convection)
these are simple. At the centre, r = 0, we require (by definition) m = Lr = 0,
while at the stellar surface, r = R, we require p = 0 and, to a good approximation,
T = 0. The latter boundary condition neglects the effect of the star’s atmosphere
(the thin outer layer where photons can escape freely into space) on its detailed
emission properties. However, this is usually unimportant, since the temperature
here is far lower than in the stellar interior, and the true temperature profile is
extremely close to that given by assuming T = 0 at r = R, except very close to the
surface.

4.2 Perturbing the models

We give here the equations of stellar structure (eqs. (4.4), (4.5), (4.7) and (4.8))
for a radiative star in order to illustrate the kind of physical considerations which
go into making models of stars. There are many excellent books on the intricacies
of making models of stars, and on following the evolution of the models as the
stars use up their nuclear fuel. We do not deal with this here. Instead, we ask: If
we succeed in making a model of a star, is it stable? If we perturb it a little, what
does it do? If the star is stable, we might expect it to oscillate, and perhaps for its
oscillations to be damped. But if it is unstable, then what?

The theory of stellar oscillations is sufficiently complicated that one could
fill a large book on that subject alone. Indeed, several authors already have. In
general, computations detailed enough to compare with observation require one
to retain all the complexity of the original stellar structure equations. This makes
numerical solution unavoidable. In this book, however, we aim to explain the ideas
and motivation behind various areas of astrophysical fluid dynamics, rather than to
present the fine details, so we shall try to keep things simple. This means ditching
some physical reality and hence the ability to compare results with observations
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in detail. However, we always keep enough of the relevant physics that we can
establish basic physical concepts and principles.

One of the complications of the detailed theory is that stars are spherical, and
spherical geometry introduces algebraic complexity. To keep things simple, and
thus not obscure the physics with heavy and unilluminating algebra, we consider
only ‘square’ or ‘flat’ stars, which we can treat in Cartesian geometry. Later
on when we consider rotating stars, we shall have to consider cylinders. Clearly
this procedure is not realistic in detail, but it does not do too much violence to
the physics. Aside from losing some factors of π , the main effect we neglect is
that of geometrical spreading in lowering density and compression in raising it.
This can be important in some contexts. For example, geometrical spreading is the
reason that isolated pressure perturbations do not always lead to shock waves in
three dimensions, whereas this formally always happens in one space dimension,
as we saw in Chapter 2. However, the small perturbations we consider generally
do not produce large enough changes in radius for such effects to appear in stellar
oscillations.

A further complication occurs if we try to perturb everything simultaneously.
Of course this is what happens in reality, but if we attempt this mathematically it
is hard to keep track of what causes what. Thus we shall proceed by only allowing
some parts of the physical system to vary at a time, and then only when we want
to understand the results of such a perturbation. Thus we shall ignore the effects of
perturbing the energy equation, except when we wish to look specifically at the
stabilizing or destabilizing effects of doing so. Similarly, we ignore perturbations to
the self-gravity of the star (i.e. we shall assume that the gravitational potential is
fixed) except when we wish to look at possible instabilities produced by self-gravity.

In summary, we proceed one step at a time, concentrating on what is happening
in physical terms, and trying to avoid any algebra that may confuse the issue.

4.3 Eulerian and Lagrangian perturbations

In treating perturbations it is important to be very clear in how we compare the
perturbed and unperturbed flows. In particular, we have to distinguish carefully
between the Eulerian and Lagrangian pictures, where the first considers the fluid
quantities at fixed points in space and the second keeps track of these quantities as
a given fluid element moves. This entails a certain amount of initial algebra, but
allows us to view fluid phenomena in the most physically revealing way.

We must first establish what we mean by a perturbation. We consider in general
an unperturbed fluid flow in which the fluid particles follow trajectories of the form
r0(x0, t). Here x0 is a vector field which labels the fluid particles. The simplest way



64 Stellar models and stellar oscillations

r(x0, t)

r0(x0, t)

Fig. 4.1. The path of a particle (labelled x0) in the unperturbed flow is r0(x0, t),
shown by the solid line. The path of the same particle (x0) in the perturbed flow
is r(x0, t) and is shown by the dashed line. The Lagrangian displacement is
ξ(x0, t) = r(x0, t) − r0(x0, t).

of thinking of it is as the particle position at time t = 0, i.e x0 = r0 at t = 0.
Of course, if the unperturbed fluid is stationary, then r0 is independent of time t.

We then consider a small perturbation to the unperturbed flow. In the perturbed
flow, the fluid particles, still labelled by the vector field x0, follow slightly different
trajectories given by r(x0, t). Thus each fluid particle has been displaced by a small
amount, ξ , known as the Lagrangian displacement. Thus, we define

ξ(x0, t) = r(x0, t) − r0(x0, t) (4.9)

(see Fig. 4.1). Although this looks a little complicated, we see that to each fluid
particle, that is each x0, and for each time t, there corresponds a position of the
particle r(x0, t) in the perturbed flow. Thus we can also regard ξ(r, t) as a function
simply of r and t. Then for each physical quantity f , e.g. pressure p or density ρ, we
write f0 for its value in the unperturbed flow and f for its value in the perturbed flow.

We now define the Eulerian perturbation of f to be the change in f as seen by
an observer at some particular point (r, t). We denote the Eulerian perturbation by
a prime, thus

f ′(r, t) = f (r, t) − f0(r, t). (4.10)

It is important to note that the Eulerian perturbation compares the properties of
two different fluid particles. In addition, from the definition, it is evident that

∂

∂t
f ′(r, t) = ∂

∂t
f (r, t) − ∂

∂t
f0(r, t), (4.11)

and therefore that ∂/∂t and ′ commute. For the same reason ∇ and ′ obviously
commute.This is a useful property which we can use when considering the perturbed
versions of the conservation equations.

It is often necessary to compare the properties of a particular fluid element in
the two (perturbed and unperturbed) flows. This is the Lagrangian perturbation δf
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defined by

δf (x0, t) = f (x0, t) − f0(x0, t), (4.12)

or equivalently

δf (r, t) = f (r, t) − f0(r0, t), (4.13)

where we recall that r = r0 + ξ .
The Eulerian and Lagrangian perturbations are therefore related by the exact

expression

δf = f ′ + [ f0(r, t) − f0(r0, t)]. (4.14)

Using a Taylor series we may write

f0(r, t) = f0(r0, t) + ξ · ∇f0 + O(ξ2). (4.15)

Now to first-order in ξ we have f ≈ f0. This gives the basic result

δf = f ′ + ξ · ∇f (4.16)

to first order in ξ . We note that, since the Lagrangian perturbation δ comes from
considering the same fluid element, it is evident that the procedure of forming the
Lagrangian perturbation commutes with the Lagrangian derivative, that is

D

Dt
(δf ) = δ

(
Df

Dt

)
. (4.17)

In addition, we need to add the warnings that ′ does not commute with D/Dt and
that δ commutes neither with ∂/∂t nor with ∇.

4.3.1 The perturbed velocity

In the above we have looked at expressions for the perturbations of scalar fluid
quantities such as pressure and density. We need to take a little bit more care
when considering perturbations of the velocity itself, and in particular the relations
between these and the Lagrangian perturbation ξ . We begin by noting that, for a
fluid particle in the perturbed flow with trajectory r(t), the (perturbed) fluid velocity
is given by

u(r, t) = Dr
Dt

. (4.18)

Similarly, for a fluid particle in the unperturbed flow with trajectory r0(t), the
(unperturbed) fluid velocity is given by

u0(r0, t) = Dr0

Dt
. (4.19)
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Then, taking the difference, we have by definition that

δu = u(r, t) − u0(r0, t). (4.20)

Noting that r = r0 + ξ , we see from the definition (eq. (1.19)) of the Lagrangian
derivative that

δu = ∂ξ

∂t
+ u · ∇ξ (4.21)

to first order in ξ .
Now, since by definition

u′ = u(r, t) − u0(r, t), (4.22)

and since, as we have shown (to first order)

δu = u′ + ξ · ∇u, (4.23)

we obtain finally the expression for the Eulerian velocity perturbation, valid to
first order in ξ :

u′ = ∂ξ

∂t
+ u · ∇ξ − ξ · ∇u. (4.24)

If the unperturbed fluid is at rest, then these considerations are not really necessary
and we have simply that δu = u′ = u = dξ/dt = ∂ξ/∂t.

4.4 Adiabatic perturbations – a variational principle

We are interested in deciding whether stars are stable against perturbations of
various types. In principle we could explicitly solve the equations governing all
possible perturbations of these types and see if any of the solutions grow without
limit anywhere. Thus we need to know the global behaviour of the perturbations.
A more convenient way of keeping track of this is to derive a variational principle.
This involves an integral over the whole region of the fluid we are considering, and
thus encapsulates the global information we require in a simple way. Deriving a
variational principle involves some effort, but the payoff is that we can readily use
it to decide the global stability of all perturbations in a straightforward manner.

We consider a fluid initially in hydrostatic equilibrium and subject to fixed
gravity. In line with our philosophy of keeping things as simple as possible
while retaining the essential physics, we assume a plane-parallel configuration
in Cartesian coordinates. Then gravity is given by g = (0, 0, −g) = −∇�, where
� is the gravitational potential, which we take to be fixed. Thus the unperturbed
configuration satisfies following the equation:

∇p = −ρ∇�. (4.25)
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In the initial configuration the pressure p(z) and density ρ(z) are just functions of
z, and the velocity is zero. This implies that the perturbed velocity u is a first-order
perturbed quantity, and we have u = ∂ξ/∂t.

Then to first-order in perturbed quantities, the mass conservation equation,

∂ρ

∂t
+ div(ρu) = 0, (4.26)

becomes

∂ρ′

∂t
+ div(ρu) = 0, (4.27)

which we can integrate once with respect to time to yield

ρ′ + div(ρξ) = 0. (4.28)

Similarly, the momentum conservation equation,

ρ
∂u
∂t

+ ρu · ∇u = ∇p − ρ∇�, (4.29)

becomes

ρ
∂2ξ

∂t2
= −∇p′ − ρ′∇�. (4.30)

Note here that since u is already a first-order quantity, the second term on the l.h.s.
is second-order and so negligible, and also note that since gravity is fixed we can
omit the term −ρ∇�′.

We consider adiabatic perturbations. This means that each fluid element
conserves its entropy as it moves, and further that the perturbation itself does
not change the entropy of individual fluid elements. This is expressed most clearly
by writing (in terms of the Lagrangian perturbation)

δ

(
p

ργ

)
= 0, (4.31)

or equivalently

δp = γ p

ρ
δρ. (4.32)

In terms of Eulerian perturbations, we have seen that we may write this as
follows:

p′ + ξ · ∇p = γ p

ρ
[ρ′ + ξ · ∇ρ]. (4.33)

Thus we have an expression for the Eulerian pressure perturbation as follows:

p′ = γ p

ρ
ρ′ − ξ ·

{
∇p − γ p

ρ
∇ρ

}
. (4.34)
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We could now substitute eq. (4.28) for ρ′ and eq. (4.34) for p′ into eq. (4.30),
and use eq. (4.25) describing the original equilibrium to give an equation solely in
terms of the Lagrangian fluid perturbation ξ . For any given initial perturbation ξ ,
this equation would describe the time evolution of that perturbation. But it is more
useful at this stage to look for more general properties of the perturbed flow.

Since the original configuration was independent of time t, we may replace the
differential equation by an algebraic one, just as we did in Chapter 2, by taking the
Fourier transform of the equation with respect to t. As we remarked earlier, this is
equivalent to writing

ξ ∝ exp(iωt). (4.35)

When we do this, the full equation becomes

−ρω2ξ = ∇
[
γ p

ρ
div(ρξ)

]
+ ∇

[
ξ ·
(

∇p − γ p

ρ
∇ρ

)]
− 1

ρ
∇p div(ρξ).

(4.36)

Note that now ξ represents the Fourier transform of the Lagrangian perturbation
with respect to time, and is in general a complex vector depending on ω and
position r.

We now look for general properties of this equation. To do this we multiply both
sides by the complex conjugate quantity ξ∗ and integrate over all space (or, in fact,
since ρ vanishes outside the fluid, over all of the fluid).

The l.h.s. of the equation now becomes

LHS = −ω2I , (4.37)

where I is a real, positive definite quantity given by

I =
∫

V
ρξ∗ · ξ dV . (4.38)

On the r.h.s. we first gather together the terms with a factor of γ . Simplifying,
we obtain

RHS1 =
∫

V
ξ∗ · ∇[γ p divξ ] dV . (4.39)

We can now integrate this expression by parts. Assuming that the perturbation
vanishes on the boundary, we obtain

RHS1 = −
∫

V
γ p divξ divξ∗ dV. (4.40)

We can tidy up the rest of the terms on the r.h.s. (i.e. those independent of γ ) to
give us two quantities

A = ∇(ξ · ∇p) − ∇p divξ (4.41)
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and

B = −∇p(ξ · ∇ ln ρ). (4.42)

We take each of these in turn and apply the same procedure as before. From A,
integrating the first term by parts and using the same boundary condition that the
perturbation vanishes at the boundary, we obtain

RHSA = −
∫

V
dV {∇p · [ξdivξ∗ + ξ∗divξ ]}. (4.43)

And from B we obtain

RHSB = −
∫

V
dV {(ξ∗ · ∇p)(ξ · ∇ ln ρ)}. (4.44)

But since the original configuration was plane-parallel, so that

∇p = −|∇p|ẑ, (4.45)

and

∇ ln ρ = −|∇ ln ρ|ẑ, (4.46)

where ẑ is the unit vector in the z-direction, we can rewrite this in more symmetrical
fashion as follows:

RHSB =
∫

V
dV {(∇p · ∇ ln ρ)(ẑ · ξ∗)(ẑ · ξ)}. (4.47)

Gathering all these expressions together, the transformed eq. (4.36) becomes simply

ω2I = K , (4.48)

where the quantity I is defined above and the quantity K is defined as follows:

K =
∫

V
dV {γ p divξ divξ∗ + ∇p · [ξ divξ∗ + ξ∗divξ ]

+ (∇p · ∇ ln ρ)(ẑ · ξ∗)(ẑ · ξ)}. (4.49)

4.4.1 Implications

The work going into producing eq. (4.49) now allows us to derive a number of
results.

First, by construction, it is clear that both I and K are real quantities because
both are unchanged by replacing ξ ↔ ξ∗. Further we can see that I is positive
definite. This implies that ω2 is real. Thus either ω2 > 0 and the perturbations
are oscillatory, or ω2 < 0 and the perturbations are exponential, with one growing,
and hence unstable, solution.
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Second, since

ω2 = K[ξ ]
I [ξ ] , (4.50)

we can see that this is a Sturm–Liouville problem. There is an extensive theory of
such problems, treated at length in books on differential equations. In particular,
one can always rewrite the problem as a variational principle . Here this means that
the problem is equivalent to choosing a solution ξ i which minimizes the quantity

F[ξ ] = K[ξ ]
I [ξ ] . (4.51)

The resulting quantity ξ i is then an eigensolution to the original perturbation
equations, and the corresponding eigenvalue is given by

ω2
i = F[ξ i]. (4.52)

We also know that the eigenfunctions are orthogonal.
Third, since ω2 is real, it follows that if we consider a continuous series of

initial configurations which differ from each other by changing some parameter in
a continuous fashion, then the change from stability to instability must occur when
ω2 passes through zero. That is, the ‘exchange of stabilities’ occurs when ω2 = 0.

4.4.2 Implication for stability

We have noted that, loosely, stability depends on whether ω2 is greater or less
than zero. But of course ω2 depends on ξ . We now look in a little more detail to
see how the above analysis can give us a criterion for the stability of the original
configuration.

We started with an equation (eq. (4.30)) of the following form (after substitution):

ρ
∂2ξ

∂t2
= Lξ , (4.53)

where ξ is a function of r and t, and L is a time-independent linear operator. This
means that

∂

∂t
Lξ = L

∂ξ

∂t
. (4.54)

In addition, a slight modification of the analysis at the beginning of this section,
replacing ξ∗ by η, shows that the operator L is symmetric, by which we mean that∫

V
ξ(Lη) dV =

∫
V

η(Lξ) dV (4.55)

for any two quantities ξ(r, t) and η(r, t).
We can now find criteria for stability and instability.
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4.4.2.1 Stability

We show here that if the quantity

W (t) =
∫

V
ξ(Lξ) dV (4.56)

is negative for all non-zero ξ , then the configuration is stable. To keep the algebra
simple, we assume that ξ is real. If this does not hold, then the same analysis results
by setting one of the ξ on the r.h.s. to ξ∗ and then taking the real part.

We note first that, since L is symmetric,

dW

dt
= 2

∫
V

∂ξ

∂t
· (Lξ) dV . (4.57)

We then consider the quantity

K(t) = 1

2

∫
V

ρ
∂ξ

∂t
· ∂ξ

∂t
dV , (4.58)

which represents the kinetic energy of the perturbation. It is clearly positive
definite. Evidently,

dK

dt
=
∫

V
ρ

∂2ξ

∂t2
· ∂ξ

∂t
dV , (4.59)

and hence, using eqs. (4.53) and (4.57), we deduce that

dK

dt
= 1

2

dW

dt
. (4.60)

Integrating with respect to t, this then implies that

2K(t) = W (t) + 2E, (4.61)

where E is a constant. Since by assumption W (t) < 0 at all times t, we conclude that

K(t) < E (4.62)

at all times t. Thus the kinetic energy of the perturbation is bounded above, and
the configuration is stable.

4.4.2.2 Instability

We now show that if we can find some function η(r) such that

W0 =
∫

V
η · (Lη) dV > 0, (4.63)

then the original configuration is unstable.
We begin by defining ω0 > 0 by

W0 = ω2
0

∫
V

η · η dV . (4.64)
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We then consider a perturbation of the fluid configuration such that at time t = 0
the displacement is given by

ξ(r, 0) = η(r) (4.65)

and the perturbed velocity is given by

∂ξ

∂t
= ω0η. (4.66)

Then, by construction, at time t = 0, and therefore for all time t > 0, we have
2K = W and hence E = 0.

We now consider the quantity I(t) defined by

I(t) =
∫

V
ρξ · ξ dV . (4.67)

Differentiating twice, we find simply that

1

2

d2I

dt2
= 2K + W , (4.68)

and so in this case

d2I

dt2
= 8K . (4.69)

We now use the Schwarz inequality in the following form:(∫
V

ρξ · ∂ξ

∂t
dV

)2

≤
(∫

V
ρξ · ξ dV

)(∫
V

ρ
∂ξ

∂t
· ∂ξ

∂t
dV

)
(4.70)

to show that (
1

2

dI

dt

)2

≤ I × 2K . (4.71)

We then substitute for K from eq. (4.69) to show that

d

dt

(
1

I

dI

dt

)
≥ 0. (4.72)

Because of the initial conditions we have chosen for the perturbation, we know
that at t = 0, I(dI/dt) = 2ω0 > 0. We therefore conclude that, for all times t ≥ 0,

1

I

dI

dt
≥ 2ω0, (4.73)

and hence that

I(t) ≥ I(0) exp(2ω0t), (4.74)

and that the perturbation grows exponentially without limit.
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4.4.2.3 Stability criterion

We conclude from all this that a necessary and sufficient condition for stability is
that W defined in eq. (4.56) is negative for all vector fields ξ . This is the global
criterion we have been seeking, and we can use it to decide stability.

4.5 The Schwarzschild stability criterion

As an example we demonstrate how the above analysis gives a criterion for the
stability of a fluid against convection.

We start from the equation describing the evolution of the perturbation,
eq. (4.30):

ρ
∂2ξ

∂t2
= −∇p′ − ρ′∇�. (4.75)

The equation which describes the adiabaticity of the perturbations, eq. (4.34) can
be written as follows:

ρ′ = ρ

γ p
p′ − ρ(A · ξ), (4.76)

where the quantity A is given by

A = 1

ρ
∇ρ − 1

γ p
∇p. (4.77)

We now recall that the r.h.s. of eq. (4.75) is just Lξ . We then multiply this equation
by ξ , use eq. (4.76) to eliminate ρ′, recall that ∇� = −∇p/ρ and integrate over
the volume of the fluid, to obtain∫

V
ξ · (Lξ) dV =

∫
V

dV

{
p′divξ + p′

γ p
(ξ · ∇p) − (ξ · ∇p)(A · ξ)

}
, (4.78)

where we have integrated the first term by parts and assumed that the perturbation
vanishes on the boundary.

We can simplify this by using the mass conservation equation in the
following form:

divξ = −ρ′

ρ
− 1

ρ
ξ · ∇ρ, (4.79)

to replace divξ in the first term on the r.h.s., and by then using eq. (4.76) to eliminate
ρ′. Then two of the terms cancel and we obtain finally∫

V
ξ · (Lξ) dV = −

∫
V

dV

{
(p′)2

γ p
+ (ξ · ∇p)(A · ξ)

}
. (4.80)
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Now by the definition of A in eq. (4.77) we see that ∇p and A are either parallel
or anti-parallel. We also note that, since the entropy S ∝ ln(p/ργ ),

A = − 1

γ
∇S. (4.81)

Then, if entropy increases upwards, so that ∇p · A > 0, we have that W > 0 for
all ξ , and therefore stability. On the other hand, if somewhere in the fluid entropy
increases downwards, so that in some region of the fluid ∇p · A < 0, then we can
choose a vector function ξ which is sufficiently concentrated in that region that
W < 0, and we have instability.

We conclude that the fluid is stable if and only if the entropy and pressure
gradients are anti-parallel. Or, since in equilibrium gravity is anti-parallel to the
pressure gradient, we conclude that the fluid is unstable if and only if entropy
decreases downwards in the direction of gravity. This is the Schwarzschild criterion
for convective instability. It implies, loosely speaking, that the fluid is stable if the
hotter (higher entropy ) fluid is on top and that convection sets in if the hotter
(higher entropy) fluid is underneath. This corresponds directly to what we see
when heating water from below, for example in a saucepan. In stars we often have
stability against convection, even though the temperature decreases outwards. This
is because the decrease in density ρ is sufficiently rapid that the specific entropy
∝ ln(p ρ−γ ) nevertheless increases outwards.

We can understand the Schwarzschild criterion by a simple physical argument,
where we consider a fluid element displaced vertically upwards. Once it comes
into pressure equilibrium with its new surroundings, we can see that it will fall
back (stability against convection) provided that its density ρ is higher than
its surroundings, i.e. provided that its entropy is lower than its surroundings.
Assuming that the displacement was adiabatic, i.e. rapid enough for the element
to conserve its entropy, this amounts to requiring entropy to decrease outwards in
the unperturbed star, as the Schwarzschild criterion requires. In regions of stars
where the Schwarzschild criterion fails, i.e. where entropy increases outwards,
convection acts as an extremely efficient means of transporting energy out through
the star. In fact, it is so efficient that the Schwarzschild criterion has only to be
very slightly violated for the convection to carry the entire luminosity of the star.
This is very convenient, for in many cases one can replace a detailed description of
the convection with the simple condition that the entropy is constant, i.e. that the
Schwarzschild criterion is only marginally violated.

4.6 Further reading

A description of the construction of models of stars is given in Clayton (1983,
Chap. 6). Further clarification about the treatment of Eulerian and Lagrangian
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perturbations is given in Cox (1980, Chap. 5), who also discusses the Schwarzschild
stability criterion (Chap. 17).

4.7 Problems

4.7.1 The equations governing the adiabatic perturbations, ξeiωt , of a spherical star can
be manipulated to yield the following expression:

I [ξ ]ω2 = K[ξ ], (4.82)

where

I =
∫

ρξ∗ · ξ dV . (4.83)

Show that taking account of the self-gravity of the perturbation gives a term of
the form −ρ∇�′ in the equations of motion. Show that combining this with the
linearized version of Poisson’s equation produces the following term:

G
∫ ∫

div[ρ(r)ξ(r)]div′[ρ(r′)ξ∗(r′)]
|r − r′| dV dV ′ (4.84)

in K[ξ ].
4.7.2 A spherically symmetric star, of radius R and mass M , undergoes small radial

pulsations. The radial displacement vector is ξ = rη(r)r̂. The pulsation frequency ω

satisfies the equation

ω2I = K , (4.85)

where

I =
∫ R

0
ρr4η2 dr (4.86)

and

K =
∫ R

0

{
γ pr4

(
dη

dr

)2

− r3η2 d

dr
[(3γ − 4)p]

}
dr. (4.87)

If

m(r) =
∫ r

0
4πr2ρ dr, (4.88)

show that, for a physically reasonable stellar density distribution ρ(r),

m

r3
>

M

R3
. (4.89)

If γ is independent of radius, deduce that

ω2 > (3γ − 4)
GM

R3
. (4.90)

(See Cox (1980, Chap. 8).)
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4.7.3 The equation of motion for a body of fluid in volume V , bounded by surface S, has
the following form:

ρ
d2

dt2
(xi) = − ∂

∂xi

(
p + 1

2µ
B2
)

− ρ
∂�

∂xi
+ ∂

∂xk
(BiBk). (4.91)

Use this to prove the scalar virial theorem, which states that

1

2

d2I

dt2
= 2T + W + 3(γ − 1)U + M + S, (4.92)

where

I =
∫

V
r · rρ dV , (4.93)

M is the magnetic energy defined by

M = 1

2

∫
V

B2 dV , (4.94)

T is the kinetic energy,

T = 1

2

∫
V

(
dxi

dt

dxi

dt

)
ρ dV , (4.95)

W is the gravitational energy ,

W = 1

2

∫
V

ρ� dV = −G
∫

V
ρr · ∇� dV , (4.96)

and U is the internal (thermal) energy,

U = 1

γ − 1

∫
V

p dV , (4.97)

and the surface integral S is given by

S = −
∫

S

(
p + 1

2
B2
)

r · dS + 1

µ

∫
(r · B) B · dS. (4.98)

Assume p = (γ − 1)ρe, with γ constant. (See Sturrock (1994, Chap. 12).)
4.7.4 Consider a fluid at rest, occupying volume V , with pressure distribution p(r), density

distribution ρ(r) in a fixed gravitational field g = −∇�(r) and permeated by a
magnetic field B(r). Write down the equation describing the hydrostatic equilibrium.

The configuration undergoes a small oscillatory perturbation with displacement
vector ξ(r)eiωt and with div ξ = 0. If the perturbation to the magnetic field is
b(r)eiωt , show that

bi = Bj
∂ξi

∂xj
− ξj

∂Bi

∂xj
(4.99)

and deduce that div b = 0.
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Assuming (without proof) that all surface integrals vanish when integrating by
parts show that

ω2
∫

V
ρ ξ∗

i ξj dV =
∫

V
ξ∗

i ξj
∂2

∂xi∂xj

[
p + 1

2
B2
]

dV +
∫

V
ρ ξ∗

i ξj
∂2�

∂xi∂xj
dV

+
∫

V

(
Bj

∂ξ∗
i

∂xj

)(
Bk

∂ξi

∂xk

)
dV

and hence that ω2 is real.
Now consider a particular configuration in which the fluid is vertically stratified

with p(z) and ρ(z) in a constant gravitational field g = (0, 0, −g), and with a
horizontal magnetic field B = (B(z), 0, 0). Write down the equilibrium equation
for this configuration.

By considering the perturbation ξ = (0, 0, sin ky) in the above expression,
comment on how stability depends on the sign of ∂ρ/∂z.

Comment also on the stability properties of perturbations of the form ξ =
(0, 0, sin kx).

(Ageneral variational principle for treating the stability of hydromagnetic systems
is presented by Chandrasekhar (1961, Chap. IV).)
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Stellar oscillations – waves in stratified media

In the previous chapter we showed that if a star is stable it oscillates about its
equilibrium configuration when perturbed. To do this we looked at the global
properties of the whole star. We showed that the star acts like an organ pipe in
that it oscillates in a distinct set of modes with a distinct set of frequencies. But
to investigate the details of the oscillation modes of the star, we need to look
at the details of how the oscillations propagate through the star. In line with our
philosophy expressed previously, we shall simplify matters by only considering flat
‘stars’, or equivalently we can think of the analysis as applying to a plane-parallel
atmosphere, whose vertical thickness is small compared with the star’s radius.

To understand the physics of the oscillations, we need to ask what the restoring
forces are. That is, if we perturb the fluid, what tries to push it back to where it was?
We have so far come across two types of restoring force in non-magnetic media,
and we can expect both to operate in a star. They are pressure and buoyancy.

(i) Pressure. If we compress a fluid element, we increase its pressure, and this increase
produces a restoring force. The resulting oscillations are sound waves, with local
speed cs = √

γ p/ρ. Oscillation modes in which pressure is the main restoring force
are called p-modes.

(ii) Buoyancy, or gravity. In a horizontally stratified fluid with gravity g = (0, 0, −g), we
have seen that stability requires that the quantity A (see eq. (4.77)),

A = 1

ρ

dρ

dz
− 1

γ p

dp

dz
, (5.1)

is negative. Such a fluid is stably stratified. If we perturb it in the vertical direction,
gravity acts on the fluid elements to try to restore them to their original positions. It is
clear that we do not need the fluid to be compressible for this to happen. A simple way
to envisage these waves is to regard them as analogous to water waves on the surface of
a pond or the sea. Then it is clear that a vertical displacement of the surface undergoes
a restoring force due to gravity. From the physical quantities g and A, we can define a

78
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relevant frequency N , known as the Brunt–Väisälä frequency, given by

N 2 = −gA. (5.2)

For these oscillations gravity is the main restoring force and they are known as g-
modes. Note that N is real if and only if A < 0, i.e. the Schwarzschild criterion is
satisfied. Thus g-modes propagate freely only in radiative regions of the star and are
evanescent in convective ones.

We now investigate the properties of these modes of oscillation in more detail.

5.1 Waves in a plane-parallel atmosphere

We consider a horizontally stratified fluid with constant gravity g = (0, 0, −g). Thus
in hydrostatic equilibrium the unperturbed values of p(z) and ρ(z) are related by

dp

dz
= −ρg. (5.3)

We first perturb the equation of mass conservation, which is

∂ρ

∂t
+ u · ∇ρ + ρ div u = 0, (5.4)

to obtain, in terms of first-order Eulerian perturbed quantities,

∂ρ′

∂t
+ u · ∇ρ + ρ div u = 0. (5.5)

Similarly, we perturb the momentum equation,

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + g, (5.6)

to obtain
∂u
∂t

= ρ′

ρ2
∇p − 1

ρ
∇p′. (5.7)

Note that we have assumed that gravity is fixed, so that g′ = 0.
Because the unperturbed fluid is independent of time, and of the horizontal

coordinates x and y, we can Fourier transform the equations with respect to
these quantities, or equivalently we write all perturbed quantities in the form

p′ ∝ exp{i(ωt − kxx − kyy)}. (5.8)

Note that now the perturbed quantities are still functions of the vertical coordinate
z. Thus, for example, we regard the pressure perturbation as having the functional
form p′ = p′(z; ω, kx, ky). In addition, we shall write the components of the
perturbed velocity in the following form:

u = (u, v, w). (5.9)
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When we do this, eq. (5.5) becomes

iωρ′ + w
dρ

dz
+ ρ

{
−ikxu − ikyv + dw

dz

}
= 0. (5.10)

Similarly, the three components of eq. (5.7) become

iωu = 1

ρ
ikxp′, (5.11)

iωv = 1

ρ
ikyp′ (5.12)

and

iωw = ρ′

ρ2

dp

dz
− 1

ρ

dp′

dz
. (5.13)

We now need to provide a relationship between p′ and ρ′. As before we shall
assume that the oscillations are adiabatic so that energy is conserved. This implies
that

∂

∂t

(
p

ργ

)
+ u · ∇

(
p

ργ

)
= 0. (5.14)

The first-order Eulerian perturbation of this equation is given by

1

ργ

∂p′

∂t
− γ p

ρ

1

ργ

∂ρ′

∂t
+ w

d

dz

(
p

ργ

)
= 0. (5.15)

Then applying Fourier transforms to this equation yields the following result:

iωp′ − iω
γ p

ρ
ρ′ + ργ w

d

dz

(
p

ργ

)
= 0. (5.16)

It is now more convenient to work in terms of the quantity h′ = p′/ρ, which can be
thought of as being related to the perturbation to the specific enthalpy h = ∫

dp/ρ.
Then eq. (5.11) becomes

u = kxh′

ω
(5.17)

and eq. (5.12) becomes

v = kyh′

ω
. (5.18)

We use these to eliminate the horizontal velocity components u and v from the
analysis. Substituting for u and v, eq. (5.10) becomes

iω
ρ′

ρ
+ w

1

ρ

dρ

dz
+ dw

dz
− i

(k2
x + k2

y )h′

ω
= 0. (5.19)

We replace p′ with h′ in eq. (5.13) to yield

iωw = ρ′

ρ2

dp

dz
− dh′

dz
− 1

ρ

dρ

dz
h′ (5.20)
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and in eq. (5.16) to yield

γ p

ρ

ρ′

ρ
= h′ − w

iργ−1

ω

d

dz

(
p

ργ

)
. (5.21)

We now have three equations for the three variables ρ′/ρ, h′ and w. We note that
the equations do not involve derivatives of ρ′/ρ. Thus we can use eq. (5.21) to
substitute for ρ′/ρ in the other two equations.

Substituting in eq. (5.20), we obtain, after a little algebra,

γ p

ρ

dh′

dz
− ργ−1 d

dz

(
p

ργ

)
h′ = −iw

{
ω

γ p

ρ
− gργ−1

ω

d

dz

(
p

ργ

)}
, (5.22)

where we have used the equilibrium condition that

g = − 1

ρ

dp

dz
. (5.23)

Then, using the fact that the expression for A can be rewritten in the following form:

A = − d

dz

(
p

ργ

)
× ργ

γ p
, (5.24)

we may write the equation as follows:

dh′

dz
+ Ah′ = −iw

{
ω + Ag

ω

}
. (5.25)

Writing eq. (5.21) as
ρ′

ρ
=
(

ρ

γ p

)
h′ + iwA

ω
, (5.26)

we substitute this into eq. (5.19) to obtain an equation for dw/dz in the following
form:

dw

dz
− g

c2
s

w + ih′
[

ω

c2
s

− k2⊥
ω

]
= 0. (5.27)

Here we have used the notation that the horizontal component of the wave vector,
k⊥, is given by

k2⊥ = k2
x + k2

y . (5.28)

Equations (5.25) and (5.27) describe the oscillations. We can put them into
neater form by recalling that N 2 = −Ag and that the vertical displacement of a
fluid element, ξz, is given by

w = iωξz. (5.29)

Using this, we write the equations in the final form:

dξz

dz
− g

c2
s
ξz + 1

c2
s

[
1 − k2⊥c2

s

ω2

]
h′ = 0 (5.30)
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and
dh′

dz
− N 2

g
h′ + (N 2 − ω2)ξz = 0. (5.31)

5.1.1 Local analysis

For any plane-parallel distribution of density and pressure we can now use these two
equations to find the oscillation frequencies, ω, and the structure of the oscillation
modes. We do this for a particular set of oscillations in Section 5.2. Before we do
that, however, it is instructive to look more generally at the kinds of oscillations
that can propagate and to get a feel for the physics involved.

We undertake what is known as a local analysis and obtain a local dispersion
relation, i.e. the relation between wavelength and frequency or wavenumber. We
consider waves which have a vertical wavelength which is very small compared to
the vertical scaleheight of the background distribution. To do this we set

ξz ∝ exp(ikzz) (5.32)

and
h′ ∝ exp(ikzz), (5.33)

where kz � g/c2
s . In this approximation, eq. (5.30) becomes

ikzξz + 1

c2
s

[
1 − k2⊥c2

s

ω2

]
h′ = 0 (5.34)

and eq. (5.31) becomes

(N 2 − ω2)ξz + ikzh′ = 0. (5.35)

These are two linear homogeneous equations, and so for a non-trivial solution
we require the determinant of coefficients to vanish. This yields the following
condition:

k2
z + 1

c2
s
(N 2 − ω2)

[
1 − k2⊥c2

s

ω2

]
= 0. (5.36)

This is the local dispersion relation, which can be written as a quadratic for ω2 in
the following form:

ω4 − (N 2 + k2c2
s )ω

2 + N 2k2⊥c2
s = 0, (5.37)

where k is the full wavevector given by k2 = k2⊥ + k2
z .

In Fig. 5.1, we consider the local propagation properties of the oscillations in
the (k2⊥, ω2)-plane. For mode propagation to take place we need both k2⊥ ≥ 0 for
horizontal propagation and k2

z ≥ 0 for vertical propagation. In addition, we need
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�2 P

G

�2 = cs
2 k⊥

2

�2 = N 2

k⊥
2

Fig. 5.1. The (k2⊥, ω2)-plane for stellar oscillations. The allowed regions for
propagation of p- and g-modes are denoted ‘P’ and ‘G’, respectively.

k2 > 0, so that at least one of k2⊥ and k2
z must be non-zero. The condition that

k2
z ≥ 0 requires one, and only one, of the brackets in eq. (5.36) to be negative. The

areas in the (k2⊥, ω2)-plane in which propagation occurs are shaded in Fig. 5.1 and
are marked ‘P’ and ‘G’. They are separated from the areas in which propagation
cannot occur by the lines on which k2

z = 0, on which the propagation is in the
horizontal direction only. These lines are given by

ω2 = N 2, (5.38)

which represents horizontally propagating gravity waves, and

ω2 = k2⊥c2
s , (5.39)

which represents a sound wave which propagates horizontally with no
z-dependence, known as the Lamb wave. The nature of the waves which propagate
in region P can be seen by considering their behaviour in the limit of ω2 → ∞ at
fixed k2⊥. Taking this limit in eq. (5.37), or equivalently taking the limit g → 0 or
N 2 → 0, we obtain

ω2 ≈ k2c2
s . (5.40)

This, as we saw in Chapter 2, is the dispersion relation for sound waves. Thus the
oscillations propagating in region P are the acoustic modes, or p-modes.

The nature of the waves propagating in the shaded region G follows from taking
the limit in eq. (5.37) of low frequency ω2 → 0, or by letting the sound speed be
very large (c2

s → ∞), which is equivalent to regarding the fluid as incompressible.
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In this limit the dispersion relation, eq. (5.37), becomes

ω2 ≈ N 2 k2⊥
k2

. (5.41)

From the presence of the N 2 term, we see that here the restoring force is gravity.
These are the gravity waves, or g-modes. We note that the waves need non-zero k⊥
in order to propagate. Thus, these waves cannot propagate purely vertically. These
waves are analogous to surface waves on water, but propagate within the body of
the fluid because of the local buoyancy. They are also known as internal buoyancy
waves.

The propagation properties of these waves are peculiar. The phase velocity , i.e.
the direction and speed at which the wave crests travel, is in the direction of the
wavevector and is given by

vs = ω

k
k̂. (5.42)

However, the group velocity of the waves, which is the direction and speed at
which the waves transport energy and momentum, is given by vg = ∂ω/∂k. Using
eq. (5.41) we find that for these waves

vg = ωkz

k2⊥
k̂ ∧ (k̂ ∧ ẑ). (5.43)

From this we see that the group velocity is perpendicular to the phase velocity!
Thus energy and momentum are carried parallel to the wave crests.

5.2 Vertical waves in a polytropic atmosphere

We now consider an example of how to use the wave equations we derived above to
compute a set of oscillation modes in a particular distribution of fluid. We consider
a fluid which is horizontally stratified, with constant gravity g = (0, 0, −g). We
take the equation of state of the unperturbed fluid to be polytropic so that the
unperturbed values of p(z) and ρ(z) are related by

p = Kρ1+1/m, (5.44)

where K is a constant, and m > 0 is also a constant, known as the polytropic index.
We consider only those modes which propagate in the vertical direction. These are
the equivalent of radial oscillation modes in a star. From our discussions above
we already know that we expect these modes to be p-modes, because the g-modes
cannot propagate vertically.
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5.2.1 Equilibrium distribution

We must first determine the pressure and density distributions in the fluid. To do
this we combine the equation of hydrostatic equilibrium,

dp

dz
= −gρ, (5.45)

with the polytropic equation of state, eq. (5.44), to find that

ρ(z) =
[

g

(m + 1)K

]m

(−z)m. (5.46)

Here we note that this only describes the density in the region z < 0. We take the
density to be zero in the region z > 0, so that the fluid represents a portion of a
stellar atmosphere and has a surface which we have chosen to be at z = 0. For
algebraic convenience we let x = −z, and thus the edge of the atmosphere is at
x = 0 and it extends to positive x. We then find that ρ ∝ xm, pressure p ∝ xm+1

and temperature T ∝ x. Thus the temperature increases linearly with the distance
from the surface. We also find that the sound speed is given by

c2
s = γ g

m + 1
x (5.47)

and that the buoyancy, N 2/g = −A, is given by

N 2

g
= (γ − 1)m − 1

γ x
. (5.48)

We note that the fluid has neutral buoyancy if it has uniform entropy, that is if
γ = 1 + 1/m. And, as we expect from the Schwarzschild criterion (Section 4.5),
stability (i.e. N 2 ≥ 0) requires γ ≥ 1 + 1/m.

5.2.2 The governing equation

To look at the details of vertically propagating waves, we set k⊥ = 0 in eqs. (5.30)
and (5.31) to obtain

c2
s

dξz

dz
− gξz + h′ = 0 (5.49)

and
dh′

dz
− N 2

g
h′ + (N 2 − ω2)ξz = 0. (5.50)

We take eq. (5.49) and its derivative to obtain expressions for h′ and dh′/dz in terms
of ξz and its first and second derivatives. These we then substitute into eq. (5.50),
and use eqs. (5.47) and (5.48), to obtain a second-order differential equation for
ξz. Setting x = −z, we find the resulting equation:

c2
s

d2ξz

dx2
+ γ g

dξz

dx
+ ω2ξz = 0. (5.51)
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We note that from eq. (5.47) the coefficient of the first term c2
s ∝ x. As we

expected for vertically propagating waves, the buoyancy term involving N 2 has
dropped out.

5.2.3 Solution of the equation

We have argued that these oscillation modes must just be p-modes. Thus we expect
the character of the waves to be acoustic waves travelling in a medium in which
the sound speed changes along the direction of propagation.† Rather than using
the distance from the top of the atmosphere, x, as the independent variable, it then
makes sense to use time of travel of acoustic waves from the top of the atmosphere,
τ , where

τ =
∫ x

0

dx

cs
. (5.52)

Using eq. (5.47), we find that the relevant substitution is given by

x = 1

4

(
γ g

m + 1

)
τ 2. (5.53)

Using this in eq. (5.51), we find that the governing equation becomes

d2ξz

dτ 2
+ 2m + 1

τ

dξz

dτ
+ ω2ξz = 0. (5.54)

The solution of this equation can be written in terms of Bessel functions:

ξz = τ−m{C1Jm(ωτ) + C2J−m(ωτ)}, (5.55)

where C1 and C2 are constants.
From the mathematical point of view, it makes sense to demand that ξz is finite

at the surface τ = 0. Recalling the property of Bessel functions that Jm(Z) ∼ Zm

as Z → 0, we see that this requires C2 = 0. From a physical point of view, the
surface is defined by having zero pressure outside it. Once the surface is oscillating,
we require that the pressure remains zero at the new position of the surface. Thus
we require that the Lagrangian perturbation, δp = p′ + ξz(dp/dz), vanishes at
z = 0. Note that this is not the same as demanding that p′ vanish there! Noting that
dp/dz = −gρ, this condition becomes

h′ − gξz = 0 (5.56)

† An exactly analogous problem is that of small oscillations of a uniform, vertically hanging chain. There
the square of the wave speed is proportional to the tension, which increases linearly with distance from the
bottom of the chain.
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at z = 0. From eq. (5.49), we see that this is equivalent to the condition that

dξz

dz
= 0 (5.57)

at z = 0.† This gives us the same condition as before, namely C2 = 0.
Because the problem is linear, the other constant C1 is not defined and merely

represents the magnitude of the oscillations. In a real star we would need to set
another boundary condition at the centre of the star, and this would determine the
possible oscillation frequencies ω. To simulate that here, we take the atmosphere
to have a finite depth H at which the base of the atmosphere is fixed.‡ Thus we
demand that ξz = 0 at x = H . If we define τ1 as being the time for a wave to
propagate from the top to the bottom of the atmosphere, i.e.

τ1 =
∫ H

0

dx

cs
, (5.58)

then the oscillation frequencies are given by the condition that ωτ1 = Zi, where
Zi, i = 0, 1, 2, . . ., is one of the infinite set of zeros (Z0 < Z1 < Z2 < · · · ) of the
Bessel function Jm(Z). We see that the boundary conditions have picked out a
discrete set of oscillation frequencies.

5.3 Further reading

The general theory of stellar oscillations can be found in Unno et al. (1979) and
Cox (1980). Wave propagation in plane-parallel atmospheres is discussed in Lamb
(1932, Chap. X). The properties of internal waves in a stratified, incompressible
fluid are discussed by Turner (1973, Chap. 2).

5.4 Problems

5.4.1 A constant gravity, convectively neutral, polytropic, plane-parallel atmosphere has
a zero density surface at x = 0 and a fixed base at x = H . Show that the adiabatic
vertical velocity perturbations of the atmosphere form a set of eigenfunctions of
the form un(x)eiωnt , which satisfy the following orthogonality relation:∫ H

0
f (x)un(x)um(x) dx = δmn, (5.59)

where the function f (x) is to be determined.
How do we determine the eigenvalues?

† For the problem of the swinging chain, this is simply the condition that the bottom of the chain is free to
swing.

‡ For the chain problem, this is equivalent to taking the top of the chain to be fixed.
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5.4.2 A static, gaseous plane-parallel atmosphere rests on a fixed base at z = 0 and is
subject to a fixed gravitational field g = (0, 0, −g(z)), where g(z) = �2z and � is
a constant. The atmosphere is isothermal, with (isothermal) sound speed cs. Show
that the density structure is of the form (0 ≤ z < ∞)

ρ(z) = ρ0 exp(−z2/2H 2), (5.60)

where ρ0 is the density at z = 0 and H is a constant.
The atmosphere is subject to small adiabatic velocity perturbations of the form

u = (0, 0, w(z)eiωt), where ω is the oscillation frequency. What kind of modes
would you expect to find in such an atmosphere, and what kind of modes does this
perturbation represent?

Show that w(z) obeys the following equation:

d2w

dz2
− z

H 2

dw

dz
+ 1

γ

(
ω2

c2
s

− 1

H 2

)
w = 0, (5.61)

where γ is the usual ratio of specific heats.
By considering a series solution about z = 0, or otherwise, show that the oscillation

modes wn(z) with finite kinetic energy E = ∫∞
0

1
2ρw2 dz take the form of

polynomials of degree N = 2n + 1 for n = 0, 1, 2, . . . . Show that the corresponding
oscillation frequencies ωn are given by

ω2
n = (γ N + 1)c2

s

H 2
. (5.62)

5.4.3 A static polytropic atmosphere subject to uniform gravitational acceleration g = gx̂
(where x is measured downwards) has density and pressure given by

ρ = ρ0

( x

H

)m
, p = p0

( x

H

)m+1
, (5.63)

below the surface x = 0, where ρ0, p0, and H are positive constants (in general
1 + 1/m differs from the adiabatic exponent γ = 1 + 1/n of the gas).

Find the linearized equations for the displacement, density perturbation and
pressure perturbation, neglecting self-gravity, and assuming that the displacement
has the following form:

Re[ξ(x) exp(ik · r − iωt)]. (5.64)

Eliminate all variables in terms of the displacement divergence � = ∇ · ξ and obtain
the following equation

z
d2�

dx2
+ (m + 2)

d�

dx
+
[

n(m + 1)

n + 1

ω2

gk
+
(

m − n

n + 1

)
gk

ω2
− kx

]
k� = 0. (5.65)

Make the transformation � = w(x)e−kx and find the solutions of the resulting
equation for w as power series in x. Show that the only solutions for which � is
finite at the surface and decays with depth are those for which w is a polynomial in
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x. Deduce the dispersion relation,

n(m + 1)

(
ω2

gk

)2

− (n + 1)(2N + m)

(
ω2

gk

)
+ (m − n) = 0, (5.66)

where N is a positive integer.
Discuss the behaviour of the frequency eigenvalues ω in the limit of large mode

number N , and identify these solutions as p- and g-modes. (See Lamb (1932,
Chap. X).)
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Damping and excitation of stellar oscillations

In Chapter 5 we considered the various oscillation modes that a star can show
when perturbed in some way. Many types of star are observed to pulsate. Perhaps
the best known are the class known as Cepheids (after the prototype star δ Cephei).
These pulsate primarily in a radial mode, so that we observe the full amplitude
of their oscillations. The period of these oscillations is directly related to the
stellar radius, just as the pitch of an organ note is related to the length of the pipe
producing it, the lowest notes coming from the longest pipes. Finding the star’s
radius in this way gives a measure of its brightness, so that simply by comparing
the periods of two Cepheids we know their relative brightnesses. Thus, with
careful calibration, measuring the period and the apparent brightness of a Cepheid
gives its distance. As Cepheids are bright stars they can be seen in very distant
galaxies and therefore can be used to produce a distance scale of great importance in
astronomy.

However, most stars do not show pulsations of readily observable amplitude.
This must mean that for most stars any oscillations set in motion by perturbations
received during their lives, or in the process of formation, have long since been
damped out in some way. The existence of these damping processes in turn implies
that if a star does pulsate, an excitation mechanism for these pulsations must be
operating. Typically such mechanisms are not dynamical, such as a stellar collision,
but involve physical processes within the star itself. We get considerable insight
into what must be involved in the excitation process by plotting the locations of
known types of pulsating stars on the Hertzsprung–Russell diagram of luminosity
versus effective temperature. Most types of pulsating stars lie in a restricted region
(the ‘instability strip’) of this diagram, that is pulsations are favoured in stars with
effective temperatures Te ∼ 6000–10 000 K.

In this chapter we take a brief look at damping and excitation processes in stars.
As usual, we do so in a very simplified manner in order to bring out the essential
physical ideas, without obscuring them with excessive algebraic complexity.

90
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6.1 A simple set of oscillations

To make things as simple as possible, we consider initially one-dimensional acoustic
oscillations in a box containing a gas of uniform density ρ and uniform pressure p.
Thus we ignore gravity and set g = 0. We assume that the perfect gas law holds,
so that the internal energy (which is proportional to the temperature, e ∝ T ) is
given by the equation of state:

p = (γ − 1)ρe. (6.1)

We assume that variations only occur in the x-direction. The only non-zero
component of the velocity is the x-component, which we write as u. Then the
mass conservation equation to linear order is given by

∂ρ ′

∂t
+ ρ

∂u

∂x
= 0 (6.2)

and the momentum equation is given by

ρ
∂u

∂t
+ ∂p′

∂x
= 0. (6.3)

If, as we have assumed before, the perturbations are adiabatic, then the energy
conservation equation in the form

De

Dt
+ p

ρ
div u = 0 (6.4)

linearizes to become

∂e′

∂t
+ p

ρ

∂u

∂x
= 0. (6.5)

The equation of state in linearized form becomes

p′

p
= ρ′

ρ
+ e′

e
. (6.6)

Since p and ρ are constants, it is now straightforward to combine these equations.
We take the time derivative of eq. (6.3), and eliminate p′ using eq. (6.6) to yield

ρ

p

∂2u

∂t2
= − ∂

∂x

[
∂

∂t

(
ρ′

ρ

)
+ ∂

∂t

(
e′

e

)]
. (6.7)

Then, using eq. (6.2) to replace ρ′, eq. (6.5) to replace e′, and also the equation of
state, eq. (6.1), we obtain the one-dimensional wave equation:

∂2u

∂t2
= c2

s
∂2u

∂x2
, (6.8)

where as usual the sound speed is given by c2
s = γ p/ρ.
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Again, to keep things simple we assume that the box has fixed ends at x = 0
and x = H , at which u = 0, and we also assume that the modes initially have zero
velocity , u = 0, at t = 0. Then the solutions are given by

un(x, t) = U sin(ωnt) sin(nπx/H ), (6.9)

for all integers n = 1, 2, 3, . . ., and where the oscillation frequencies are given by

ωn = nπcs

H
. (6.10)

Note that U is an arbitrary velocity amplitude.
For future reference, we note that from eq. (6.5) the perturbed internal energy

is given by

e′
n(x, t) = Ucs

γ
cos(ωnt) cos

(nπx

H

)
. (6.11)

6.2 Damping by conductivity

We now look at the effect on these oscillation modes of a small thermal conductivity
λ. By ‘small’ in this context, we mean that the effect of the conductivity occurs on
a timescale which is much longer than the period 2π/ωn of the oscillation.

Then the only change to the equations we have used above is the addition of a
conductivity term in the energy equation. Thus, eq. (6.4) now becomes

De

Dt
+ p

ρ
div u = ∂

∂x

(
λ
∂T

∂x

)
. (6.12)

Using the fact that e ∝ T , and thus that e′ ∝ T ′, this equation then linearizes as
follows:

∂e′

∂t
+ p

ρ

∂u

∂x
= �

∂2e′

∂x2
, (6.13)

where � is a constant which is proportional to the conductivity λ of the unperturbed
gas. The analysis then proceeds as before, and the effect of eliminating e′ in eq. (6.7)
is to add an extra term on the r.h.s. of the wave equation for u (eq. (6.8)), which
now takes the following form:

∂2u

∂t2
= c2

s
∂2u

∂x2
− (γ − 1)�

∂3e′

∂x3
. (6.14)

We seek an approximate solution to this equation, making use of the assumption that
� is in some sense small. We therefore take the solution to be of the following form:

u(x, t) = un(x, t) + y(x, t), (6.15)
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where un is given by eq. (6.9) and y is of order �, so that y � un. Then, by
construction, this solution obeys eq. (6.14) to zeroth order in �. To first order in �,
the equation becomes

∂2y

∂t2
= c2

s
∂2y

∂x2
− (γ − 1)�Ucs

γ

(nπ

H

)3
cos(ωnt) sin

(nπx

H

)
. (6.16)

We seek a separable solution of this equation in the form

y(x, t) = f (t) sin
(nπx

H

)
, (6.17)

so that y = 0 at x = 0 and x = H . Here f (t) is an unknown function, which must
obey the following equation:

d2f

dt2
+ ω2

n f = −(γ − 1)�Ucs

γ

(nπ

H

)3
cos(ωnt). (6.18)

This equation represents an oscillator being resonantly forced at its oscillation
frequency. The solution is obtained by looking for a particular integral of the form
f = At sin(ωnt) for some constant fA, and is given by

u = U sin(ωnt) sin
(nπx

H

){
1 − t

τ

}
, (6.19)

where the (damping) timescale τ is given by

τ = 2γ H 2

(γ − 1)n2π2�
. (6.20)

This solution is valid only as long as y � un, or in other words as long as t � τ . We
can see that the effect of a small conductivity is a slow decrease in the amplitude
of the oscillations. In the stellar context, the conduction of heat is carried out by
photons, and so this damping of the wave is known as ‘radiation damping’.

The physical picture of this process is quite simple (Fig. 6.1). At any instant, the
acoustic wave has peaks and troughs in pressure, or equivalently peaks and troughs
in temperature. The effect of the conductivity is to try to even out these peaks and
troughs, and thus to reduce the amplitude of the wave. Physically the evening-out
happens because the parts of the star hotter than the equilibrium temperature cool
by emitting more radiation than they absorb, while the reverse happens in parts
cooler than equilibrium.

6.2.1 An alternative derivation

It is instructive to look at a different derivation of the effects of damping, and one
which more closely mirrors calculations of damping and excitation of oscillations
in real stellar models. We start with eq. (6.14), which describes the effect of
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T �

Fig. 6.1. Damping by conductivity . The temperature perturbation T ′ is plotted at a
particular time in the oscillation cycle. Where T ′ = 0, the temperature gradient and
the heat flow are greatest. Parts of the star hotter than the equilibrium temperature
emit more radiation than they absorb, while the reverse happens in parts cooler
than equilibrium.

a conductivity proportional to � on the standard wave equation for acoustic modes.
We then take the Fourier transform of this equation with respect to time in the form
exp(iωt). To zeroth order in �, this equation becomes one for u(x; ω):

c2
s

d2u

dx2
+ ω2u = 0. (6.21)

This is a Sturm–Liouville problem with a set of eigenfunctions un(x) and a
corresponding set of real eigenvalues ω2

n. By taking the inverse Fourier transform,
we would discover the set of solutions for u(x, t) we found above. We also note that
the eigenfunctions are orthogonal, and can be appropriately normalized, so that we
may write ∫ H

0
unum dx = δnm, (6.22)

where δnm is the Kronecker delta.
We now consider the effect of the term in �, which involves the third spatial

derivative of e′. Because � is a small quantity, we can use the Fourier transform
of the original energy equation, eq. (6.5), i.e.

iωe′ = − p

ρ

du

dx
, (6.23)

to eliminate e′ from eq. (6.14). Thus we obtain an equation for u in the
following form:

(γ − 1)�p

iωρ

d4u

dx4
+ c2

s
d2u

dx2
+ ω2u = 0. (6.24)

We now consider the effect of the small conductive term on the eigenfunction
un, which satisfies the equation

c2
s

d2un

dx2
+ ω2

nun = 0, (6.25)
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with eigenfrequency ωn. To do this we assume as before that the solution to the
perturbed equation is of the form u = un + y, with y � un. But now we can use the
fact that the eigenfunctions of a Sturm–Liouville problem form a complete set, so
that any function y can be written as an appropriate sum over them. Thus we take

u = un +
∑
m�=n

amum, (6.26)

where the coefficients am are of order � and are to be determined. In fact for our
present purposes we are not interested in finding these, but are, rather, interested
in calculating the perturbation to the eigenfrequency ωn. We therefore substitute
eq. (6.26) into eq. (6.24), keeping only terms that are first order in �, to yield

(ω2
n − ω2)un +

∑
m�=n

{(ω2
m − ω2)amum} = 1

iω

(γ − 1)�p

ρ

d4un

dx4
. (6.27)

We now multiply both sides of this equation by un, integrate from zero to H and
use the orthogonal property of the eigenfunctions to give an equation for the new
eigenfrequency ω:

ω2
n − ω2 = 1

iω

(γ − 1)�p

ρ

∫ H

0
un

d4un

dx4
dx. (6.28)

Since we expect the new eigenfrequency to be close to the original one, we let

ω = ωn + iε, (6.29)

where ε � ωn. Then, to first order in ε, we find

ε = (γ − 1)�p

2ω2
nρ

∫ H

0

(
d2un

dx2

)2

dx, (6.30)

where we have integrated by parts twice. This demonstrates that ε > 0. Thus the
quantities which formerly oscillated in the form exp(iωnt) now vary with time as
exp(iωt) = exp(iωnt − εt). These correspond to oscillations which are damped
(since ε > 0), with a damping timescale of τ = 1/ε. This solution is now valid
for all time t > 0 and not just for 0 < t � τ .

6.3 The effect of heating and cooling – the ε-mechanism

For most of their lives, stars radiate because of the release of nuclear energy in their
interiors. For a low-mass main-sequence star like the Sun, the energy production
process involves the conversion of hydrogen to helium in a set of reactions called
the p-p chain, since the first reaction in the process requires the fusion of two protons
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(or hydrogen nuclei). The energy production rate of this process has the following
rough dependence:

εnuc(ρ, T ) ∝ ρTα , (6.31)

where εnuc is the rate of energy release per unit mass and the index α ∼ 3–5. In
more massive stars on the main sequence the fusion of hydrogen to helium proceeds
by a catalytic reaction cycle involving carbon, nitrogen and oxygen nuclei, called
the CNO cycle. The energy production rate for this process can be written as above,
but now with α ∼ 16 − 18. Later in their lives, stars survive by fusing helium nuclei
to form carbon. Since it takes three helium nuclei to form a carbon nucleus, this is
essentially a three-body process, and so has a stronger dependence on the density. It
is also very sensitive to temperature and can typically be written as something like

εnuc(ρ, T ) ∝ ρ2T 40. (6.32)

Energy generation like this means that the energy equation has a source term,
so that

De

Dt
+ p

ρ
div u = H(ρ, e), (6.33)

where H = ρεnuc is the energy generation rate per unit volume and we have used
the fact that for a perfect gas T ∝ e. In linearized form this equation becomes

∂e′

∂t
+ p

ρ

∂u

∂x
= e′ ∂H

∂e

∣∣∣∣
ρ

+ ρ′ ∂H
∂ρ

∣∣∣∣
e
. (6.34)

Proceeding with the analysis as before, the wave equation for u now has some extra
terms and becomes

∂2u

∂t2
= c2

s
∂2u

∂x2
−
(

1

e

∂H
∂e

)
∂e′

∂x
−
(

1

e

∂H
∂ρ

)
∂ρ′

∂x
. (6.35)

We saw above that the nuclear energy generation rate in stars typically depends
much more strongly on T than on ρ. Thus,

∂H
∂ ln e

� ∂H
∂ ln ρ

. (6.36)

This implies that we can, as a first approximation, neglect the ρ′ term in this
equation. This also has the beneficial effect of simplifying the algebra. Including
this term adds little of interest and serves mainly to complicate the analysis. So we
use the equation in the following form:

∂2u

∂t2
= c2

s
∂2u

∂x2
− 1

e2

∂H
∂ ln e

∂e′

∂x
. (6.37)

To study stability we again assume that the heating term has only a small effect
over an individual oscillation cycle, so that we can treat this term as small. Thus we
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start again with a particular oscillation mode which would be present in the absence
of the heating term. As before we choose

un(x, t) = U sin(ωnt) sin(nπx/H ), (6.38)

for which

∂e′

∂x
= −Ucs

γ

nπ

H
cos(ωnt) sin(nπx/H ). (6.39)

Then we assume that adding the small heating term leads, in a first approximation,
to a solution of the following form:

u(x, t) = un(x, t) + y(x, t), (6.40)

where y � un. In this case the equation for y is given by

∂2y

∂t2
= c2

s
∂2y

∂x2
+ 1

e2

∂H
∂ ln e

Ucs

γ

nπ

H
cos(ωnt) sin

(nπx

H

)
. (6.41)

This is very similar to eq. (6.16), we had before, and by essentially the same analysis
we deduce that the oscillations grow in amplitude if ∂H/∂ ln e > 0. This makes
physical sense. During the oscillation cycle, when the gas is most compressed,
it is also hottest. If ∂H/∂ ln e > 0, the energy production mechanism adds yet
more heat to the gas at this stage and the oscillation grows. This is known as
overstability.

This effect is no longer thought to be the driving mechanism for most stellar
pulsations. What happens instead is that either the damping effects of conductivity
overwhelm this type of excitation, or the temperature sensitivity drives the nuclear
burning regions of the star convective. On a historical note, the possibility of this
mechanism led Sir James Jeans (1929) to the conclusion that nuclear fusion was
unlikely to be the process which powers stars.

6.4 The effect of opacity – the κ-mechanism

The mechanism which is now thought to drive most observed large-scale stellar
oscillations is one which taps the outward heat flux. It is caused by the temperature
sensitivity of the thermal conductivity (or, in stellar parlance, the opacity κ).
To investigate this mechanism we need an equilibrium state with a temperature
gradient and a non-zero heat flux down this gradient. For this reason we use as our
illustrative base state the polytropic atmosphere, whose oscillation properties we
discussed in Chapter 4.

There we used the coordinate x to measure distance from the top of the atmosphere
at x = 0, and we assumed a solid base at x = H . The pressure and density were
related by p ∝ ρ1+1/m, and we found ρ ∝ xm, p ∝ xm+1 and T ∝ e ∝ x.
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Perturbing this atmosphere, assuming purely vertical motions, the linearized
mass conservation equation is given by

∂ρ′

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (6.42)

and the linearized equation of motion is given by

ρ
∂u

∂t
= −∂p′

∂x
+ ρ′g, (6.43)

where the gravity g > 0 is fixed and given by hydrostatic equilibrium:

g = 1

ρ

dp

dx
. (6.44)

We assume that the atmosphere is a perfect gas, so that p = (γ − 1)ρe, and the
perturbed equation of state yields

p′

p
= ρ′

ρ
+ e′

e
. (6.45)

Using the mass conservation equation to substitute for div u, the thermal
equation, eq. (6.12), becomes

ρ
De

Dt
= p

ρ

Dρ

Dt
+ ρdiv(λ∇T ). (6.46)

Using the equation of state, this can then be written as follows:

Dρ

Dt
= 1

c2
s

Dp

Dt
− ρ

γ e
div(λ∇T ). (6.47)

In the equilibrium situation, this equation implies that

λ
dT

dx
= const. (6.48)

Since dT/dx = constant, this implies a form for the dependence of the conductivity
λ on density and temperature such that it is constant through the atmosphere. Since
ρ ∝ T m, we can write this dependence as λ(ρ, T ) = F(ρ/T m) for some arbitrary
function F . (Note that this is in general not true for the real physical conductivity ,
but is forced on us by our simplifying assumption that the atmosphere is polytropic.
This does not affect the essential physics of our treatment of the κ-mechanism.)

To keep the algebra simple, we now further assume that the unperturbed
atmosphere is neutrally stable (or marginally unstable) to convection, i.e. γ =
1 + 1/m. This means that A = 0, or equivalently that

∇ρ = 1

c2
s
∇p. (6.49)
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In this case the linearized version of the thermal equation, eq. (6.46), becomes

∂ρ′

∂t
= 1

c2
s

∂p′

∂t
− Q′, (6.50)

where Q′ is the Eulerian perturbation of the quantity Q representing the heat flux:

Q = ρ

γ e
div(λ∇T ). (6.51)

6.4.1 The underlying oscillations: Q′ = 0

We start by considering the oscillations which occur when there is no perturbation
to the heat flux, i.e. Q′ = 0. In fact, we worked out the detailed properties of the
oscillations in this case in Chapter 4. Here we do not need the details, but need to
derive some of their properties, making use of the fact that this is a Sturm–Liouville
problem.

When Q′ = 0 and the atmosphere is convectively neutral, the thermal equation
is simply given by

p′ = c2
s ρ

′. (6.52)

Using this, eqs. (6.42) and (6.43) can be combined to yield

∂2u

∂t2
= ∂

∂x

{
c2

s

ρ

∂

∂x
(ρu)

}
. (6.53)

We now Fourier analyse in time in the form u ∝ exp(iωt) and obtain the eigenvalue
equation describing the oscillation modes as follows:

d

dx

{
c2

s

ρ

d

dx
(ρun)

}
+ ω2

nun = 0. (6.54)

The oscillation modes are orthogonal, and can be normalized, so that∫ H

0
ρumun dx = δmn (6.55)

(see Problem 5.4.1).

6.4.2 Perturbing the underlying oscillations: Q′ �= 0

We now allow the heat flux to vary so that Q′ �= 0. At the same time we assume that
the effect of this term is small in the sense that it takes many oscillation periods to
have an effect. Thus it will produce small perturbations in the oscillation frequency
ωn and in the eigenfunction un(x).
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With this extra term, eq. (6.53) becomes

∂2u

∂t2
= ∂

∂x

{
c2

s

ρ

∂

∂x
(ρu)

}
+ 1

ρ

∂

∂x
[c2

s Q′]. (6.56)

We now consider the perturbation to the mode u0 = un(x) sin(ωnt) in the
following form:

u(x, t) = un(x) sin(ωnt) + y(x, t), (6.57)

where y is small. Substituting this in eq. (6.56), and using the fact that un satisfies
eq. (6.53), we find that y satisfies the following equation:

∂2y

∂t2
− ∂

∂x

[
c2

s

ρ

∂

∂x
(ρy)

]
= G(x) sin(ωnt). (6.58)

Here G(x) is some function of x which comes from substituting the solution un(x),
and the corresponding density ρn(x) and temperature Tn(x), into the term Q′.

As before we look for a solution of the form y = un(x)f (t), which yields[
d2f

dt2
− ω2

n f

]
un(x) = G(x) sin(ωnt). (6.59)

We now use the orthogonality properties of the eigenfunctions. We multiply this
equation by ρun and integrate from 0 to H . This gives an equation for the function
f (t) as follows:

d2f

dt2
− ω2

n f =
[∫ H

0
ρun(x)G(x) dx

]
sin(ωnt). (6.60)

This is a resonantly forced harmonic oscillator, and, as we found before, whether
or not the oscillations grow or damp depends on the sign of the term in square
brackets. This sign depends on the functional form of the dependence of the thermal
conductivity λ on the density ρ and temperature T . Thus if we choose a form of λ

which makes the square bracket positive, the perturbations will grow and the star
oscillates.

The physics of the instability for this choice of λ is not easy to see in simple
terms. What happens in essence is that the temperature and density dependence
of the conductivity manipulate the heat flux through the atmosphere in such a
way that there is a net heat gain by the oscillating gas when it is compressed
(higher density and so higher temperature), raising its temperature still further.
In a real star the temperature sensitivity of the stellar opacity needed to make
this mechanism work occurs at the point where hydrogen changes from being
predominantly neutral (low opacity) to predominantly ionized (high opacity). Then
the hottest gas experiences a sudden increase in opacity as it gains a little heat, so
absorbing more of the stellar radiation flux and raising the temperature still further.
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Such hydrogen ionization zones require temperatures ∼ 6000 − 10 000 K. For this
effect to drive oscillations, there must not be too much mass above the ionization
zone, so the surface (effective) temperature Te must have values of this order also.
This explains the position of the main instability strip in the Hertzsprung–Russell
diagram. For stars with little hydrogen there is another instability strip at higher
effective temperatures corresponding to helium ionization.

6.5 Further reading

More details on excitation mechanisms for stellar oscillations, as well as the
computation of excitation and damping timescales, can be found in Unno et al.
(1979) and in Cox (1980). On a historical note, readers might be intrigued by the
discussion of Jeans (1929, Chap. IV), who uses a simple stability analysis to try to
constrain possible stellar energy-generation mechanisms.



7

Magnetic instability in a static atmosphere

In Chapter 4 we considered the stability of a static fluid configuration against
convective instabilities, or buoyancy. We found that for stability the specific entropy
must increase upwards. In this chapter we again consider the stability of a static
atmosphere, but with the complication of an added magnetic field. We shall find that
the magnetic field can act either to stabilize or to de-stabilize the fluid. It is possible
to derive a variational principle for perturbations of a fluid containing a magnetic
field, just as we did for a non-magnetic fluid in Chapter 4 (see Problem 4.7.4).
Of course, the expressions we would derive in doing so contain all the information
required to decide stability. But we found in Chapter 4 that we had to manipulate
carefully the expressions we derived in the variational principle to extract a useful
stability criterion – the Schwarzschild criterion. Adding a magnetic field makes the
expressions in the variational principle much more complex, simply because the
geometry of the magnetic field and its interaction with the fluid add more degrees of
freedom, and there is no simple stability criterion. Accordingly we adopt a simpler,
less comprehensive, approach here.

There are some guiding concepts with which a theoretical astrophysicist should
be familiar, and we illustrate these here. We discuss the two distinct, but often
confused, modes of instability – the buoyancy instability and the Parker instability.
As before we keep try to keep the situation simple, in order to bring out the physics
of the situation without obscuring it in mathematical detail. Even so, the inclusion
of a magnetic field to the perturbation equations does considerably increase the
degree of mathematical complexity.

7.1 Magnetic buoyancy

We consider an atmosphere with uniform gravity g = (0, 0, −g) in Cartesian
coordinates and with a horizontal magnetic field B = (0, B(z), 0). The equation
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of hydrostatic equilibrium is simply given by

d

dz

(
p + 1

2
B2
)

= −ρg. (7.1)

We consider an equilibrium magnetic field which is zero in the upper half-space,
i.e. B = 0 for z > 0, and uniform in the lower half-space, B = (0, B0, 0) for z < 0,
where B0 is a constant. Thus the field has a sharp boundary at z = 0, and there is a
sheet current of the form j = (Jδ(z), 0, 0) flowing in the z = 0 plane.

Integrating eq. (7.1) across the z = 0 plane, we see that the total pressure P (gas
plus magnetic, i.e. P = p + B2

0/2) must be continuous across z = 0. Thus if the gas
pressure just below z = 0, i.e. at z = 0−, is p = p0, the gas pressure just above, at
z = 0+, must be p = p0 + �p, where �p = B2

0/2. We assume that the gas obeys
the perfect gas law, p = (R/µ)ρT . We must also require that the temperature T
is continuous at z = 0, for otherwise there would be an infinite heat flux at that
point, however small the conductivity . We conclude from all this that there must
be a jump in the density at z = 0. If the density at z = 0− is ρ = ρ0 and the density
at z = 0+ is ρ = ρ1, then

Rρ1T

µ
= Rρ0T

µ
+ 1

2
B2. (7.2)

Alternatively we may write ρ1 = ρ0 + �ρ, where

�ρ

ρ0
= V 2

A /2

RT/µ
. (7.3)

Here, VA is the Alfvén speed in z < 0, where V 2
A = B2

0/ρ0.
Thus equilibrium requires that we have a heavy fluid above a light one in a

gravitational field. This happens because the magnetic field provides pressure,
but no mass. It seems likely that this situation is unstable, and, as we now show,
this is indeed the case. To simplify the analysis still further, we consider instability
over a region very close to the plane z = 0, in particular a region which is much
smaller than the atmospheric scaleheight H ∼ p0/gρ0. This means that we can
assume the unperturbed pressures and densities to be uniform. Moreover we shall
consider only perturbations for which the perturbed velocity obeys div u = 0. This
is a useful device which implies that Lagrangian density perturbations vanish,
δρ = 0, and so cuts out the possibility of acoustic waves. Since we expect any
instability in this situation to be caused by gravity (g-modes) rather than by sound
waves (p-modes), this has the effect of simplifying the analysis without excluding
any of the essential physics.

We consider a perturbation to the magnetic field of the form B = B0 + b, where
b = (bx, by, bz) is small, and a small resulting velocity of the form u = (u, v, w).
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The linearized induction equation is then given by

∂b
∂t

= curl(u ∧ B0). (7.4)

Expanding this expression and using the imposed condition div u = 0, we obtain

∂b
∂t

= B0
∂u
∂y

. (7.5)

The linearized form of the momentum equation, including the magnetic terms,
is given by

ρ
∂u
∂t

= −∇p′ − B0 ∧ (curl b). (7.6)

In terms of components, this expands to yield

ρ
∂u

∂t
= −∂p′

∂x
+ B0

[
∂bx

∂y
− ∂by

∂x

]
, (7.7)

ρ
∂v

∂t
= −∂p′

∂y
(7.8)

and

ρ
∂w

∂t
= −∂p′

∂z
+ B0

[
∂bz

∂y
− ∂by

∂z

]
. (7.9)

We note first that by taking the curl of eq. (7.6), and using eq. (7.5), we obtain
an equation for the vorticity, ω = ∇ ∧ u, of the perturbed velocity field:

∂2ω

∂t2
= V 2

A
∂2ω

∂y2
. (7.10)

This implies that a perturbation which has vorticity is propagated away along the
field lines as an Alfvén wave in the y-direction. Such perturbations therefore do
not lead to instability. Thus we need only consider perturbations which have zero
vorticity, for which curl u = 0. For such perturbations we may write

u = −∇�, (7.11)

where � is the velocity potential, and, since div u = 0, we also have that � obeys
Laplace’s equation:

∇2� = 0. (7.12)

We now take Fourier transforms so that all perturbed quantities vary as
∝ exp {iωt + ik · r}. To ensure that �, and therefore the other quantities, obey
Laplace’s equation, we need to place a constraint on the components of k.
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In the lower half-space z < 0, we need to write

� = �0 exp {iωt + ikxx + ikyy + (k2
x + k2

y )1/2z}, (7.13)

where �0 is a constant, the magnitude of kz = k⊥ = (k2
x +k2

y )1/2 is chosen such that
Laplace’s equation is satisfied, and its sign is chosen to ensure that the perturbation
vanishes at large distances, i.e. � → 0 as z → −∞.

Similarly in the upper half-space z > 0, we need to write

� = �1 exp {iωt + ikxx + ikyy − (k2
x + k2

y )1/2z}, (7.14)

where �1 is a constant, the magnitude of kz = k⊥ is chosen such that Laplace’s
equation is satisfied, and its sign is chosen to ensure that the perturbation vanishes
at large distances, i.e. � → 0 as z → +∞.

There are two boundary conditions which we must apply at z = 0. First we
must ensure that the vertical velocity is continuous across the boundary. Otherwise
the two fluid regions would come apart! The vertical component of the velocity is
given by w = ∂�/∂z. Evaluating these in the upper and lower half-planes, and
equating them at z = 0, we obtain

�0 = −�1. (7.15)

Second, by integrating eq. (7.9) across the boundary,
∫ ε

−ε
dz, and then letting

ε → 0, we find that the perturbation to the total pressure P = p + B2/2 (gas plus
magnetic) given by

P′ = p′ + B0by (7.16)

must be continuous across the boundary.
We note that the boundary in the perturbed fluid is at

z = ζ exp {iωt + ikxx + ikyy}, (7.17)

where ζ is the z-component of the Lagrangian displacement and is related to the
vertical velocity perturbation by w = iωζ . Thus, just above the boundary at z = 0+
we have

iωζ = +k⊥�1, (7.18)

and just below the boundary at z = 0− we have

iωζ = −k⊥�0. (7.19)

Since the boundary is no longer at z = 0 we must apply the condition that it is the
Lagrangian perturbation of the total pressure, δP = P′ + ξ · ∇P = P′ − ζρg,
which is continuous at z = 0. Note that here we have used the equilibrium condition
∇P = (0, 0, −gρ). Thus to apply the second boundary condition we have that

p′
1 − ζρ1g = p′

0 + B0by − ζρ0g, (7.20)
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where both sides are to be evaluated at z = 0. To do so we need expressions for p′
1,

p′
0 and by. From the y-component of eq. (7.5), using the fact that v = −∂�/∂y, we

have in z < 0 that

iωby = B0k2
y �0. (7.21)

From eq. (7.8) we have in z < 0 that

iω�0 = p′
0

ρ0
(7.22)

and in z > 0 that

iω�1 = p′
1

ρ1
. (7.23)

Putting all this together, the second boundary condition (eq. (7.20)) becomes

iωρ1�1 − ρ1g
k⊥�1

iω
= iωρ0�0 + B2

0

k2
y �0

iω
+ ρ0g

k⊥�0

iω
. (7.24)

Tidying this up, and using the first boundary condition (which yielded �0 = −�1),
this gives a dispersion relation for the modes:

ω2 = −gk⊥(ρ1 − ρ0) − ρ0V 2
A k2

y

ρ0 + ρ1
. (7.25)

This fluid configuration is unstable for those modes with ω2 < 0, i.e. for those
modes with

k2
y <

gk⊥
V 2

A

�ρ

ρ0
. (7.26)

The most unstable modes, i.e. those with the most negative value of ω2, are those
with ky = 0. These modes have no y-dependence. Since the field is in the y-direction,
this implies that the fluid motions are all perpendicular to the field. Thus the field
lines are not stretched, and so no extra magnetic energy is created. From an
energy point of view these modes can tap gravitational energy by interchanging
fluid elements of different density in the gravitational field, without paying a penalty
in magnetic energy by having to stretch field lines.

This instability is simple magnetic buoyancy . It is the analogue of the convective
instability and comes about because the magnetic field provides the pressure but no
mass. Thus in pressure equilibrium matter containing magnetic field is lighter than
matter without. As we have seen, it operates even when the fluid is incompressible.

7.2 The Parker instability

The concept of a buoyancy instability driven by magnetic fields contributing
pressure but no mass is easily visualized when the fluids (or the perturbations) are
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incompressible. However, most astronomical fluids are not incompressible, and the
modes by which buoyancy can drive an instability are different from those derived
above. We sketch here the analysis of a simple problem given by Parker (1979),
which serves to illustrate the physical differences.

We consider again a stratified atmosphere with fixed gravity, g = (0, 0, −g),
and horizontal magnetic field, B0 = (0, B0(z), 0), lying in the y-direction. Thus,
although div B0 = 0, we have curl B0 �= 0, and there is a current proportional
to −∂B0/∂z in the x-direction. We take the equation of state of the unperturbed
atmosphere to be isothermal, so that density and pressure are related by p = c2

isρ,
where cis is the isothermal sound speed. For simplicity we assume that the magnetic
field is such that the magnetic pressure is a constant fraction α of the gas pressure,
i.e. B2

0/2 = αp. Then the equilibrium equation (eq. (7.1)) yields the following
solutions:

p(z) = p0 exp(−z/H ), (7.27)

ρ(z) = ρ0 exp(−z/H ) (7.28)

and

B0(z) = B00 exp(−z/2H ), (7.29)

where the scaleheight H is given by

H = (1 + α)c2
is

g
. (7.30)

Here p0, ρ0 and B00 are all constants, being values of the quantities at the reference
level z = 0.

We now write down the linearized perturbation equations. The equation of mass
conservation is given by

∂ρ′

∂t
+ w

dρ

dz
= −ρ div u. (7.31)

We assume that the perturbations are adiabatic, so that δp = (γ p/ρ)δρ. Since
the basic atmosphere is isothermal, this means, according to the Schwarzschild
criterion, that, in the absence of a magnetic field, it is stable to convection. The
mass conservation equation becomes

∂p′

∂t
= γ c2

is
∂ρ′

∂t
− (γ − 1)c2

isρw

H
. (7.32)

The linearized induction equation,

∂b
∂t

= curl(u ∧ B0), (7.33)
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has three components:

∂bx

∂t
= B0

∂u

∂y
, (7.34)

∂by

∂t
= −B0

∂u

∂x
− B0

∂w

∂z
+ B0

w

2H
(7.35)

and
∂bz

∂t
= B0

∂w

∂y
. (7.36)

In the linearized momentum equation we need to recall that curl B0 �= 0, so it is
given by

ρ
∂u
∂t

= −∇p′ − B0 ∧ (curl b) − b ∧ (curl B0) + ρ′g. (7.37)

This has the following three components:

ρ
∂u

∂t
= −∂p′

∂x
+ B0

{
∂bx

∂y
− ∂by

∂x

}
, (7.38)

ρ
∂v

∂t
= −∂p′

∂y
− B0

{
bz

2H

}
(7.39)

and

ρ
∂w

∂t
= −∂p′

∂z
+ B0

{
∂bz

∂y
− ∂by

∂z
+ by

2H

}
− gρ′. (7.40)

In total we now have eight partial differential equations for the eight variables
b, u, p′ and ρ′. If the unperturbed atmosphere were uniform, the obvious thing to
do next would be to Fourier transform with all variables ∝ exp(iωt + ik · r). We
would then be left with eight linear, homogeneous, algebraic equations, leaving an
8 × 8 determinant to be evaluated to give us the dispersion relation. Parker’s trick
was to realize that something similar can be achieved by making the following
assumptions about the behaviour of the variables. We take

p′ ∝ exp(iωt + ik · r) × exp(−z/2H ), (7.41)

ρ′ ∝ exp(iωt + ik · r) × exp(−z/2H ), (7.42)

u ∝ exp(iωt + ik · r) × exp(+z/2H ) (7.43)

and

b ∝ exp(iωt + ik · r). (7.44)

These relationships imply that both the magnetic energy perturbation, b2, and
the kinetic energy perturbation, ρu2, are independent of z. By making these
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substitutions we then find that the resulting algebraic equations are linear
and homogeneous. Importantly the exponential z-dependence of the quantities
describing the unperturbed atmosphere cancels out. We are then left with an
8 × 8 determinant to evaluate in order to obtain the dispersion relation. This
necessitates a large amount of messy, but straightforward, algebra, which we leave
to the reader’s imagination and omit. To make the algebra simpler, the resulting
dispersion relation is given by Parker (1979) in terms of dimensionless quantities.
We define a dimensionless frequency � in terms of the time for an isothermal wave
to cross a scaleheight,

� = ωH

cis
, (7.45)

and a dimensionless wavevector, in terms of the scaleheight,

q = Hk. (7.46)

With these the full dispersion relation is given by

�4−�2(2α + γ )[q2
y + q2

z +1/4] + q2
y{2αγ (q2

y + q2
z +1/4)−(1+ α)(1+ α−γ )}

+ q2
x

2α(q2
x + q2

y)−�2
[γ�4− �2{2αγ q2

y − 2α(2α + γ )q2
z + (γ −1)+(1/2)αγ }

− 4α2γ q2
y(q

2
z + 1/4)] = 0. (7.47)

This is a sixth-order equation for �, or because of time-symmetry a cubic
equation for �2. On physical grounds, we expect the roots to come in pairs, with
one pair representing (magnetically modified) acoustic waves, one representing
(magnetically modified) buoyancy waves and one representing magnetic (torsional
or Alfvén) waves. In the previous section we were able to simplify the analysis by
removing the acoustic waves by setting div u = 0 and the magnetic waves by
taking curl u = 0. Here we do not have that luxury. Nevertheless, we still expect
any instability to come through buoyancy waves. However, we have already seen
that in the absence of a field the unperturbed atmosphere is buoyantly stable.

We do not attempt a general analysis of the dispersion relation, but rather consider
two simple types of modes.

7.2.1 Modes with ky = 0

Since the unperturbed magnetic field lies in the y-direction, if we set ky = 0, or
equivalently qy = 0 or ∂/∂y = 0, the fluid motions are perpendicular to the field
and so do not stretch the field lines. In the incompressible case, these were the most
unstable modes, because such fluid motions did not change the magnetic energy.
The dispersion relation now becomes

�2[�4 − �2(2α + γ )(q2
x + q2

z + 1/4) + q2
x(α(α + γ ) + γ − 1)] = 0. (7.48)
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Now two of the modes have zero frequency, and so are neutrally stable. This is
because the perturbation in this case does not bend or twist the magnetic field
lines , so that there are no magnetic waves. The remaining equation takes the
following form:

�4 − B�2 + C = 0, (7.49)

where B > 0, implying that the sum of the roots is positive. Thus there is a negative
root for �2, and therefore instability, if and only if C < 0. Thus instability occurs
if and only if

γ < 1 − α. (7.50)

Since the unperturbed atmosphere is isothermal, we already know that if there is
no field (α = 0) then it is unstable to convection if and only if γ < 1, which
does not occur for physical fluids. If a field is added (α > 0) we require an even
smaller value of γ to achieve instability. This means that adding a magnetic field
for these modes (which are the most unstable modes in the incompressible case)
stabilizes them. This happens because for fluid motions perpendicular to the field,
the equation describing the dragging of field lines by the fluid becomes

D

Dt

(
B

ρ

)
= 0. (7.51)

Thus, as the fluid moves the local field varies as B ∝ ρ. This means that the magnetic
pressure, pM, varies as pM = B2/2 ∝ ρ2. Thus pM ∝ ρ2, and the magnetic field
acts like a gas with γ = 2. In an isothermal atmosphere this is stabilizing.

7.2.2 Modes with kx = 0, ky �= 0

We now look at modes which vary along the field lines, but where all field lines have
no x-dependence and so remain locally parallel to each other; thus, the field lines
are distorted. In the incompressible case we found that this contributed a stabilizing
influence. The dispersion relation now becomes

�4 − �2(2α + γ )(q2
y + q2

z + 1/4) − q2
y{(1 + α)(1 + α − γ )

− 2αγ (q2
y + q2

z + 1/4)} = 0. (7.52)

We have removed the factor of �2 which corresponds to the two fast magnetosonic
modes. These are not excited because the mode does not compress the field lines.
Once again this equation is of the following form:

�4 − B�2 + C = 0, (7.53)
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with B > 0. Thus we again have instability if and only if C < 0. This requires that

q2
y + q2

z <
(1 + α)(1 + α − γ )

2αγ
− 1

4
. (7.54)

It is then straightforward to show that there is a non-vanishing range of unstable
modes with q2

y + q2
z > 0 if and only if

γ <
(1 + α)2

1 + 3α/2
. (7.55)

Since the r.h.s. is a monotonically increasing function of α for α > 0, this implies
that, for any value of γ , there is instability for some large enough value of α, i.e. for
a large enough field strength.

We now need to ask ourselves why these modes, which were stable for an
incompressible fluid (the limit γ → ∞), become unstable once compressibility is
permitted. The simple answer is that compressibility permits movement of the fluid
along the field lines. These modes produce undulating field lines. The fluid can then
fall to the troughs of the undulations and become denser there, while fluid at the
peaks of the undulations becomes less dense. These motions release gravitational
energy. If the gravitational energy released is more than the magnetic energy
required to undulate the field lines, instability occurs.

7.3 Further reading

More detailed discussion of the analysis given here can be found in Parker (1979,
Chap. 13). Further discussion, and the derivation of a variational principle, can be
found in Chandrasekhar (1961).

7.4 Problems

7.4.1 A perfectly conducting fluid with density ρ(z) and pressure p(z) lies in a constant
vertical gravitational field g and is permeated by a constant vertical magnetic field
B0 = (0, 0, B). It experiences a velocity perturbation of the following form:

u = [u(z), v(z), w(z)] exp{i(kxx + kyy + ωt)}, (7.56)

and the perturbed magnetic field is B = B0 + b. Explain physically why we might
wish to consider perturbations for which div u = 0.

For such perturbations show that

iωb = B
du
dz

. (7.57)

Show that the perturbation equations can be written as fourth-order differential
equations for the vertical component of the velocity perturbation, w, in the
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following form:

d

dz

(
ρ

dw

dz

)
+ B2

ω2

(
d2

dz2
− k2

)
d2w

dz2
= k2ρw + gk2

ω2

(
dρ

dz

)
w, (7.58)

where k2 = k2
x + k2

y .

Using suitable boundary conditions at fixed boundaries z1 and z2, show that ω2

is real.
What waves do these perturbations represent? Under what physical conditions might
we expect ω2 to be negative? (See Chandrasekhar (1961, Chap. X).)
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Thermal instabilities

In this chapter we consider instabilities generated by the effects of heating and
cooling, coupled with the effect of thermal conductivity .The traditional application
of these ideas is to the interstellar medium, but the ideas we generate here have wider
applicability. Thermal instability is extremely common in astronomy, where we
often deal with luminous objects attempting to lose large amounts of heat energy.

We consider a fluid which is initially uniform and fills all space. Since we are
interested in thermal effects, we neglect the effects of gravity. Then the equations
of interest are mass conservation,

∂ρ

∂t
+ div(ρu) = 0, (8.1)

momentum conservation,

ρ
Du
Dt

+ ∇p = 0, (8.2)

and thermal energy conservation in the form

1

γ − 1

Dp

Dt
− γ

γ − 1

p

ρ

Dρ

Dt
= div(λ∇T ) + Q(ρ, T ), (8.3)

where Q(ρ, T ) is the net heat gain per unit volume per unit time. We write Q =
Q+ − Q−, where Q+ is the heating rate and Q− is the cooling rate.

Cooling of astrophysical gases occurs when electrons and molecules in excited
states decay to states of lower energy, emitting photons as they do so. The electrons
may be bound to atoms or free, and excitation may occur by collisions with other
particles or by radiation. For a fixed mass in a fixed volume, the resulting cooling
rate, Q−, is fixed by the excitation rates, and is thus simply a function of temperature,
T . In Fig. 8.1 we show a schematic description of Q−(T ) for the interstellar medium.
A striking feature of this plot is that Q− is a multi-valued function of T .

113
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Fig. 8.1. Typical radiative cooling curve for the interstellar medium. The two
peaks correspond to cooling by molecules and atoms, respectively. At higher
temperatures the gas is almost completely ionized, and cooling is mainly by
transitions between free electron states as thermal electrons are deflected by ions
(free–free, or thermal bremsstrahlung, emission).

Typical heating processes in the interstellar medium include heating by cosmic
rays and by ultraviolet radiation from hot stars. Cosmic rays are energetic element-
ary particles, and they give up their energy to a target fluid by colliding
with its constituent particles. These processes are effectively independent of the
thermodynamic state of the fluid. Hence the cosmic ray heating rate for a fixed
mass of fluid is independent of temperature. Comparing this with the multi-valued
radiative cooling function of the interstellar medium, we see that, for a gas in
which thermal equilibrium balances radiative cooling against cosmic ray heating,
there will be typically more than one possible equilibrium temperature.

In this chapter we consider the stability of these equilibrium points. If, as often
happens, there is more than one possible temperature at which stable equilibrium
can occur, we shall ask what happens at the interface between two such regions at
different temperatures.

8.1 Linear perturbations and the Field criterion

To give a specific example we consider a simple paradigm in which the cooling
function Q−(T ) looks like a cubic, and the heating function Q+(T ) is a constant,
as shown in Fig. 8.2(a). The three intersections of these two curves give the
temperatures at which thermal equilibrium can occur. The net cooling function
Q = Q+ − Q− is sketched in Fig. 8.2, and the equilibrium temperatures are given
by Q = 0.
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T
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0

TT3T2T10

Q (T )

Fig. 8.2. (a) Schematic cubic cooling function Q− for interstellar medium
balanced by a constant heating function Q+. (b) Resulting net heating function
Q = Q+ − Q−. Thermal equilibrium is possible at the three temperatures T1, T2
and T3, where Q = 0.

We start with a uniform gas at rest. We then linearize the equations and assume
that all quantities vary as ∝ exp{iωt + ik · x}. Then the mass conservation equation
becomes

iωρ′ + ρik · u = 0, (8.4)

the momentum equation becomes

iωρu + ikp′ = 0 (8.5)

and the energy equation becomes

iω

γ − 1
p′ − iωγ p

(γ − 1)ρ
ρ′ = −λk2T ′ + Q′. (8.6)

Here Q′ is the perturbed net heating rate, which we can write as follows:

Q′ = Qρρ′ + QT T ′, (8.7)
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where Qρ = (∂Q/∂ρ)T and QT = (∂Q/∂T )ρ . We also need the linearized equation
of state, which for a perfect gas is given by

p′

p
= ρ′

ρ
+ T ′

T
. (8.8)

We note from eq. (8.5) that k is parallel to u, so that any motions will be compressive.
We eliminate u by taking the scalar product of eq. (8.5) with k and substituting in
eq. (8.4). This yields

p′ = ω2

k2
ρ′. (8.9)

Now eqs. (8.6), (8.7) and (8.9) are three linear homogeneous equations for the
quantities ρ′, p′ and T ′. Setting the determinant of the coefficients of these three
quantities to zero, a little algebra gives the dispersion relation in the following
form:

iω

γ − 1

(
ω2

k2
− c2

s

)
− (QT − λk2)

T

p

(
ω2

k2
− c2

s

γ

)
= Qρ . (8.10)

This is a cubic equation for ω. The equations of motion give us two factors of ω, as
we found before in our derivation for the dispersion relation for sound waves, and
the extra factor of ω comes from the time derivative in the thermal energy equation.
Full and detailed discussion of the roots of this cubic equation are to be found in
Field (1965). Here we note the implications in a few simple cases.

8.1.1 Acoustic waves

We note first that if we eliminate all thermal effects by setting λ = 0 and Qρ =
QT = 0, the dispersion relation reduces to

ω2 = k2c2
s , (8.11)

which (as expected) we recognise as the relation describing acoustic waves,
previously derived in Chapter 2.

8.1.2 No net heating or cooling, but small conductivity

If we now set Q = 0 and allow a small, non-zero, conductivity λ, then we can
show (see Problem 8.4.1) that the dispersion relation takes the following form:

ω = ±kcs + iδ, (8.12)

where δ ∝ λ and δ > 0, independent of the sign of ±k. Thus, whichever direction
the sound wave moves, the amplitude of the wave is damped exponentially. In
terrestrial situations where there is little geometrical attentuation, this is the main
way in which sound waves are damped.
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8.1.3 Slow cooling

In many astrophysical situations, and in particular in the interstellar medium, we
are interested in the effects of heating and cooling which operate on much longer
timescales than the sound crossing timescale for a particular lengthscale. This means
that we are interested in the root of eq. (8.10), which is such that ω � kcs. In this
limit, which corresponds to the pressure being constant, eq. (8.10) becomes

iω = (γ − 1)T

γ p
(QT − λk2) − (γ − 1)ρ

γ p
Qρ . (8.13)

If the conductivity is negligible, we may set λ = 0, and, using the fact that p ∝ ρT ,
the equation becomes

iω = γ − 1

γ p

∂Q

∂ ln T

∣∣∣∣
p

. (8.14)

We conclude that

instability ⇔ ∂Q

∂ ln T

∣∣∣∣
p

> 0. (8.15)

This is known as the Field stability criterion.
This makes physical sense. Suppose we are in equilibrium at some temperature

T , so that Q = 0, and that the inequality is satisfied. Then because net heating or
cooling occurs so slowly, evolution occurs at fixed pressure. Now suppose that
the temperature is increased slightly to T + δT , with δT > 0. Then, according to
the inequality, the net heating Q becomes positive and the temperature continues to
climb. Similarly, if δT < 0, the net heating becomes negative and the temperature
continues to drop.

If there is a non-zero conductivity (λ �= 0), the equation becomes

iω = γ − 1

γ p

∂Q

∂ ln T

∣∣∣∣
p
− λk2 (γ − 1)T

γ p
. (8.16)

This implies that if k is large enough, iω becomes negative and the equilibrium
becomes stable. Thus sufficiently small lengthscales (corresponding to large k) are
stable, because on such small lengthscales the conductivity acts quickly enough
to smooth out any temperature fluctuations. The critical lengthscale at which this
happens is the Field length, λF = 2π/kF, found by setting ω = 0 in eq. (8.16).
Hence,

k2
F =

(
2π

λF

)2

= 1

λT

∂Q

∂ ln T

∣∣∣∣
p

. (8.17)
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Fig. 8.3. Temperature profile at the interface between cool and hot phases of the
interstellar medium.

8.2 Heating and cooling fronts

Suppose now that the net heating function Q(T ) at fixed pressure, p, is schematically
of the form shown in Fig. 8.2. This has three possible equilibrium temperatures,
T1 < T2 < T3, of which, by the Field criterion, only T1 and T3 are stable. Thus some
of the gas can be stable at a low temperature T1 and some at a high temperature T3.
This means that there can be interfaces between these two temperature phases. In
this section we consider what happens at such interfaces.

At such an interface the temperature profile T (x) as a function of position x might
look something like that sketched in Fig. 8.3. The gas at temperatures T1 < T < T2

undergoes net cooling and the gas at temperatures T2 < T < T3 undergoes net
heating. Thus these heating and cooling processes try to steepen the temperature
gradient at the interface. At the same time, the conductivity acts in the opposite
direction, trying to reduce the temperature gradient. It is possible that some kind of
global balance is achieved and the interface stays fixed with some equilibrium shape.
In general, however, for a given temperature distribution T (x), the net heating of
gas at temperatures T2 < T < T3 does not balance the net cooling of gas at
temperatures T1 < T < T2. This means that, integrated over the interface as a
whole, there is either a net heating or a net cooling of the gas. If there is a net
heating, this implies that the position of the interface moves in the direction of the
cooler gas (the hot gas manages to incorporate some cool gas). Conversely, if there
is a net cooling, the position of the interface moves in the direction of the hotter
gas (the cool gas incorporates some hot gas).

We now look at the equations governing the motions of such hot or cold fronts in
one spatial dimension x. In line with the assumptions behind the Field criterion, we
assume that any motions associated with the movement of the interface are highly
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subsonic. Then we may neglect the velocity terms in the momentum equation in
one dimension so that it becomes

∂p

∂x
= 0, (8.18)

or equivalently p = const.
In one dimension it is sensible to change to a Lagrangian variable m(x, t) defined

as follows:

m(x, t) =
∫ x

−∞
ρ(x′, t) dx′. (8.19)

Using the mass conservation equation, we can then show that

∂m

∂t

∣∣∣∣
x

= −ρu, (8.20)

where u is the velocity in the x-direction. Hence we deduce that

∂

∂x

∣∣∣∣
t
= ρ

∂

∂m

∣∣∣∣
t

(8.21)

and that
∂

∂t

∣∣∣∣
x

= ∂

∂t

∣∣∣∣
m

− ρu
∂

∂m

∣∣∣∣
t
. (8.22)

These show that the Lagrangian derivative, Df /Dt, for any quantity f becomes

∂f

∂t

∣∣∣∣
x
+ u

∂f

∂x

∣∣∣∣
t
= ∂f

∂t

∣∣∣∣
m

. (8.23)

Using all these, the one-dimensional energy equation in the form

1

γ − 1

Dp

Dt
− γ

γ − 1

p

ρ

Dρ

Dt
= ∂

∂x

(
λ
∂T

∂x

)
+ Q (8.24)

becomes

− γ

γ − 1

p

ρ

∂ρ

∂t

∣∣∣∣
m

= ρ
∂

∂m

(
λρ

∂T

∂m

)
+ Q. (8.25)

We now use the equation of state, p = (R/µ)ρT , together with the subsonic
approximation p = const., to eliminate ρ ∝ 1/T . Thus we can regard both λ and
Q as functions of T alone. Then by scaling the time variable as follows:

τ = γ − 1

γ

p

(R/µ)2
t (8.26)

and writing

L(T ) =
(R/µ

p

)2 Q(T )

T
, (8.27)
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the equation governing the evolution of the temperature front becomes

∂T

∂t
= ∂

∂m

(
λ(T )

T

∂T

∂m

)
+ L(T ). (8.28)

A useful approximation is often to take λ(T ) ∝ Tα for some α (for example,
conductivity by thermal electrons has α = 5/2 and conductivity by neutral ions
has α = 1/2). In this case, with suitable scaling, the energy equation becomes

∂T

∂t
= ∂

∂m

(
Tα−1 ∂T

∂m

)
+ L(T ). (8.29)

For a steadily moving front, with velocity U in m-space, we can set ξ = m − Ut
and obtain an ordinary differential equation for T , regarding U as an eigenvalue.
With the substitution T = Z1/α we have

Zβ d2Z

dξ2
+ U

dZ

dξ
+ F(Z) = 0, (8.30)

where β = (α − 1)/α and F(Z) = αTαβL(T ).

8.3 Further reading

A full description of the analysis presented here on the thermal stability of the
interstellar medium is given by Field (1965). A more general discussion and
application of the evolution of heating and cooling fronts is given by Meerson
(1996). Also of interest are the papers by Elphick, Regev & Spiegel (1991) and
Elphick, Regev & Shaviv (1992).

8.4 Problems

8.4.1 Show that the dispersion relation for linear waves propagating in a uniform
compressible gas with constant thermal conductivity λ is given by

iω(ω2 − k2c2
s ) + λ(γ − 1)(k2T/p)[ω2 − k2c2

s /γ ] = 0. (8.31)

Show that the effect of a small thermal conductivity is always to damp travelling
sound waves.

8.4.2 For a fluid with conductivity λ ∝ T , show that with suitable scalings a
one-dimensional heating/cooling front satisfies the following equation:

∂T

∂t
= ∂2T

∂m2
+ L(T ), (8.32)

where m is the Lagrangian variable.
If L = T (1 − T 2), show that there is a solution T (m) to this equation for which

the front is stationary. Sketch the solution and give physical reasons why the front is
stationary in this case.
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Show that a general steady solution of the equation extremises the functional

F[T ] =
∫ [

1

2

(
∂T

∂m

)2

+ U (T )

]
dm, (8.33)

where we define L(T ) = −∂U/∂T , and that

∂T

∂t
= −δF

δT
, (8.34)

where δ/δT is the functional derivative.
Show also that

dF
dt

= −
∫ (

δF
δT

)2

dm (8.35)

and deduce that F is a Liapunov functional.
Denoting the steady solution of the equation by T ∗(m), show that

d2T ∗

dm2
= − d

dt∗
[V (T ∗)], (8.36)

where we define V = −U .
Note that eq. (8.36) is analogous to the equation of motion of a particle of unit

mass moving in a potential V . Hence show that if the net heating function is of the
form L(T ) = T (1 − T 2) + A, where A is a constant, there is a steady front only if
A = 0. (See Elphick et al. (1991).)

8.4.3 The interstellar medium is modelled as a perfect gas, with equation of state p =
RρT/µ, subject to cooling per unit volume at the rate ε(ρ, T ) = −ρ2�(T ) and with
thermal conductivity λ(T ) = λ0Tα , where λ0 is a constant and α > 0. Gravity is
neglected. Explain briefly the circumstances under which it is reasonable to assume
that the pressure remains uniform, i.e. ∇p = 0.

In this case, show that a planar one-dimensional flow obeys the following equation:

1

γ − 1

∂p

∂t
+ γ

γ − 1
p
∂v

∂x
+ ρ2� − ∂

∂x

(
λ

∂T

∂x

)
= 0, (8.37)

where v is the velocity in the x-direction.
Show further that if the flow remains at constant pressure then

∂T

∂t
+ v

∂T

∂x
+
(

γ − 1

γ

)(µ

R
)2

p
�(T )

T

−
(

γ − 1

γ

)
λ0T

p

∂

∂x

(
Tα ∂T

∂x

)
= 0.

Using the Lagrangian variable

m(x, t) =
∫ x

0
ρ(x, t) dx (8.38)

and an appropriately scaled time τ = Ct, where the constant C is to be determined,
show that this equation can be written in the following form

∂T

∂τ
+ �(T )

T
= λ0

∂

∂m

(
Tα−1 ∂T

∂m

)
= 0. (8.39)
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At time t = 0, gas fills the half-space x > 0 and has uniform temperature T = T0.
The region x < 0 contains cold (T = 0) infinitely dense gas which does not move but
cools infinitely fast. The gas in x > 0 cools only by thermal conduction (i.e. � = 0
if T > 0). Explain why it is reasonable to seek a similarity solution of the form

T (m, τ) = T0 f (ξ), (8.40)

with similarity variable ξ = m/(λTα−1
0 τ)1/2. Write down appropriate boundary

conditions for f (ξ) at ξ = 0 and as ξ → ∞.
In the case when λ(T ) = λ0T , find the function f (ξ) in terms of the function

erf(z) = (2/
√

π)
∫ z

0 exp(−s2) ds, defined so that erf(∞) = 1.
Sketch the resulting solution T (m, τ), indicating the behaviour as τ increases.
Show that the rate L at which energy is radiated by the gas at x ≤ 0 varies as

L ∝ t−1/2.
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Gravitational instability

In this chapter we consider instability driven by the self-gravity of the fluid. This
is clearly an extremely important process whenever we deal with the formation of
bound objects such as stars and planets, and more generally large-scale structure
such as galaxies and clusters.

9.1 The Jeans instability

To start with a simple picture we consider first a fluid at rest, with uniform density
ρ and uniform pressure p, filling the whole of space. Then if we perturb the fluid,
the linearized equation of motion is given by

∂u
∂t

= −∇p′

ρ
− ∇�′, (9.1)

where u is the fluid velocity , p′ is the Eulerian pressure perturbation and �′ is
the Eulerian perturbation of the gravitational potential �. The linearized mass
conservation equation is given by

∂ρ′

∂t
+ ρ div u = 0, (9.2)

where ρ′ is the Eulerian density perturbation. The linearized version of Poisson’s
equation, relating gravitational potential to mass density, is given by

∇2�′ = 4πGρ′. (9.3)

Assuming that the perturbations are adiabatic, the density and pressure
perturbations are related through the following equation:

p′ = c2
s ρ

′, (9.4)

where the sound speed cs is given by c2
s = γ p/ρ.

123
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Since the initial state is both uniform and at rest, we can Fourier analyze these
equations in both time and space, or equivalently we can take all linear quantities
to have space and time dependence of the form exp{i(ωt + k · r)}.

Then, using eq. (9.4), eq. (9.1) becomes

iωu = −ikc2
s
ρ′

ρ
− ik�′, (9.5)

eq. (9.2) becomes

iω
ρ′

ρ
+ ik · u = 0 (9.6)

and eq. (9.3) becomes
−k2�′ = 4πGρ′. (9.7)

We now eliminate u by taking the scalar product of eq. (9.5) with k and
substituting into eq. (9.6), and then we use eq. (9.7) to eliminate �′. This gives
a single linear homogeneous equation for ρ′/ρ, whose coefficient then gives us the
dispersion relation:

ω2 = k2c2
s − 4πGρ. (9.8)

In the absence of gravity, i.e. setting G = 0, we recognize this relation as giving
simple acoustic waves, with sound speed cs. These are then modified by the
presence of gravity, which acts with a frequency ωG = (4πGρ)1/2, or equivalently
acts on a timescale τG = 2π/ωG = (π/Gρ)1/2. If the gravity term becomes large
enough, which occurs at sufficiently large wavelengths that k2c2

s < 4πGρ, we see
that ω2 < 0 and instability sets in. The critical wavelength at which this occurs,
that is the value of 2π/k at which ω2 = 0, is known as the Jeans length λJ given
by

λ2
J = πc2

s

Gρ
. (9.9)

We can also define a critical mass, called the Jeans mass, MJ = ρλ3
J . This yields

MJ =
(π

G

)3/2 c3
s

ρ1/2
. (9.10)

There is a simple physical interpretation of this result. Consider an element of the
fluid of size ∼λ. Gravity acts on this fluid element to try to make it collapse on a
timescale τG. In the other direction, the fluid element can use pressure to support
itself against gravity. But to do so the two sides of the fluid element need to be in
(pressure) communication with each other. Since pressure communication occurs
at the speed of sound, the timescale on which the two sides can communicate is
just the sound crossing time for the element, i.e. τs = λ/cs. We then see from
the above that τG = τs when λ = λJ. Thus for elements of size λ > λJ pressure
communication cannot occur quickly enough to prevent gravitational collapse.
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Although the result we obtain from this analysis is a simple one and affords a
straightforward physical explanation, the derivation of the result is flawed. The
reason for this is that the initial, unperturbed state was not in equilibrium, in the
sense that it did not satisfy the unperturbed equations. The equations it did not
satisfy were the unperturbed Poisson equation,

∇2� = 4πGρ, (9.11)

together with the assumption that ∇� = 0 in the unperturbed state. If ρ is uniform
and fills all space, then these conditions cannot be satisfied.

One tempting way out of this dilemma is to imagine that the results here might
apply to the very centre of a large mass of gas, where we might be able to take
approximately p ≈ const., ρ ≈ const. and ∇� ≈ 0. Unfortunately, the timescale
on which the instability operates is exactly the timescale (∼1/

√
Gρ) on which such

a cloud would collapse due to gravity. Thus no matter how large the cloud, from the
point of view of looking at an instability, we cannot assume that the cloud is at rest.
Problem 9.5.3 shows that perturbations of such collapsing flows grow algebraically
rather than exponentially.

All is not lost, however. If we consider the fluid lying at the bottom of a
large shallow and fixed gravitational potential well caused by something else (for
example dark matter) then the fluid there does obey p ≈ const., ρ ≈ const. and
∇� ≈ 0. Then in the region of the bottom of the well, the above analysis does
apply approximately to perturbations of short enough wavelength.

9.2 Isothermal, self-gravitating plane layer

At the present time in the Universe, star formation occurs mainly in the discs of
spiral galaxies. Thus it is important to consider the gravitational stability of a plane
layer of gas. We consider first the equilibrium configuration.

9.2.1 Equilibrium configuration

We consider a layer of gas at rest and centred on the plane z = 0. The gas is uniform
in the x- and y-directions and extends to infinity in both these directions. We take
the gas to be isothermal, so that the equation of state is simply p = ρc2

s , where
c2

s = const. Then hydrostatic equilibrium in the z-direction implies

1

ρ

dp

dz
+ d�

dz
= 0. (9.12)

We now define a variable m as follows:

m =
∫ z

0
ρ dz, (9.13)
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which is simply the surface density of material between 0 and z. Then, also using
the equation of state, the equation of hydrostatic equilibrium becomes

c2
s

dρ

dm
= −d�

dz
. (9.14)

If we assume that the gravitational potential also depends only on z, Poisson’s
equation is given by

d2�

dz2
= 4πGρ. (9.15)

Combining these equations we eliminate � and obtain an equation for ρ as follows:

c2
s

d2ρ

dm2
= −4πG. (9.16)

We now impose the condition that ρ is symmetric above and below the z = 0 (or
m = 0) plane and define the total surface density of the (half) layer as M , so that

M =
∫ ∞

0
ρ dz. (9.17)

Then the solution to eq. (9.16) is as follows:

ρ(m) = 2πGM 2

c2
s

[
1 −

( m

M

)2
]

. (9.18)

In order to obtain the density structure as a function of physical height z, it is
convenient to define a quantity ξ

ξ = m

M
. (9.19)

Then eq. (9.18) is simply given by

ρ(ξ) = ρ0(1 − ξ2), (9.20)

where ρ0 is the density on the midplane z = 0. Then since by definition ρ =
dm/dz = M dξ/dz, we see that

M
dξ

dz
= ρ0(1 − ξ2), (9.21)

which integrates as follows:

ρ0z = M tanh−1(ξ). (9.22)

We substitute for ξ in eq. (9.20) and, using the standard identity 1 − tanh2 x =
sech2x, we find the equilibrium density structure of the layer as follows:

ρ(z) = ρ0sech2(z/H ), (9.23)
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where the scaleheight H is given by

H = M

2ρ0
, (9.24)

or, using the definition of ρ0,

H = c2
s

4πGM
. (9.25)

We note that we have again side-stepped the issue of whether the equilibrium
configuration can physically exist. The solution for the gravitational potential �(z)
does not tend to a constant for large |z|. Instead, � → |z| as z → ±∞. So, once
again, we cannot provide a fully self-consistent picture.

9.2.2 Stability analysis

We now consider small oscillatory perturbations to the self-gravitating layer of the
form ∝ exp{i(ωt)}. The linearized equation of motion is given by

−ω2ξ = − 1

ρ
∇p′ + ρ′

ρ2
∇p − ∇�′. (9.26)

To avoid the complications of considering oscillations arising from buoyancy , we
assume that the perturbations, like the equilibrium structure, are isothermal. This
implies that

p′ = c2
s ρ

′, (9.27)

where c2
s = const. Using this, the equation of motion is given by

−ω2ξ = −∇W − ∇�′, (9.28)

where we have defined

W = p′

ρ
. (9.29)

Rather than looking for the general solution for the oscillation modes (stable
and unstable) of the layer, we are interested in the critical point at which the
layer becomes unstable to self-gravity. From our earlier analysis (Chapter 4),
we know from the ‘exchange of stabilities’ that as we pass from stable to unstable
configurations, the quantity ω2 must pass through zero. Thus to find the critical
configuration on the border between stability and instability we can simply set
ω2 = 0. On doing this, we find that eq. (9.28) becomes

�′ = −W . (9.30)

We now substitute this into the linearized version of Poisson’s equation:

∇2�′ = 4πGρ′ (9.31)
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and use the definition of W to obtain

∇2W + 4πGρ

c2
s

W = 0. (9.32)

We consider modes of a particular wavelength λ = 2π/k in the horizontal direc-
tion by Fourier analyzing in x and y, that is by writing W = W (z) exp{i(kxx+kyy)}.
The equation then becomes

d2W

dz2
+
(

4πGρ(z)

c2
s

− k2
)

W = 0, (9.33)

where k2 = k2
x + k2

y .
In solving this equation we have to take account of the structure of the layer in the

z-direction. To do so we replace the independent variable z by ξ using eqs. (9.20)
and (9.22). After a little algebra, we obtain the equation for W (ξ) as follows:

d2W

dξ2
+ 2ξ

1 − ξ2

dW

dξ
+
[

2

1 − ξ2
− kM /ρ0

(1 − ξ2)2

]
W = 0. (9.34)

We now recall that the solutions of Legendre’s equation,

d2y

dx2
+ 2x

1 − x2

dy

dx
+
[
ν(ν + 1)

1 − x2
− µ2

(1 − x2)2

]
W = 0, (9.35)

which are non-singular at x = ±1, are called associated Legendre polynomials
denoted by Pµ

ν (x). Their regularity requires that ν be a positive integer and that µ

be an integer in the range −ν ≤ µ ≤ ν.
Thus in the equation for W (ξ) we see that ν = 1, and for non-zero k we require

µ = 1. This gives the critical wavenumber kJ = ρ0/M at which instability sets in.
Using the definition of ρ0, we can write the critical wavenumber as follows:

kJ = 2πGM

c2
s

. (9.36)

From our physical picture in Section 9.1 we expect that modes with k < kJ are
unstable to self-gravity. In terms of the scaleheight of the layer, we see that modes
with wavelengths λ > λJ are unstable, where the Jeans length λJ is given by

λJ = 4πH . (9.37)

9.3 Stability of a thin slab

Seen from distances much larger than the scaleheight H , the layer discussed
above appears very thin and the internal structure of the layer becomes irrelev-
ant. Moreover, we have found that the critical scalelength on which gravitational



9.3 Stability of a thin slab 129

instability sets in is many times H . Thus it also seems likely that the internal
structure of the layer does not play a critical role in determining the Jeans length
λJ. For this reason, we now consider the stability of an infinitesimally thin slab of
fluid situated in the plane z = 0. Moreover, we are interested in motions due to
self-gravity, and we expect these to be only in the plane of the slab.

As an equilibrium configuration we consider the slab to have constant surface
density �(x, y) = �0 = const. and constant pressure P(x, y) = P0 = const. Then
the equilibrium gravitational potential is given by

�0 = −2πG�0|z|. (9.38)

Now we consider perturbations of the equilibrium of the form ∝ exp{i(ωt +
kxx + kyy)}. The mass conservation equation is given by

∂�

∂t
+ div(�u) = 0, (9.39)

where we recall that the velocity u is only in the (x, y)-plane. The linearized version
of this is then given by

iω�′ + ik · u�0 = 0. (9.40)

Similarly, the equation of motion given by

∂u
∂t

+ u · ∇u = − 1

�
∇⊥P − ∇⊥�, (9.41)

where the operator ∇⊥ acts only in the (x, y)-plane, linearizes to yield

iωu = − 1

�0
ikP′ − ik�′, (9.42)

where we note that here �′ is evaluated on the plane z = 0.
We take an adiabatic equation of state of the form

P = K�� , (9.43)

where K is a constant and � is the adiabatic exponent appropriate for two
dimensions. We also assume adiabatic perturbations so that

P′ = C2
s �′, (9.44)

where the two-dimensional sound speed, C2
s , is given by C2

s = �P0/�0.
Using this, we now combine eqs. (9.40) and (9.42) to eliminate u, and we obtain

−ω2�′ = k2C2
s �′ + k2�0�

′. (9.45)

We now need to use Poisson’s equation to relate �′ and �′. Because the density
is confined to a thin slab, the linearized version of Poisson’s equation is given by

∇2�′ = 4πG�′δ(z), (9.46)
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or equivalently
d2�′

dz2
= k2�′ + 4πG�′δ(z). (9.47)

Except on the plane z = 0, this has the following solution:

�′ = A exp(−|kz|), (9.48)

where A is a constant and we have imposed the condition that the perturbed potential
vanishes at large |z|. To determine the value of A, we integrate eq. (9.46) with respect
to z from z = ε to z = −ε and then take the limit ε → 0. This gives the jump in
d�′/dz across the z = 0 plane as[

d�′

dz

]0+

0−
= 4πG�′. (9.49)

Hence we conclude that

�′(z = 0) = −2πG�′

|k| . (9.50)

We now substitute this into eq. (9.45) to obtain the dispersion relation:

ω2 = k2C2
s − 2πG�0|k|. (9.51)

This has very similar properties to what we have found above. When gravity is
negligible (G = 0) we just get acoustic waves with speed Cs. As gravity becomes
more important, there is a critical value of the wavenumber kJ at which ω2 changes
sign and instability sets in. The wavenumber

kJ = 2πG�0

C2
s

(9.52)

corresponds exactly to what we found in Section 9.2 for the isothermal gas layer.
However, once again there are problems with this analysis because the self-

gravity of the equilibrium configuration in the (x, y)-direction is not properly
accounted for. One way of providing a proper balance in the (x, y)-plane is to allow
the configuration to rotate. This has obvious astrophysical applications. Rotation
allows us to set up a balance between gravity and centrifugal force and to provide
a fully self-consistent equilibrium. However, analysis of such a configuration
will have to wait until we have looked at the analysis of rotating shear flows in
Chapter 12.

9.4 Further reading

A simple description of the gravitational instability can be found in Jeans (1929,
Chap. XIII). The stability of the isothermal self-gravitating plane layer is given by
Ledoux (1951).
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9.5 Problems

9.5.1 Show that a self-gravitating, isothermal slab of gas (sound speed cs) centred on the
plane z = 0 and immersed in a non-gravitating external medium with pressure pe

has a density profile ρ0(z), with midplane density ρ00, where

ρ0(µ) = ρ00(1 − µ2), (9.53)

µ = tanh(z/h) (9.54)

and
h = cs/

√
2πGρ00, (9.55)

valid for −A < µ < A, where A2 = 1 − pe/ρ00c2
s .

If � is the surface density of the self-gravitating slab, show that

ρ00 = (2pe + πG�2)/2c2
s . (9.56)

9.5.2 Consider a strongly compressed isothermal slab, such that pe ≈ ρ00c2
s � G�2/2. In

this approximation, the pressure and density are almost constant throughout the slab
and the slab extends in the range −a ≤ z ≤ a, where a = �/2ρ00 � h. Consider a
small perturbation of the slab with magnitude ξ , where ξ/a � a/h � 1. This implies
that self-gravity may be ignored. Assume that the velocity of the perturbation is of
the form u = (u, 0, w), that the perturbation is isothermal, so that p′ = c2

s ρ
′ and that

the perturbed quantities have the following form:

p′(x, z, t) = p′(z) exp{i(ωt − kx)}. (9.57)

Assume a fixed pressure boundary condition p′(z = ±a) = 0. Show that the
dispersion relation takes the form

ω2 = k2c2
s + N 2π2c2

s

4a2
(9.58)

for all integers N = 1, 2, 3, . . .
Sketch the group velocity against wavenumber for the fastest propagating mode.

(See Doroshkevich (1980) and Lubow & Pringle (1993).)
9.5.3 A large spherical cloud of gas of radius R0 is centred at the origin and has uniform

density ρ00 and zero pressure . At time t = 0 it begins to collapse from rest under its
own gravity. At time t the velocity field within the cloud may be written as follows:

u0(r, t) = r
[

Ṙ(t)

R(t)

]
, (9.59)

where R(t) is the cloud radius and r is the radius vector from the origin. Show that
the density remains uniform and that at time t it is given by

ρ0(t) = ρ00[R0/R(t)]3. (9.60)

Show that the gravitational force within the cloud is given by

g = −r
[

4

3
πGρ0(t)

]
(9.61)
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and hence that

R2R̈ = −4

3
πGρ00R3

0. (9.62)

Show that the collapse is described implicitly by

R = 1

2
R0(1 + cos φ) (9.63)

and

Ct = 1

2
R0(φ + sin φ), (9.64)

where

C2 = 8

3
πGρ00R2

0. (9.65)

As the cloud collapses (still with zero pressure) it is subject to small perturbations.
Ignoring the effects of the cloud boundaries (or assuming the cloud is infinitely large),
we assume that the perturbations take the form

ρ(r, t) = ρ0(t) + ρ′(r, t), (9.66)

with

ρ′(r, t) = ρ1(t) exp(ik · r) (9.67)

and where

k(t) = q
R(t)

(9.68)

and q is independent of t. Explain briefly the physical motivation for such an
assumption.

Using this assumption, show that the equation of mass conservation implies

ρ̇1 + 3ρ1
Ṙ

R
+ i

ρ0

R
q · u1 = 0, (9.69)

where u1(t) is the analogous velocity perturbation.
Similarly, show that

u̇1 + Ṙ

R
u1 = −i

q
R

�1, (9.70)

where �1 is the analogous perturbation to the gravitational potential, and that

− q2

R2
�1 = 4πGρ1. (9.71)

Hence show that for compressive modes the fractional density perturbation, defined
by δ(t) = ρ1(t)/ρ0(t), satisfies the following equation:

δ̈ + 2Ṙ

R
δ̇ − 4πGρ0(t)δ = 0. (9.72)
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Show that one solution of this equation is given implicitly by

δ(φ) = sin φ

(1 + cos φ)2
. (9.73)

By considering the behaviour of the solutions as R → 0, i.e. as φ → π , or
otherwise, show that this is the only growing solution as the collapse proceeds. (See
Coles & Lucchin (1995) and Weinberg (1972).)
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Linear shear flows

Shear flows are found in many areas of astronomy and occur whenever one fluid
flows past another. An obvious place this occurs is when a jet flows into an ambient
medium. A shear flow occurs at the sides of the jet and this is usually unstable,
leading to energy release and radiative emission. Shear is also a characteristic
feature of rotating discs. In this chapter we study the simplest case, where the
shear flow is linear. Thus we consider flows whose unperturbed form in Cartesian
coordinates is given by

U(z) = (U (z), 0, 0). (10.1)

We can see the strong tendency towards instability in such flows by considering
a fluid of uniform density ρ lying between the two planes z = ±a, whose velocity
profile takes the form U (z) = U0(z/a), where U0 is a constant. The total linear
momentum of the fluid is zero. Thus, in principle, if there were some kind of
instability which resulted in the fluid being completely mixed, the fluid would be
brought to rest. This process would release an amount of energy given by

�E =
∫ a

−a

1

2
ρU 2 dz = 1

2
ρU 2

0 (10.2)

per unit length in the x-direction. This is a typical situation in which we can expect
a fluid flow to be unstable. It occurs when some perturbation is able to tap an energy
source of some kind (here the free shear energy ) while obeying the conservation
laws required by the fluid equations (here the conservation of linear momentum).

In this chapter we consider only incompressible fluids. This is a reasonable
approximation if the relative shear motions are subsonic. This is in fact often not
the case in astrophysical situations. However, if we included incompressibility we
would have to consider the added complication that the shear layer can lose energy
by emitting acoustic waves. For the sake of simplicity we shall ignore this aspect
of the problem.

134
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10.1 Perturbation of a linear shear flow

We consider initially an incompressible fluid of uniform density ρ. Then the mass
conservation equation is simply

div u = 0 (10.3)

and the momentum equation is given by

∂u
∂t

+ (u · ∇)u = −∇P, (10.4)

where for convenience we define P = p/ρ.
The unperturbed flow has the form

U = (U (z), 0, 0), (10.5)

and P = P0 = const. We take the flow to lie between fixed boundaries at z = z1

and z = z2, with z1 < z2.
In the perturbed flow the velocity has the form U + u, where

u = (u, v, w), (10.6)

and the pressure is now P = P0 + P′. The perturbed mass conservation is then
given by

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (10.7)

and the components of the perturbed momentum equation are as follows:

∂u

∂t
+ U (z)

∂u

∂x
+ w

dU

dz
= −∂P′

∂x
, (10.8)

∂v

∂t
+ U (z)

∂v

∂x
= −∂P′

∂y
(10.9)

and
∂w

∂t
+ U (z)

∂w

∂x
= −∂P′

∂z
. (10.10)

Using the symmetries of the unperturbed configuration we can now Fourier
transform with respect to x, y and t, but we need to retain the full dependence in z.
Thus we take all quantities to vary as exp{i(ωt − kxx − kyy)}. We shall also denote
the derivative of U as U ′ = dU/dz.

Then eqs. (10.7)–(10.10) become

−(ikxu + ikyv) + dw

dz
= 0, (10.11)

i(ω − kxU )u + U ′w = ikxP′, (10.12)

i(ω − kxU )v = ikyP′ (10.13)
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and

i(ω − kxU )w = −dP′

dz
. (10.14)

To these we must add the boundary conditions that w = 0 at z = z1, z2.

10.2 Squire’s theorem

We can simplify the above analysis without loss of generality. We define k2 =
k2

x + k2
y and ũ by

kũ = kxu + kyv. (10.15)

Then eq. (10.11) can be written as follows:

−ikũ + dw

dz
= 0. (10.16)

Similarly by multiplying eq. (10.12) by kx/k, eq. (10.13) by ky/k and adding, these
equations combine to yield

i(ω − kxU )ũ + kx

k
U ′w = ikP′. (10.17)

Defining Ũ = kxU/k, this can be further simplified to

i(ω − kŨ )ũ + Ũ ′w = ikP′. (10.18)

Also, eq. (10.14) becomes

i(ω − kŨ )w = −dP′

dz
. (10.19)

By comparing eq. (10.16) with eq. (10.11), eq. (10.18) with eqs. (10.12)
and (10.13) and eq. (10.19) with eq. (10.14), we see that the set of equations we
have just derived is equivalent to the original set with the transformations kx → k,
ky → 0, u → ũ, v → 0 and U → Ũ . This implies that as far as the instability
of the shear layer is concerned, we can take ky = 0 and v = 0 without loss of
generality, and need therefore only consider two-dimensional disturbances in the
(x, z)-plane. This is Squire’s theorem.

10.3 Rayleigh’s inflexion point theorem

Our equations describing the perturbed flow are now as follows:

− iku + dw

dz
= 0, (10.20)

i(ω − kU )u + U ′w = ikP′ (10.21)
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and

i(ω − kU )w = −dP′

dz
. (10.22)

We now write these as a single differential equation for w. We first eliminate u
between eqs. (10.20) and (10.21) to obtain

ω − kU

k

dw

dz
+ U ′w = ikP′. (10.23)

We then differentiate this with respect to z, remembering that U is a function of z,
and use eq. (10.21) to eliminate dP′/dz. We then obtain what is known as Rayleigh’s
equation (ω

k
− U

)(d2w

dz2
− k2w

)
+ d2U

dz2
w = 0. (10.24)

This equation is subject to the boundary conditions w = 0 at z = z1, z2.
If we assume that k is real, so that we are concerned with travelling modes rather

than evanescent ones, and if we write

ω = ωR + iωI, (10.25)

then the solutions are stable if ωI > 0 and unstable if ωI < 0. The equation is
unchanged by the transformations ω → −ω and k → −k. This means that we
can, without loss of generality, take k to be real with k > 0. In addition, if ω is
the eigenvalue with eigenfunction w, then the complex conjugate ω∗ is also an
eigenvalue with eigenfunction w∗. This implies that to prove instability all we
need to do is show that ωI �= 0.

Rayleigh’s inflexion point theorem then states that: a necessary condition for
instability is that the velocity profile has an inflexion point, i.e. d2U/dz2 = 0 for
some value of z = z∗ in the range z1 < z∗ < z2. To prove this we rewrite eq. (10.24)
as follows:

d2w

dz2
− k2w − d2U/dz2

U − (ω/k)
w = 0. (10.26)

We assume that ωI �= 0 so that the equation is non-singular. We then multiply it by
w∗ and integrate over the fluid. Thus,∫ z2

z1

(∣∣∣∣dw

dz

∣∣∣∣
2

+ k2|w|2
)

dz +
∫ z2

z1

d2U/dz2

U − (ω/k)
|w|2 dz = 0. (10.27)

Taking the imaginary part of this equation, we find that

ωI

∫ z2

z1

d2U/dz2

|U − (ω/k)|2 |w|2 dz = 0. (10.28)

Then, in order for ωI to be non-zero, we require that the integral vanish. This can
only happen if d2U/dz2 is positive for some values of z and negative for others.
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This means that there must be some point z = z∗ at which d2U/dz2 = 0, i.e. there
must be an inflexion point in the velocity profile.

10.3.1 Mathematical technicality

Equation (10.26) is formally singular for values of ω = kU (z) with z1 < z < z2.
This implies that when we come to carry out formally the contour integration to
invert the Fourier transform and find the real solution as a function of time t, we
may not only have to evaluate the function at poles, which typically give rise to
exponential behaviour, but also have to evaluate the integral along a cut on the
real ω-axis. When using Fourier transforms there is then some ambiguity as to
which side of the cut the contour should be drawn. For this reason it often makes
more physical sense to think in terms of solving the problem as an initial-value
problem and so to use Laplace transforms. In this case it is clear where the
inverse contour should be drawn. One then ends up with contour integrals around
a cut (or cuts) on the imaginary axis. Such contour integrals typically give rise to
algebraic, rather than exponential, time behaviour. We note here that in the above
analysis we have implicitly assumed that any instability has exponential behaviour,
i.e. that the contributions from the poles in the complex ω-plane dominate. We have,
however, not proved this, and so we have not discussed the stability or otherwise
of the ‘singular modes’ which correspond to the cut along the real ω-axis.

10.4 Fjørtoft’s theorem

There is a slightly more stringent necessary condition for instability known as
Fjørtoft’s theorem. This states that a necessary condition for instability is that if z∗
is a point at which d2U/dz2 = 0, then there must be some value z0 in the range
z1 < z0 < z2 such that

d2U

dz2

∣∣∣∣
z0

[U (z0) − U (z∗)] < 0. (10.29)

We prove this as follows. Take the real part of eq. (10.27). This yields∫ z2

z1

(
d2U

dz2

)
U − (ωR/k)

|U − ω/k|2 |w|2 dz = −
∫ z2

z1

(∣∣∣∣dw

dz

∣∣∣∣
2

+ k2|w|2
)

dz < 0. (10.30)

Then, if we have instability (ωI �= 0), we can add to the l.h.s. of this equation a
quantity which from eq. (10.28) we know to be zero, namely

[(ωR/k) − U (z∗)]
∫ z2

z1

d2U/dz2

|U − ω/k|2 |w|2 dz = 0. (10.31)
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When we do this, we obtain the following result:∫ z2

z1

(
d2U

dz2

)
U (z) − U (z∗)
|U − (ω/k)|2 |w|2 dz < 0, (10.32)

which proves the theorem.

10.5 Physical interpretation

On the face of it, Rayleigh’s theorem and Fjørtoft’s theorem look like random
results which have emerged by chance from the mathematics. But of course there
must be some physical reasons behind the results. The simplest way to think about
these results is in terms of vorticity. For the unperturbed flow (U (z), 0, 0), the
vorticity is of the form ω = ∇ ∧ u = (0, ω(z), 0), where

ω(z) = dU

dz
. (10.33)

In addition we are considering perturbations of the form

u = (u, 0, w). (10.34)

In an incompressible fluid the equations of motion imply an equation for the
evolution of vorticity which takes the following form:

Dω

Dt
= (ω · ∇)u. (10.35)

This implies that the vortex lines all lie parallel to the y-axis and are moved around
in the (x, z)-plane. Thus they are all conserved in strength.

We have argued that in order to release free shear energy , and so produce
an instability, we need to interchange fluid elements in an appropriate manner.
Rayleigh’s criterion tells us that in order to produce an instability there must be
a point at which d2U/dz2 = 0, or equivalently there must be a point at which
dω/dz = 0. At this point there are neighbouring fluid elements which have the
same vorticity but different velocities. Mixing such fluid elements, and so releasing
shear energy, is permitted by the fluid equations. Thus if dω/dz is zero at some point,
we have the possibility of an instability.

In Figs. 10.1(a) and (b) we show two velocity profiles which do not have
an inflexion point and so are stable under these considerations. In Figs. 10.1(c)
and (d) we show two velocity profiles which do have inflexion points, and so, by
Rayleigh’s criterion, might show instability. The profile in Fig. 10.1(c), however,
does not obey the necessary condition given by Fjørtoft’s theorem, and so is stable.
In contrast, the profile in Fig. 10.1(d) does obey the additional criterion and so might
be unstable. What is the basic physical difference between these two? Here again
it is illuminating to consider the corresponding vorticity profiles ω(z) (Fig. 10.2).
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z2(a)
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U(z) U(z)

U(z)U(z)

Fig. 10.1. Velocity profiles illustrating Fjørtoft’s theorem. (a), (b) These profiles
have no inflexions, and so are stable by Rayleigh’s criterion. (c) A profile which
has an inflexion, but does not fulfil the conditions of Fjørtoft’s theorem, and so
is again stable. (d) A profile which does fulfil the conditions of the theorem, and
so can be unstable.

�(a)

(c)

(b)

(d)

�

� �

z2z1 z2z1 

z2z1 z2z1 

Fig. 10.2. The vorticity profiles of the flows shown in Fig. 10.1; profile (d) has
a vorticity maximum. Thus mixing reduces the vorticity, releasing energy and
allowing the possibility of instability.
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The energy which drives a shear instability derives from reducing the local shear,
that is from reducing the local vorticity. At the same time, we know that from the
vorticity equation the total vorticity of the fluid must be conserved. Moreover, the
effect of mixing neighbouring fluid elements is, on a coarse scale, to smooth out
any vorticity profile. The profile shown in Fig. 10.1(c) has a vorticity profile with a
minimum at z = z∗. The effect of mixing here is therefore to increase the vorticity
at z∗. This does not release shear energy and so does not drive an instability. In
contrast, the profile shown in Fig. 10.1(d) has a vorticity profile with a maximum at
z = z∗. The effect of mixing here is to reduce the local vorticity and so release shear
energy. Thus for this profile we have the possibility of a shear-driven instability.

10.6 Co-moving phase

We have so far looked at the properties the velocity profile of the fluid must have
in order that there might be an instability. Here we look at the properties of the
unstable mode. We start with Rayleigh’s equation (eq. (10.24)) in the form(

U − ω

k

) d2w

dz2
−
[

k2
(

U − ω

k

)
+ d2U

dz2

]
w = 0. (10.36)

We now introduce a new variable ψ such that

ψ = w

U − (ω/k)
. (10.37)

Then Rayleigh’s equation becomes

d

dz

[(
U − ω

k

)2 dψ

dz

]
− k2

(
U − ω

k

)2
ψ = 0. (10.38)

We note in passing that this equation corresponds to a Sturm–Liouville problem in
that it comes from extremizing an integral in the form

δ

∫ z2

z1

(
U − ω

k

)2
[(

dψ

dz

)2

+ k2ψ2

]
dz = 0. (10.39)

Returning to the main argument, we multiply eq. (10.38) by ψ∗ and integrate
over the fluid to give∫ z2

z1

(
U − ω

k

)2
[∣∣∣∣dψ

dz

∣∣∣∣
2

+ k2|ψ |2
]

dz = 0. (10.40)

Taking the imaginary part of this equation, we then obtain

ωI

∫ z2

z1

(
U − ωR

k

)[∣∣∣∣dψ

dz

∣∣∣∣
2

+ k2|ψ |2
]

dz = 0. (10.41)
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We now see that for an unstable mode, for which we require ωI �= 0, there must be
a point zp such that z1 < zp < z2 and ωR/k = U (zp). This means that an unstable
mode must have a phase velocity equal to the fluid velocity at some point. The
mode must co-move with some of the fluid. This also implies that some parts of
the fluid move faster than the mode and some parts move slower. Thus, from a
physical point of view, the mode ‘knows’ about the shear and is in a position to
allow communication between faster and slower moving fluid elements. It is this
communication which allows the mode to tap the shear energy, and so to grow.

10.7 Stratified shear flow

We now consider the situation in which a shear flow moves horizontally in a vertical
gravitational field. Thus, as before, the unperturbed flow takes the following form:

U = (U (z), 0, 0), (10.42)

but now the unperturbed fluid has a density gradient ρ(z) and is subject to a uniform
gravitational acceleration g = (0, 0, −g). For convenience we still assume that the
fluid is incompressible. We take the velocity perturbation as (u, v, w).

From a physical point of view, the instability is now controlled by two physical
effects. First, there is the free energy of the shear flow, which can be tapped to
produce growing modes. Second, there is the energy available from the gravitational
field. In particular, if the fluid is stably stratified (here this implies dρ/dz < 0, so
that the heavier fluid is at the bottom) then the vertical mixing required to tap the
shear energy needs to give up some of its energy to gravitation. Thus we expect that
instability in this case arises as a balance between shear energy and gravitational
energy.

As before, we Fourier transform the perturbation equations in the form ∝
exp{i(ωt + kxx + kyy)}. The mass conservation equation div u = 0 yields

ikxu + ikyv + dw

dz
= 0. (10.43)

Alternatively we can use Dρ/Dt = 0 to yield

i(ω + kxU )ρ′ + w
dρ

dz
= 0. (10.44)

These two equations are equivalent. Note that although the Lagrangian density
perturbation δρ is zero, the Eulerian density perturbation ρ′ is not. This is because
there is a non-zero density gradient in the unperturbed fluid. Previously both dρ/dz
and ρ′ were zero, and so the second equation was trivially satisfied.
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The three components of the linearized momentum equations are given by

i(ω + kxU )ρu + ρ
dU

dz
w = −ikxp′, (10.45)

i(ω + kxU )ρv = −ikyp′ (10.46)

and

i(ω + kxU )ρw = −dp′

dz
− gρ′. (10.47)

We now obtain an expression for u from eq. (10.45), namely

u = − kxp′

(ω + kxU )ρ
− wU ′

i(ω + kxU )
, (10.48)

and an expression for v from eq. (10.46), namely

v = − kyp′

(ω + kxU )ρ
, (10.49)

and substitute them into eq. (10.43) to obtain an expression for p′ in terms of w and
its derivative:

p′ = −i
(ω + kxU )ρ

k2
x + k2

y

dw

dz
+ i

kxwρU ′

k2
x + k2

y
w. (10.50)

We also eliminate ρ′ between eqs. (10.47) and (10.44) to obtain an equation for
dp′/dz in terms of w as follows:

dp′

dz
= −i(ω + kxU )ρw − i

g(dρ/dz)

ω + kxU
w. (10.51)

Combining eqs. (10.50) and (10.51) now gives a second-order differential
equation for w as follows:

d

dz

{
(ω + kxU )ρ

dw

dz
− kxρU ′w

}
= k2⊥(ω + kxU )ρw + k2⊥g(dρ/dz)

ω + kxU
w,

(10.52)

where we have written k2⊥ = k2
x + k2

y .
We now use physical intuition to make an approximation which, while not correct

in general, is justified for the purpose we have in mind. What we are looking for
here is not the general dynamical behaviour of the perturbed shear flow, but rather
a stability criterion which gives us information about where the border between
stability and instability lies. If we expand the l.h.s. of eq. (10.52) we obtain a
number of terms which contain the derivative dρ/dz. Now this derivative is related
(eq. (10.46)) to the Eulerian density perturbation ρ′, and the change in local density
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has two physical effects. First, it changes the local inertia of the fluid; that is,
it changes the timescale on which the fluid reacts to a given force. Second, it
changes the local buoyancy of the fluid; that is, it changes the stability of the fluid.
Since we are only interested in stability, and not in exact dynamical timescales,
we can neglect the variation of ρ except where it is coupled to the gravity g. In
particular, when expanding the derivative on the l.h.s. of eq. (10.52) we can treat
ρ as a constant.

This procedure yields the following equation:

(ω + kxU )

{
d2w

dz2
− k2⊥w

}
− kx

d2U

dz2
w − k2⊥

ω + kxU

(
g

ρ

dρ

dz

)
w = 0. (10.53)

As before, we now simply consider two-dimensional perturbations, so we take
k⊥ = kx = k, and for convenience we define the phase velocity of the mode as
c = ω/k. Then the equation becomes

(c + U )

(
d2w

dz2
− k2w

)
− d2U

dz2
w +

(−g

ρ

dρ

dz

)
w

c + U
= 0. (10.54)

This is called the Taylor–Goldstein equation.

10.8 The Richardson criterion

We are now in a position to obtain a necessary condition for the instability of this
stratified shear flow in a gravitational field.

We first define a quantity H as follows:

H = w

(c + U )1/2
. (10.55)

In terms of this variable, eq. (10.54) becomes

d

dz

[
(U+c)

dH

dz

]
− k2(c + U )H − 1

2

d2U

dz2
H −

{
1

4
U ′2−

[
g

ρ

(
−dρ

dz

)]}
H

c + U
= 0.

(10.56)

Note that for the fluid to be stably stratified in the absence of shear, we require that
−dρ/dz > 0.

We now multiply this equation by the complex conjugate H∗ and integrate over
the fluid (from z1 to z2). We integrate by parts where necessary, using the boundary
conditions that w = 0 at z = z1, z2. We then obtain the following equation:∫ z2

z1

[{∣∣∣∣dH

dz

∣∣∣∣
2

+k2|H |2
}

+1

2

d2U

dz2
|H |2 +

{
1

4
U ′2−

[
g

ρ

(
−dρ

dz

)]} |H |2
c+U

]
dz = 0.

(10.57)
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Now we write c in terms of real and imaginary parts,

c = cR + icI, (10.58)

and note, as before, that for instability we just require that cI �= 0. Therefore we
take the imaginary part of eq. (10.57), which is as follows:

cI

∫ z2

z1

[∣∣∣∣dH

dz

∣∣∣∣
2

+ k2|H |2 +
{
g/ρ (−dρ/dz) − U ′2/4

}
|c + U |2

]
dz = 0. (10.59)

We see by inspection that if throughout the fluid, i.e. in z1 < z < z2, we have

1

4
U ′2 <

[
g

ρ

(
−dρ

dz

)]
, (10.60)

then the integrand is positive definite; therefore to satisfy the equation we require
cI = 0. Thus if the inequality eq. (10.60) is satisfied throughout the fluid, then the
shear flow must be stable. This is known as the Richardson criterion. Physically
speaking, the l.h.s. is a measure of the energy available in the shear and the r.h.s.
is a measure of the energy required to overturn the density gradient in the presence
of gravity. Thus the criterion states roughly that if there is not enough shear energy
to overturn the density gradient then the fluid is stable. Note that the criterion only
goes one way. It does not demonstrate instability if the inequality is not satisfied.

10.9 Further reading

A detailed discussion of the theory of the stability of incompressible shear flows is
to be found in Drazin & Reid (1981, Chap. 4). Basic results about the Richardson
criterion are given by Howard (1961) and Miles (1961). Consideration of the effects
of buoyancy, surface tension and magnetic fields can be found in Chandrasekhar
(1961, Chap. XI). The complications introduced by consideration of compressibility
and the emission of acoustic waves from the shear layer are discussed by Gerwin
(1968).

10.10 Problems

10.10.1 A smooth pipe with square cross section of side a lies flat on a horizontal surface
in the uniform gravitational field g. The pipe contains incompressible fluid.

(i) Consider the case where the fluid in the upper half of the pipe has density
ρ1 and that in the lower half-pipe has density ρ0, where ρ1 > ρ0. What is
the physical origin of the instability which ensues? Calculate the energy E1

available to drive the instability per unit length of the pipe.
(ii) Now consider the case where ρ1 < ρ0, but with the fluid in the upper half-

pipe moving with velocity V and the fluid in the lower half-pipe moving
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with velocity −V . If we neglect gravity, setting g = 0, what is the physical
origin of the instability which ensues? Show that the energy available to the
instability, per unit length of pipe, is given by

E0 = ρ0ρ1

ρ2
0 + ρ2

1

a2V 2. (10.61)

(iii) If now ρ1 < ρ0, but g �= 0, explain by comparing E0 and E1 the physical
significance of the Richardson number, Ri, where

Ri = ρ0ρ1

ρ2
0 − ρ2

1

V 2

ag
. (10.62)

10.10.2 Consider a horizontal flow of incompressible fluid in a vertical, constant
gravitational field g, so that

u =
{

(U2, 0, 0), z > 0,

(U1, 0, 0), z < 0,
(10.63)

ρ =
{

ρ2, z > 0,

ρ1, z < 0
(10.64)

and

p(z) =
{

p0 − gρ2z, z > 0,

p0 − gρ1z, z < 0.
(10.65)

Consider small perturbations, such that the interface of the fluid is at z = ζ(x, y, t),
which leave the flow unperturbed as |z| → ∞. Assume that the perturbed flow is
irrotational (zero vorticity) so that, for example, the flow in z > 0 can be written
in terms of a velocity potential u = ∇φ2, where φ2 = U2x + φ′

2 and ∇2φ′
2 = 0.

Show that the velocity potential obeys the following equation:

∂φ

∂t
+ 1

2
(∇φ)2 + p

ρ
+ gz = const. (10.66)

Take the perturbed quantities to be of the form

φ′
2 = φ̂2(z) exp{i(kx + ωt)} (10.67)

and find expressions for φ̂1 and φ̂2.
Show that the dispersion relation of the perturbations is given by

ω2(ρ1 + ρ2) + 2ωk(ρ2U2 + ρ1U1) + k2(ρ2U 2
2 + ρ1U 2

1 ) + (ρ2 − ρ1)kg = 0.
(10.68)

Discuss what happens when U1 = U2 = 0 in the two cases (i) ρ1 < ρ2,
(ii) ρ1 > ρ2.

Show that if U1 �= U2 the flow is always unstable for perturbations of short
enough wavelength. (See Drazin & Reid (1981, Chap. 1).)
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10.10.3 An incompressible fluid of uniform density ρ has a uniform magnetic field
(in Cartesian coordinates) B0 = (B, 0, 0) and a shearing velocity field u0 =
(U (z), 0, 0).

The flow is subject to small perturbations of the form

u = u0 + [u(z), v(z), w(z)] exp{i(ωt + kxx + kyy)}, (10.69)

B = B0 + [bx(z), by(z), bz(z)] exp{i(ωt + kxx + kyy)} (10.70)

and

p = p0 + p1(z) exp{i(ωt + kxx + kyy)} (10.71)

From the linearized equation of motion, show that

iρ(ω + kxU )w − B

(
ikxbz − dbx

dz

)
= −dp1

dz
(10.72)

and derive the corresponding equations for u and v.
From the linearized induction equation, show that

bx = kxB

ω + kxU

{
u − iU ′w

ω + kxU

}
, (10.73)

where U ′ = dU/dz, and obtain analogous expressions for by and bz in terms of
the perturbed velocity components.

Substitute these expressions for the perturbed components of the magnetic field
into the linearized equations of motion.

From the x- and y-components of the linearized equations of motion, show that
the z-component of the vorticity, ζ = ikxv − ikyu, is given by

ζ = kyU ′w
ω + kxU

. (10.74)

Deduce that the y-component of the linearized equation of motion simplifies to

iρ(ω + kxU )v = −ikyp1. (10.75)

Use div u = 0 to show that

ik2p1 = ρ(ω + kxU )
dw

dz
− ρkxU ′w, (10.76)

where k2 = k2
x + k2

y .
Combine div u = 0 with the expression for ζ to show that

ik2u = −
[

kx
dw

dz
+ k2

y U ′

ω + kxU
w

]
. (10.77)

Hence, or otherwise, obtain an equation for w in the following form:

d

dz

{
ρ(ω + kxU )

dw

dz
− ρkxU ′w

}
= k2ρ(ω + kxU )w

+ k2
x B2

{
d

dz

(
dw/dz

ω + KxU

)
− k2w

ω + kxU

}
− k3

x B2 d

dz

{
U ′w

(ω + kxU )2

}
.
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Consider a shear layer at z = 0, so that

U (z) =
{

U2, z > 0,

U1, z < 0,
(10.78)

where U1 and U2 are constants. Show that in this case the solutions of eq. (10.78)
for which w/(ω + kxU ) is continuous and obey suitable boundary conditions as
z → ±∞ are given by

w =
{

A(ω + kxU2)e−kz , z > 0,

A(ω + kxU1)ekz , z < 0,
(10.79)

for some constant A and for k > 0.
By integrating eq. (10.78) from z = −ε to z = ε and letting ε → 0, show that

ρ(ω + kxU2)
2 + ρ(ω + kxU1)

2 = 2k2
x B2. (10.80)

Deduce that the shear flow is stable if (U1 − U2)
2 < 4B2/ρ. Why does the

presence of this magnetic field tend to stabilize the shear flow? (See Chandrasekhar
(1961, Chap. XI).)

10.10.4 A uniform density, incompressible fluid contains a bounded shear layer with
velocity field, in Cartesian coordinates, of the form U0 = (U (z), 0, 0), where

U (z) =

⎧⎪⎨
⎪⎩

U0, z ≥ d ,

(z/d)U0, |z| < d ,

−u0, z ≤ −d .

(10.81)

It is subject to a perturbation of the form

u(x, z, t) = (u(z), 0, w(z)) exp{ik(x − ct)} (10.82)

and

p′(x, z, t) = p′(z) exp{ik(x − ct)}, (10.83)

where k > 0 is real. Obtain an equation for w(z) and show that an appropriate
solution is of the form

w(z) =

⎧⎪⎪⎨
⎪⎪⎩

A exp[−k(z − d)], z ≥ d ,

B exp[−k(z − d)] + C exp[k(z + d)], |z| < d ,

D exp[k(z + d)], z ≤ −d ,

(10.84)

where A, B, C and D are constants.
Explain why the quantity [

(c − U )
dw

dz
+ dU

dz
w

]
(10.85)

is continuous at z = ±d .
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Hence, or otherwise, show that(
c

U0

)2

= 1

4α2
{(2α − 1)2 − e−4α}, (10.86)

where α = kd .
Deduce that disturbances with wavelengths such that 0 < α < αs are unstable

for some number αs, which is in the range 1
2 < αs < 1.

Give a physical interpretation of this result. (See Drazin & Reid (1981,
Chap. 23).)
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Rotating flows

Almost all astronomical objects rotate. The formation of astronomical objects
often involves gravitational collapse over many orders of magnitude in size.
Conservation of angular momentum then ensures that newly formed objects often
rotate rapidly in the sense that rotational (centrifugal) forces play a dynamical role.
In this and the next few chapters we consider the effects of rotation. In doing so
we shall have in mind mainly the effects of rotation on stellar objects, but note that
some of our findings are also relevant to other types of object.

11.1 Rotating fluid equilibria

We begin by asking what kinds of equilibrium are possible for a rotating self-
gravitating fluid mass. We consider a fluid rotating at a steady rate about an axis of
symmetry. In cylindrical polar coordinates (R, φ, z), the flow velocity is given by

u = (0, uφ , 0), (11.1)

where uφ = R� is independent of the azimuthal coordinate φ and � is the angular
velocity. Since the flow is axisymmetric (∂/∂φ = 0), there are only two non-zero
components of the equation of hydrostatic equilibrium. Denoting the gravitational
potential as �, the R-component is given by

−u2
φ

R
= − 1

ρ

∂p

∂R
− ∂�

∂R
(11.2)

and the z-component is given by

0 = − 1

ρ

∂p

∂z
− ∂�

∂z
. (11.3)

This can be written in differential form as follows:
dp

ρ
= gR dR + gz dz, (11.4)
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where the vector g is given by

g =
(

−∂�

∂R
+ R�2, 0, −∂�

∂z

)
. (11.5)

The r.h.s. of this equation is the gradient of a scalar if and only if

∂gz

∂R
= ∂gR

∂z
, (11.6)

which is true if and only if

∂�

∂z
= 0. (11.7)

If this holds, so that � is a function of R only, we may define an effective gravitational
potential �e as follows:

�e = �(R, z) −
∫ R

�2R dR. (11.8)

Then the effective gravity ge can be defined as

ge = −∇�e, (11.9)

and the equation of hydrostatic equilibrium becomes

∇p

ρ
= ge. (11.10)

We note in passing that if the rotation is uniform, i.e. � = �0 = const., then

�e = � − 1

2
R2�2

0. (11.11)

Returning to the general case, � = �(R), we see that hydrostatic equilibrium,
expressed as

∇p = −ρ∇�e, (11.12)

means that ∇p and ∇�e are everywhere parallel. Thus p must be a function of �e,
i.e. p = p(�e). Then, since ∇p/ρ = −∇�e, we have that ρ = dp/d�e is also just
a function of �e. Hence we must have p = p(ρ), so the fluid is barotropic . We
have shown therefore that

� = �(R) ⇔ p = p(ρ). (11.13)

11.2 Making rotating stellar models

The work in Section 11.1 shows that our freedom in building a model of a rotating
star is severely reduced when we try to make simplifying assumptions. We have
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seen that to make a star which rotates uniformly (or one which rotates on cylinders)
hydrostatic equilibrium requires the fluid to be barotropic . In addition, both pressure
p and density ρ are functions only of the effective gravitational potential �e. If as
usual the stellar gas obeys a perfect gas equation of state, we have p ∝ ρT and
the temperature also is just a function of �e.

The energy equation is given by

ρT
Ds

Dt
= ρεnuc − div F, (11.14)

where εnuc is the nuclear energy generation rate per unit mass and F is the heat
flux. In a steady state, where there are no velocities other than the rotational velocity
uφ , this reduces to

div F = ρεnuc. (11.15)

If energy transport is by radiation, then

F = −χ∇T , (11.16)

where

χ = 4acT 3

3κρ
, (11.17)

where a is the radiation energy density constant and c is the speed of light. The
opacity κ(ρ, T ) is a function of local fluid properties, and is also therefore just a
function of �e. This means that we can write

F = f (�e)∇�e, (11.18)

where the function f (�e) is given by

f (�e) = −4acT 3

3κρ

dT

d�e
. (11.19)

At the stellar surface, p → 0 and ρ → 0, and therefore �e → �s where �s is
the constant surface value of the effective potential. This means that on the stellar
surface the radiative flux is proportional to the local surface gravity:

F ∝ ∇�e ∝ ge. (11.20)

Since by definition the effective temperature Te of the surface is given by the
blackbody law, F = σT 4

e , where σ = ac/4 is the Stefan–Boltzmann constant,
we have finally that

Te ∝ g1/4
e . (11.21)

This is known as von Zeipel’s law of gravity darkening. It implies that the
temperature is not uniform over the surface of a rotating star, the equator being
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Fig. 11.1. Von Zeipel’s theorem. In a star which rotates uniformly or on cylinders,
the surfaces of constant temperature, pressure, density and effective gravity
coincide. The T = const. surfaces are therefore more widely spaced at the equator
than at the poles. Since heat flow is locally perpendicular to the T = const.
surfaces, this leads to a lower surface flux there than at the poles (gravity
darkening).

cooler and thus darker than the poles. The physical reason for this is that the surfaces
of constant temperature within the star are further apart at the equator because
of the lower gravity there. This reduces the temperature gradient there, and thus
the radiation flux (eq. (11.16)), leading to a lower effective temperature at the
photosphere (see Fig. 11.1).

However, when we try to satisfy the energy equation (eq. (11.15)) we run into
problems. Using the expression for F given in eq. (11.18), we obtain

div F = f ′(�e)|∇�e|2 + f (�e)∇2�e. (11.22)

Using Poisson’s equation, ∇2� = 4πGρ, we find from the definition of �e,
eq. (11.11), that

∇2�e = 4πGρ − 1

R

d

dR
(R2�2). (11.23)

Thus the energy equation can be written in the following form:

f ′(�e)g
2 + f (�e)

[
4πGρ − 1

R

d

dR
(R2�2)

]
= ρεnuc. (11.24)

If the distribution of elements in the star is uniform (for example in a zero-age
main-sequence star), then εnuc is a function of ρ and T , and so is just a function
of �e. Thus all the terms in eq. (11.24) are simply functions of �e except for the
factor g2 and the second term in square brackets involving �.
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If the rotation is uniform, � = �0 = const., then the rotational term is equal
to 2�2

0, which is a constant. In this case, for the equation to be satisfied for all
values of �e, i.e. everywhere in the star, we must demand that f ′(�e) = 0, i.e. that
f (�e) = const. From the definition of f , we see that this is true only if κ ∝ T 3/ρ.
This is not true in general. If the rotation is not uniform, the same applies, and
in addition, in order to make the term in square brackets depend only on �e (so that
we can equate this to the r.h.s.), we require further that

1

R

d

dR
(�2R2) = const. (11.25)

This implies that � takes the form

�2 = C1 + C2

R2
, (11.26)

where C1 and C2 are constants. However, then in order that � is finite throughout
the star, we require C2 = 0, and therefore that � = const. The energy equation
then implies that εnuc take the following form:

εnuc ∝
(

1 − �2

2πGρ

)
, (11.27)

which is also not true in general.
To summarize: so far we have seen that for a uniformly rotating star, hydrostatic

equilibrium implies that the stellar gas is barotropic (i.e. p = p(ρ)). The
imposition of radiative equilibrium then leads to contradictions. Thus stars either
have non-uniform rotation, or are not in radiative equilibrium.

11.3 Meridional circulation

The standard solution to this problem is to assume that the heat flux within the star
is carried not only by conduction (radiative transfer) but is also transported by
a steady circulation current in the meridional plane. The fluid flow within the star
then has an additional component of the form

u(R, z) = (uR, 0, uz). (11.28)

Then the energy equation becomes

ρTu · ∇S = div(χ∇T ) + ρεnuc, (11.29)

and we must also ensure mass conservation by taking

div(ρu) = 0. (11.30)

If the star is not rotating too fast, so that the quantity η = �2R3/GM is small,
the standard procedure is to expand the equations in terms of η. There are now
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enough degrees of freedom to solve for the meridional circulation u, and we refer
the reader in Section 11.5 to the various textbooks in which this procedure is carried
out. Note that if there is no rotation, η = 0, there is no problem and we can take
u = 0. Thus we expect the magnitude of u to be proportional to η. From eq. (11.29)
we may estimate the velocity required to carry a heat flux η times that transported
by conduction. To order of magnitude, we see that

ρTu
S

R
∼ η

1

R

L

R2
. (11.31)

Here L is the stellar luminosity, and we have approximated the thermally conducted
flux as χ∇T ∼ L/R2. Now the thermal energy content of the star is ∼R3ρTS,
and by the virial theorem for an equilibrium star we can equate this, to order
of magnitude, to the gravitational self-energy ∼GM 2/R. Putting this together,
we find

u ∼ η
LR2

GM
∼ η

R

tKH
. (11.32)

Here tKH is the time taken for a star to radiate away its thermal (or gravitational)
energy . This Kelvin–Helmholtz timescale is around 30 million years for the Sun.
The circulation timescale R/u is known as the Eddington–Sweet circulation time
and is therefore given roughly by

tES ∼ tKH/η. (11.33)

The solar rotation period is around 30 days, and thus for the Sun η ∼ 1/3000. The
resulting circulation timescale, tES ∼ 1011 years, exceeds the age of the Universe.
However for faster-rotating stars the circulation timescale can become comparable
to the timescale for nuclear evolution. Meridional circulation can in principle
move nuclear fuel around within such stars, and so can, again in principle, have a
significant influence on the star’s evolution.

11.3.1 The basic snag with meridional circulation

There is a fundamental problem with the standard procedure outlined above, which
is well known to those in the field. We ran into a snag in trying to construct a model
of a rotating star because we found that if we assumed that the star rotates uniformly,
then it cannot also transport heat solely by conduction. The ‘meridional circulation’
solution to this is to assume the existence of a meridional flow which transports heat.
The basic problem with this approach arises because the assumed meridional flow
would also advect angular momentum. This then leads to the star no longer being
in uniform rotation. Moreover, since we have assumed that the motions are steady,
the postulated existence of a meridional flow requires a corresponding process
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neutralizing the advection of angular momentum by the flow, by transporting it
back at the same rate as it is advected by the flow. For this to happen the star must
become differentially rotating, so that � = �(R, z), and there must be dissipative
processes such as turbulence, magnetic field or convection which, when combined
with the shear flow, can transport angular momentum in the right direction and at
the right rate.

Garaud (2002) shows that this can be achieved for a simple molecular viscosity
. For realistic stellar transport processes the details have yet to be worked out, and
it has yet to be demonstrated that such a solution occurs in practice in real stars.
Assuming, however, that something like this does actually occur, we may tentatively
conclude that a rotating star is likely to be differentially rotating and that it will
contain circulation currents of some sort. However, whether these currents are able
to mix nuclear fuel, and so affect the stellar evolution, depends on unknown and
uncertain dissipative processes within the star which determine the detailed, and as
yet unknown, structure of the velocity field.

11.4 Rotation and magnetism

We have seen that the structure of a rotating star must in reality be quite complex
because simple assumptions force unphysical constraints on the star. Something
similar happens when we consider rotating stars with magnetic fields, as the
following result shows. In a differentially rotating fluid, a steady magnetic field
configuration exists only if the magnetic field lines lie along surfaces of constant
angular velocity. This is Ferraro’s law of isorotation.

To see this, suppose that the fluid rotates differentially with angular velocity
�(R, z). Any magnetic field is advected by the fluid flow, and thus it is immediately
apparent that the azimuthal field component, Bφ , is unaffected by the rotation.
We may therefore simply consider a poloidal field of the form

B(R, z) = (BR, 0, Bz). (11.34)

From the induction equation, we know that a steady field obeys

curl(u ∧ B) = 0. (11.35)

The φ-component of this equation is given by

∂

∂z
(uφBz) + ∂

∂R
(uφBR) = 0. (11.36)

Using the fact that uφ = R�, this may be written in the form

∂

∂z
(�Bz) + 1

R

∂

∂R
(R�BR) = 0. (11.37)
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We now note that this equation is div (B�) = 0, which when coupled with the
Maxwell equation, div B = 0, implies that

B · ∇� = 0. (11.38)

Thus the magnetic field must lie at right angles to the gradient of the angular
velocity; that is, the field lines must lie along the surfaces of constant angular
velocity. On reflection, this is an obvious result. If a field line is such that different
points on it have different angular velocities, then the field line will eventually
twist up, creating an azimuthal magnetic field. Thus it cannot be in a steady state.

11.5 Further reading

A more detailed description of the theory of rotating stars can be found in the works
of Tassoul (1978, 2000). A clear description of what is involved in the computation
of meridional circulation in a simple idealized case is given by Garaud (2002).

11.6 Problems

11.6.1 Derive the equation of motion of an inviscid barotropic fluid subject to a
conservative force field in a frame rotating with constant angular velocity �.

Show that in the rotating frame∫
S
(ω + 2�) · dS = const., (11.39)

where S is a surface spanning a closed contour � which moves with the fluid and
where ω = curl u, where u is the velocity in the rotating frame. (See Greenspan
(1968, Chap. 1).)

11.6.2 An incompressible fluid moves steadily and slowly in a frame rotating with constant
angular velocity �. Taking appropriate approximations, show that

(� · ∇)u = 0. (11.40)

What does this result imply physically? (This is the Taylor–Proudman theorem;
see Greenspan (1968, Chap. 1).)
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Circular shear flow

In this chapter we shall consider the stability of a differentially rotating fluid. Clearly
this is directly relevant to important subjects in astrophysics, such as accretion
disc stability and galactic structure. As before we shall consider some particular
examples which serve to illustrate the relevant physical considerations.

12.1 Incompressible shear flow in a rigid cylinder

We consider first a rotating flow of an incompressible fluid within rigid cylindrical
walls. Thus the density ρ = const. and the unperturbed flow has a velocity field
in cylindrical coordinates (R, φ, z) of the form

u0 = (0, V (R), 0), (12.1)

where the azimuthal velocity V (R) is related to the angular velocity �(R) by

V (R) = R�(R). (12.2)

For such a flow, with fluid velocity u = (uR, uφ , uz), the equations of motion
are given by

∂uR

∂t
+ u · (∇uR) − u2

φ

R
= − 1

ρ

∂p

∂R
, (12.3)

∂uφ

∂t
+ u · (∇uφ) + uφuR

R
= − 1

Rρ

∂p

∂φ
(12.4)

and

∂uz

∂t
+ u · (∇uz) = − 1

ρ

∂p

∂z
. (12.5)
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In addition, we require the mass conservation equation, which for an incompressible
fluid is just given by

∂uR

∂R
+ uR

R
+ 1

R

∂uφ

∂φ
+ ∂uz

∂z
= 0. (12.6)

We note that since ρ is constant, the equilibrium pressure distribution is (from
eq. (12.3)) simply given by

p(R) = ρ

∫
V 2

R
dR. (12.7)

We perturb this solution, so that the velocity field becomes

u = (u′
R, V (R) + u′

φ , u′
z). (12.8)

To simplify notation we drop the primes from the first-order quantities. We must
therefore note that uφ is now the perturbation to the azimuthal velocity. We also
note that there is no perturbation to the density, and for convenience we define the
quantity

W = p′

ρ
. (12.9)

To first-order in small quantities, the equations of motion are given by

∂uR

∂t
+ V

R

∂uR

∂φ
− 2Vuφ

R
= −∂W

∂R
, (12.10)

∂uφ

∂t
+ V

R

∂uφ

∂φ
+
(

V

R
+ dV

dR

)
uR = − 1

R

∂W

∂φ
(12.11)

and
∂uz

∂t
+ V

R

∂uz

∂φ
= −∂W

∂z
. (12.12)

We note that the mass conservation equation, eq. (12.6), is already linearized.
Since the equilibrium configuration is independent of time, and of φ and z, we

may now Fourier analyze in t, φ and z. Thus we assume that all the linear variables
are of the form

p′(R, φ, z, t) → p′(R) exp{i(ωt + mφ + kz)}. (12.13)

In addition, we note that to keep p′ a single-valued function of azimuth φ we require
that m is an integer. It is also convenient to define a quantity σ(R) which corresponds
to the local Doppler-shifted frequency†

σ(R) = ω + m�(R). (12.14)

† It is important to remember that σ is a function of radius R. In our experience, errors in algebra often occur
because this fact is forgotten.
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The linearized equations are now as follows:

iσuR − 2�uφ = −dW

dR
, (12.15)

iσuφ +
[
� + d

dR
(R�)

]
uR = − imW

R
, (12.16)

iσuz = −ikW (12.17)

and

duR

dR
+ uR

R
+ imuφ

R
+ ikuz = 0. (12.18)

We now write the equations in terms of the Lagrangian displacement ξ . From
eq. (4.24) in Chapter 4 we recall that if the unperturbed fluid has a flow field u0,
then the Eulerian velocity perturbation u′ is given in terms of ξ by

u′ = ∂ξ

∂t
+ u0 · ∇ξ − ξ · ∇u0. (12.19)

In the case we are considering, with the unperturbed velocity field in the
azimuthal direction and dependent only on radius R, we find that

uR = iσξR (12.20)

and

uz = iσξz. (12.21)

However, the azimuthal component takes a little more care, and we find that

uφ = iσξφ − R
d�

dR
ξR. (12.22)

Thus the underlying shear flow implies that uφ �= iσξφ . The added complication
to ξφ is necessary to ensure that when we write the mass conservation equation,
eq. (12.18), in terms of ξ we obtain what is obviously the correct physical result:

div ξ = 0. (12.23)

We now use these relations to write the linearized equations in terms of ξ . The
equations are as follows:

(σ 2 − 2R��′)ξR + 2iσ�ξφ = dW

dR
, (12.24)

σ 2ξφ − 2iσ�ξR = imW

R
, (12.25)

σ 2ξz = ikW (12.26)
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and
dξR

dR
+ ξR

R
+ im

R
ξφ + ikξz = 0, (12.27)

where we have used the notation �′ = d�/dR.
We now eliminate ξφ and ξz from this set of equations, ending with two equations

for the quantities W and ξR.
First, we multiply eq. (12.25) by im/R, multiply eq. (12.26) by ik and add, and

then use eq. (12.27). Thus we obtain

σ 2
(

dξR

dR
+ ξR

R

)
− 2m�σ

R
ξR =

(
m2

R2
+ k2

)
W . (12.28)

Second, we eliminate ξφ between eqs. (12.24) and (12.25) to obtain

[σ 2 − R(R)] = dW

dR
+ 2m�

σR
W . (12.29)

Here R is the Rayleigh discriminant defined by

R(R) = 2�

R

d

dR
(R2�), (12.30)

which therefore depends on the radial gradient dj/dR of the specific angular
momentum j(R) = R2�.

The various perturbation modes can now be found by solving eqs. (12.29)
and (12.30), subject to the boundary condition that ξR = 0 at the inner and
outer cylindrical boundaries R = R1, R2. Each modal solution will determine
the eigenvalue ω = σ − m�, which determines the oscillation frquency, and
the stability of the mode. For general non-axisymmetric modes (m �= 0), it is
not possible to give a simple local stability criterion. However, for axisymmetric
modes the situation is different.

12.1.1 Axisymmetric perturbations: Rayleigh’s criterion

For axisymmetric perturbations, m = 0 and therefore σ = ω. Then eq. (12.28)
becomes

1

R

d

dR
(RξR) = k2

ω2
W (12.31)

and eq. (12.29) becomes

[ω2 − R] = dW

dR
. (12.32)

We can now simply eliminate W between these two equations to give

d

dR

(
1

R

d

dR
(RξR)

)
− k2ξR = −k2R(R)

ω2
ξR. (12.33)
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For each value of k, given the boundary conditions ξR = 0 at R = R1, R2, this
is now a Sturm–Liouville problem with eigenvalue λ = k2/ω2. Multiplying both
sides of the equation by RξR and integrating from R1 to R2, we find, after integrating
by parts and using the boundary conditions, that

ω2

k2
= I1

I2
, (12.34)

where the integrals I1 and I2 are given by

I1 =
∫ R2

R1

R(R)Rξ2
R dR (12.35)

and

I2 =
∫ R2

R1

[
1

R

(
d(RξR)

dR

)2

+ k2Rξ2
R

]
dR. (12.36)

Since I2 is positive definite, we see that the sign of ω2 depends on the sign of I1.
This, in turn, depends on the sign of R(R). If R > 0 at all radii, then ω2 > 0
and the flow is stable to axisymmetric modes. Conversely, if R < 0 at some point
in the flow, then we may choose a trial function ξ(R) which makes I1 < 0, which
implies the existence of an unstable mode. This gives us Rayleigh’s criterion for the
stability of a circular shear flow, which states that the flow is stable to axisymmetric
disturbances if and only if the specific angular momentum j(R) increases outwards.

12.2 Axisymmetric stability of a compressible rotating flow

Of course, realistic astrophysical gases are generally compressible, so we need
to extend the treatment of Section 12.1 to this case. In a compressible flow we
must consider density variations. We have seen in Chapter 4 that in a horizontally
stratified fluid in a vertical gravitational field the Schwarzschild stability criterion
requires that the entropy of the fluid increases with height. In a rotating fluid there
is an effective radial gravitational force caused by the centrifugal force, and so we
might expect similar considerations to apply here. In addition, as we have seen,
the axisymmetric stability of an incompressible rotating fluid to shear is decided
by the Rayleigh criterion. Therefore in a rotating compressible fluid, we might
expect stability to be governed by some combination of these two criteria. This is
indeed the case, and this generalization is known as the Solberg–Høiland criterion;
we derive this below.

We consider an axisymmetric fluid flow in a fixed axisymmetric gravitational
potential �(R). The angular velocity is �(R) and the corresponding angular
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momentum is j(R) = R2�. Then the total energy of the unperturbed flow is
given by

E = 1

2

∫
V

j2

R2
dm +

∫
V

e dm +
∫

V
� dm. (12.37)

Here dm = ρ dV is the mass of a fluid element and e is the internal energy. The
integral is carried out over the volume V occupied by the fluid. Thus the three
terms represent kinetic energy, thermal energy and gravitational potential energy,
respectively.

12.2.1 Equilibrium

We now compute the change δE in the energy E when the flow is subject to an axially
symmetric perturbation ξ(R). Since ξ is axisymmetric, the angular momentum j
of each fluid element (or ring) is conserved. Thus the change in the kinetic energy
occurs because the radius of each fluid element is changed; this is given by

δ
1

2

∫
V

j2

R2
dm = −

∫
V

j2

R3
ξR dm. (12.38)

We assume that as fluid elements move they conserve their entropy, as we did
when considering convective instability. From eq. (6.4) in Chapter 6 we recall that
if entropy is conserved, i.e. DS/Dt = 0, then

De

Dt
+ p

ρ
div u = 0. (12.39)

This implies that

δe = − p

ρ
div ξ . (12.40)

Integrating by parts (recalling that dV = dm/ρ), we find that

δ

∫
V

e dm =
∫

V

1

ρ
ξ · ∇p dm. (12.41)

Since the potential � is fixed, we obtain

δ� = ξ · ∇�. (12.42)

This implies that

δ

∫
V

� dm =
∫

V
ξ · ∇� dm. (12.43)

Assembling our results we now obtain

δE =
∫

V
ξ ·
(

∇� + 1

ρ
∇p − j2

R3
R̂
)

dm. (12.44)
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For a fluid in equilibrium, we expect that δE = 0 for all possible vector fields ξ .
This therefore implies that the expression in brackets in the integrand in eq. (12.44)
must vanish everywhere. That is, the net force per unit mass acting on any fluid
element is given by

F = −∇� − 1

ρ
∇p + j2

R3
R̂ = 0. (12.45)

This is, of course, the time-independent momentum equation.
Another way of looking at this result is to note that the work done on a fluid

element dm moving in a direction ξ is simply ξ · F dm. Then if the fluid is in
equilibrium the net work done must vanish, i.e.

δE = −
∫

V
ξ · F dm = 0. (12.46)

This argument is a fluid version of d’Alembert’s principle of virtual work used in
statics.

12.2.2 Stability

To decide the stability of the configuration we need to consider the second-order
perturbation to the energy. Using the equilibrium condition F = 0, this is given by

δ(δE) = −
∫

V
ξ · δF dm. (12.47)

Recall that we are only allowing perturbations which conserve the specific angular
momentum j and the entropy S of each fluid element. The configuration is stable
to such a perturbation if δ2E > 0.

To evaluate this we start with the integral expression for δ2E , namely

δ2E =
∫

V
ξ ·
[
δ

{
∇� + 1

ρ
p

}
+ 3j2

R4
ξRR̂

]
dm, (12.48)

where we have used the fact that, for these perturbations,

δ

(
1

R3

)
= − 3

R4
ξR. (12.49)

For the first term in the square brackets in the integrand of eq. (12.48) we note that

δ

{
∇� + 1

ρ
∇p

}
=
{
∇� + 1

ρ
∇p

}′
+ ξ · ∇

{
∇� + 1

ρ
∇p

}
, (12.50)

where the prime denotes Eulerian perturbation. Further, since the potential is fixed
(and so has zero Eulerian perturbation), we have that{

∇� + 1

ρ
∇p

}′
= 1

ρ
∇p′ − ρ′

ρ2
∇ρ. (12.51)
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Using eq. (12.45) we see that the second term here can be written as follows:

ξ · ∇
{
∇� + 1

ρ
∇p

}
= ξ · ∇

{
j2

R3
R̂
}

. (12.52)

We combine this with the second term in the square brackets in eq. (12.48) by
noting that

3j2

R4
ξRR̂ + ξ · ∇

{
j2

R3
R̂
}

= (ξ · ∇j2)
R̂
R3

. (12.53)

Putting this all together, we now find that for axisymmetric perturbations

δ2E = −
∫

V
ξ · (Lξ)dm, (12.54)

where the linear operator L is given by

Lξ = −∇p′

ρ
+ ρ′

ρ2
∇ρ − (ξ · ∇j2)

R̂
R3

. (12.55)

We note that, apart from the rotational terms, this is essentially the same result as
we obtained in Chapter 10. We now follow the analysis of that chapter, where we
combined the continuity equation,

ρ′ = −div(ρξ), (12.56)

and the adiabaticity of the perturbation in the form

p′ = −γ p div ξ − ξ · ∇p (12.57)

to conclude that, in this case,

δ2E =
∫

V
ξiMijξj dm +

∫
V

[
(p′)2

γ pρ

]
dm, (12.58)

where the second-order tensor Mij is defined as follows:

Mij =
[

1

ρ
∇p

]
i

[
1

ρ
∇ρ − 1

γ p
∇p

]
j
+ 1

R3
(∇R)i(∇j2)j. (12.59)

12.2.3 The Solberg–Høiland criterion

We now recognize that for such axisymmetric perturbations the effect of rotation
is to add into eq. (12.58) a term involving ∇j2. Thus, as we expected, the stability
of the configuration must involve some combination of the Schwarzschild stability
criterion to convection we derived in Chapter 4 and the Rayleigh criterion for
rotation we derived in Section 12.1.1. We recall that for stability we require
δ2E > 0. The second term on the r.h.s of eq. (12.58) is positive definite. For stability
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considerations we need therefore only consider those perturbations for which this
term vanishes. Thus we need only concentrate our analysis on the first term on
the r.h.s.

We first show that M is a symmetric tensor. We define the following vectors:

A = 1

γ p
∇p − 1

ρ
∇ρ, (12.60)

A′ = − 1

ρ
∇ρ, (12.61)

B = 1

R3
∇j2 (12.62)

and

B′ = ∇R = R̂, (12.63)

so that we may write

Mij = AiA
′
j + BiB

′
j. (12.64)

Taking the curl of the equilibrium equation, eq. (12.45), we obtain

∇
(

1

ρ

)
∧ ∇p = 1

R3
∇j2 ∧ R̂, (12.65)

which implies that

A ∧ A′ + B ∧ B′ = 0. (12.66)

In suffix notation this implies that

εijkMjk = 0, (12.67)

and therefore that M is symmetric.
The condition for a real symmetric second-rank tensor to give a positive definite

expression when contracted twice with a vector, as in eq. (12.58), is simply that
tr(M) > 0 and det(M) > 0. This gives us the Solberg–Høiland criterion that a fluid
configuration of the kind we are considering is stable to axisymmetric, adiabatic
perturbations if and only if

1

R3

∂j2

∂R
+ 1

cp
(−g · ∇S) > 0 (12.68)

and

−gz

(
∂j2

∂R

∂S

∂z
− ∂j2

∂z

∂S

∂R

)
> 0. (12.69)
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Here we have defined gravity g as follows:

g = 1

ρ
∇p = −A′, (12.70)

and we have noted that

A = ∇S

cp
. (12.71)

Thus, as expected, we obtain a blend of the Rayleigh and Schwarzschild stability
criteria, as we can see by successively assuming that S and j2 are spatially constant.

12.3 Circular shear flow with a magnetic field

We now consider the same (incompressible) flow as we did before in Section 12.1
except that we now add a constant uniform magnetic field given by

B0 = (0, 0, B) (12.72)

to the unperturbed configuration. Note that a uniform field has no effect on the
equilibrium. When the fluid has been perturbed, the field has the form

B = B0 + b, (12.73)

where the field perturbation has components

b = (bR, bφ , bz). (12.74)

As before, the perturbed velocity has the form

u = (uR, V (R) + uφ , uz) (12.75)

and we define �(R) = V /R and W = p′/ρ.
As before, we consider only axisymmetric perturbations, and so take ∂/∂φ = 0

throughout. Then, taking account of the additional terms arising from the magnetic
field, the linearized equations of motion are given by

∂uR

∂t
− 2�uφ − B

∂bR

∂z
= −∂W

∂R
, (12.76)

∂uφ

∂t
+
(

dV

dR
+ V

R

)
uR − B

∂bφ

∂z
= 0 (12.77)

and

∂uz

∂t
− B

∂bz

∂z
= −∂W

∂z
. (12.78)
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In addition, we have now the linearized version of the induction equation
describing the magnetic field evolution. The three components of this are given by

∂bR

∂t
− B

∂uR

∂z
= 0, (12.79)

∂bφ

∂t
− B

∂uφ

∂z
−
(

dV

dR
− V

R

)
bR = 0 (12.80)

and
∂bz

∂t
− B

∂uz

∂z
= 0. (12.81)

In addition, for an incompressible fluid we have

∂uR

∂R
+ uR

R
+ ∂uz

∂z
= 0, (12.82)

and since B is solenoidal we have
∂bR

∂R
+ bR

R
+ ∂bz

∂z
= 0. (12.83)

As before, we now Fourier analyze, but now for axisymmetry with m = 0. Thus
all variables have a factor of the form exp{i(ωt + kz)}.

The linearized equations of motion become

iωuR − 2�uφ + ikBbR = −dW

dR
, (12.84)

iωuφ +
(

dV

dR
+ V

R

)
− ikBbφ = 0 (12.85)

and

iωuz − ikBbz = −ikW . (12.86)

The components of the linearized induction equation are as follows:

iωbR = ikBuR, (12.87)

iωbφ = ikBuφ +
(

dV

dR
− V

R

)
bR (12.88)

and

iωbz = ikBuz. (12.89)

We recall the relation between the linearized velocity u and the Lagrangian
perturbation ξ which we derived in Section 12.1:

uR = iωξR, (12.90)

uφ = iωξφ − R
d�

dR
ξR (12.91)
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and

uz = iωξz. (12.92)

From this we note, from a simple comparison of the equations, that

b = ikBξ . (12.93)

This is the linearized equivalent of the statement that magnetic field lines are
dragged along with the fluid.

Using these results, we can replace (uR, uφ , uz) and (bR, bφ , bz) in the equations
of motion by terms involving only (ξR, ξφ , ξz). We thus obtain the following three
equations:

(ω2 − 2R��′ − �2
A)ξR + 2iω�ξφ = dW

dR
, (12.94)

(ω2 − �2
A)ξφ − 2iω�ξR = 0 (12.95)

and

(ω2 − �2
A)ξz = ikW , (12.96)

where we define the Alfvén frequency �A as follows:

�2
A = k2V 2

A, (12.97)

where VA = √
B2/ρ is the Alfvén speed.

In addition to these, we have the continuity equation for an incompressible fluid:

dξR

dR
+ ξR

R
+ ikξz = 0. (12.98)

Eliminating ξz between eqs. (12.96) and (12.98), we obtain

(ω2 − �2
A)

(
dξR

dR
+ ξ

R

)
= k2W , (12.99)

and we eliminate ξφ between eqs. (12.94) and (12.95) to obtain(
ω2 − �2

A − 2R��′ − 4�2ω2

ω2 − �2
A

)
ξR = dW

dR
. (12.100)

Using the definition of the Rayleigh discriminant,

R(R) = 2�

R

d

dR
(R2�), (12.101)

eq. (12.100) can be written as follows:(
ω2 − �2

A − R(R) − 4�2�2
A

ω2 − �2
A

)
ξR = dW

dR
. (12.102)
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12.3.1 Local analysis

We could now, in principle, for a particular shear flow V (R), solve the two coupled
first-order differential equations (eqs. (12.99) and (12.102)) for W and ξR, and in
doing so obtain the eigenvalue ω which determines the stability. However, as
before, it is more instructive to look at modes with a short radial wavelength and so
obtain a local dispersion relation. Thus we assume that the spatial variation of the
variables is ∝ exp{i(kRR+kzz)}. Note that for clarity we have now replaced k by kz.
We also assume that the radial wavenumber is large (i.e. the radial wavelength is
small), so that kRR � 1. The two differential equations now become algebraic
equations. Thus eq. (12.99) becomes

(ω2 − �2
A)(ikRR) = k2

z W , (12.103)

and eq. (12.102) becomes(
ω2 − �2

A − R(R) − 4�2�2
A

ω2 − �2
A

)
ξR = ikRW . (12.104)

We can now eliminate W and ξR between these two equations and so obtain the
local dispersion relation:

I1(ω
2 − �2

A)2 − I2(ω
2 − �2

A) − I3 = 0, (12.105)

where

I1 = 1 + k2
R

k2
z

> 0, (12.106)

I2 = R(R) = 4�2 + R
d�2

dR
(12.107)

and

I3 = 4�2�2
A > 0. (12.108)

The solutions of eq. (12.105) are as follows:

ω2 = �2
A +

I2 ±
√

I2
2 + 4I1I3

2I1
. (12.109)

The solution with the + sign always has ω2 > 0 and so is stable. Thus, since I1 > 0,
for stability we require

2I1�
2
A + I2 −

√
I2
2 + 4I1I3 > 0. (12.110)

After some manipulation to get rid of the square root, we find that this is true if and
only if

I1�
4 > I3 − I2�

2
A. (12.111)
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A little further manipulation using eq. (12.107) to replace I2 shows that stability to
axisymmetric perturbations occurs if and only if

d�2

dR
> 0. (12.112)

12.3.2 The Balbus–Hawley instability

We see that the stability criterion for a rotating shear flow with a magnetic
field is completely different from the criterion for one without. For a purely
hydrodynamic flow, instability (to axisymmetric perturbations) occurs when the
angular momentum of the fluid decreases outwards. In that case axisymmetric
perturbations conserve the angular momentum of fluid elements and so can
only release energy (and so drive an instability) when the underlying angular
momentum profile is appropriately arranged. In contrast, the addition of a magnetic
field implies that even though the perturbations are still axisymmetric, the angular
momentum of each fluid element is no longer conserved because the magnetic field
can apply stresses which move it about. Under these circumstances, instability to
axisymmetic perturbations occurs when the angular velocity decreases outwards.
This ‘magnetorotational’ instability (MRI) has been in the literature for some time
(for example the derivation given here is based on that in the book by Chandrasekhar
(1961)). However, its relevance to astrophysical phenomena, and especially to
accretion discs, was not realized until the work of Balbus and Hawley in the
early 1990s. They showed that the MRI provides a convincing basis for the long-
sought mechanism driving outward transport of angular momentum, and thus
inward transport of mass, in accretion discs.

One particularly interesting aspect of this instability is that although its
occurrence depends on the presence of a magnetic field, the stability criterion
does not depend on the size of the field. Thus any magnetic field, however small,
gives rise to the instability! Physically all the field does is to allow fluid elements to
exchange angular momentum. This implies that the Rayleigh criterion, which relies
on fluid elements retaining their angular momenta, can be circumvented, enabling
the shear flow energy to be liberated more easily. Even so, it seems strange at first
glance that the stability criterion in the limit B → 0 is quite different from the
stability criterion for the case B = 0. This is an example of a singular limit found
in many areas of physics. For example, a viscous fluid in the limit of vanishing
viscosity behaves differently from an inviscid fluid . In his article on singular
limits, Michael Berry (2002) writes:

Biting into an apple and finding a maggot is unpleasant enough, but finding half a maggot
is worse. Discovering one third of a maggot is more distressing still. The less you find the
more you might have eaten. Extrapolating to the limit, an encounter with no maggot at all
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should be the ultimate bad apple experience. This remorseless logic fails, however, because
the limit is singular. A very small maggot fraction (f � 1) is qualitatively different from
no maggot (f = 0).

12.4 Circular shear flow with self-gravity

In Chapter 9 we discussed the stability of fluid configurations subject to self-
gravity. While doing so we noted that although we did find stability criteria, in
each case the underlying fluid configuration was taken to be static but was not in
fact in equilibrium. Further, the timescale for the development of the instabilities is
typically ∼(Gρ)−1/2, which is of course the same as the timescale for the evolution
of the background fluid. However, now that we are in a position to add rotation, we
are able to set up an initial configuration which is in dynamical equilibrium.

12.4.1 Rotating thin disc

We consider an initially axisymmetric, infinitesimally thin disc lying in the z-plane,
with surface density �(R). Thus the density distribution is given by

ρ(R, z) = �(R)δ(z). (12.113)

The (two-dimensional) pressure in the disc, P(R), just depends on radius. The
unperturbed velocity is an axisymmetric shear flow of the form

u0 = (0, R�(R), 0), (12.114)

and therefore the equilibrium condition just represents the balance between
centrifugal force, the (radial) pressure gradient and the radial gradient of the
gravitational force:

R�2 = −∇P

�
− ∇⊥�, (12.115)

where � is the unperturbed gravitational potential. To keep the analysis simple,
we shall assume that initially both the density and the pressure are uniform. Thus
� = const. and ∇P = 0. Then the unperturbed angular velocity is given in terms
of the gravitational potential by

�2 = − 1

R
∇⊥�. (12.116)

12.4.1.1 Axisymmetric perturbations – the Toomre criterion

We consider axisymmetric perturbations within the disc plane. The perturbed
velocity field is given by

u = (uR, R� + uφ , 0). (12.117)

We also Fourier analyze in time, so that all linear quantities vary as ∝ exp(iωt).
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The linearized equations of motion (in the disc plane only) are then given by

iωuR − 2�uφ = − 1

�

dP′

dR
− d�′

dR
(12.118)

and

iωuφ +
[
� + d

dR
(R�)

]
uR = 0, (12.119)

where P′ is the perturbed pressure and �′ is the perturbed gravitational potential.
The linearized continuity equation is given by

iω�′ + �

(
duR

dR
+ uR

R

)
= 0, (12.120)

where �′ is the perturbed surface density. Linearization of Poisson’s equation yields

∇2�′ = 4πG�′δ(z). (12.121)

To simplify the analysis further, we now consider perturbations with short
radial wavelength. This means that we can replace radial derivatives of perturbed
quantities by the multiplicative factor ik, where k is the radial wavenumber, and we
assume that kR � 1. In this approximation we saw in Chapter 9 that the perturbed
gravitational potential in the z = 0 plane is given by

�′(z = 0) = −2πG�′

|k| . (12.122)

Using this, and defining the two-dimensional sound speed Cs in the disc by

C2
s = dP

d�
, (12.123)

we can combine eqs. (12.118) and (12.119) to eliminate uφ and obtain

−ω2uR+2�

[
�+ d

dR
(R�)

]
uR = −ikC2

s
iω�′

�
− ik

(
−2πG

|k| (iω�′)
)

. (12.124)

We now use eq. (12.120) to eliminate �′ and find a linear equation for uR:

−ω2uR +
[

4�2 + 2R�
d�

dR

]
uR = −k2C2

s uR + 2πG|k|�uR. (12.125)

We note that the term in square brackets is simply the Rayleigh discriminant R,
which we can write in terms of the epicyclic frequency κ as follows:

R = κ2(R). (12.126)

Thus, on cancelling uR from the equation we obtain a local dispersion relation for
axisymmetric radial waves:

ω2 = κ2 − 2πG|k|� + k2C2
s . (12.127)
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If there is no self-gravity then we have the usual dispersion relation for
sound waves (ω2 = k2C2

s ) modified by rotation. The introduction of self-gravity
introduces the possibility of instability. For large wavenumber (small wavelength)
we still have stable sound waves, but they are now modified also by the self-gravity
term. In addition, for small wavenumber (long wavelength) we also have stability,
as ω ∼ κ . Thus instability can only occur, if it does at all, for some intermediate
range of wavelengths. Instability requires ω2 < 0, and inspection of eq. (12.127)
shows that this requires

Q = κCs

πG�
< 1. (12.128)

This is the Toomre criterion. When this is satisfied, there is a range of values of k
for which instability occurs (ω2 < 0).

The criterion can be understood roughly in the following manner. Consider
a patch of the disc of size λ. The mass contained within such a disturbance is
�M ∼ �λ2. Thus the timescale on which such a patch would collapse under gravity
is τG ∼ (λ3/G�M )1/2 ∼ (λ/G�)1/2. This patch can be stabilized against collapse
by pressure and by shear (or angular momentum ). The timescale on which shear
operates is ∼1/κ . Thus for collapse to be possible we require τG ≤ 1/κ , that is

λ ≤ G�

κ2
. (12.129)

The timescale on which pressure stabilizes is just the time taken for sound to cross
the patch, that is τs ∼ λ/Cs. For collapse to be possible we also require τG ≤ τs,
that is

λ ≥ C2
s

G�
. (12.130)

For instability we require that both these inequalities are satisfied, and we therefore
require that

G�

κ2
≤ C2

s

G�
. (12.131)

This, roughly, is the Toomre criterion.

12.4.1.2 Non-axisymmetric disturbances – spiral arms

In astronomy, thin discs of gas in axisymmetric potentials are found in many situ-
ations, of which obvious examples are Saturn’s rings and late type galaxies.
Late type galaxies are also known as spiral galaxies because the gas (and newly
born stars) in them display a spiral pattern. These spirals come about through



12.4 Circular shear flow with self-gravity 175

Fig. 12.1. Surface density given by a numerical calculation of a self-gravitating
plane disc. The gravitational potential is that of a point mass at the centre
of the disc and the disc mass is one-tenth of that of the central object. The
mean value of Q in the disc is 〈Q〉 = 1.0–1.2, so it is marginally stable
to axisymmetric perturbations. The disc develops non-axisymmetric spiral
self-gravitational instabilities. Courtesy of Giuseppe Lodato.

self-gravitational instability (see Fig. 12.1). This tells us that the axisymmetric
instability we have considered so far, which would give rise to rings rather than
spirals, is not commonly found. Why is this?

We found in Section 12.3 that the addition of a small magnetic field to a shear flow
made it easier to tap the energy available in the shear, and so made it easier to drive
an instability. This came about because in a purely axisymmetric non-magnetic
perturbation the angular momentum of individual fluid elements is conserved.
Then the relevant criterion was the Rayleigh criterion. However, the addition of
a magnetic field, even arbitrarily small, releases the system from this constraint
and so enables it to drive instability more easily (the stability criterion becomes
that of Balbus and Hawley). Similar considerations apply here: non-axisymmetric
perturbations break the angular momentum constraint for individual fluid elements
in an exactly analogous way to the magnetic perturbations in the Balbus–Hawley
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instability. If the perturbation is non-axisymmetric, the linearized equation for
uφ has terms of the form ∂P/∂φ and ∂�/∂φ on the r.h.s. These represent forces
acting in the azimuthal direction, and therefore mean that the angular momentum
of individual fluid elements is no longer constant. Thus, for non-axisymmetric
perturbations the shear term (κ2) is no longer such a stabilizing influence, and we
expect it to be easier to drive instability.

12.5 Further reading

The underlying concepts required for the consideration of the stability of rotational
shear flows are set out in Chandrasekhar (1961, Chap. VII). The derivation of
the Solberg–Høiland criterion sented here is based on that given by Tassoul
(2000, Chap. 3). Considerations of the effect of a magnetic field on rotational
shear flow are given in Chandrasekhar (1961, Chap. IX). The relevance of
magnetically induced instability of rotational shear flow in the astrophysical context
is reviewed by Balbus & Hawley (1998). The original description of the stability
of a self-gravitating disc, albeit for a system of stars, is given by Toomre (1964).

12.6 Problems

12.6.1 Show that the vorticity equation for an inviscid non-barotropic fluid can be written
as follows:

D

Dt

(
ω

ρ

)
=
(

ω

ρ

)
· ∇u − 1

ρ
∇
(

1

ρ

)
∧ ∇p. (12.132)

Note that this implies that there can be a source of vorticity in a non-barotropic fluid.
Show that the gradient of the enthalpy h = e + p/ρ is given by

∇h = T∇S + 1

ρ
∇p, (12.133)

where S is the entropy. Deduce that

∇T ∧ ∇S = −∇
(

1

ρ

)
∧ ∇p. (12.134)

Show also that for any scalar quantity Q

D

Dt

(
ω

ρ
· ∇Q

)
= D

Dt

(
ω

ρ

)
· ∇Q + ω

ρ
· D

Dt
[∇Q]. (12.135)

Use the above results to show that the entropy obeys the following equation:

D

Dt

(
ω

ρ
· ∇S

)
=
(

ω

ρ

)
· ∇
[

DS

Dt

]
. (12.136)

(See Tassoul (1978, Chap. 3).)
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12.6.2 Show that in axisymmetric motion, the specific angular momentum L = Ruφ =
R2� of a fluid element remains constant as we follow its motion. Show that the
radial (R) and axial (z) equations of motion can be written in a form replacing any
terms in uφ with a force L2/R3 acting in the radial direction.

An incompressible fluid with uniform density ρ is in cylindrical shear flow,
with angular velocity �(R). Consider the exchange of two elementary annuli
(rings) of fluid of equal heights and mass, caused by axisymmetric fluid motions.
The rings are at R1 and R2 and have small radial extents dR1 and dR2 and masses
dm = 2πρR1dR1 = 2πρR2dR2. Calculate the change in energy caused by the
exchange of the rings and show how this is related to the Rayleigh stability criterion.



13

Modes in rotating stars

We have seen in earlier chapters that in a non-rotating star there are basically
two types of wave modes possible. The p-modes resemble sound waves as the
restoring force in the oscillation comes from pressure. The g-modes resemble
surface water waves as their restoring force comes from gravity. In this chapter
we consider the new effects which can arise if the star is rotating. To do this
we need a more sophisticated model for a star. Previously we took our ‘star’ as
either a horizontally stratified atmosphere or as a gas in a one-dimensional box.
To consider rotational effects we need an axisymmetric base state. In line with
our philosophy of keeping things as simple as possible, without jettisoning any
essential physics, we take as our model star a circular cylinder of incompressible
fluid. This eliminates the consideration of p-modes.

13.1 The non-rotating ‘star’

We start by considering the wave modes in the non-rotating ‘star’. In equilibrium
this is a cylinder of fluid of radius R0, with constant density ρ and pressure p(R),
sitting in a gravitational potential �(R). The gravitational potential may be imposed
from outside: it may result entirely from self-gravity of the cylinder, or it may be
a mixture of the two. In equilibrium the velocity field is zero and the equation of
hydrostatic equilibrium yields

− 1

ρ

dp

dR
− d�

dR
= 0. (13.1)

Initially we consider waves with no z-dependence; that is, waves for which uz = 0
and ∂/∂z = 0. Thus all we expect in this situation is waves travelling around the
curved surface of the cylinder in the azimuthal direction. In this case the linearized

178
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equations of motion are given by

∂uR

∂t
= − 1

ρ

∂p′

∂R
− ∂�′

∂R
− ρ′

ρ

d�

dR
(13.2)

and
∂uφ

∂t
= − 1

Rρ

∂p′

∂φ
− 1

R

∂�′

∂φ
. (13.3)

We emphasize that although the fluid is incompressible, so that δρ = 0, the Eulerian
density perturbation ρ′ is non-zero because the fluid surface is distorted by the
perturbation. Thus if the radial component of the Lagrangian perturbation is ξR,
the Eulerian density perturbation is given by

ρ′ = ρξRδ(R − R0). (13.4)

The linearized continuity equation is given by

1

R

∂

∂R
(RuR) + 1

R

∂uφ

∂φ
= 0, (13.5)

and the linearized version of Poisson’s equation is given by

∇2�′ = 4πGρ′. (13.6)

Using the symmetry of the unperturbed configuration, we can now Fourier
analyze in the usual way by taking all quantities to vary as∝ exp{i(ωt+mφ+kz)}. In
this case we have assumed no z-dependence, so that k = 0. Making this substitution,
and defining the quantity W by

W = p′

ρ
+ �′, (13.7)

the above equations become

iωuR = −dW

dR
− ρ′

ρ

d�

dR
, (13.8)

iωuφ = imW

R
, (13.9)

1

R

d

dR
(RuR) + imuφ

R
= 0 (13.10)

and
1

R

d

dR

(
R

d�′

dR

)
− m2

R2
�′ = 4πGρξRδ(R − R0). (13.11)

We eliminate uφ between eqs. (13.9) and (13.10) to obtain

iω

R

d

dR
(RuR) = m2W

R2
. (13.12)
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Then using eq. (13.8) everywhere except at R = R0 (i.e. wherever ρ′ = 0)

iωuR = −dW

dR
, (13.13)

we obtain an equation for W valid everywhere except at R = R0:

1

R

d

dR

(
R

dW

dR

)
− m2W

R2
= 0. (13.14)

Inside the star, R < R0, the solution that is finite at the origin is given by

W (R) ∝ Rm, (13.15)

and we assume that m �= 0.
Similarly, the solution of eq. (13.11) is straightforward except at R = R0.

Choosing the solutions which are finite at the origin and at infinity we find (for
m �= 0) that

�′ =
{
�′

0(R/R0)
m, R < R0,

�′
0(R/R0)

−m, R > R0.
(13.16)

Here �′
0 is the value of �′ at R = R0, and we have chosen the solutions so that �′

is continuous at R = R0. The value of �′
0 is fixed by the jump in d�′/dR across

R = R0. Integrating eq. (13.11) across R = R0, we find that the jump is given by[
d�′

dR

]+

−
= 4πGξR. (13.17)

From this we obtain

�′
0 = 2πGρR0

m
ξR, (13.18)

where the r.h.s. is to be evaluated at R = R0.
We must now apply the free surface boundary condition at the surface of our

‘star’. This requires δp = 0 at R = R0, giving

lim
R→R0

(
p′

ρ
− ξRg

)
= 0, (13.19)

where the surface gravity g = d�/dR, evaluated at R = R0, and g > 0.
Alternatively we may write this as follows:

lim
R→R0

(W − �′ − ξRg) = 0. (13.20)

To put this in a more useful form, we use eq. (13.18) to write �′ in terms of ξR

and then use the relationship ur = iωξR together with eq. (13.13) to write ξR in
terms of dW/dR. Note that in doing this we have used the equations which are
valid for R �= R0, so that we have implicitly used the fact that limR→R0 ρ′ = 0,
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even though the value of ρ′ there is formally infinite! The boundary condition now
becomes

ω2W + dW

dR

[
−g + 2πGρR0

m

]
= 0, (13.21)

all to be evaluated at R = R0. Now from our solution for W given by eq. (13.15)
we see that

lim
R→R0

1

W

dW

dR
= m

R0
. (13.22)

Hence we find the mode frequencies as follows:

ω2 = mg

R0
− 2πGρ, (13.23)

provided m �= 0. Of course the mode m = 0 represents a simple radial expansion
or contraction of the cylinder, and cannot occur for an incompressible fluid. These
modes correspond to surface gravity waves (g-modes).

13.1.1 Self-gravitating cylinder

If the cylinder is to be a proper model of a ‘star’, we must demand that the
unperturbed gravitational potential � results solely from the gravity of the cylinder
itself. Thus,

1

R

d

dR

(
R

d�

dR

)
= 4πGρ. (13.24)

From this we can show that the surface gravity g = d�/dR is given by

g = 2πGρR0. (13.25)

Thus the oscillation frequencies of a self-gravitating cylinder are given by

ω2 = (m − 1)g

R0
. (13.26)

We note that although a mode with m = 1 is permitted, its frequency is zero.
Since such a mode represents a simple translation of the star perpendicular to its
axis of symmetry, this is exactly what we would expect. If you move a star bodily
sideways, there is nothing to move it back.

13.2 Uniform rotation

We now consider the effect on the stellar modes of adding a small amount of
uniform rotation �. There are two basic effects, which we discuss in Sections 13.2.1
and 13.2.2.
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13.2.1 Effect on p- and g-modes

Rotation changes the equilibrium shape of the star by the addition of a centrifugal
force into the equation of hydrostatic equilibrium. But this gives a term of order
∼ �2. Thus to first order in the rotation rate � the basic structure of the star, and
therefore its modes of oscillation, are not affected. However, there is a simple
kinematic effect which is known as frequency splitting.

We found the azimuthal modes in the non-rotating cylinder to have the form

ξR ∝ sin(ωt) sin(mφ), (13.27)

or equivalently
ξR ∝ cos(ωt − mφ) − cos(ωt + mφ). (13.28)

We may view these as two surface waves, one moving in the positive φ-direction
with phase velocity ω/m and the other moving in the negative φ-direction with
phase velocity −ω/m.

We have noted that the structure of a slowly rotating star is essentially unchanged.
Therefore if we move with the rotating frame, the star is at rest and we can apply
the analysis of the preceding section. The azimuthal coordinate φ′ in the rotating
frame is related to the azimuthal coordinate φ in the inertial frame by

φ′ = φ − �t. (13.29)

We conclude therefore that for a slowly rotating star the modes take the form

ξR ∝ cos(ωt − mφ′) − cos(ωt + mφ′), (13.30)

where the modal frequencies ω are unchanged to this order. Then in the inertial
(non-rotating) frame the modes take the form

ξR ∝ cos[(ω + m�)t − mφ] − cos[(ω − m�)t + mφ]. (13.31)

Thus the effect of rotation is to split the frequency of the mode:

ω → ω ± m�. (13.32)

This is known as rotational splitting.

13.2.1.1 The Chandrasekhar –Friedmann–Schutz instability

The idea of rotational splitting leads to the remarkable conclusion that the emission
of gravitational waves makes all rotating stars unstable! Einstein’s general theory
of relativity predicts that gravitational waves are emitted when a time-dependent
density distribution gives rise to a time-dependent gravitational field. Gravitational
waves have a quadrupole or higher multipole character, so that only modes with
m ≥ 2 produce them.
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We consider the effect of gravitational wave emission on the modes we have
been discussing.

First, we consider the non-rotating star. All the modes consist of two travelling
waves, each moving with angular speed ω/m, one moving in the positive φ-
direction and the other in the negative φ-direction (see eq. (13.28)). The one moving
in the positive φ-direction has a positive associated angular momentum. The
gravitational wave it emits also has positive angular momentum, so the effect of
gravitational wave emission is to reduce the amplitude of the wave and thus damp it.
Exactly the same argument applies to the wave moving in the negative φ-direction.

Now consider what happens if the star is rotating. The wave which was moving
in the positive φ-direction is still moving in that direction, but now (in the inertial
frame) with angular speed ω/m + �. Thus it still emits a gravitational wave with
positive angular momentum, and therefore damps. But the wave which was moving
in the negative φ-direction now has angular speed −ω/m + � in that direction.
Thus if ω < m� this wave moves in the positive φ-direction in the inertial frame.
If this happens, as it must for large enough m, then the wave, which has negative
associated angular momentum, actually starts to emit gravitational radiation with
positive angular momentum. This means that the wave amplitude grows and is the
basis for what is called the Chandrasekhar–Friedmann–Schutz (CFS) instability.

In reality, damping processes occur fastest for the high-m modes, and this
instability is not thought to operate for most stars. You can test this out by stamping
on the ground (this should produce waves with m ∼ 109) and seeing what happens!
However, the instability is thought to play a role in limiting the rotation rate for
neutron stars. These are very compact stars, with escape velocities from their
surfaces around 10–20 per cent of the speed of light. This means that when they
rotate rapidly, any surface features (such as waves) move at a speed v which is
a significant fraction of the speed of light c and so become efficient emitters of
gravitational waves (the emitted energy goes as (v/c)6). Neutron stars can reach
very rapid rotation rates by accreting matter with the Keplerian angular momentum
at their equators. This gravitational wave instability would ultimately limit their
spin rates if nothing else does at slower spin rates, and this is probably the reason
that they appear to show a maximum rotation period of around 1.5 ms.

13.2.2 The r-modes

The second effect of introducing rotation is to give rise to a completely new set of
modes, the rotational modes, or r-modes. Consider a perturbation of the form

ξ = (0, ξφ(R, z), 0). (13.33)
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If the star is not rotating, then all this perturbation does is displace azimuthal rings
of material in the φ-direction. Since the star is axi-symmetric, the equilibrium is
unchanged and there is no restoring force which tries to put the fluid rings back
where they were. In other words, the frequency associated with such a perturbation
is ω = 0. But if the star (or, in our case, cylinder) is rotating, then this displacement
changes the angular velocity of the ring. This upsets the equilibrium of the star
(which comes about through a balance between gravity, pressure gradient and
centrifugal force) and so gives rise to oscillations. As we shall see, a typical
frequency of the oscillations can be expected to be ω ∼ �.

We return to eqs. (12.28) and (12.29) which we derived in Chapter 12. We assume
all variables go as ∝ exp{i(ωt + mφ + kz)}. In Chapter 12 we defined the Rayleigh
discriminant, which for the uniform rotation we consider here is given by

R = 4�2, (13.34)

and we defined the Doppler-shifted frequency,

σ = ω + m�. (13.35)

We note that for uniform rotation, σ is independent of radius R. Then, in terms of
the variables W = p′/ρ and ξR, the linearized equations are given by

1

R

d

dR
(RξR) − 2mω

σR
ξR = 1

σ 2

(
m2

R2
+ k2

)
W (13.36)

and

[σ 2 − 4�2]ξR = dW

dR
+ 2m�

σR
W . (13.37)

We can now eliminate ξR between these two equations to get a second-order
ordinary differential equation for W :

d2W

dR2
+ 1

R

dW

dR
−
[(

1 − 4�2

σ 2

)
k2 + m2

R2

]
W = 0. (13.38)

For a non-rotating incompressible cylinder, the only possible wave modes are
surface waves (g-modes). To eliminate these we impose the boundary condition
that ξR = 0 at the surface of the cylinder R = R0. From eq. (13.37) we see that, in
terms of W , this implies

dW

dR
+ 2m�

σR
W = 0 (13.39)

at R = R0.
We consider first what happens if the modes are independent of z, i.e. if k = 0.

Without loss of generality, we may take m ≥ 0. Then for m �= 0 the solution which
is finite at R = 0 is

W ∝ Rm. (13.40)
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Since for this solution W and dW/dR have the same sign, we cannot now satisfy the
boundary condition, eq. (13.39). For m = 0 the solution that is finite at the origin
is of the form W = const. and corresponds to uniform radial expansion, which
cannot occur for an incompressible fluid. We conclude that the r-modes must all
have z-dependence.

We now need to recall briefly the basic properties of Bessel functions. This
should not come as a surprise as they are the natural functions for describing
oscillations in cylindrical geometry. The standard version of Bessel’s equation
for y(x) is as follows:

d2y

dx2
+ 1

x

dy

dx
+
(

α2 − ν2

x2

)
y = 0. (13.41)

This has two independent solutions, which are oscillatory. These are Jν(αx), which
is the cylindrical equivalent of sin x and (for ν �= 0) is zero at x = 0, and Yν(αx),
which is the cylindrical equivalent of cos x and is singular at x = 0. The modified
version of Bessel’s equation (obtained by the transformation x → ix) is as follows:

d2y

dx2
+ 1

x

dy

dx
−
(

α2 + ν2

x2

)
y = 0. (13.42)

This has two independent solutions which are non-oscillatory – the modified Bessel
functions. These are Iν(αx), which (for ν �= 0) is zero at x = 0 and is the cylindrical
equivalent of exp x, and Kν(αx), which is singular at x = 0 and is the cylindrical
equivalent of exp(−x).

Returning to eq. (13.38), we see that if σ 2 > 4�2 then the solution which is finite
at x = 0 has the form W ∝ Im(αR) for some real α. But in this case W and dW/dR
have the same sign, and we cannot then satisfy the boundary condition given in
eq. (13.39). This tells us that the r-mode frequencies must satisfy σ 2 < 4�2, i.e.

−2� < σ < 2�. (13.43)

When this is satisfied, we can define the real number α by

α =
[

4�2

σ 2
− 1

]1/2

> 0. (13.44)

Then the solution to eq. (13.38) is given by

W = Jm(αkR). (13.45)

Substituting this solution into the boundary condition, eq. (13.39), gives

αkJ ′
m(αkR0) + 2m�

σR
Jm(αkR0) = 0, (13.46)
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where the prime denotes the derivative of the Bessel function with respect to its
argument. Using the substitution

σ

2�
= ± 1√

1 + α2
, (13.47)

we may rewrite this as follows:

αkR0J ′
m(αkR0) ± m(1 + α2)1/2Jm(αKR0) = 0. (13.48)

The oscillatory property of the Bessel function † means that for each value of k
this gives multiple solutions for α and hence for σ or ω.

13.2.2.1 Axisymmetric r-modes

To make things simple, we consider the axisymmetric case m = 0. Then the
boundary condition, eq. (13.39), becomes simply

J ′
0(αkR0) = 0, (13.49)

or equivalently, since from the properties of Bessel functions we know that J ′
0(x) ∝

J1(x),
J1(αkR0) = 0. (13.50)

This means that
αkR0 = Zi, (13.51)

where Zi, for i = 1, 2, 3, . . ., are the zeroes of the Bessel function J1(z). These
can be looked up in tables, and the first few are Zi = 3.83, 7.02, 10.17, . . ..

To make our cylinder look more like a star, we can assume that is has a finite
height, so that it has fixed ends at z = 0, H . We then impose the further boundary
conditions that ξR = 0 at z = 0, H , so that the z-dependence of W is W ∝ sin(kz),
where kH = nπ for non-zero integer n. After a little algebra we find that for such
a ‘star’ the frequencies of the r-modes are given by

ωi = ± 2�[
1 + (ZinπR0/H )2]1/2

. (13.52)

13.2.2.2 The CFS instability continued

Just as electromagnetic waves can be generated by time-varying electric currents,
gravitational waves can be generated by mass currents. As we have seen, the r-
modes consist essentially of oscillating mass flows within a rotating medium. It
appears that it is these r-modes which are the most efficient drivers of the CFS
instability in rapidly rotating neutron stars. One reason for this is that the modes
do not require compressibility and do not damp as rapidly as compressible modes.

† If we imagine replacing J by sin and J ′ by cos, then this equation has the form tan A = B for some A and
B, which of course gives multiple solutions for A.
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13.3 Further reading

Rotational splitting of eigenfrequencies is discussed by Unno et al. (1979). The
concept of rotational modes (r-modes) was introduced by Papaloizou & Pringle
(1978a), who also introduced the concept of a minimum spin period for accreting
neutron stars (Papaloizou & Pringle (1978b). They also note that since in three
dimensions any disturbance can be described in terms of three independent vectors,
the addition of the r-modes to the p- and g-modes implies that an arbitrary initial
disturbance can be completely described in terms of these modes (see the discussion
about waves in magnetic media, Chapter 2). The importance of singular modes
of rotating stars (not discussed in this book, but see Section 10.3.1) in the stellar
context is discussed by Ogilvie & Lin (2004) and Ogilvie (2005). The role of the
continuous spectrum in rotational shear instabilities, and the use of the initial-value
problem in determining the outcome, is discussed by Watts et al. (2003) and by
Watts, Andersson & Williams (2004). A simple, pseudo-Newtonian description of
the Chandrasekhar–Friedmann–Schutz (CFS) instability is given by Papaloizou
& Pringle (1978b). The importance of r-modes in the CFS instability in the
astrophysical context, specifically in rapidly rotating neutron stars, is presented by
Andersson (1998).

13.4 Problems

13.4.1 A self-gravitating incompressible sphere has uniform density ρ, mass M and radius
R. The star undergoes a perturbation which has zero vorticity and oscillation fre-
quency ω. Show that this implies that we may write ξ = −∇ψ for some scalar field
ψ which satisfies Laplace’s equation ∇2ψ = 0.

Show that the equation of motion then implies that

−ω2ψ + p′

ρ
+ �′ = 0, (13.53)

where p′ is the perturbation to the pressure and �′ is the perturbation to the
gravitational potential.

Deduce that p′ and �′ both satisfy Laplace’s equation, so that we can write the
solution in the following form:

ψ = C
( r

R

)l
Ylm(θ , φ), r < R,

p′ = B
( r

R

)l
Ylm(θ , φ), r < R,

�′ =

⎧⎪⎪⎨
⎪⎪⎩

A
( r

R

)l
Ylm(θ , φ), r < R,

A

(
R

r

)l+1

Ylm(θ , φ), r > R,

(13.54)

where A, B and C are constants and the Ylm(θ , φ) are spherical harmonics.
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Use the equation of motion to find an equation relating A, B and C. Use the zero
pressure boundary condition at r = R to obtain a relation between B and C. Use
Poisson’s equation, applied as a jump condition at r = R, to relate A and C.

Hence show that the oscillation frequencies of a self-gravitating, uniform density,
incompressible sphere are given by

ω2 = 4

3
πGρ

2l(l − 1)

2l + 1
. (13.55)

Why is ω = 0 for l = 0 and for l = 1?
How does this result relate to the dispersion relation for deep water waves

ω2 = gk?
13.4.2 (i) For the adiabatic oscillations of a spherical star, show that

d2ξ

dt2
= −∇χ + A

γ p

ρ
div ξ , (13.56)

where

A = 1

ρ
∇p − 1

γ p
∇p (13.57)

and

χ = p′

ρ
+ �′. (13.58)

(ii) In spherical polar coordinates we write ξ = (ξr , ξθ , ξφ) and assume time-
dependence of the form eiωt . Show that

div ξ = 1

r2

∂

∂r
(r2ξr) − 1

ω2r2
L2χ , (13.59)

where the operator L2 is defined as follows:

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (13.60)

(iii) Let the perturbed quantities be of the form

χ(r, θ , φ) = χ(r)Ylm(θ , φ). (13.61)

Note that ξ is the sum of a purely radial vector and the gradient of a scalar.
Show that if ω2 �= 0, then (curl ξ)r = 0. (These are the spheroidal modes, i.e.
p-modes and g-modes.)

(iv) Give a physical explanation of the displacement

ξ = eiωt f (r)

(
0,

1

r sin θ

∂Ylm

∂φ
, −1

r

∂Ylm

∂θ

)
, (13.62)

where f (r) is an arbitrary function.
Show that the displacement

ξ = ẑ ∧ r eiωt (13.63)



13.4 Problems 189

is such a displacment for some f (r), l and ω to be determined. (These are the
toroidal modes, which become the r-modes for a rotating star.)

13.4.3 An unbounded incompressible fluid is rotating with constant angular velocity
� and is subject to a force −∇�. Show that, in the rotating frame, a wave-like
disturbance of the form exp{i(ωt + k · r)} satisfies the equations

k · u = 0 (13.64)

and
iωu + i(k · u)u = −iBk + 2u ∧ �, (13.65)

where the scalar B and the vector u are both complex quantities.
Note that u · u = 0 does not imply that u = 0.
Assuming that we are considering propagating waves, so that k and ω are real,

show that
ω = ±2� · k̂. (13.66)

Deduce that the group velocity is given by
∂ω

∂k
= ± 2

k3
k ∧ (� ∧ k). (13.67)

Describe the properties of the waves.
Compare the properties of these waves with the properties of buoyancy waves

in an incompressible stably stratified fluid (Chapter 5). (See Greenspan (1968,
Chap. 4).)

13.4.4 In cylindrical polar coodinates (R, φ, z) an incompressible fluid of uniform density
is in circular flow with angular velocity

�(R) =
{
�0, R < R0,
�0(R/R0)

−2, R > R0,
(13.68)

where R0 and �0 are constants. The flow is now subject to small perturbations
of the form f (R) exp{i(ωt + mφ)}, where m �= 0. In the domain 0 ≤ R ≤ R0,
show that W = p′/ρ has solutions W ∝ Rm. In the domain R0 ≤ R, show that
W ∝ (ω + m�)R−m.

Hence show that the oscillation frequencies are given by ω = �0(1 − m). (See
Lamb (1932, Chap. VII).)

13.4.5 An incompressible fluid of uniform density ρ rotates uniformly with angular
velocity � inside a smooth rigid sphere of radius r0. Find the pressure distribution
in the fluid.

The flow undergoes small oscillations such that, for example, the Eulerian
pressure perturbation is of the form

p′ = p′(R, z) exp{i(ωt + mφ)}, (13.69)

where (R, φ, z) are cylindrical polar coordinates, m is the azimuthal wavenumber
and ω is the oscillation frequency. Show that W = p′/ρ satisfies the equation

1

R

∂

∂R

(
R

∂W

∂R

)
− m2

R2
W +

(
1 − 4�2

σ 2

)
∂2W

∂z2
= 0, (13.70)

where σ = ω + m�.
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Derive the boundary condition satisfied by W on the sphere R2 + z2 = r2
0 .

Show that there is an axisymmetric oscillation mode of the form

W = z(AR2 + Bz2 + C), (13.71)

where A, B and C are constants, with oscillation frequency given by

ω = ±
√

5

2
�. (13.72)
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Cylindrical shear flow–non-axisymmetric instability

In several astrophysical contexts, notably in the study of accretion discs, we would
like to know whether certain types of rotating shear flow are stable. If so, these
are potential candidates for realistic models of accretion flows. In Chapter 12 we
considered cylindrical shear flow in an incompressible fluid. We showed that in
the absence of magnetic fields the flow is unstable to axisymmetric instability if
the specific angular momentum is a decreasing function of radius – the Rayleigh
criterion. Thus we need to ask if the converse is true; that is, whether stability is
guaranteed if the Rayleigh criterion is satisfied.

We shall show here, by considering a particular example, that this converse is
not true. If non-axisymmetric perturbations are allowed, instability is still possible
even if the Rayleigh criterion is satisfied.

14.1 Equilibrium configuration

We consider a cylindrical flow of an incompressible fluid with no z-dependence in
a fixed gravitational potential:

�(R) = −GM

R
. (14.1)

Note that this is a purely artificial potential, since R is the cylindrical radius not
the spherical radius r which appears in the gravitational potential � = −GM /r
for a point mass M at the origin. Since there is no z-dependence, the equilibrium
equation is simply

− 1

ρ
∇p − ∇� + R�2R̂ = 0. (14.2)

Here �(R) is the angular velocity of the fluid. Replacing the centrifugal force
term by a rotational potential of the form ��(R), where

∂��

∂R
= −R�2, (14.3)
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we can integrate the equilibrium equation to give

p

ρ
+ � + �� = C, (14.4)

where C is a constant.
We now specialize the flow to one for which the Rayleigh criterion is neutrally

satisfied, i.e. one for which R(R) = 0. Thus we have

�(R) = �0

(
R0

R

)2

, (14.5)

where �0 is the angular velocity at some reference radius R0, yet to be defined.
We note that in eq. (14.2) the gravitational force has the form FG ∝ −1/R2 and the
centrifugal force obeys F� ∝ 1/R3. This means that at small radii the centrifugal
force dominates and the net force is outwards, while at large radii the gravitational
force dominates and the net force is inwards. Therefore at some radius, which we
define as the reference radius R0, these two balance and we have FG + F� = 0.
Using this definition we find that

R0�
2
0 = GM

R2
0

, (14.6)

and hence that we can rewrite eq. (14.4) in the following form:

p(R)

ρ
= C + GM

R
− GMR0

2R2
. (14.7)

For a given value of the constant C, this defines the distribution of pressure p(R).
We note that by definition we have ensured that dp/dR = 0 at R = R0, and indeed
p(R) reaches a maximum value of

pmax = ρ

(
C + GM

2R0

)
(14.8)

at that radius. For R > R0, p(R) is a monotonically decreasing function of R,
reaching the value of p∞ = ρC in the limit as R → ∞. From eq. (14.7) we see
that, as R decreases, p(R) always becomes negative at some finite radius. Since in
the body of the fluid the pressure must always be positive, this implies that the
fluid must have a cylindrical cavity surrounding the z = 0 axis.

We are interested here in finite configurations, which do not reach to infinity.
This means that we require C < 0, so that there is no pressure at infinity. Also,
for the configuration to exist at all, we require that pmax > 0. We shall therefore
redefine C in terms of a dimensionless parameter λ as follows:

C = −GM

λR0
, (14.9)
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where, for a finite fluid configuration, we now require 2 < λ < ∞. To locate the
boundaries of the fluid configuration, we look for the radii at which p(R) = 0.
Substituting all this into eq. (14.7) we find that the fluid configuration is in the
region R− ≤ R ≤ R+, where R± are the roots of a quadratic equation given by

R±
R0

= 1

2
(λ ±√

λ(λ − 2)). (14.10)

We note that we may define R− < R0 and R+ > R0. As λ → 2, the two roots
become almost equal and the fluid configuration is a slender cylindrical shell. As
λ → ∞, we see that R− → 1/2 while R+ → ∞.

Finally, for later use, we note that the effective gravity in the flow, g = ∇p/ρ,
can be written as follows:

g(R) = GM

R2
0

[
R0

R

]3 [
1 − R

R0

]
. (14.11)

Then of course at the inner radius, R = R−, the gravity g(R−) = g− > 0 acts
radially outwards, while at the outer radius, R = R+, the gravity g(R+) = g+ < 0
acts radially inwards.

14.2 The perturbation equations

We proceed exactly as before to obtain the linearized equations of motion, noting
that in this case we assume that there is no z-dependence. We also ignore the self-
gravity of the fluid, so we assume the potential to be fixed, and note that the Eulerian
density perturbation ρ′ is zero everywhere except for a δ-function contribution at
the boundaries. As before, we take all quantities to vary as ∝ exp{i(ωt + mφ)} and
define the Doppler-shifted frequency

σ(R) = ω + m�(R). (14.12)

Then in terms of the radial Lagrangian displacement ξR and the quantity W = p′/ρ,
and recalling that here � ∝ 1/R2, eqs. (12.28) and (12.29) become

σ 2
(

dξR

dR
+ ξR

R

)
− 2m�σ

R
ξR = m2

R2
W (14.13)

and

σ 2ξR = dW

dR
+ 2m�

σR
W . (14.14)

Because � ∝ 1/R2, these equations can be simplified by using the substitution

W = σH . (14.15)
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Then eq. (14.14) becomes simply

σξR = dH

dR
, (14.16)

and eq. (14.13) becomes

d

dR
(σξR) + σ

ξR

R
= m2

R2
H . (14.17)

Eliminating ξR from these two equations, we obtain

1

R

d

dR

(
R

dH

dR

)
− m2

R2
H = 0. (14.18)

This is a second-order equation for H with eigenvalues ω, once we have applied
appropriate boundary conditions. We know from Chapter 4 that if we have fixed
boundaries ξR = 0 there are no surface waves (the incompressible equivalent of
p- and g-modes). In addition, since we have no z-dependence, then there are no
internal waves (r-modes). Thus, in order to allow something to happen we must let
the boundaries move. The simplest boundary condition, and the most appropriate
one from an astrophysical point of view, is to allow free boundaries at R = R±.
Thus at R = R± we let

δp = p′ + ξR
dp

dR
= 0. (14.19)

This implies that

W + gξR = 0, (14.20)

which, in turn, using the definition of H and eq. (14.16), gives

σ 2H + g
dH

dR
= 0, (14.21)

which is valid at R = R±.
The general solution to eq. (14.18) is as follows:

H = C1Rm + C2R−m, (14.22)

where C1 and C2 are constants. Applying the boundary condition, eq. (14.21), at
R = R− and R = R+, and then eliminating the constants C1 and C2, we obtain the
eigenvalue equation for ω:

(ω + m�−)2 + mg−/R−
(ω + m�+)2 + mg+/R+

=
(

R+
R−

)2m
(ω + m�−)2 − mg−/R−
(ω + m�+)2 − mg+/R+

, (14.23)

where we have written �± = �(R±). This is a quartic equation for ω.
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14.3 The Papaloizou–Pringle instability

The roots of the quartic equation,eq. (14.23), are able to give rise to unstable growing
modes, i.e. values of ω such that Im(ω) < 0. This happens for the following reason.
At the inner edge there are two sets of waves, travelling relative to the fluid in the
positive and negative φ-directions. The same applies at the outer edge. However,
because � ∝ 1/R2, the fluid at the inner edge is moving at an angular velocity �−
greater than the angular velocity �+ at the outer edge. The instability occurs when
a wave which is travelling backwards relative to the fluid at the inner edge has the
same angular phase speed as a wave which is travelling forwards relative to the fluid
at the outer edge. When this happens the waves can communicate and exchange
angular momentum and energy . The situation here is exactly analogous to the
one we discussed in Chapter 13 regarding the Chandrasekhar –Friedmann–Schutz
instability. The wave at the inner edge transfers angular momentum outwards
to the wave at the outer edge. The wave at the outer edge has positive angular
momentum and is gaining angular momentum so it grows in amplitude. The
wave at the inner edge which is losing angular momentum is a wave of negative
angular momentum, and so it too grows in amplitude. This signifies an instability,
here called the Papaloizou–Pringle (PP) instability.

Here we consider two limiting cases, amenable to simple analysis, one stable
and the other unstable.

14.3.1 Large m

Here we consider what happens in the limit of large m. In this limit the wavelengths
of the surface waves (2πR±/m in the azimuthal direction) become very short. Thus
they behave like deep-water waves and have frequencies (in the frame of the fluid)
given by ω2 = mg±/R±. In eq. (14.23), the term (R+/R−)2m becomes very large in
the limit of large m and dominates all the other terms. For equality to hold therefore,
we require either that the denominator of the l.h.s. or the numerator of the r.h.s.
vanish. These two conditions, recalling that g+ < 0 and g− > 0, give the four roots
of the quadratic:

ω = −m�+ ±√
m|g+|/R+, (14.24)

which correspond to the expected surface waves on the outer edge, and

ω = −m�− ±√
mg−/R−, (14.25)

which correspond to surface waves on the inner edge. For such surface waves, the
phase velocities are ∝ 1/

√
m so there is no chance of the backward wave at the

inner surface being in phase with the forward wave on the outer surface. Thus in this
limit the waves are stable. Moreover at such large values of m, the depth to which
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such waves propagate means that the waves on the two surfaces do not interact and
move independently.

14.3.2 Thin cylindrical shell

We consider the limit λ → 2, so that the fluid is confined to a thin cylindrical shell.
We do this at a fixed value of m and this now gives the waves a chance to interact.
Thus we set

λ = 2(1 + ε2) (14.26)

and consider the limit ε � 1. To first order in ε, we find that

R± = R0(1 ± ε), (14.27)

that
g± = ±εR0�

2
0 (14.28)

and that
�± = �0(1 ∓ 2ε). (14.29)

It is convenient to define
σ0 = ω + m�0, (14.30)

so that
ω + m�± = ω + m�0 ∓ 2m�0ε. (14.31)

Substituting this into eq. (14.23) and keeping only first-order terms in ε, the equation
reduces to

σ 2 = −2�2
0. (14.32)

This implies
ω = −m�0 ± i�0

√
2. (14.33)

We note two things about this result. First, the real part of the eigenfrequency is
such that the eigenmode co-rotates with the fluid at radius R = R0. It is essential
that unstable modes co-rotate with the fluid at some radius, so that forward and
backward travelling waves have a chance to interact. We already found that this
was a requirement for instability in the linear shear flow (Chapter 10). Second,
the growth rate of the instability is dynamical, with the growth timescale being of
order the rotation period of the fluid. Thus, even though according to the Rayleigh
criterion the fluid is on the margin of stability to axisymmetric modes, it is
actually dynamically unstable to non-axisymmetric modes. This demonstrates the
distinction between local and global instability. The Rayleigh criterion is purely
local, whereas the PP instability explicitly involves the conditions at the inner and
outer boundaries of the flow. In astrophysical applications the PP instability shows
that the possible forms of rotating shear flows in accretion discs are severely
restricted.



14.5 Problems 197

14.4 Further reading

The original description of the Papaloizou–Pringle instability is to be found in
Papaloizou & Pringle (1984). The simplified analysis presented here is based on
Blaes & Glatzel (1986).

14.5 Problems

14.5.1 A torus of non-self-gravitating polytropic fluid (index n) rotates about the R = 0
axis with uniform specific angular momentum h and is subject to the gravitational
field of a point mass M at the origin R = z = 0. Show that the structure of the torus
is given by

(n + 1)
p

ρ
= GM

R0

⎡
⎣
(

R2
0

R2 + z2

)1/2

− 1

2

(
R0

R

)2

− C

⎤
⎦ , (14.34)

where C is a constant and the density maximum is at R = R0, z = 0, where
h2 = GMR0.

Describe approximately the shapes of the tori for values of C in the range 0 <

C < 1/2. If C ≈ 1/2 show that the torus is very slender and has a nearly circular
cross section. (See Papaloizou & Pringle (1984).)

14.5.2 Consider the torus discussed in Problem 14.5.1. Show that small perturbations of
the form ∝ exp{i(ωt + mφ)} obey the equation

1

R

∂

∂R

(
ρR

∂W

∂R

)
= −m2

R2
ρW + ∂

∂z

(
ρ

∂W

∂z

)
= −σ 2ρ2

γ p
W , (14.35)

where W = p′/ρσ and σ = ω + m�.
14.5.3 An infinite cylinder (0 ≤ R ≤ R0) of incompressible fluid with uniform density ρ0

rotates about the axis R = 0 with velocity u0 = (0, R�(R), 0), with �(R) = kR,
where k is a constant.

The fluid is self-gravitating. Show that if the central pressure p(R=0) =
π2G2ρ3

0/k2, then the radius is R0 = (2πGρ0)
1/2/k and the effective surface gravity

is zero.
The fluid is subject to small perturbations so that, for example, the velocity is

u0 + u, where u is of the form

u ∝ (uR(R), uφ(R), 0) exp{i(ωt + mφ)}. (14.36)

Show that the perturbation equations are given by

iσuR − 2�uφ = −dW

dR
, (14.37)

3�uR + iσuφ = − im

R
W (14.38)



198 Cylindrical shear flow–non-axisymmetric instability

and
duR

dR
+ uR

R
+ im

R
uφ = 0, (14.39)

where σ = ω + m�(R) and W = p′/ρ + �′.
Show that these equations can be reduced to the following single equation:

d2uR

dR2
+ 3

R

duR

dR
+
{

1 − m2 − 3m�

σ

}
uR

R2
= 0. (14.40)

Now consider the case m = 1. Show that a solution to this equation is given by

uR = 1 + kR

ω
. (14.41)

Assuming that this is the only solution which is regular at R = 0, show that the
oscillation frequencies obey the equation ω2 = 0. Give a physical explanation of
this result.

In this case the solution given is apparently singular. Find the solution to
eq. (14.40) for the case m = 1 and ω = 0, which is regular at the origin, and
comment on how it is obtained from the solution given in the limit ω → 0. (See
Watts et al. (2003, 2004), and also refer to Balbinski (1984).)
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axisymmetric perturbations, 161, 165, 167,

171, 175
axisymmetric r-modes, 186, 194
axisymmetric stability, 196
axisymmetric stability of an incompressible

rotating fluid, 162

barotropic fluid, 11, 15, 151, 152, 154, 157, 176
Bernoulli constant, 47
Bernoulli equation, 11, 45
Bernoulli theorem, 35
Bessel equation, 185
Bessel function, 86, 87, 185, 186

modified, 185
blast wave, Taylor-Sedov solution, 57
Bondi, 46–50, 58
Bondi accretion, 45, 46, 50, 58, 59
Bondi radius, 49, 50
boundary conditions, 47, 48, 56, 62, 87, 105,

112, 122, 136, 137, 144, 148, 162,
186, 194

Brunt–Väisälä frequency, 79
buoyancy, 78, 84–86, 102, 107, 127, 144, 145

magnetic, 102, 109

Cepheid, 90
Chandrasekhar, 77, 111, 112, 145, 148, 171,

176, 182, 195
Chandrasekhar–Friedmann–Schutz instability,

182, 195
characteristic curves, 28–30, 32
charge density, 10
circular shear flow, 158, 162

with a magnetic field, 167
with self-gravity, 172

compressibility, 111, 145, 186
compressible media, 17–43
conductivity, 1, 10, 92–94, 97, 98, 100, 103,

113, 116–121
electrical, 6
thermal, 6, 92, 100, 113, 119–121

conservation
of angular momentum, 16, 150
of energy, 5, 6, 12, 13
of entropy, 7, 26
of magnetic flux, 37
of mass, 2
of momentum, 3, 4, 41, 45, 52, 134

convection, 62, 73, 74, 98, 107, 110, 156
instability, 74, 90, 163
Schwarzschild criterion, 74, 79, 85, 107, 162,

165, 167
cooling, 2, 113–118, 120, 121

of astrophysical gases, 113, 114
slow, 116, 117

cooling front, 120
cooling function, 114, 115

d’Alembert’s principle, 164
damping, 90, 93–95, 97, 101, 183
diffusivity, 15

magnetic, 15
dispersion relation, 20–23, 82–84, 89, 106,

108–110, 116, 120, 124, 130, 131, 146,
170, 173, 174, 188

displacement current, 9
divergence theorem, 3, 33, 34, 36

203
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Eddington–Sweet circulation, 155
eigenfunction, 70, 87, 94, 95, 99, 100, 137
eigenvalue, 56, 70, 87, 89, 94, 99, 120, 137,

161, 162, 170, 194
electric charge density, 4
electric current, 186
electric field, 4, 10
energy, 5–7, 12–14
energy density, 13, 14, 41, 152
energy density equation, 12–14
energy flux, 14, 61
energy generation, 7, 14, 61, 62, 96, 101, 152
energy input, 51, 56
energy internal, 5, 6, 35, 76, 91, 92, 163
energy kinetic, 6, 13, 14, 35, 57, 71, 76, 88,

108, 163
energy loss, 134
energy magnetic, 6, 13, 14, 76, 106, 108, 109
energy nuclear, 6, 95, 96, 152
energy production, 61, 95–97
enthalpy, 176
entropy, 5, 7, 8, 19, 35, 40, 54, 67, 74, 85, 102,

162–164, 176
equation of motion, 4
equation of state, 6–7
equation of continuity, 165, 169, 179
Eulerian, perturbation, 18, 19, 38, 64–67, 75,

80, 160, 164, 179, 189, 193
Eulerian vs. Lagrangian, 63
evanescent, 79, 137
exchange of stabilities, 70, 127
explosion, 38, 50, 51, 53, 57, 58

in uniform medium, 50
supernova, 38, 50, 57

fast/slow magnetosonic waves, 25, 39
Ferraro’s law of isorotation, 156
field lines, magnetic, 12, 16, 24, 25, 36, 38, 59,

110, 156, 157, 169
flow

barotropic, 8
compressible, 17, 26, 162
isentropic, 8, 45
non-linear, 26, 38
spherically symmetric, 44, 50, 58, 60

steady inflow, 44
steady outflow, 50

of traffic, 38
fluid

definition of, 1, 2
magnetic, 36

force
electric, 4
electromagnetic, 10

pressure, 26, 46
Fourier transform, 20, 22, 68, 79, 80, 94, 104,

108, 135, 138, 142
frequency

epicyclic, 173
rotational splitting, 182, 187

frequency wave, 21

g-mode, 79, 83, 84, 89, 103, 178, 181, 182, 184,
187, 188, 194

galaxy, 44
gas

compressible, 29, 30, 120
perfect, 6–8, 20, 40, 41, 54, 56, 62, 96, 98,

115, 121, 152
gas law, 20, 40, 41
gravitational collapse, 124, 150
gravitational field, 76, 88, 103, 106, 111, 142,

144–146, 162, 182, 197
gravitational force, 3, 131, 162, 172, 192
gravitational potential, 3

effective, 152
gravitational radiation, 182, 183, 186
group velocity, 21, 23, 38, 84, 189

heat, 5–8, 35, 38, 61, 93, 94, 97, 99, 100, 103,
113, 152–155

conduction of, 5, 14, 19, 61, 93
generation of, 6

heating/cooling front, 117
hydromagnetic shock, 41

incompressible flow, 15, 17
induction equation, 10, 22, 104, 107, 147,

156, 168
initial-value problem, 29, 138, 187
instability, 135, 175

Balbus–Hawley, 171, 175, 176
buoyancy, 102, 106
Chandrasekhar–Friedmann–Schutz, 183,

186, 187
epsilon mechanism, 95–97
Field criterion, 114, 117, 118
gravitational, 123, 129, 130, 175
Hertzsprung–Russell diagram, 90, 101
Jeans, 123–125
kappa mechanism, 97, 98
of linear shear flow, 196
magnetic buoyancy, 106
MRI (magnetorotational), 171
Papaloizou–Pringle, 187, 195, 197
Parker, 102, 107, 108
Rayleigh criterion, 196
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incompressible flow (contd.)
Richardson criterion, 144
Schwarzschild criterion, 73
of self-gravitating fluid, 150
shear, 141
Solberg–Høiland criterion, 162, 165, 176
of stratified fluid, 162
strip, 90, 101
thermal, 113
of thin slab, 129
Toomre, 172, 174, 176

internal energy, 35
inviscid fluid, 171
isothermal gas, 130

Jeans criterion, 97, 101
Jeans instability, 123–125
Jeans length, 124, 128–130
Jeans mass, 124
jump conditions, 34, 36, 41, 51

Kelvin–Helmholtz instability, 155
Kelvin–Helmholtz timescale, 155, 174
Kelvin’s circulation theorm, 15
kinetic energy density, 13
Knudsen number, 2

Lagrangian derivative, 4, 5, 65, 119
Lagrangian displacement, 64, 105, 160, 193
Lagrangian perturbation, 18, 66, 86, 103, 105,

142, 168, 179
Lagrangian vs. Eulerian, 18, 38, 63–66, 74
Lamb wave, 83
Laplace equation, 104, 105, 187
Laplace transform, 138
Legendre equation, 128
Legendre polynomials, 128
Liapunov functional, 121
linear perturbations, 114
linear shear flow, 134

bounded, 148
stratified, 142, 144

linear wave equation, 19
local analysis, 82, 170
Lorentz force, 10
Lorentz transformation of fields, 9

Mach number, 35, 40, 42, 52
magnetic energy density, 13
magnetic field, 3, 8–14
magnetorotational instability (MRI), 171

magnetohydrodynamics (MHD) approximation,
8–10, 12–14, 17, 24, 33, 35, 36

magnetohydrodynamic equation, 26, 41
magnetosonic waves, 24, 25
mass conservation equation, 2, 3
Maxwell equation, 9, 10, 13, 157

displacement current, 9
Maxwell stress tensor, 3, 4
mean free path, 1, 2, 4, 6, 31, 33, 37
meridional circulation, 154, 155, 157
MHD, see magnetohydrodynamics, 8, 14, 15
modes

g-modes, 79, 83, 84, 89, 103, 178, 181, 182,
184, 187, 188, 194

normal, 4, 33, 34
p-modes, 78, 84, 86, 178, 188
in rotating stars, 178
of self-gravitating incompressible cylinder,

181, 184
of self-gravitating incompressible sphere, 187
spheroidal, 188

non-axisymmetric disturbances, 174
non-axisymmetric instability, 191
non-axisymmetric perturbations, 176, 191
nozzle, subsonic/supersonic flow transition, 29,

42, 50, 58, 118, 119, 134

Ohm’s Law, 9, 10
opacity, 61, 62, 97, 100, 152
orthogonality, 87, 100
oscillation, 78–83, 86–88, 90–97, 99–101, 178,

181, 184, 185, 187–190, 198
damping, 100

by conduction, 154, 155
excitation, 90, 93, 97, 101, 113

the epsilon mechanism, 96
the kappa mechanism, 97

hanging chain, 86
stellar, 21, 62, 63, 78, 83, 87, 93, 97, 101

oscillation mode, 97, 99, 190
overstability, 97

p-mode, 78, 84, 86, 178, 188
perfect gas law, 56, 62, 91, 98, 103
perturbation

adiabatic, 20, 66, 67, 75, 129, 166
Eulerian, 99, 123, 142, 143
irrotational, 21
Lagrangian, 63–65, 67, 68

phase velocity, 21, 39, 84, 142, 144, 182
piston, 31, 32, 37, 42
Poisson’s equation, 3, 61, 75, 123, 126, 127,

129, 153, 173, 179, 188
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polytropic fluid, 8, 58, 84, 85, 87, 88, 97, 98, 197
potential gravitational, 11, 14, 60, 162

velocity, 17, 146
Poynting flux, 14
pressure, 1, 4, 8, 17–21

gas, 25, 37
magnetic, 25, 107, 110

r-mode, 183, 185–187, 189
radiation, 38, 61, 93, 94, 113, 152

cooling, 6, 113, 114
radiative transfer, 6, 61, 62, 154
Rankine–Hugoniot jump conditions, 41, 51
rarefaction wave, 42, 43
ratio of specific heats, 59
Rayleigh, 167
Rayleigh criterion, 139, 140, 161, 162, 165,

171, 175, 177, 191, 192, 196
Rayleigh discriminant, 161, 169, 173, 184
Rayleigh equation, 137, 141
Rayleigh inflexion point theorem, 136, 137, 139
Richardson criterion, 145
Rayleigh number, 146
Riemann invariants, 27, 32
rocket nozzle, 58
rotating flows, 150
rotating fluid equilibria, 150
rotating stellar models, 151
rotating thin disc, 134, 172

Schwarz inequality, 72
Schwarzschild criterion, 74
Sedov–Taylor equations, 54
self-gravity, 60, 63, 75, 88, 123, 127–131, 174,

178, 193
shear flow

cylindrical, 177, 191
non-axisymmetric instability, 191

shock wave, 31, 37, 38, 41, 51, 57, 63
generation of, 51
jump conditions, 33, 34
reflection, 157

similarity assumption, 54
similarity solution, 58, 121
similarity variable, 52, 53, 55–57, 122
singular limit, 171
sound, speed of, 32, 124
specific enthalpy, 80
specific heat, 7

constant pressure, 7, 121, 129
constant volume, 7

specific heats, ratio, 7, 45, 88
speed, 37

Alfvén, 25, 26, 103, 169
phase, 195
of sound, 7, 17–21

spherical blast wave, 57
outflow, 44

spherical symmetric flows, 44–59
Squire’s theorem, 136
stability criterion, 73, 102, 117, 143, 161, 165,

171, 175
Schwarzschild, 75, 102

star, 44, 60–63
cylindrical, 186
flat, 63, 78
square, 63

stress tensor, 4
Sturm–Liouville problem, 70, 94, 95, 99,

141, 162
supersonic flow, 59

Taylor–Goldstein equation, 144
Taylor–Proudman theorem, 157
Taylor–Sedov equations, 54–56
Taylor–Sedov solution, 57
thermodynamic relations, 14
thin cylindrical shell, 196
transverse wave, 25

variational principle, 66, 70, 77, 102, 111
velocity group, 131
velocity potential, 104
virial theorem, 76, 155
viscosity, 1, 6, 156, 171
von Zeipel law of gravity

darkening, 152
von Zeipel theorem, 153
vorticity, 12, 15, 17, 104, 139–141, 187
vorticity equation, 12, 15, 104, 176
vorticity source in non-barotropic

fluid, 176

wave
buoyancy, 84, 109, 189
deep water, 188
electromagnetic, 9, 186
Lamb longitudinal, 21, 25
in magnetic media, 38, 187
magnetosonic number, 82, 128, 130, 173, 174
p-modes, propagation speed, 19, 26
sound, 7, 17–21
water, 78, 178, 195

wave vector, 1, 23, 39, 81, 82, 84, 109, 131
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